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Abstract 
Heating, ventilation, and air conditioning (HVAC) systems 
consume between 10 – 20% of developed countries' energy 
annually. Up to 30% of this energy is often wasted due to 
mismanagement or improper control strategies. In order to 
overcome this issue and optimize energy consumption, this 
paper proposes a predictive modeling technique to 
effectively forecast HVAC system parameters using 
machine and deep learning models. A case study of an air 
handling unit (AHU) at the British Columbia Institute of 
Technology (BCIT, Canada) is used to test and confirm the 
results of this research. Five models were applied to predict 
the supply air temperature. Each model was compared with 
actual supply air temperature and its accuracy was explored. 
The results reveal that all investigated models were 
successful in predicting the supply air temperature, and that 
the combination of a Convolutional Neural Network (CNN) 
and a Long Short-Term Memory (LSTM) models has 
obtained the highest accuracy.  
Introduction 
Global Energy Consumption 
Over the last few decades, the world has seen a substantial 
increase in its energy consumption. The International 
Energy Agency has estimated that over a period of two 
decades primary energy use has grown by 49%, and CO2 
emissions have increased by 43%. This translates to a global 
average annual increase of about 2% and 1.8% respectively 
(Perez-Lombard, Ortiz, & Pout, 2008). Discussions 
regarding this increased energy consumption have brought 
to light connections between global warming, climate 
change, increased pollution, and the growth in global energy 
consumption. With worldwide population growth expected 
to increase in coming years, and worldwide energy demands 
expected to continue to grow, reducing energy consumption 
worldwide is a topic deserving of further inquiry and 
analysis. 
The building sector sits among the top worldwide energy 
consumers, surpassed only by the food, and transportation 
industries. The operation of heating, ventilation, and air 

conditioning (HVAC) systems accounts for about 50% of 
the energy consumed in the building sector worldwide 
(Moran, et al., 2017). This translates to between 10 – 20% 
of the total energy consumption in developed countries 
(Perez-Lombard, Ortiz, & Pout, 2008; Ramesh, Prakash, & 
Shukla, 2010; Verbert, Babuska, & De Schutter, 2017) 
Additionally, degradation and mismanagement of these 
HVAC systems, and improper control strategies can often 
lead to 30% of this energy being wasted (Verbert, Babuska, 
& De Schutter, 2017). Improved control of HVAC systems, 
through data-driven modeling and prediction methods, has 
the potential to significantly reduce the overall energy 
consumption of these systems. 
Existing Control & Prediction Methods 
Most modern building management systems monitor and 
record HVAC system data (temperature, pressure, humidity, 
etc.) using software and sensors connected to various 
system components (dampers, fans, cooling, heating coils, 
etc.). Over time, this leads to a substantial amount of 
historical HVAC system data being available. This data can 
be used to develop data-driven models using predictive 
modeling techniques. The models would make the 
simulation and optimization of HVAC systems possible and 
contribute to the energy reduction in buildings.  
Various data-driven approaches have been explored and 
established as effective at overcoming the shortcomings of 
analytical methods. For example, Fan et al. (2017) showed 
that these data-driven methods are effective at cooling load 
predictions in buildings, while Korolija et al. (2013) showed 
them to be effective in energy consumption modeling. Many 
of these data-driven methods rely on artificial intelligence 
(AI) and machine learning (ML) to do most of the data 
processing involved. AI has proven to be proficient in 
modeling complex systems such as HVAC systems, due to 
its information processing and real-time decision-making 
capabilities (Manic, Amarasinghe, Rodriguez-Andina, & 
Rieger, 2016). Additionally, the heterogeneous nature of an 
HVAC system’s datasets makes AI a perfect tool for data-



driven HVAC system modeling applications. AI and ML 
have already been shown to be capable of predicting future 
HVAC system states by identifying patterns and learning 
from past system datasets. 
Although many studies in the literature reviewed proved 
good results in indoor air temperature predictions using 
classical machine learning models, few works investigated 
the deep learning prediction performance. In recent years, 
deep learning (DL) techniques have emerged as subsets of 
ML and AI. Where ML achieves AI through established 
algorithms and training, DL is differentiated by its use of 
artificial neural networks (ANN). DL has been used in a 
wide variety of analytical tasks, such as image 
classification, and speech recognition (Fan et al., 2019). 
Because of DL’s more complex architecture, it can describe 
more accurately heterogeneous and non-linear relationships 
seen in datasets. As such, DL has the potential of being more 
suited for applications in data-driven HVAC system 
predictive modeling. 
This paper looks at a specific application case of an Air 
Handling Unit (AHU) in an HVAC system at the British 
Columbia Institute of Technology. Artificial intelligence, in 
combination with various machine and deep learning 
models, is used to develop predictive models of the 
preheated air serving 7 rooms in this AHU. This paper will 
first break down the specific application case, provide a 
brief background on AI and deep learning, discuss the 
methodology employed in this specific application case, and 
finally outline the results.  
Methodology  
Predictive modeling has been widely accepted as an 
effective tool by both academic researchers and building 
professionals. Predictive modeling is a mathematical 
process that aims to predict future events based on patterns 
present in past historical datasets. Predictive algorithms 
present an opportunity for the building sector to reduce 
failures, maintenance costs and energy consumption while 
improving the comfort of the occupants. The larger the 
dataset, the more accurate the prediction will be. Although 
this data could theoretically be analyzed manually by a 
human operator, this would be incredibly inefficient. A 
much more effective and efficient tool which can be used to 
analyze this data is artificial intelligence, specifically 
machine learning and deep learning.  
Artificial intelligence and machine learning encompass a 
wide range of algorithms and techniques (Manic, 
Amarasinghe, Rodriguez-Andina, & Rieger, 2016). 
Machine learning algorithms such as Linear Regression, 
Logistic Regression, and Dimensionality Reduction 
Algorithms are well established and have been effectively 
used for predicting future events from past datasets (Manic, 
Amarasinghe, Rodriguez-Andina, & Rieger, 2016). 

Implementing a predictive approach presents several 
challenges, such as the availability of valuable data and the 
accuracy of predictive algorithms. In this paper, learning 
algorithms belonging to classical ML and DL are compared. 
The main purpose of the study is to identify an algorithm 
that accurately predicts the supply air temperature of an 
AHU unit and that can be used to build a digital twin for 
energy optimization in future work.  
This study focuses on predicting the supply air temperature 
that allows the adjustment of the primary delivery 
temperature in an HVAC system. It is a critical parameter in 
controlling the AHU equipment and the Variable Air 
Volumes (VAVs) in the served zones.  
Predicting the supply air temperature is a time series 
problem. Therefore, the selected models in this study are 
chosen based on their proven efficacy in time series 
scenarios.  
Machine Learning 
Tree-based models are built by recursively partitioning the 
considered observations following some criteria. The 
criteria are created by comparing all possible splits in the 
data and choosing the one that offers the highest mean 
squared-error (MSE) reduction in Variance of child nodes. 
Ensemble methods (e.g. Bagging and Boosting) combine 
several decision trees predictors to produce better 
performance and build stronger predictive models. The 
bagging technique uses average predictions from different 
trees constructed by creating several data subsets. While 
Boosting is an iterative technique that fits consecutive trees 
constructed on random samples. At every step simple 
models are fit to the data and data is analyzed for errors. The 
effectiveness of models based on ensemble methods (such 
as Random Forest, XGBoost, and Extra Tree) in forecasting 
time series data sets and HVAC systems, in particular, was 
examined by a few studies (Alawadi, et al., 2020; 
Ampomah, Qin, & Nyame, 2020; Manivannan, Behzad, & 
Rinaldi, 2017).  
In this study, we selected one bagging model and one 
boosting model: Extra Tree and XGBoost. The Extra Tree 
is very similar to Random Forest except that the decision 
rule during tree construction is randomly selected. Alawadi 
et al. (Alawadi, et al., 2020) found that the Extra Tree model 
is the most accurate and performant model for HVAC 
temperature prediction. Thus, the Extra Tree regressor was 
selected as the bagging model in this study. XGBoost is built 
based on parallel tree boosting and is designed for high 
efficiency. The model has been widely used for supervised 
learning problems including HVAC analysis (Chakraborty 
& Elzarka, 2019; Divina, Torres, Vela, & Noguera, 2019). 
Deep Learning 
Deep learning is a powerful tool and is quickly gaining 
popularity, especially in the field of data analytics. In recent 



years, Deep Learning methodologies outperformed 
traditional learning models. It has taken predictive modeling 
one step further and continues to revolutionize numerous 
fields through its strength in predictive modeling 
applications. Common applications of deep learning include 
image recognition, speech recognition, and computer vision 
applications (Manic, Amarasinghe, Rodriguez-Andina, & 
Rieger, 2016). Deep learning refers to a collection of 
machine learning algorithms that take a deeper approach to 
discovering knowledge (Fan, Xiao, & Zhao, 2017). It 
transforms the input data multiple times in either a linear or 
non-linear manner before deriving an output. Conversely, 
most conventional machine learning algorithms tend only to 
translate the input data once or twice before producing an 
output, resulting in a shallower model incapable of 
modeling some more complex systems. 
In this section, the adopted deep learning models for this 
study are briefly presented: Convolutional Neural Networks 
(CNN), and Long Short Term Memory (LSTM).  These 
algorithms are selected in this paper because they are 
relevant to the considered application and the specific case 
study discussed later. 
Long Short-Term Memory (LSTM) 
Long short-term memory (LSTM) networks are a type of 
Recurrent Neural Network (RNN) capable of learning order 
dependence in sequence prediction problems.  Unlike 
standard feedforward neural networks, LSTM has feedback 
connections. LSTMs are typically used in generative 
models, especially in natural language processing tasks. 
However, LSTM networks are very well suited to 
classifying, processing, and making predictions based on 
time series data (Sülo, Keskin, Dogan, & Brown) & (Xu, 
Chen, Wang, Guo, & Yuan, 2019). These models can 
capture features and remember them over time and therefore 
they were considered in this investigation. 
Convolutional Neural Networks (CNN) 
The convolutional neural network (CNN) is a type of 
artificial neural network which has so far been most used for 
analyzing images. Although image analysis has been the 
most common application for CNN’s, they can be used for 
any type of classification problem (DeepLizard, 2017).  
CNN’s have been designed to learn spatial hierarchies of 
features automatically and adaptively, from low-to-high-
level patterns (Yamashita, Nishio, Gian Do Kinh, & 
Togashi, 2018). A CNN is typically composed of three types 
of layers: convolution, pooling, and fully connected layer. 
The convolution and pooling layers perform the feature 
extraction, while the fully connected layer maps the 
extracted features into a final output, such as a classification 
(Yamashita, Nishio, Gian Do Kinh, & Togashi, 2018).  
CNN has been proven effective in time series problems 
(Krizhevsky, Sutskever, & Hinton, 2012) and is thus 
considered in this study. 

Case Study - BCIT AHU-07 
To reduce the ecological footprint of the British Columbia 
Institute of Technology’s Burnaby campus, various 
initiatives have been put in place. Among these initiatives is 
a larger goal of reducing the greenhouse gas emissions at 
BCIT by 33% by the year 2023 (British Columbia Institute 
of Technology, 2021). The purpose of this case study is to 
contribute in a meaningful way to meeting this goal. 
HVAC System Structure and Components 
The British Columbia Institute of Technology, British 
Columbia, Canada (BCIT) is a post-secondary institute with 
a total of five campuses and 62 buildings. The HVAC 
system being looked at is owned and operated by BCIT - 
The Burnaby Campus. In this study, a single Air Handling 
Unit (AHU-07) located on the fourth floor of the North-East 
1 (NE01) building of BCIT is analyzed. The building mainly 
consists of offices, classrooms, washrooms, and mechanical 
rooms, with a gross floor area of 20,076.88 m2. The building 
zones temperature is controlled by a forced-air heating 
system. A total of 10 AHUs serve the four floors. AHU-07 
serves 7 zones on the fourth floor: 6 classrooms and 1 office.  
Figure 1 shows the schematic diagram of AHU-07 with the 
monitored variables. Outdoor air is mixed with air returning 
from the seven served zones. The composition of the 
mixture is controlled by three dampers regulating the 
percentages of air exhausted from the system, entering the 
system, and recirculating in the system. The mixed air is 
cooled or heated when passing through the cooling and 
heating coils. The heating coil uses hot water and is 
connected to the boiler. The amount of water flowing 
through the heating coil is controlled by a valve. Pressure in 
the AHU system is maintained by the return and supply fans. 
A description of the monitored variables and the role they 
play in the overall system is provided in Table 1. These 
variables are the input variables for the predictive models as 
will be detailed later. Detailed technical information of the 
monitored equipment can be found through ASHRAE & 
Consulting-Specifying Engineer (2019). The study being 
conducted was designed to investigate the impacts of AHU 
parameters on the supply air temperature at temperature 

Figure 1 Schematic Diagram of AHU System 



sensor AHU7_HC_SAT. The operation of the AHU system 
is typically impacted by the outside weather condition. The 
latter was represented by the Outside Air Temperature 
variable (AHU7_OAT).  

Table 1 AHU7 Parameters description 
Variable label Description Unit 
AHU7_RESET Cooling Coil Valve % open 
AHU7_HCV Hot Water Valve % open 
AHU7_HC_SWT Hot Water Supply 

Temperature 
°C 

AHU7_HC_RWT Hot Water Return 
Temperature 

°C 

AHU7_MAD_FB Dampers position % open 
AHU7_HC_SAT Supply Air Temperature °C 
AHU7_MAT  Mixed Air Temperature °C 
AHU7_RAT Return Air Temperature  °C 
AHU7_SF_SPD Supply Fan Speed % max 

speed 
AHU7_EF_SPD Return Fan Speed % max 

speed 
AHU7_OAT Outside Air Temperature °C 
AHU7_P1_S Hot Water Pump A 

Data Collection 
Over the last few years, the facilities division at BCIT has 
established a modern and sophisticated building 
management system (BMS). The BMS interface and 
dedicated archival equipment have enabled the precise 
monitoring and control of the HVAC systems at BCIT. The 
data from the various system sensors is recorded, archived 
and can be extracted. 
Minimal campus occupancy is being observed in the years 
2020 and 2021 due to the COVID-19 pandemic. Thus, data 
from these two years was not considered to be useful for this 
predictive modeling application.  Therefore, the data used 
for this study is from the period of January 2016 – December 
2019. This represents a total of four years and about 360,000 
data points per system component. Each row of this data 
corresponds directly to the state of the system, and each row 
is separated by a 15-minute time interval. Using ML and DL 
data mining techniques, patterns can be found, and system 
trends and correlations can be derived from this data. 
Through closer inspection of these trends, it is possible to 
eliminate some redundant system components when 
developing models of the system. 
Application 
The application framework of the prediction models to the 
BCIT case study is composed of three steps: Data collection 
and preparation, model development, and performance 
evaluation. The data collection step has been discussed 
above. The performance evaluation is detailed in the next 
section. The data preparation and algorithm development 
are discussed and detailed below. 

Data Preparation 
Data preparation refers to the process of constructing 
relevant features and data sets as model inputs by cleaning 
and transforming the raw data. In the presented case study, 
all equipment and sensor data were extracted from the 
Building Management System (BMS). In total there were 19 
features and this number was reduced to 12 features that are 
meaningful to the Supply Air Temperature (SAT) prediction 
(see table 1). Return Air Temperature and Return fan speed 
were dropped due to high correlations with other features.  
The considered case study is a campus where the HVAC 
system is working according to a schedule. The latter is 
based on operational rules that vary depending on the day of 
the week (weekday/weekend) and the hour of the day in 
addition to Holidays. The SAT was affected by this 
operation schedule. Figure 2 illustrates the variation of the 
SAT across the hours of the day for the four considered 
years. A variance in SAT across the 24h can be observed. 
The figure shows a constant SAT between 11:00 pm and 
4:00 am. That is when the HVAC system is off. The system 
is programmed for an Optimal Start at 4:00 am during 
weekdays and that extends over two hours. 

 
Figure 2 The change in Supply Air Temperature per hour 

In an attempt to capture the time dependency in the model, 
the parameters that represent the seasonality including the 
month of the year, the hour of the day, and the day of the 
week (weekday/weekend) are also utilized as inputs. Table 
2 summarizes the schedule-related variables defined as 
input features for the prediction models. 

Table 2 Schedule related features 
Input variable Description N° of 

Inputs 
Month of the year Month of the recorded data 12 
Day of week Weekday vs Weekend 2 
Hour of the day Day time, evening, night 3 

The data was split into three subsets to ensure the accuracy 
of the models. For all five architectures, the first three years 
were used as the training data and the last year was used as 
testing data. A validation set was needed to ensure that the 
models are unbiased and to select the best iteration of the 
models based on the mean squared error (MSE). 
Historical HVAC features are known to impact the SAT of 
the AHU system. Hence a sliding window algorithm was 

 
 

  

  

 
 



employed for the sampling process to efficiently train the 
considered models. 
The first training sample of the input variable “x” is 
constructed as a matrix of dimension 𝑊𝑊 × 𝐹𝐹 , where 𝑊𝑊 is 
the window length (W=n*15 min, if n=4 then W=1h) and 𝐹𝐹 
is the number of features (26 features). Then the window 
slides by 1 step (15 min) and the readings from the time step 
i+1 make the second sample and so on (see figure 3). The 
length of this sliding window determines the influence of 
past events in the prediction (e.g. 15 min, 30 min, 1h, etc.). 

 
Figure 3 Sliding windows sampling process 

Considering 15 min step, there is an overlap between the 
sliding windows, and a reading from a single time step 
belongs to multiple windows. If a total of N rows of data 
was considered, the final training dataset shape is a matrix 
[N, n, 26].  For each sample (window of length W), the 
model predicts the supply air temperature for T+i (variable 
“y”) where i is the horizon response in the feature. Each 
model was developed to effectively predict the temperature 
of supply air at two different forecast responses: T + 1 and 
T+2 (15 and 30-min in the future).   
A number of 128 consecutive samples generated by the 
sliding windows technique are placed in a group referred to 
as the batch. The learning takes place one batch at a time. A 
model is always trained only on the current batch. 
Predictive Models Development 
To develop and select the most effective predictive model, 
various algorithms including ExtraTree, XGboost, LSTM, 
and CNN are employed. These algorithms were 
implemented on an open-source Python™-based dedicated 
machine learning package. Python 3.9 programming 
language and the Keras deep learning framework were used. 
To ensure that the optimal model is selected, we evaluated 
the following five models:  
• Model1 – Extra Tree: Used classical Extra Tree 
Machine learning model. This model was selected as the 
bagging method-based tree model. 

• Model2 - XGBoost: Used XGBoost model to 
predict the Supply Air Temperature as the boosting method-
based tree model. 
• Model3- LSTM: Used an LSTM layer and a dense 
layer to build the model. This model has shown better 
performances over other RNN models tested in this 
application. It allows better control of which features will be 
useful for the predictions and avoids the vanishing gradient 
problem when larger sequences will be considered to build 
a digital twin of the system. 
• Model4 - CNN: Used two CONV1D filters and 1 
dense layer 
• Model5 - CNN+LSTM: Considering that CNN can 
learn local features and can reduce the number of parameters 
and that LSTM can capture variation in long/short term 
dependencies, a hybrid method based on LSTM and CNN is 
used to benefit from the potentials of both models. In this 
proposed model the LSTM layer supports sequential 
dependencies in the input data, while the CNN layers inform 
the model by extracting the effective features using multiple 
filters. Two CNN layers and one LSTM layer are used for 
building the model. The loss function is MSE, the optimizer 
is Stochastic Gradient Descent (SGD), and the metrics is 
MAE. 
Results and Discussion 
In this section, predictions obtained by implementing the 
models’ framework developed above on the BCIT AHU 
system are discussed. The purpose of this investigation is 
first, to assess which technique is more suitable in predicting 
HVAC parameters and second, to select the optimal model 
settings to predict the Supply Air Temperature.  
The selected prediction model will be used to adjust the 
equipment setting of an AHU in real-time without human 
involvement and preset rules. The equipment response time 
is generally very short and a 15-min to 30-min ahead 
forecast should be sufficient.  
Since the size of the time delay of input variables (sliding 
window) and the forecast horizon (T+1, T+2, etc.) have a 
significant impact on the prediction model accuracy, 
different combinations of the two parameters are set to 
analyze their influence. The lookback time delay was 
parameterized and sliding windows of time-steps 1, 2, 4, 6, 
and 8 (8 windows = 2 hours) were considered. The models 
were used to predict the SAT for 15 and 30 minutes ahead 
forecast.  
A simple regression algorithm was also tested. The model 
assumes that the SAT at T+1 and T+2 is equal to the 
temperature at T for the 15 and 30 minutes ahead forecast. 
Figures 4 & 5 show the performance of the different 
architectures on the supply air temperature test data. They 
show a snapshot of the prediction result of 1-year from 
January to December 2019 with 15- and 30-minute ahead 
forecast and 1-h lookback window.  It is noticed that the 
overall prediction performance of all models is comparable. 



Overall, all models are able to predict the 15min-ahead and 
the 30min- ahead Supply Air Temperature within ±0.5°C 
and ±0.8°C error respectively.  
Although the considered ML and DL models are able to 
predict the SAT with an acceptable error, the authors 
examined the achieved accuracy differences. The model 
sensitivity is important because this investigation is part of 
a bigger study aiming to build a digital twin of a complex 
HVAC system with all served zones and with extended 
future time predictions. 

 
Figure 4 - 15min ahead and 1-h sliding window predicted 

temperature for the five Models 

 
Figure 5 - 30min ahead and 1-h sliding window predicted 

temperature for the five Models 
To investigate what model outperforms the others,  two 
metrics were considered: the Mean Absolute Error (MAE) 
and the Squared Mean Squared Error (RMSE). The Mean 
Absolute Percentage Error (MAPE)was exculed because it 
is scale-sensitive and penalizes positive errors more than 
negative errors.  

𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ |𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖|
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
  (1) 

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = �∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
  (2) 

where 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝚤𝚤�  are the actual and predicted values, and n is 
the total number of observations. MAE and RMSE are 
commonly used on time series predictions (Galicia, 
Talavera-Llames, Troncoso, Koprinska, & Martínez-
Álvarez, 2019; Fan, Sun, Zhao, Song, & Wang, 2019). They 
provide the user a straightforward way to quantify the 
prediction error because the forecast error is expressed in 
the same units of the variables to be predicted. MAE 
measures the average magnitude of the errors in the 
prediction set. RMSE gives a relatively high weight to the 

large errors since errors are squared before they are 
averaged. The lower value of MAE and RMSE implies 
higher accuracy of the considered model. 
MAE and RMSE obtained on the validation and test sets for 
different historical sliding windows are detailed in 
Appendix A1 and A2. For 15-min ahead prediction, the 
lowest errors were observed for a sliding window of 1h. the 
lookback window size does not have a significant impact on 
the prediction except for when the lookback window is set 
to 15-min. A 15-min lookback window shows less good 
predictions for all the studied models. For the 30-min ahead 
prediction, a lookback window of 1.5h resulted in the 
optimal temperature forecast across models.  
The simple regression model, ML and DL models’ best 
performances at 1h and 1.5h lookback windows for 15-min 
and 30-min ahead predictions, respectively, are shown in 
Tables 3 & 4.  
The simple regression model has the lowest accuracy 
compared to all other models. This proves the need for more 
elaborate ML and DL models that learn time dependency 
and how the SAT evolves over time. 
The MAE for the five ML and DL models’ predictions is 
less than 0.6 ℃ for 15-min ahead prediction and less than 
0.8°C for 30-min ahead prediction. Hence, the approach, 
data, and models considered for this investigation are 
proven to provide a reliable prediction of the supply air 
temperature, considering that the sensors’ overall 
uncertainty is around 0.3 °C. The CNN+LSTM relatively 
outperforms the other models on test data with an improved 
prediction of 13% to 29% and 15% to 24% on 15-min and 
30-min ahead forecast targets respectively. 
Looking at the errors’ values, it is noticed that RMSE errors 
are higher than MAE errors for both the validation and test 
sets for all the studied models. This refers to the existence 
of large errors values in the data set. A closer look at the 
large errors showed that the models are less accurate in 
predicting sudden changes in the predicted temperature. 
This will be investigated in future work. 

Table 3 - 15 min Prediction Error [°C] with a sliding 
window of 4 (1h) 

Model 
Validation Set Test Set 

RMSE MAE RMSE MAE 
Simple 
Regression - - 1.1043 0.5131 

ExtraTree 0.6020 0.3084 0.8187 0.4677 
Xgboost 0.5838 0.3189 0.8789 0.4895 
LSTM 0.6763 0.4113 0.9340 0.6028 
CNN 0.6688 0.3686 0.8177 0.4715 
CNN + 
LSTM 0.5685 0.3119 0.7287 0.4058 



Table 4 - 30 min Prediction Error [°C] with a sliding 
window of 6 (1.5h) 

Model 
Validation Set Test Set 

RMSE MAE RMSE MAE 

Simple 
Regression - - 1.7637 0.9071 

ExtraTree 0.8283 0.4726 1.2100 0.7686 

Xgboost 0.8755 0.5255 1.2725 0.7962 

LSTM 0.9669 0.6125 1.1875 0.8007 

CNN 0.9574 0.5761 1.1550 0.7390 

CNN + 
LSTM 0.8620 0.5049 1.0537 0.6431 

Conclusion 
When designing smart buildings, energy optimization and 
user comfort are key performance indicators. Hence, it is 
important to develop accurate and reliable HVAC systems 
that optimize energy and improve comfort. The primary 
purpose of this study was to propose a reliable data-driven 
model that represents AHU systems. Five algorithms were 
implemented, over a real data set, to predict the supply air 
temperature at a BCIT building.  
The results show that 15-min and 30-min ahead Supply Air 
Temperature of an AHU system can be accurately predicted 
using a designed deep learning model. Hence the study 
provides the framework to build a predictive data-based 
model – a digital twin that would include multiple AHU 
systems and their served rooms in a given building. The 
digital twin model would be used to simulate and generate 
the optimal settings of the HVAC systems that would imply 
a reduction in energy consumption and an improvement of 
the occupant comfort level. This will be addressed in future 
work. 
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Appendix 

Table A 1 - 15 min Prediction errors with each model 

Model 
Validation Set Test Set Sliding 

Window 
Size RMSE MAE RMSE MAE 

ExtraTree 

0.6094 0.3199 0.8170 0.5078 1 
0.5939 0.3034 0.8000 0.4617 2 
0.6020 0.3084 0.8187 0.4677 4 
0.5993 0.3061 0.8324 0.4716 6 
0.6065 0.3082 0.8229 0.4736 8 

Xgboost 

0.6263 0.3560 0.9272 0.5470 1 
0.6027 0.3214 0.8568 0.4946 2 
0.5838 0.3189 0.8789 0.4895 4 
0.5890 0.3177 0.8626 0.4921 6 
0.5984 0.3212 0.8913 0.5222 8 

LSTM 

0.7013 0.43871 1.0142 0.6910 1 
0.6949 0.41303 0.9090 0.5941 2 
0.6763 0.41132 0.9340 0.6028 4 
0.6775 0.40472 0.9447 0.6228 6 
0.6818 0.40291 0.9131 0.5877 8 

CNN 

0.66542 0.38899 0.8681 0.5499 1 
0.65754 0.35488 0.7966 0.4629 2 
0.6688 0.3686 0.8177 0.4715 4 
0.6637 0.3604 0.8223 0.4738 6 
0.6740 0.3704 0.8455 0.4900 8 

CNN + 
LSTM 

0.6177 0.3554 0.8148 0.4919 1 
0.5903 0.3149 0.7572 0.4165 2 
0.5685 0.3119 0.7287 0.4058 4 
0.5688 0.3059 0.7480 0.4208 6 
0.5927 0.3284 0.7383 0.4274 8 

 
Table A 2 - 30 min Prediction Error with each model 

Model 
Validation Set Test Set Sliding 

Window 
Size RMSE MAE RMSE MAE 

ExtraTree 
0.8752 0.5018 1.2943 0.8572 1 
0.8644 0.4881 1.2242 0.7742 2 

 
0.8517 0.4829 1.2044 0.7674 4 
0.8283 0.4726 1.2100 0.7686 6 
0.8506 0.4823 1.2229 0.7779 8 

Xgboost 

0.9170 0.5660 1.4472 0.9424 1 
0.9009 0.5361 1.3373 0.8172 2 
0.9023 0.5346 1.1942 0.7514 4 
0.8755 0.5255 1.2725 0.7962  
0.8958 0.5352 1.2367 0.7834 8 

LSTM 

1.0144 0.6542 1.2368 0.8644 1 
1.0053 0.6359 1.2030 0.8279 2 
0.9931 0.6301 1.1948 0.8106 4 
0.9669 0.6125 1.1875 0.8007 6 
0.9873 0.6186 1.1983 0.8087 8 

CNN 

0.9904 0.6229 1.2147 0.8183 1 
1.0301 0.6033 1.1391 0.7433 2 
0.9871 0.5862 1.1624 0.7501 4 
0.9574 0.5761 1.1550 0.7390 6 
0.9797 0.5892 1.1592 0.7427 8 

CNN + 
LSTM 

0.9326 0.5753 1.1562 0.7550 1 
0.9219 0.5425 1.1537 0.7231 2 
0.8913 0.5253 1.0990 0.6772 4 
0.8620 0.5049 1.0537 0.6431 6 
0.8907 0.5169 1.0888 0.6741 8 
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