
HAL Id: hal-03930625
https://hal.science/hal-03930625

Submitted on 9 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity of planning for connected agents in a
partially known environment

Arthur Queffelec, Ocan Sankur, François Schwarzentruber

To cite this version:
Arthur Queffelec, Ocan Sankur, François Schwarzentruber. Complexity of planning for connected
agents in a partially known environment. Theoretical Computer Science, 2023, 941, pp.202-220.
�10.1016/j.tcs.2022.11.015�. �hal-03930625�

https://hal.science/hal-03930625
https://hal.archives-ouvertes.fr


Complexity of Planning for Connected Agents in a
Partially Known Environment

Arthur Queffelec

NukkAI, Paris, FRANCE

Ocan Sankur

Univ Rennes, Inria, CNRS, IRISA

Campus de Beaulieu, 35042 Rennes Cedex, FRANCE

François Schwarzentruber

Univ Rennes, CNRS, IRISA
Campus de Beaulieu, 35042 Rennes Cedex, FRANCE

Abstract

The Connected Multi-Agent Path Finding (CMAPF) problem asks for a plan

to move a group of agents in a graph while respecting a connectivity constraint.

We study a generalization of CMAPF in which the graph is not entirely known

in advance, but is discovered by the agents during their mission. We present

a framework introducing this notion and study the problem of searching for a

strategy to reach a configuration in this setting. We prove the problem to be

PSPACE-complete when requiring all agents to be connected at all times, and

NEXPTIME-hard in the decentralized case.

Keywords: multi-agent path finding, multi-agent planning, connectivity,

imperfect knowledge, decentralized planning

1. Introduction

The coordination of mobile agents is at the heart of many real world prob-

lems such as traffic control [1], robotics [2, 3], aviation [4] and more [5, 6]. Some
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of these problems have multiple aspects which make them complex: (1) Some

systems are multi-agent, that is, the behaviors of agents influence others’ and5

these influences must be taken into consideration when computing missions; this

can be due for instance, to collisions [7], sensor interferences [8, 9] etc.; (2) Some

missions must ensure connectivity, that is, ensure periodic or constant connec-

tion to a station/agent to share acquired information [10]; (3) The environment

may be only partially known, and the agents may discover it during the mis-10

sion [11, 12]. Several works have considered problems containing these three

aspects. For instance, several algorithmic approaches have been investigated to

solve the coordination of multi-robot exploration [13, 14, 15]. However, the the-

oretical complexity of the underlying decision problems has not been addressed

before. Our objective in this paper is to present a framework to study the the-15

oretical complexity of planning problems on discrete graph models with respect

to these three aspects.

The theoretical complexity of several related problems has attracted atten-

tion, and several results are available in the literature. Multi-Agent Path Find-

ing (MAPF) is an important framework introduced to study collision-free navi-20

gation of agents in warehouses (see [16, 7]). This problem was intensively studied

and gave rise to a popular algorithm known as Conflict-Based Search (CBS) [17].

An extension of MAPF with connectivity constraints, called Connected MAPF

(CMAPF), was studied as well [18]; while the theoretical complexity and some

algorithmic solutions are presented in [19, 20]. However, CMAPF only addresses25

the multi-agent and connectivity aspects, and not the partial knowledge of the

environment. The latter aspect is considered in the Canadian Traveler Problem

(CTP), which is a well-known problem to study the navigation of an agent in a

partially known graph [21]. While the initial framework was defined for a sin-

gle agent, CTP has been extended to multiple agents in the settings of packet30

routing [22], multi-robot exploration [23] and more [24]. While a notion of com-

munication was considered in [25, 26], it is limited to settings where all agents

can receive information at all times or only designated agents can send informa-

tion. However, communication abilities are more restricted in some applications
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where agents may be required to serve as relays in order to maintain a fully con-35

nected communication topology. We are interested in studying the setting where

agents’ ability to communicate depends on their positions in the graph. The

positions in the graph where communication is possible can be derived from the

underlying communication model for the application at hand [10].

In this paper, we study the theoretical complexity of generating plans for40

a group of agents to reach a given target configuration. More precisely, we

analyze the impact of the following aspects on complexity: (A) connectivity;

(B) collisions; (C) bound on the length of the execution. For (A), we consider

either fully-connected strategies, requiring that the agents remain connected at

all times during the mission, or decentralized strategies, allowing agents to dis-45

connect and reconnect. While a decentralized framework might be sufficient in

many cases, some applications do require a constant connection to be main-

tained among all agents, for instance, in order to implement a video stream1.

The survey in [10] presents a discussion on various connectivity requirements.

(B) While collision constraints are necessary to consider in most planning appli-50

cation, some works have ignored them during the high-level planning assuming

a local collision avoidance system (e.g. [18, 19]). Although we believe that it is

more natural to include these constraints, studying separately the case with and

without collision constraints has the advantage of understanding the source of

complexity in planning algorithms with various aspects. We will indeed present55

our results with and without these constraints and show that the problems are

hard even without these. (C) Providing an upper bound on the length of the

executions is natural when one is looking to compute short plans. In fact, the

bounded problem is the decision problem corresponding to the optimization

problem where the goal is to minimize the length of the plan.60

Our results are summarized in Table 1. The PSPACE algorithm for the

connected problem with a bounded execution is subtle and relies on a vari-

1This was the case, for instance, in the UAV Retina project in which the authors partici-

pated.
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ant of the Savitch’s theorem [27] we present here. Interestingly, the PSPACE-

completeness holds even in the case in which agents can always communicate,

thus the hardness of the problem already comes from the incomplete knowledge65

of the movement graph. For the decentralized case, we consider a setting where

the planning is centralized but the execution itself is decentralized. In other

words, the agents know the entire strategy profile, but do not have access to full

observation during the execution. In this setting, we prove the NEXPTIME-

hardness in the bounded and unbounded cases by two separate reductions from70

the True Dependency Quantified Boolean Formula problem (TDQBF) [28], thus

showing that the problem becomes significantly harder in this case. We distin-

guish the case of the binary and unary encodings of the bound. We also present a

matching NEXPTIME upper bounds in some cases and a general 2NEXPTIME

upper bounds (see Table 1).75

Let us compare our results with known complexity results. In the fully known

environment, the CMAPF problem is PSPACE-complete in the connected and

unbounded case [19], while it is NP-complete in the bounded case (with the

bound given in unary) [18]. Thus, the partial knowledge of the environment does

not render the problem harder in terms of complexity. In contrast, recall that80

in MAPF (with collision constraints but without connectivity), one can check

the existence of a solution in polynomial time [29], while the bounded problem

is NP-hard [30], so the PSPACE-hardness is due to connectivity constraints.

Some algorithms were presented for CMAPF in [19] but these did not take

collision constraints into account. Since both problems are similar and belong85

to PSPACE, one can hope that these approaches can be extended to the partial

knowledge case. On the other hand, our results show that the complexity of the

decentralized case is significantly higher. While some tools and algorithms are

available for Decentralized POMDPs, which are in the same complexity class,

the scalability is limited and the development of efficient algorithms for this90

case seems more challenging (see [31] for a survey). This suggests that efforts

might be directed in designing, e.g. heuristic approaches, rather than complete

algorithms which will not scale.
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Decentralized Connected

Bounded (unary)
NEXPTIME-complete PSPACE-complete

(Th. 7, 12) (Th. 4, 6)

Bounded (binary)

in 2NEXPTIME, NEXPTIME-hard PSPACE-complete

(Th. 7 and 12) (Th. 5, 6)

NEXPTIME-complete for undirected graphs

(Th. 8 and 12)

NEXPTIME-complete for knowledge-based strategies

(Th. 9 and 12)

Unbounded

in NEXPTIME for knowledge-based strategies PSPACE-complete

(Th. 10) (Th. 3)

NEXPTIME-hard

(Th. 11)

Table 1: Complexity Results for both the decentralized case (agents may disconnect and each

agent is autonomous and has its own strategy and the connected case (agents must remain

connected and the set of agents can be considered as a single meta-agent). The plan can be

bounded by a threshold given either in unary or binary, or is unbounded (i.e. can be arbitrary

long).

A preliminary version of this work appeared in [32] in which several results

were presented without proof, or with short sketches, and the imperfect infor-95

mation formalism was only informally described. This paper is an improved

version with detailed formalism, examples, and full proofs.

Overview. In Section 2, we present preliminary definitions; and in Section 3, we

present our framework, including the modeling of information exchange between

agents, and we formally define the problems we study. Section 4 contains our100

complexity results for the connected case, and Section 5 for the decentralized

case. Last, Section 6 contains conclucions and discussions.

2. Preliminaries

Connected MAPF. We consider a setting where agents move on a graph, with

the vertices being their possible locations and the movement edges defining how105
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Figure 1: Example of a topological graph.

they can move. In addition, communication edges define how the agents can

communicate. The graphs we consider thus have two types of edges and are

called topological graphs.

Definition 1. A topological graph is a tuple G = 〈V,Em, Ec〉, with V a finite

non-empty set of vertices, Em ⊆ V ×V a set of movement edges and Ec ⊆ V ×V110

a set of undirected communication edges.

Figure 1 gives an example of a topological graph. For instance, an agent can

go from 1 to 3 in one step. Two agents at vertices 1 and 5 can communicate,

but two agents at 1 and 4 cannot.

We suppose that each vertex has a self-loop movement edge and a self-loop115

communication edge. This respectively represents the ability of an agent to

stay at their location and to communicate with a nearby agent (i.e. at the same

location/vertex).

Although we present our setting mainly for directed graphs, we also consider

the undirected graphs in which Em contains subsets of vertices of cardinal 2, and120

contains all singletons (self-loops).

Definition 2. A configuration of size n is a tuple c = 〈c1, . . . , cn〉 ∈ V n where

ci is the vertex of agent i.

In our setting, each agent simultaneously moves from their current vertex to

an adjacent vertex at each step. We thus write c → c′ when (ci, c
′
i) ∈ Em for125

all 1 ≤ i ≤ n. This means that each agent i can move from their vertex ci in c

to their vertex c′i in c′ in one step.

Definition 3 (Execution). An execution π is a sequence of configurations

〈π[0], π[1], . . . , π[`]〉 such that π[t]→ π[t+ 1] for all t ∈ {0, . . . , `− 1}.
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The length of π = 〈π[0], π[1], . . . , π[`]〉 is ` and is denoted by `π: it is the130

number of steps in the execution. We write π[0..t] to denote the sub-execution

〈π[0], π[1], . . . , π[t]〉 of π. Moreover, last(π) denotes the last configuration of π.

We say that a configuration c is connected iff the subgraph of the vertices

occupied by the agents form a connected graph for relation Ec, i.e. the graph

〈Va, Ec ∩ (Va×Va)〉 is connected with Va = {c1, . . . , cn}. An execution is said to135

be connected iff all its configurations are connected. The Connected Multi-Agent

Path Finding problem consists in finding a connected execution for the agents

from a given initial configuration to a target configuration. We summarize below

the known complexity results for the CMAPF problem.

Theorem 1 ([18]). The problem of deciding whether, in a given instance (G, cs, ct, k)140

where k is unary, there is a connected execution from cs to ct of length at most k

is NP-complete.

Theorem 2 ([19]). The problem of deciding whether for a given instance (G, cs, ct,∞),

there exists a connected execution from cs to ct is PSPACE-complete.

Note that we first present our results without collision constraints (that is,145

allowing several agents to be on a given vertex at the same time). We then

explain in Section 6.1 how to incorporate these constraints to obtain the results

in the general setting with connectivity and collision constraints. This is thus

similar to CMAPF with perfect knowledge, which is not harder to compute with

or without collision constraints [19, 20].150

Dependency Quantified Boolean Formula. A Dependency QBF (DQBF)

is a formula in which dependencies of existential variables over universal vari-

ables are explicitly specified. A DQBF is of the form

∀y1, . . . , yn∃x1(Ox1) . . . ∃xn(Oxn) ψ,

where each Oxi is, the dependency set, a subset of universally quantified vari-

ables, and ψ is a Boolean formula in CNF over x1, . . . , xn, y1, . . . , yn. It is worth

noting that a QBF can be seen as a DQBF with Ox1 ⊆ Ox2 ⊆ ... ⊆ Oxn .
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The True DQBF (TDQBF) is the problem of deciding whether a given

DQBF is valid. Formally, a DQBF ϕ is valid iff there exists a collection of func-155

tions A = (Axi : {0, 1}Oxi → {0, 1})i=1..n such that replacing each existential

variable xi by a Boolean formula representing Axi , turns ψ into a tautology.

TDQBF is NEXPTIME-complete [28], and will be used to prove NEXPTIME

lower bounds in Section 5.

3. Our framework160

3.1. Modeling Imperfect Information

To formalize CMAPF in the imperfect information setting, let us show how

to represent the initial knowledge of the agents, and how the information they

have evolves during the execution. Agents initially know the exact set of vertices,

but only have a lower and an upper approximation of the actual graph: they165

know that some (communication or movement) edges are certainly present or

certainly absent, while some are uncertain (they may be present or absent).

Definition 4 (Initial Knowledge). The initial knowledge is modeled by a pair

of topological graphs (G1, G2), with the graph G1 = 〈V,Em1 , Ec1〉 a lower bound,

and G2 = 〈V,Em2 , Ec2〉 an upper bound on the knowledge about the actual graph170

with Em1 ⊆ Em2 and Ec1 ⊆ Ec2.

The agents initially know given G1 and G2 while the actual graph G =

〈V,Em, Ec〉 is initially unknown to them. They only know that Em1 ⊆ Em ⊆ Em2
and Ec1 ⊆ Ec ⊆ Ec2, written as G1 ⊆ G ⊆ G2. The perfect information case is

captured by G1 = G2(= G).175

A movement (resp. communication) edge is said to be certain (i.e. sure to

be present) if it is in Em1 (resp. Ec1); it is said uncertain (i.e. can be absent) if it

is in Em2 \Em1 (resp. Ec2 \Ec1). We assume that the communication edges of the

actual graph are undirected, so for all (u, v) ∈ Ec2 \Ec1, either (u, v), (v, u) ∈ Ec,

or (u, v), (v, u) 6∈ Ec.180
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s1

s2

s3

s4

s5
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?

?
?

Figure 2: An initial knowledge (G1, G2).

Certain movement edge

? Uncertain movement edge

Certain communication edge

? Uncertain communication edge

Remark 1 (Undirected Graphs). We will also consider the case of undirected

graphs. In this case, we suppose that the agents know that G is undirected, that

is, Em1 , Em, and Em2 are undirected graphs.

Note that movement (resp.communication) edges that are not even in Em2

(resp. Ec2) are certainly absent.185

Example 1. Figure 2 depicts an initial knowledge (G1, G2). The area is di-

vided in two zones connected by two bridges, represented by the edges (s2, s4)

and (s3, s5), with an uncertainty on whether each bridge is open and on the

communication between s1 and s4.

A history contains a graph G, and an execution (Definition 3) in that graph.190

In our setting, the graph G is chosen by an adversary such that G1 ⊆ G ⊆ G2.

A strategy σi for agent i tells where to go next at a given history. Formally:

Definition 5. A strategy σi for agent i maps any graph G and any execution π

in G to a vertex such that (v, σi(π)) ∈ Em where v is the vertex at which agent

i is in the last configuration of π.195

A joint strategy σ is a tuple 〈σ1, . . . , σn〉 where σi is a strategy for agent i.

The outcome of a joint strategy σ starting from configuration cs is the execu-

tion π defined by induction as follows: π[0] is cs, and for t ≥ 1, π[t] is the

configuration in which agent i is at vertex σi(π[0..t− 1]).

In the context of imperfect information, the behaviors of the agents only200

depend on their observations, as in imperfect information games as in [33]. The

strategies, as defined above, do not necessarily take observations of the agents

into account. We will now formalize observations and uniform strategies, that

is, those respecting the observations of the agents.
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In our setting, at any time, an agent observes all movement edges adjacent205

(both in- and out-coming) to the vertex v they occupy. Moreover, they observe

the presence or absence of a communication edge between v and v′ if v′ is

occupied by another agent with which there is a direct or indirect communication

(via other agents). Intuitively, during an execution, at each step, each agent

updates their knowledge about the graph with these observations they receive.210

Moreover, they share all their knowledge with all agents with which they are

connected at each step.

The observation of adjacent movement edges has been a recurrent practice

in theoretical works [21, 34] as well as robotics [35, 36], and our formalism is

inspired from these works.215

The knowledge of an agent at any time corresponds intuitively to a pair of

graphs as in Definition 4. For agent i and execution π, let us denote by ki(π)G

the knowledge of agent i about the graph after observing the execution π in

actual graph G. Given such knowledge K = ki(π)G, the agent can deduce

an under-approximation and an over-approximation of the actual graph; let us220

denote these by GK and G
K

respectively. In particular, if K is the knowledge

the agents have initially, then GK = G1 and G
K

= G2. In general, GK contains

edges that are certainly in the graph given the current knowledge, while G
K

also contains those that may be in the graph. The latter are the edges of G2

that were not ruled out by the current knowledge.225

We will now formalize these definitions.

Given graph G = 〈V,Em, Ec〉, let us define the direct observation obsi(c) of

agent i at a configuration c to be the set:

{omci,v′ | (ci, v
′) ∈ Em} ∪ {o¬mci,v′ | (ci, v

′) ∈ V 2 \ Em} (1)

∪ {omv′,ci | (v
′, ci) ∈ Em} ∪ {o¬mv′,ci | (v

′, ci) ∈ V 2 \ Em} (2)

∪ {occi,cj | j is an agent and (ci, cj) ∈ Ec} (3)

∪ {o¬cci,cj | j is an agent connected to i in c, (ci, cj) ∈ V 2 \ Ec} (4)

10



where omu,v, o
¬m
u,v , ocu,v and o¬cu,v are predicates that represent the observations. In

the definition of obsi(c), points (1) and (2) mean that agent i directly observes230

the set of movement edges adjacent to her current position. Point (3) means that

agent i observes a communication edge when she can communicate with another

agent j. Point (4) means that agent i observes the absence of a communication

edge when she sees that she can not communicate directly with another agent j

but can communicate with j via multi-hop. That is, we say that j is an agent235

connected to i in c when there is a communication path ci1 , ci2 , . . . , cik with

i1 = i and ik = j, that is, (cil , cil+1
) ∈ Ec for 1 ≤ l ≤ k − 1.

Let O denote the set of all observations. We define the knowledge of an

agent as a subset of O. We define the initial knowledge for the pair (G1, G2) as

follows:240

K0(G1, G2) = {omu,v | (u, v) ∈ Em1 } ∪ {ocu,v | (u, v) ∈ Ec1}∪

{o¬mu,v | (u, v) /∈ Em2 } ∪ {o¬cu,v | (u, v) /∈ Ec2}

where Gi = 〈V,Emi , Eci 〉.

This corresponds to the a priori knowledge on the graph all agents have

before making any observation.

During the execution, agents update their knowledge at each step, upon

visiting a new configuration. Formally, the knowledge ki( ~K, π)G of agent i after245

observing execution π in actual graph G, with ~K = (Kj)1≤j≤n, where each

agent j starts with initial knowledge Kj , is defined by induction on π:

• ki( ~K, ε)
G = Ki

• ki( ~K, πc)
G is the union of:

ki((Kj)1≤j≤n, π)G; (a)

obsi(c); (b)⋃
j connected to i in c

(kj( ~K, π)G ∪ obsj(c)). (c)

Intuitively, the knowledge of an agent is composed of (a) her knowledge

collected until that point, (b) her current observation, and (c) the knowledge of250

the agents she is connected to and their current knowledge.
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When the agents start with an initial knowledge (G1, G2) that is clear from

the context, we will omit the tuple ~K = (Kj)1≤j≤n and simply write ki(π)G.

Note that during a connected execution, all agents have an identical knowl-

edge at all times. We thus omit the subscript i, and replace the tuple of initial255

knowledge sets by a single set K and write k(K,π)G rather than ki( ~K, π)G.

In the rest of the paper, we assume all considered strategies to be uniform,

that is, they comply with the knowledge of the agents: the strategies prescribe

the same move to all executions that are indistinguishable with the agent’s

observations.260

Definition 6 (Uniform Strategies). Let G be a topological graph, (G1, G2) an

initial knowledge, and write ~K = (K0(G1, G2))1≤j≤n. A strategy σi for agent i

is uniform if for all executions π, π′ such that

1. `π = `π′ (π and π′ have the same length),

2. ki( ~K, π)G = ki( ~K, π
′)G,265

3. for all t ∈ {0, . . . , `π}, for all agents j,

(a) (i is connected to j in π[t]) iff (i is connected to j in π′[t]);

(b) and for all j, if i and j are connected then π[t]j = π′[t]j,

we have σi(π) = σi(π
′).

In the previous definition, agents’ strategies may depend on the length of270

the current history. We are also interested in a particular class of strategies

whose decisions only depend on the current knowledge, and not on the length of

the history. These strategies appear in the literature in some restricted settings

such as two-player games with imperfect information, and they are known to

suffice for winning for reachability or safety objectives in such games [37].275

Definition 7 (Knowledge-based Strategies). Let G be a topological graph, (G1, G2)

an initial knowledge. A strategy σi for agent i is knowledge-based if for all ex-

ecutions π, π′ such that such that

1. ki( ~K, π)G = ki( ~K, π
′)G,

12



2. for all agents j,280

(a) (i is connected to j in last(π)) iff (i is connected to j in last(π′));

(b) and for all j, if i and j are connected then last(π)j = last(π′)j,

we have σi(π) = σi(π
′).

We will see in Section 5 that knowledge-based strategies are not always

sufficient in our case.285

3.2. Decision Problems

We consider the decision problem of reaching a configuration ct from a con-

figuration cs in less than k steps, using uniform strategies. For two configu-

rations cs, ct, let us call a topological graph G (cs, ct)-admissible if there is an

execution from cs to ct, which is not necessarily connected.290

Definition 8. We say that an instance (G1, G2, c
s, ct, k) is positive if there

exists a joint strategy σ such that in all (cs, ct)-admissible graphs G satisfying

G1 ⊆ G ⊆ G2, the outcome of σ starting in cs ends in ct in less than k steps.

Observe that the above problem requires that a strategy ensures the reach-

ability of the target configuration only for graphs that are (cs, ct)-admissible295

and compatible with the initial knowledge. In fact, intuitively, we would like

the strategy to work under all possible graphs G with G1 ⊆ G ⊆ G2. However,

requiring a strategy to ensure reachability in a non-admissible graph does not

make sense, since even a strategy with full information would fail. We thus

require the strategies to make their best efforts, that is, to ensure the objective300

unless it is physically impossible.

Example 2. Consider the example of Figure 2. If both bridges (i.e. move-

ment edges (s2, s4) and (s3, s5)) are absent in the actual graph, the graph is

not (s1, s6)-admissible and there cannot be a strategy ensuring reachability. The

admissible graphs contain either (s2, s4), or (s3, s5), or possibly both. Note that,305

this instance is negative for k < 6 (that is, it does not admit a solution). In-

deed, consider a strategy that moves the agent, for instance, to s2. In the graph

13



where (s2, s4) is absent, the agent would need to come back to s1 and take the

alternative path, which requires an execution of total length 6; and the situation

is symmetric if the first move is towards s3. The instance is nonetheless positive310

for k ≥ 6 with the described strategy. However, if the edges (s2, s1) and (s3, s1)

were not present, then the instance would be negative. In fact, once the agent

moves to s2 or s3, they get stuck if the graph only contains the other bridge.

We now define the connected version of Definition 8. For two configurations

cs, ct, we say that a topological graph G is (cs, ct)-c-admissible if there is a315

connected execution from cs to ct. We will often omit the pair of configurations

which will be clear from the context, and write simply admissible or c-admissible.

Definition 9. We say that an instance (G1, G2, c
s, ct, k) is c-positive if there

exists a joint strategy σ such that in all (cs, ct)-c-admissible graphs G satisfying

G1 ⊆ G ⊆ G2, the outcome of σ starting in cs is connected and ends in ct in320

less than k steps.

In the connected case, agents cannot visit a disconnected configuration.

Hence, the considered strategies only visit configurations that are certainly con-

nected. Observe that agents can make observations about the presence or ab-

sence of communication edges while being connected and use this information325

later.

s1 s2 s3

s4 s5s6

s7 all

?

?

Figure 3: An initial knowledge of a topological graph (undirected case). Vertex s7 has com-

munication edges with all other vertices.

Example 3. Let us illustrate the above property on the example of Figure 3. As-

sume there are two agents, the starting and goal configurations are cs = 〈s1, s6〉

and ct = 〈s5, s7〉, and the only uncertainty is about the movement edges (s3, s5)

and (s4, s5). Here, Agent 2 could immediately move to her target s7; however,330
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she could also cooperate with Agent 1 and lower the total completion time. In-

deed, from their start configuration 〈s1, s6〉, the agents first move to 〈s2, s4〉

where Agent 2 observes whether (s4, s5) is present. Assume the edge is present.

Then, they follow the sequence 〈s4, s6〉 · 〈s5, s7〉; and otherwise 〈s3, s6〉 · 〈s5, s7〉.

Thus, in order to minimize the length of the execution, the agents do not always335

take their shortest paths but might help other agents by obtaining information

about the graph.

Consider now the same example in which the communication edge (s3, s6)

is uncertain. If this edge is absent then Agent 2 cannot help Agent 1 achieve

the target faster since if the former moves to s4 and (s4, s5) is absent, then, in340

order to maintain connectivity, the next configurations should be 〈s4, s6〉·〈s2, s7〉·

〈s3, s7〉 · 〈s5, s7〉. An execution of the same size is obtained when Agent 2 moves

to s7 in the first step.

For both Definitions 8 and 9 above, let us call a joint strategy a witness if it

witnesses the fact that the given instance is positive, and respectively, c-positive.345

We instantiate the Connected MAPF problem in four different settings. The

four following decision problems are defined depending on whether we consider

the connectivity requirement and whether the bound is finite. Note that the

bounded problems are the decision problems associated to the optimization

problems.350

Bounded Decentralized Reachability. Is given instance (G1, G2, c
s, ct, k),

with k <∞, positive?

Bounded Connected Reachability. Is given instance (G1, G2, c
s, ct, k), with

k <∞, c-positive?

Unbounded Decentralized Reachability. Is given instance (G1, G2, c
s, ct,∞)355

positive?

Unbounded Connected Reachability. Is given instance (G1, G2, c
s, ct,∞)

c-positive?

The bounded problems will be considered both for the unary and the binary

encodings of the bound k. Lower bounds are all obtained for the unary encoding;360
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these imply the same lower bounds for the binary encoding. Concerning the

upper bounds, we explain for each case how to design an algorithm with k

encoded in unary or binary. We also consider these problems distinguishing

directed and undirected graphs.

The complexity results are summarized in Table 1. We establish these results365

in the subsequent sections.

4. Connected Reachability

We first address the case where agents must be connected at each step of

the execution. In this case, agents share their knowledge at all times and thus

the group of agents can be considered as a single entity playing against the370

environment.

4.1. Unbounded Case

We first focus on the existence of an unbounded connected strategy. Interest-

ingly, we show that verifying the existence of a connected strategy in a partially

known environment is not harder than in a perfectly known environment.375

Theorem 3. The unbounded connected reachability problem is PSPACE-complete

both for directed and undirected graphs.

The PSPACE lower bound follows from Theorem 2 with G1 = G2.

For the upper bound, let us explain the intuition of the algorithm. Fix in-

stance I = (G1, G2, c
s, ct,∞). If I is c-positive, then G2 must admit a connected380

execution π from cs to ct such that along this execution, whenever the absence

of a set of edges is revealed, there should still exist a connected execution from

the current configuration to ct, unless the graph reveals to be not c-admissible.

This is a recursive property that is necessary since it is satisfied by all witness

strategies. We prove that it is also sufficient for c-positive instances.385

We now formalize this intuition. Let us define the following recursive prop-

erty: P (G,G, c, ct) holds for graphs G,G, and configurations c, ct if either G

is not (cs, ct)-c-admissible, or there exists a connected execution π from c
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to ct in G such that for all G with G ⊆ G ⊆ G, writing K0 for the initial

knowledge for the pair (G,G), there exists 1 ≤ i0 ≤ `π + 1 with k(K0, c)
G =390

k(K0, π[0..i0 − 1])G, and either π[i0] = ct or (k(K0, c)
G ( K = k(K0, π[0..i0])G

and P (GK , G
K
, π[i0], ct)).

The following two lemmas prove Theorem 3.

Lemma 1. An instance I = (G1, G2, c
s, ct,∞) is c-positive if, and only if

P (G1, G2, c
s, ct).395

Proof. We prove the following more general property by induction on the num-

ber of edges present in G2 and absent in G1, that is, |Em2 | − |Em1 |+ |Ec2| − |Ec1|:

For all graphs G1 ⊆ G ⊆ G ⊆ G2, and configurations c, if the instance

(G,G, c, ct,∞) is c-positive then P (G,G, c, ct).

If G = G then either the instance is not c-admissible and, P (G,G, c, ct)400

holds, or there is a connected execution π in G from c to ct in which case the

property holds as well with i0 = `π + 1.

AssumeG ( G, and consider σ a witness strategy for the instance (G,G, c, ct,∞).

Consider a graph G ⊆ G ⊆ G. If the execution π induced by σ does not re-

veal any new observation in G, then it must end in ct and P (G,G, c, ct) holds.405

Otherwise, let i0 be the first step where a new observation is made. Since σ

is a witness strategy, it is a witness for the instance (GK , G
K
, π[i0], ct,∞) as

well where K = k(π[0..i0])G. Since G
K

and GK have a smaller number of dif-

ferences than G and G, we conclude by induction that P (G,G, π[i0], ct). Thus,

P (G,G, c, ct) holds.410

Let us now show that all instances that satisfy the property are c-positive.

Assume P (G1, G2, c
s, ct) holds. We define the joint strategy σ on all graphs G

K

and executions π in G
K

, such that P (GK , G
K
, last(π), ct), by induction on the

length of π.

Assume σ is constructed for an execution π and knowledge K. If G
K

is not c-415

admissible, then any strategy is a witness strategy so σ can be defined arbitrarily.

Otherwise, consider the connected execution π′ given by P (GK , G
K
, last(π), ct)

as well as the index i0. We define σ so that agents follow π′ until index i0, in
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which case either π′[i0] = ct, or P (GK
′
, G

K′

, ππ′[1..i0], ct). In the former case,

π has reached the goal configuration; in the latter case, we extend the execution420

by the induction hypothesis.

Lemma 2. P (G1, G2, c
s, ct) can be checked in polynomial space.

Proof. The existence of a connected execution can be checked in polynomial

space by Theorem 2. However, the size of such an execution can be exponential,

and checking P (G1, G2, c
s, ct) requires iterating over the step of the execution.425

We thus need to combine the enumeration of the connected execution as we

check P recursively.

The procedure to check P (G,G
K
, c, ct) works as follows. We

non-deterministically guess a connected execution from c to ct in G
K

step by

step, using the PSPACE algorithm of Theorem 2. We thus only keep the last430

configuration in memory, a binary integer counter to bound the length of the

execution (bounded by the number of configurations, thus an exponential), and

the current graph G
K

. If there is no such execution, we accept. Otherwise, at

each step, say, after having visited execution π and generated next configura-

tion c′ we enumerate all possible sets K ′ = k(K0, πc
′)G, where K0 is the initial435

knowledge for the pair (G1, G2). This can be done by enumerating all subsets

of movement edges adjacent to c′, present in G
K

but not in GK , and simi-

larly communication edges revealed by c′. Note that k(K0, πc
′)G only depends

on k(K0, π)G and c′ which the algorithm already has. There is an exponential

number of possibilities, and these can be enumerated in polynomial space. For440

each case, we check recursively whether P (GK
′
, G

K′

, c′, ct). Since the knowl-

edge can increase only a polynomial number of times (since the knowledge can

only increase when an edge is added or removed), the depth of the recursive

calls is polynomial. Thus, overall, the procedure uses polynomial space.

4.2. Bounded Case445

We now study the existence of a bounded connected strategy. We show

that this problem is PSPACE-complete even when the communication graph is
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complete. Let us first prove the upper bound when k is given in unary.

Theorem 4. The bounded connected reachability problem is in PSPACE when

the bound is given in unary, both for directed and undirected graphs.450

As APTIME = PSPACE [38], we give an alternating algorithm that runs in

polynomial time, as follows. At each step, the existential player chooses the next

connected configuration to move the agents; and the universal player chooses

the information about the newly discovered edges. After k steps the algorithm

accepts if the target configuration is reached, or the revealed edges mean that455

the graph is not c-admissible. The number of steps is bounded by k, which is

polynomial, thus the algorithm runs in polynomial time.

There is one subtlety to prove the correctness. The alternating algorithm

actually corresponds to a slight variant of our setting which can be seen as a

game. In our setting, the environment chooses a graph G with G1 ⊆ G ⊆ G2 at460

the beginning, and the agents discover the graph G as they move. In contrast,

in the alternating algorithm, the universal player reveals the graph step by step;

therefore the environment might adapt the graph to the moves of the existential

player.

Lemma 3. The alternating algorithm decides the bounded connected reachability465

problem.

Proof. First, observe that if the existential player has a strategy σ in the alter-

nating algorithm, then the instance is c-positive. In fact, for any graph G with

G1 ⊆ G ⊆ G2, consider strategy τ of the universal player which makes choices

according to G. Since this σ wins against τ , either the graph is not admissible470

or the agents successfully arrive to the target configuration. Conversely, assume

that the instance is c-positive, that is, there is a joint strategy σ ensuring that

such that for all choices of an admissible graph G, the agents arrive at a target

configuration. We apply σ in the alternating algorithm. Consider any strat-

egy τ of the universal player, and observe the execution induced by (σ, τ). If475

the graph induced by τ is revealed not to be admissible, then the existential
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player wins. Otherwise, consider any admissible graph G with G1 ⊆ G ⊆ G2

compatible with the edges revealed during the execution of (σ, τ). Since σ is

winning in the original game when the underlying graph is G, the existential

player also wins.480

When k is binary, the previous algorithm does not run in polynomial time.

However, observe that the number of alternations can be bounded by a polyno-

mial because there is only a polynomial number of steps in which the universal

player reveals new information to the coalition of agents. In fact, the universal

player is only useful when some agent is at a vertex that has not been seen485

before, or when two agents are at different vertices and observe whether a com-

munication edge is present or absent. The number of times this happens is

quadratic in the number of vertices. Furthermore, the previous algorithm runs

in polynomial space.

When k is binary, our problem is in STA(poly(n), ∗, poly(n)) where490

STA(s(n), t(n), a(n)) is the set of problems decided in spaceO(s(n)), timeO(t(n))

with O(a(n)) alternations. We prove here the following generalization of Sav-

itch’s theorem which proves that our problem is in PSPACE.

Lemma 4. STA(poly(n), ∗, poly(n)) ⊆ PSPACE.

Proof. To build a PSPACE algorithm, we perform a DFS of the computation495

tree T in a succinct manner. Consider the tree T ′, built from T , where we

only keep vertices in which the universal player makes a decision, while paths

along which only the existential player moves are shortcut into single edges.

The depth of this tree is polynomial by definition.

The idea is to run a DFS on T ′ to check whether the machine accepts. This500

can be done in polynomial space provided that the children of all vertices can be

computed in polynomial space. Successors of an existential configuration c in T ′

are computed as follows: we generate on-the-fly all possible configurations c′ and

test whether c′ is reachable from c in the original alternating machine by using a

PSPACE oracle. The DFS that runs in PSPACE augmented with this PSPACE505

oracle gives a polynomial space procedure.
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Thus:

Theorem 5. The bounded connected reachability problem is in PSPACE when

the bound is given in binary, both for directed and undirected graphs.

We say that a topological graph has a complete connectivity graph if there510

are communication edges between all pairs of vertices. The hardness of the

bounded connected reachability holds even in this case, regardless of the encod-

ing used for the given bound.

Theorem 6. The bounded connected reachability problem with a complete con-

nectivity graph is PSPACE-hard both in unary and binary encodings. Moreover,515

PSPACE-hardness holds for undirected graphs.

Proof. The lower bound is proven by reduction from the true QBF problem.

Consider a QBF ϕ of the form ∀z1∃z2 . . . Qnznψ where ψ is a Boolean formula

in conjunctive normal form with n variables and m clauses.

In the reduction, we call a movement path, from node v to node u, a chain of520

nodes linking v to u by movement edges. In addition, we denote an occurrence

of a positive (resp. negative) literal of a variable z, by z (resp. ¬z)

We create the graphs G1 and G2 as described in Figure 4. More precisely,

for each variable z, we create a gadget shown in Figure 4a. Here, a b. . .
N

represents an undirected movement path from u to v with N edges connecting525

vertices u and v (with N − 1 fresh intermediate vertices). When N = 0, we

identify vertices u and v. For each clause, we create a gadget as depicted in

Figure 4b. In addition, we create a movement edge between a node vz (resp.

v¬z) and a node tγ if the literal z (resp. ¬z) is present in the clause γ.

We define the initial and target configurations cs, ct as follows. There is a530

single agent at each vertex of the form sγ (resp. sz) whose target is tγ (resp. tz).

Furthermore, at each sz (resp. s¬z) there is one agent for each clause that

contains z (resp. ¬z) and her target is tz (resp. t¬z).

We show that ϕ is true iff (G1, G2, c
s, ct, k) is c-positive with k = 3(n−1)+5.

We classify the agents as follows.535
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(a) Variable gadget for variable z. Edges between vz and l¬z , and between vz and rz are both

certain if z is existential and both uncertain if z is universal.

sγ vγ

rγ

lγ

tγ. . .
3(n− 1) + 3 ?

?

(b) Clause gadget γ.

Certain Movement edge

? Uncertain Movement edge

∀z
?
∃z

Movement edge that is certain if z is existential and uncertain if

z is universal

. . .
N

Movement path with a total of N edges

(vz , tγ) ∈ Em1 when z occurs in γ

(v¬z , tγ) ∈ Em1 when ¬z occurs in γ

Figure 4: Gadgets for the reduction from QBF to the bounded reachability problem in the

complete connectivity case.
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• A Variable agent is an agent starting at a node sz;

• a Clause agent is an agent starting at a node sγ ;

• a Positive (resp. negative) occurrence agent is an agent starting at sz

(resp. s¬z).

(⇒) Assume that the QBF ϕ is true. There exists a collection of Skolem540

functions A such that for each existential variable zi (where i is even), and

for each assignment ν to universally quantified variables in z1, z3, . . . , zi−1,

Azi(ν) ∈ {>,⊥} is the value assigned to zi such that ϕ is true under assign-

ment ν augmented with the values of A. We construct the following strategy σ,

which guarantees that ct is reached in k steps from cs.545

Intuitively, the lengths of the initial movement paths are designed so that

agents starting at szi arrive at vzi in the order of their indices. For an existential

variable agent, the choice of the successor from vzi determines the value of zi;

while for a universal variable agent, the choice is made by the environment.

More precisely, if the agent moves to rzi , then zi is set to true, if she moves550

to l¬zi it is set to false.

Formally, all agents are at their initial vertices at time τ = 0. They start by

moving to their respective v nodes (e.g. a clause agent at sγ moves to vγ). They

arrive at these nodes at different moments due to the sizes of their movement

paths. An existential variable agent arrives at node vzi at time τ = 3(i− 1). At555

this point, all universal variable agents among z1, z3, . . . , zi−1 have arrived to

their respective nodes vzj , thus revealing the values of these variables. Let ν be

this assignment. If Azi(ν) = >, the agent moves to rzi , and otherwise, to l¬zi .

When a universal variable agent arrives to vzi at time 3(i − 1), she follows

an available edge chosen by the environment (or by convention rzi if both are560

available), either to rzi or to l¬zi . This assigns > to the variable zi in the

former case, and ⊥ in the latter case. Observe that if the graph is admissible,

then there must exist a path from source to target for each agent; this means

that one of these edges must be present.
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All variable agents then move to their respective target vertices tz which565

they reach precisely at time τ = k.

Consider a positive (resp. negative) occurrence agent associated to a clause γ.

This agent arrives to vzi (resp. v¬zi) at time 3(i − 1) + 1. Observe that the

variable agent has already determined the value of zi in the previous step.

• if zi is assigned > (resp. ⊥) then the occurrence agent moves to tγ , observes570

which edges are available at tγ , and immediately comes back to vzi (resp. v¬zi).

Now, the edge between rzi (resp. l¬zi) and uzi (resp. u¬zi) has been observed

by agent zi; so if this edge is present, she moves to rzi and uzi ; and if not, then

the edge from lzi to uzi must be available, and she reaches tzi (resp. t¬zi) at

time τ = k.575

• if zi is assigned ⊥ (resp. >) then the occurrence agent does not visit tγ ,

but moves to lzi (resp. l¬zi). If the edge between lzi (resp. l¬zi) and uzi

(resp. u¬zi) is available, she moves to tzi (resp. t¬zi), otherwise she moves back

and reach tzi (resp. t¬zi) at time k, through rzi (resp. r¬zi). The agent then

reaches her target at time τ = k− 2 in the first case, and at τ = k in the latter580

case.

It remains to argue that clause agents can reach their target vertices within k

steps. Since ϕ is true, by the definition of A, whatever the choice for the

universal variables, some literal ` of each clause γ is assigned to true. Therefore,

the positive or negative occurrence agent corresponding to this literal visits tγ ,585

thus revealing the edges available from tγ to rγ and lγ . Note that at least one

of these edges must be available for the graph to be admissible. Thus, a clause

agent arriving to vγ at time τ = 3(n − 1) + 3 can follow the available path to

reach tγ exactly at time k = 3(n− 1) + 5.

(⇐) Let σ be a witness joint strategy. Following σ, each clause agent c must590

know the available edges in the rest of their paths at time τ = 3(n−1) + 3 since

otherwise they cannot ensure reaching tγ at time k. Thus, for each clause γ, the

node tγ is visited beforehand necessarily by some occurrence agent. In fact, if tγ

was visited by another agent, then they would not be able to reach their target

vertex before τ = k. Note also that, for instance a positive occurrence agent595
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must go from vz to tγ and come back to vz since any other way of visiting tγ

would yield an execution longer than k.

Furthermore, an occurrence agent z (resp. ¬z) can visit node tγ and still

make it to tz (resp. t¬z) in time iff the associated variable agent has observed

the presence of the edge between uz (resp. u¬z) and rz (resp. l¬z) beforehand.600

In fact, otherwise, if the occurrence agent makes a wrong guess between lz

and rz, they will not arrive to tz (resp. t¬z) at time k. Observe that under σ,

some occurrence agents may arrive to their target vertices at time k− 2 as this

was the case in the first part of the proof. Notice that these agents cannot reveal

any new information on the graph in just two steps, so their behaviors in the605

last two steps is harmless.

Hence, the joint strategy of the variable agents does determine an assignment

function which satisfies ϕ.

The reduction was described for directed edges, but it also holds for the same

construction with undirected edges, so PSPACE-hardness holds for undirected610

movement graphs as well.

Observe that the bound k = 3(n − 1) + 5 computed in this reduction can

be written in polynomial space, so PSPACE-hardness holds when the bound is

encoded in unary.

5. Decentralized Reachability615

We now tackle the case where agents are allowed to be disconnected; at

each configuration, they share their knowledge with all agents to which they

are connected. This case is harder because agents no longer follow a centralized

strategy and they must cooperate to exchange information at the right moment

to reach their targets.620

5.1. Upper bounds

We start with decision procedures for the bounded case by distinguishing

the cases of unary and binary encodings. All decision procedures described in

this section hold both for directed and undirected graphs, except for Theorem 8.
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Theorem 7. The bounded decentralized reachability problem is in NEXPTIME,625

when the bound is given in unary, and in 2NEXPTIME when the bound is in

binary.

Proof. The upper bound when the bound k is given in unary is obtained by the

following non-deterministic algorithm:

1. Guess a strategy σi for each agent i, up to executions of length ≤ k. Such630

a strategy is a function that maps each history whose executions are of

length at most k to an action. A history is made of a graph G and an

execution. The number of graphs G is exponential in the size of the input,

and the number of configurations is exponential in the number of agents.

So the number of executions is exponential in k and in the number of635

agents. Therefore, the size of σi is exponential in the input size. This

guessing step thus requires exponential time.

2. Check that σi is uniform for agent i. This step requires exponential time.

One can in fact enumerate all pairs of histories up to length k, check

whether they are equivalent in the sense of Definition 6, and in this case640

check whether σi prescribes the same action.

3. For all admissible graphs G such that G1 ⊆ G ⊆ G2, execute the joint

strategy σ and check that the outcome execution from the initial config-

uration leads to the target configuration. This step can also be done in

exponential time. In fact, one can enumerate all admissble graphs in ex-645

ponential time, and for each graph, generate the resulting execution up to

length k.

The obtained algorithm is non-deterministic and runs in exponential time

when k is in unary. When k is given in binary, the same procedure runs in

doubly exponential time.650

Although we are only able to obtain an upper bound of 2NEXPTIME in

the general case when the bound is given in binary, we present two cases where
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a NEXPTIME procedure exists. First, in the case of undirected graphs, the

bound can be assumed to be linear in the size of the input, thus the unary case655

can be applied:

Theorem 8. For undirected graphs, the bounded decentralized reachability prob-

lem is in NEXPTIME when the bound is given in binary.

Proof. For undirected graphs, there is always a winning strategy that finishes

in time O(|V |). In fact, each agent can explore the graph in O(|V |) steps, and660

reach their target vertex if it is reachable. Because the graph is undirected, they

will not be blocked and reach their targets if it is reachable. The bound can

thus be assumed to be linear in the size of the input; and we can conclude with

the unary case of Theorem 7.

We show that an NEXPTIME procedure can be obtained for directed graphs665

and binary encoding when strategies are restricted to knowledge-based ones.

These strategies are known to suffice for winning in the adversarial setting of

two-player games with imperfect information [37]; although we do not know

whether they are sufficient for the decentralized reachability problem.

Theorem 9. For knowledge-based strategies, the bounded decentralized reacha-670

bility problem is in NEXPTIME when the bound is given in binary.

Proof. An NEXPTIME algorithm consists in guessing knowledge-based strate-

gies for all agents and checking whether the joint strategy is a witness. Each

knowledge-based strategy has exponential size since it is a function of the cur-

rent knowledge and of the current vertex, and there are exponentially many675

knowledge sets. One can enumerate all graphs G between G1 and G2, and ex-

ecute the joint strategy on G to check that it ensures the reachability of the

target. This check can be done in exponential time by using a binary counter

up to the given bound.

The case of knowledge-based strategies also allows us to obtain a decision680

procedure in the unbounded case. However the case of the unbounded decen-

tralized reachability problem for general uniform strategies is open.
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Theorem 10. For knowledge-based strategies, the unbounded decentralized reach-

ability problem is in NEXPTIME.

Proof. We proceed as in the proof of Theorem 9 and guess a joint strategy made685

of knowledge-based strategies. The domain of the guessed joint strategy (made

of n knowledge-based strategies) is of exponential size. So the induced execution

either reaches the goal or cycles within exponential number of steps. We can

thus simulate the execution until this bound using a binary counter for each

graph G between G1 and G2, and check whether the guessed joint strategy is a690

witness, in exponential time.

Let us show that knowledge-based strategies are not sufficient in the sense

that there may not be a knowledge-based solution in positive instances of the

bounded or unbounded decentralized reachability.

GL R

AL AR

A

BL BR

B

? ?

Figure 5: Instance where knowledge-based strategies are not sufficient.

Example 4. Consider the topological graph of Figure 5 with three agents:695

Agents XA, XB , XG start, respectively at vertices A, B, and G, and they all

want to go to G. Agents XA and XB need to know which one of the edges

among L→ G and R→ G is present in order to reach G. This is easy for XA

since they are connected to XG and has this information from the start. Assume

L→ G is present; then XA moves to vertices AL, L, G. In the meantime, XB700

can wait at B until XA reaches L, at which point they have necessary infor-

mation to move to G as well. However, if only R → G is present, then XA
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moves through AR, R,G, and B will never comminicate with XA. The strategy

for XB is to wait at B for two steps; if they get connect to XA, then they move

towards L, otherwise, they move towards R. This, however, is not a knowledge-705

based strategy since in the latter case, the knowledge of XB does not change

between the first step where they must idle at B, and the third step where they

must move towards R. In fact, this instance does not admit a solution with

knowledge-based strategies.

5.2. Lower Bound: The Unbounded Case710

Theorem 11. The unbounded decentralized reachability problem is NEXPTIME-

hard.

The lower bound is shown by a poly-time reduction from TDQBF. Given a

DQBF ϕ = ∀y1, . . . , yn∃x1(Ox1) . . . ∃xn(Oxn) ψ, we build an

instance (G1, G2, c
s, ct,+∞) of unbounded decentralized reachability. We de-715

note by γ1, . . . , γm the clauses in ψ.

The graph G1 and G2 are as follows. For each variable z, we create the

gadget depicted in Figure 6a. In this gadget, an agent denoted by az, starts at

sz, simulates the choice of the truth value of variable z and ends at tz. This

agent az is a variable agent and is said to be existential if z is an existential720

variable, and universal if z is a universal variable.

We create the observation gadget for all existential variables x and for all

(universal) variables y ∈ Ox, depicted in Figure 6b. For convenience, we write

O1, . . . , Oω the finite list of such pairs (x, y) corresponding to observation of the

truth value of universal variable y by the existential variable x. Such a pair725

(x, y) is simply called an observation. In this gadget, nodes vy and vx coincide

with the node vz in the gadget for variable z for z = x and z = y. The agent

a(x,y) that starts in s(x,y) is called an observation agent.

Finally, we create the clause gadget, depicted in Figure 6c. In this gadget,

an agent, denoted by aγ , called the verification agent, will start at node sγ , and730

first reach vγ . After that node, they enter the subgadget for checking that the

first clause γ1 is true, and can reach node γ1 without being stuck as we will see.
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sz vz

>z

⊥z

tz

∀z
?
∃z

∀z?
∃z

(a) Gadget for variable z. Both edges (vz,>z)

and (vz,⊥z) are certain (resp. uncertain) if z is

existential (resp. universal). The agent of this

gadget will assign the truth value to variable

z.

s(x,y) vy

v(x,y)

vx t(x,y)

(b) Gadget for the observation (x, y) of univer-

sal variable y from existential variable x. At

vy , the agent of this gadget will learn the truth

value of y (enforced by the nature). At v(x,y),

it will share that information with the agent

that will choose the value of x.

sγ

vγ uγ1

lγ1

rγ1

γ1

s1

t1

?

?

. . . uγm

lγm

rγm

γm

sm

tm

?

?

tγ

(c) Clause gadget. A verification agent starting in sγ can get stuck if some clause γ1, . . . , γm is

not true. In the subgadget for clause γ1, the agent starting in s1 will reach γ1, and communicate

with all variable agents whose valuations satisfy a literal in γ1. If the clause γ1 is satisfied by some

variable valuation, the verification agent will be informed of the available edge to go to γ1.

Certain movement edge

Certain communication edge

? Uncertain movement edge

∀z
?
∃z

Certain (resp. uncertain) movement edge if z is existential (resp. universal)

(>z , γi) ∈ Ec1 when z appears in γi

(⊥z , γi) ∈ Ec1 when ¬z appears in γi

(>z , vγ) ∈ Ec1, (⊥z , vγ) ∈ Ec1

Figure 6: Gadgets in the reduction from DQBF to unbounded decentralized reachability

(Theorem 11). The gadgets are the same in Theorem 12 with a minor difference: we replace (1)

plain certain movement edges by undirected movement edges, and (2) bold certain movement

edges by a path of length 1 + 3m where m is the number of clauses.
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After reaching γ1, the agent will enter in the subgadget for checking that γ2 is

true, and so on. The journey of the agent ends in the subgadget for checking

that γm is true. Then, the agent can reach their target tγ . Moreover, there are735

agents, called ai, starting at si and ending at ti. They are called clause agents.

These are responsible for informing the verification agent about the available

edges in this gadget. This will be explained below.

The gadgets have the following communication edges. Each vertex γi cer-

tainly communicates with >z iff z ∈ γi (z appears positively in γi), and with ⊥z740

iff ¬z ∈ γi (z appears negatively in γi). Moreover, the vertex vγ communicates

with all >z and ⊥z for all variables z.

We define the initial and target configurations as

cs = 〈sγ , s1, . . . , sm, sx1
, . . . , sxn , sy1 , . . . , syn , sO1

, . . . , sOω 〉,

ct = 〈tγ , t1, . . . , tm, tx1
, . . . , txn , ty1 , . . . , tyn , tO1

, . . . , tOω 〉.

Let us give some intuition about the reduction. Assuming the DQBF ϕ is

valid, one can build a witness strategy as follows. The variable agents starting

at sz (at time 0) for some universal variable z are forced to follow a path not745

deleted by the environment, which determines the value of z. An observation

agent starting at s(x,y) can observe the value of its respective universal variable

y (by visiting vy at time 1), and then inform their respective existential agent

ax thanks to the communication edge between v(x,y) and vx, at time 2. Thus,

agents starting at an existential sz are aware of the values of all (universal)750

variables in Oz and choose an appropriate value so as to satisfy ϕ. At time 3

(after 3 steps), the agent starting in sγ is in vγ . Each agent starting in si is in

γi. Also each variable agent have chosen the values of the variables and is either

in >z or ⊥z. Thanks to the communication edges, and because ϕ is true, each

γi communicates with at least some >z or ⊥z, thus also with the agent at vγ .755

Therefore, the latter agent knows about all available edges in the clause gadget

and can successfully go to tγ .

The following lemma formalizes this intuition, and proves Theorem 11.

Lemma 5. DQBF ϕ is valid if and only if (G1, G2, c
s, ct,∞) is positive.
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Proof. (⇒) Suppose the DQBF ϕ is valid, and let A be the collection of Skolem760

functions. We build the following joint strategy. The environment chooses the

truth values of universal variables z by deleting some edges vz to >z or vz to

⊥z. If the environment deletes the edge vz to >z, the agent is forced to pass

through ⊥z, thus the variable z is considered to be false. If the environment

deletes the edge vz to ⊥z, the agent is forced to pass through >z, thus variable z765

is considered to be true. If the environment deletes neither edge, then we define

the strategy for universal agent az to choose to pass through >z, making the

proposition z true by default.

The rest of the strategy is defined as follows. At the first step, each variable

agent for variable z moves to vz, and each observation agent for the pair (x, y)770

moves to vy, and thus observes the value (maybe forced by the environnement)

of universal variable y. At the second step, existential agents are at vx in place,

while observation agents move to v(x,y), thus sharing their observations with

the corresponding existential agents. Thus, at this point, each existential agent

corresponding to variable x knows the values of all universal variables y ∈ Ox.775

Then, agent ax moves to >x if Ax(ν) = 1 and to ⊥x otherwise, where ν is the

valuation of the variables in Ox. The same occurs for universal variables y: ay

moves to the unique successor left, or to >y by default, if both successors are

still reachable.

Between time 0 and 3, all clause agents move from si to γi, and the ver-780

ification agent moves to vγ . At time 3, all existential and universal variable

agents az are at >z or ⊥z. Since each clause is satisfied by the currently read

valuation, each clause agent ai communicates at least with one existential or uni-

versal agent. Thus, the verification agent communicates with all clause agents

via these variable agents. Since the clause agents communicate with the verifi-785

cation agent at this moment, the latter can see which edges are present in the

clause gadget, and can continue go to tγ without getting stuck.

(⇐) Conversely, suppose there is a witness joint strategy, in particular en-

suring that the verification agent goes to tz. This means that the agent must

have received all the information about the topology around vertices γ1, . . . , γk.790
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Due to the directed edges, all agents must remain their designated gadgets in

order to reach their targets. So this is only possible if the agents have occupied

a configuration in which the verification agent is at vγ , all clause agents are at γi

such that for each clause γi, there is at least one variable agent z at >z if z ∈ γi
and at ⊥z if ¬z ∈ γi. Thus, ϕ is a positive instance of TDQBF.795

5.3. Lower Bound: The Bounded Case

Theorem 12. The bounded decentralized reachability problem is NEXPTIME-

hard both for directed and undirected graphs.

We prove the NEXPTIME-hardness result by poly-time reduction from TDQBF.

Given an instance of TDQBF ∀y1, . . . , yn∃x1(Ox1
) . . . ∃xn(Oxn) ψ, we build an800

instance similar to the one discussed for Theorem 11, see Figure 6.

Let us now prove how to adapt the proof for undirected graphs. The naive

adaptation would be to consider the construction given in Figure 6 but consider

all edges as undirected. This will not work since for instance the existential

variable agents could backtrack: they could choose to go to >z and to return805

later on to ⊥z. The trick is to avoid backtracking is to replace the certain

movement edges depicted in bold in Figure 6 by a sufficiently long path, and to

bound the total length of the execution. In this way, agents would not have the

required time to backtrack.

More precisely, the reduction is similar except that:810

• certain movement edges that are not depicted in bold in Figure 6 are

replaced by undirected movement edges;

• certain movement edges that are drawn in bold in Figure 6 are replaced

by paths of length 1 + 3m, where m is the number of clauses in ψ.

• we fix the bound k = 4 + 3m.815

Lemma 6. DQBF ϕ is valid if and only if (G1, G2, c
s, ct, 4 + 3m) is positive.

Proof. ⇒ Suppose the DQBF φ valid. We construct the strategies for the

agent as in Lemma 5 (except that agents make 1 + 3m steps in the paths that
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replaced bold movement edges). Variable agents, observation agents, clause

agents all perform 3 steps followed by 1 + 3m (3 + 1 + 3m = 4 + 3m) steps820

in these paths. The verification agent makes first 3 steps, and 3 steps in each

clause subgadgets, plus one last step (3 + 3m + 1 = 4 + 3m). So the length of

all executions is 4 + 3m.

⇐ Conversely, suppose there is a witness joint strategy. In particular, as

all agents reach their goals in at most 4 + 3m steps, it means that they cannot825

backtrack, that is, all agents behave as if the graph was directed as in Figure 6

(otherwise the execution will be strictly longer than 4 + 3m). So the same

arguments in the proof of the ⇐-direction of Lemma 5 apply, and φ is valid.

Remark 2. It can be shown that the NEXPTIME-hardness holds in directed830

graphs for a fixed bound k = 6 with a simple modification to the reduction

above. In fact, the clause gadget can be split into m different smaller gadgets,

with separate agents inside each one. The gadget for clause i would start at a

fresh copy of the state sγ , and from vγ , would go to uγi directly, with the goal

vertex being γi. In other terms, all clauses can be verified in parallel.835

6. Discussion

6.1. Collision Constraints

An execution is collision-free if in all its configurations, all agents are at dis-

tinct vertices. In its most general form, the problems we study require finding a

bounded or unbounded connected and collision-free execution. The results pre-840

sented above ignored collisions. Nevertheless, this property is already ensured

by our proofs or can be obtained by simple modifications.

Note that we consider here a simple form of collision constraints which only

require agents to be at distinct vertices at each time step. Stronger requirements

have been considered in the literature such as avoiding head-on collisions (two845

agents swapping their locations within one step), or cyclic movements, such as,
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one agent going from v1 to v2, another from v2 to v3, and a third one going

from v3 to v1; e.g. [39].

The centralized case. The lower bound proof of Theorem 3 relies on Theorem 2

from [19] which holds with collision constraints as well, so this is also true for850

our case.

In the proof of Theorem 6, we may consider non collision-free paths as the

groups of occurrence agents start and finish at the same location and follow

almost the same path. This proof can be adapted to prevent collisions by

delaying each occurrence agent by 3 steps behind one another. More precisely,855

we extend the path between sz and vz (respectively, the path between s¬z and

v¬z) with 3m edges; and we extend the path between uz and tz, and the one

between sγ and vγ with 3m edges as well. We select k = 3(n − 1) + 5 + 3m

(that is, we also extend the considered bound by 3m.) Now we redefine the

starting and goal vertices of the occurrence agents; these remain the same for860

all other agents. We consider an arbitrary order of the occurrence agents for

each literal z or ¬z. For each literal, say z, the first occurrence agent starts

at sz and their goal is between uz and tz precisely at a distance of k − 2 edges

from sz. The second occurrence agent starts at a distance of 3 edges from the

first occurrence agent, and their goal is again between uz and tz, at a distance865

of k−2. The construction of Theorem 6 is adapted immediately to this variant.

In particular, the distance of 3 between the agents ensure that during the joint

strategy of the proof of Theorem 6, agents never collide.

The upper bounds of Theorems 3 and 4 are adapted easily by adding the

requirement that the guessed configurations must be collision-free.870

The decentralized case. The reductions of Theorems 11 and 12 (see Figure 6)

involve collisions. These can be adapted to obtain collision-free strategies when

the formula is valid. Here the only collisions in the constructed strategy is

between observation agents for observations of the form (x, y) and (x′, y) since

both visit vy at the same time. We can enforce that the observation agents875

visit the vertices vy at different times as follows. We extend the initial path in
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each gadget by n edges, where n is the number of variables. This means that

in variable gadgets, there is a now a path of length n+ 2 from sz to vz; in the

clause gadget, there is a path of length n+ 3 from sγ to vγ ; and similarly from

each si to γi. In observation gadgets, we replace the path s(x,y) → vy → v(x,y) of880

length 2 by s(x,y) →i vy →n−i v(x,y) if x is the i-th variable, where →i denotes

a path of length i. Thus, observation agents visit vy at distinct times. In the

unbounded case, the proof carries directly, and the presented strategy reaches

the goal configuration with a delay of n without collisions. In the bounded case,

the bound k must thus be increased by n.885

All upper bounds based on nondeterministic procedures are adapted easily

by additionally checking that the guessed joint strategy ensures collision-free

executions under all possible graphs. The only exception is Theorem 8 since

agents may not be able to explore the graph simultaneously.

In this case, with the additional assumption that Em ⊆ Ec, one can obtain a890

polynomial bound on the length of the execution by the following joint strategy.

Agent 1 starts by exploring all possible edges in linear time by avoiding other

agents’ positions, and returns to their initial position. After 2|Em| steps, Agent

2 similarly explores as much as they can without entering other agents’ vertices,

etc. When we are done iterating through all agents, each edge was visited at895

least by one agent, although not all agents may know the whole graph if the

starting configuration is not connected. They then start sharing their knowledge

by repeating the same steps, as follows. Agent 1 explores again a maximal set

of vertices without visiting other agents’ vertices, as in the first phase. During

this traversal, because Em ⊆ Ec, Agent 1 has communicated with all agents900

whose vertices are reachable while avoiding collisions, and thus shares their

knowledge with them. Then, Agent i with i ≥ 2 runs again a traversal. Agents

repeat this procedure n times. Notice that after the i-th iteration, each agent

has received the knowledge of all agents whose vertices are reachable by a path

containing at most i vertices occupied by other agents. Therefore, after the n-th905

iteration, all agents who belong to the same connected component of the graph

know precisely the whole connected component. At this point, connectivity
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constraints are irrelevant, and the problem becomes an instance of the MAPF

problem (without connectivity constraints), which is known to admit solutions

of size polynomial in the size of the graph [40]. This shows that an execution910

of polynomial size always exists. One can thus conclude using Theorem 7 -

adapted to take collisions into account.

6.2. Other Extensions

Base Station. Several works consider a designated base vertex to which all

agents must stay connected during the execution [19, 41, 20]. This concept915

is only relevant in the connected case. Our results also hold with this additional

constraint. In fact, the lower bound of Theorem 3 follows from [19], which

proves the bound also with a base. In Theorem 6, we can add the base vertex

as an isolated vertex so that the reduction is still valid.

Graph Classes. The MAPF and CMAPF problems have been studied for differ-920

ent classes of graphs such as planar or grid graphs. The proof of lower bound in

Theorem 3 relies on the proof of unbounded reachability done in [20], thus the

result of PSPACE-hardness on planar graphs also carries over to our problem.

6.3. Related Work

Different definitions of robust plans [42, 43, 44] have been studied. A k-robust925

plan guarantees the reachability of the target in the events of at most k delays.

A p-robust plan executes without a conflict with probability at least p. Our

framework does not consider delayed agents but focus on synchronous executions

with imperfect knowledge of the area.

The problem of MAPF with a dynamic environment has multiple formula-930

tions. The Adversarial Cooperative Path-Finding [45] considers that the obsta-

cles are agents which reason to prevent the cooperation to reach its goal. [46]

considered the problem where the dynamics of the environment is predictable.

Additionally, when obstacles have unknown dynamics, one can estimate their

movements and plan to minimize the probability of a collision [47], or predict935
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their movements [48] and plan online the movement of the agents [49]. In our

setting, the environment is static, thus, all observations are fixed.

MAPF with Uncertainty (MAPFU) asks for a plan which guarantees that

mishaps, localization and sensing errors do not impact the proper execution of

the plan. This problem can be solved by temporal logic [50], POMDPs [51],940

replanning [52, 53, 54], interaction regions [1, 55], and belief space planning [56,

57, 58]. Nebel et al. [59] studied the MAPF problem with an uncertainty on

the destination of the agents and lack of communication. The asynchronous

movement of the agents, studied in those papers, cannot be expressed in our

framework as we require the agent to follow some universal clock to execute945

their plan.

Interestingly CMAPF with perfect information is a special case of classi-

cal planning which is PSPACE-complete too [60]. The connected reachability

problem presented in this article is imperfect information and actions are deter-

ministic and therefore can be represented as a deterministic POMDP (partially-950

observable Markov decision process) ([61], [62]), for which deciding the existence

of a policy is PSPACE-complete (as our problem, see Theorem 3). Our com-

plexity in our single metagent, which is the set of all connected agents is lower

than the one presented in [63]. The decentralized case can been seen as a partic-

ular case of decPOMDP (decentralized POMDP) [64], and even QdecPOMDP955

(qualitative decentralized POMDP) [65]. Finite-horizon (in unary) planning

in QdecPOMDP and decPOMDP is NEXPTIME-complete [66], and our lower

bound result can be seen as a refinement of that lower bound (Theorem 12).

6.4. Perspectives.

We proposed a setting for CMAPF in the imperfect case and studied the960

theoretical complexity of the reachability problem. The first natural question

is to find classes of graphs (e.g. grid graphs) on which the reachability problem

is easier to solve, as it was done for MAPF in [67, 68], and CMAPF in [20].

Another possible direction is to study the coverage of all vertices [20]. An

alternative way to handle non-admissible graphs is to require that agents return965
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to their starting configuration if the graph is discovered not to be admissible.

We believe that such variants should be as hard as reachability. Furthermore,

there are several possible generalizations that could be considered by introducing

dynamic environments (instead of static), faulty sensing of agents, robustness,

and uncertainty.970
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