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Abstract

We consider an optimal control problem for the Navier-Stokes system with Navier slip boundary condi-
tions. We denote by α the friction coefficient and we analyze the asymptotic behavior of such a problem as
α→∞. More precisely, we prove that if we take an optimal control for each α, then there exists a sequence
of optimal controls converging to an optimal control of the same optimal control problem for the Navier-
Stokes system with the Dirichlet boundary condition. We also show the convergence of the corresponding
direct and adjoint states.
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1 Introduction

In this article, we study an optimal control problem associated with the Navier-Stokes system. This classical
system is a standard model for the motion of a viscous incompressible fluid. It is also usual to assume that
the fluid adheres to the exterior boundary and to consider thus the no-slip boundary condition. Nevertheless,
in some physical situations, one can also consider the Navier slip boundary condition introduced by Navier
in [21], see for instance [16], [17], [18], [19], etc. Recently, several studies have been done in the case of fluid-
structure interaction systems and in particular in [11], the authors show that with this boundary condition,
one can recover the collisions between rigid bodies that are absent with the Dirichlet boundary condition (see
[14], [15]). Finally, a rigorous derivation of this condition from the Boltzmann equation is done in [6]. The
Navier slip boundary condition allows the fluid to slip tangentially to the boundary and involves a friction
coefficient associated with this motion. Formally, if this coefficient goes to infinity, one recover the classical
no-slip boundary condition.

Our aim here is to compare the optimal control problems for these two boundary conditions and to prove
an asymptotic property as the friction coefficient goes to infinity. In order to show such a convergence, one
has to first consider an appropriate functional framework. One possible choice is to consider weak solutions
since in that case one can prove existence of global solutions without restrictions on the size of data and of
the controls. However, in that case, the uniqueness of solutions is an open problem and the optimal control
problems can not be stated properly if we do not know which state has to be used for the criterion.

Consequently, we work here with strong solutions and we thus restrict the size of the data to get existence
and uniqueness of our solutions in (0, T ) where T > 0 is given. In order to start our asymptotic analysis,
we however first need to show that this restriction is uniform with respect to the friction coefficient in the
Navier boundary condition.
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Another difficulty comes from the fact that since the system of Navier-Stokes is nonlinear, the optimal
controls are not unique. Our main result thus states that, given a family of optimal controls, one can extract
a subsequence converging towards an optimal control of the Navier-Stokes system with Dirichlet boundary
conditions.

Let us give our precise notation and hypotheses: first we consider Ω ⊂ R3 a bounded domain of class
C2,1 and we write the Navier-Stokes system with Dirichlet boundary conditions:

∂tu+ (u · ∇)u− div σ(u, p) = f1ω in (0, T )× Ω,
div u = 0 in (0, T )× Ω,

u = b on (0, T )× ∂Ω,
u(0, ·) = a in Ω.

(1.1)

In the above system, u and p are respectively the fluid velocity and the pressure of the fluid. The functions
a and b are respectively the initial and the boundary conditions that are fixed in this work. The control f
is acting in the open non empty set ω b Ω, and the optimal control problem we consider is

J(f) = inf
f∈U

J(f), (1.2)

where

J(f) :=
1

2

∫ T

0

∫
Ω

|uf − zd|2 dx dt+
M

2

∫ T

0

∫
ω

|f |2 dx dt. (1.3)

Here
M > 0, zd ∈ L2(0, T ;L2(Ω))

and U is a subset of L2(0, T ;L2(ω)). The choice of U and of the data (a, b) has to be done in such a way
that the system (1.1) admits a unique solution (uf , pf ) so that the functional J is well-defined.

We assume in particular

a ∈ H1(Ω), div a = 0, a = b(0, ·) on ∂Ω (1.4)

and

b ∈ L2(0, T ;H3/2(∂Ω)) ∩H1/4(0, T ;L2(∂Ω)),

∫
∂Ω

b(t, ·) · ν dγ = 0 (t ∈ [0, T ]). (1.5)

In (1.1), we have denoted by σ(u, p) the Cauchy stress tensor:

σ(u, p) := 2µD(u)− pI3, D(u) :=
1

2

(
∇u+ (∇u)>

)
,

where µ is the viscosity that we assume to be a positive constant.
Let us now consider the corresponding optimal control problem when we replace the Dirichlet boundary

condition in (1.1) by the Navier slip boundary condition. In that case our system writes
∂tu+ (u · ∇)u− div σ(u, p) = f1ω in (0, T )× Ω,

div u = 0 in (0, T )× Ω,
u · ν = b · ν on (0, T )× ∂Ω,

[2µD(u)ν + α(u− b)]τ = 0 on (0, T )× ∂Ω,
u(0, ·) = a in Ω.

(1.6)

We have denoted by ν the unit normal vector exterior to ∂Ω and by wτ the tangential component of a vector
w ∈ R3:

wτ := w − (w · ν)ν = ν × (w × ν).

In the second boundary condition of the above system, the parameter α > 0 is the coefficient of friction of
the Navier boundary condition.

For the above system, we can also consider the optimal control problem

Jα(fα) = inf
f∈U

Jα(f) (α > 0), (1.7)

where

Jα(f) =
1

2

∫ T

0

∫
Ω

|uα,f − zd|2 dx dt+
M

2

∫ T

0

∫
ω

|f |2 dx dt (α > 0). (1.8)
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As in the first case, one have to choose the data and the set U in such a way that the systems (1.6) admits
a unique solution (uα,f , pα,f ) for any f ∈ U and for any α large enough.

In Section 2, we show that we can take U as a small ball of L2(0, T ;L2(ω)) independently of α. This
allows us to then study the asymptotic behavior of the optimal control problems as the coefficient of friction
α goes to infinity.

In what follows, we write

V 0
ν :=

{
u ∈ L2(Ω) ; div u = 0, u · ν = 0 on ∂Ω

}
,

V 1
0 :=

{
u ∈ H1(Ω) ; div u = 0, u = 0 on ∂Ω

}
, (1.9)

V −1
0 := (V 1

0 )′.

We denote by P the Leray projector, that is the orthogonal projection P : L2(Ω)→ V 0
ν .

We are now in position to state our main result:

Theorem 1.1. Assume that (a, b) and U satisfy the above hypotheses and are such that for any f ∈ U , the
systems (1.1) and (1.6) are well-posed on [0, T ] with the properties (2.3), (2.4).

Then for any α large enough, the problem (1.7) admits a solution fα and there exist f ∈ U and a sequence
such that as α→∞

fα → f strongly in L2(0, T ;L2(ω)), (1.10)

and f is a solution of (1.2). Moreover, the corresponding solutions (uf , pf ) and (uα,fα , pα,fα) of (1.1) and
(1.6) satisfy

uα,fα ⇀ uf weakly * in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), (1.11)

∂tuα,fα ⇀ ∂tuf weakly in L4/3(0, T ;V −1
0 ), (1.12)

uα,fα → uf strongly in L2(0, T ;L2(Ω)), (1.13)

uα,fα → b strongly in L2(0, T ;L2(∂Ω)). (1.14)

The solutions of the adjoint systems (defined by (3.1) and (3.2)) (φf , πf ) and (φα,f , πα,f ) satisfy

φα,fα ⇀ φf weakly * in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), (1.15)

∂tφα,fα ⇀ ∂tφf weakly in L4/3(0, T ;V −1
0 ), (1.16)

φα,fα → φf strongly in L2(0, T ;L2(Ω)), (1.17)

φα,fα → 0 strongly in L2(0, T ;L2(∂Ω)). (1.18)

The interest of the adjoint systems with respect to problems (1.2) and (1.7) is given in Theorem 4.1:
they are associated with the first order condition of the optimal control problems.

The result given in Theorem 1.1 is in the same spirit as previous results obtained for other partial
differential equations: [7], [8], [9], [10], in the case of elliptic problems and [3], [20], in the case of parabolic
systems.

The outline of the paper is as follows: in Section 2, we show that the hypotheses of Theorem 1.1 can
be satisfied for (a, b) small enough and U as a small ball of L2(0, T ;L2(ω)). Then Section 3 is devoted to
results of convergence as α→∞ of the solutions of (1.6) and of the adjoint systems. These results allow us
to reduce the proof of the main result to the convergence of the family of the optimal controls. In Section 4,
we show that (1.2) and (1.7) admit at least a solution and we give the first order condition in terms of the
adjoint systems (3.1) and (3.2). Finally in Section 5 we gather the previous results and prove Theorem 1.1.
In Section 6, we present the bidimensional case, where the hypotheses on the data are weaker.

2 Uniform well-posedness of the Navier-Stokes systems

With the hypotheses of the introduction, in particular (1.4) and (1.5), classical results yield the existence
and uniqueness of strong solutions for the system (1.1) and for the system (1.6) for data small enough (that
is a, b and f). Nevertheless, here we have to take care that the smallness conditions do not depend on α
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and we thus need to derive standard a priori estimates for the system (1.6) to show the uniformity of our
conditions. To simplify, we take α large enough and in particular satisfying

α > ‖b‖L∞(0,T ;L∞(∂Ω)) + 1. (2.1)

Let us assume that for some f̂ ∈ L2(0, T ;L2(ω)) there exists a unique smooth solution (û, p̂) of (1.1) on

[0, T ]. We show that in a neighborhood of f̂ , independent of α, the systems (1.1) and (1.6) are well-posed
on [0, T ].

Proposition 2.1. Assume T > 0 and that (1.1) admits a strong solution (û, p̂) with

û ∈ H1(0, T ;H2(Ω)).

There exists a constant Ĉ independent of α such that if

‖û‖H1(0,T ;H2(Ω)) 6 Ĉ, (2.2)

then there exists ε such that for any f ∈ L2(0, T ;L2(ω)),

‖f − f̂‖L2(0,T ;L2(ω)) 6 ε,

the system (1.6) admits a unique strong solution

(uα,f , pα,f ) ∈
[
L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω))

]
× L2(0, T ;H1(Ω)/R). (2.3)

Moreover there exists a constant C independent of α such that

‖uα,f‖L∞(0,T ;H1(Ω)) +‖P∆uα,f‖L2(0,T ;L2(Ω)) +‖uα,f‖L2(0,T ;W1,6(Ω)) +
√
α‖uα,f−b‖L2(0,T ;L2(∂Ω)) 6 C. (2.4)

Proof. By using standard results (see, for instance [12]), there exists a unique local strong solution

(u, p) = (uα,f , pα,f ) ∈
[
L2(0, Tloc;H

2(Ω)) ∩ C0([0, Tloc];H
1(Ω)) ∩H1(0, Tloc;L

2(Ω))
]
×L2(0, Tloc;H

1(Ω)/R)

of the system (1.6) and it exists as long as the H1(Ω)-norm of u(t, ·) remains bounded. We thus only need
to estimate the H1(Ω)-norm of u(t, ·). We consider

w := u− û, q := p− p̂, g := f − f̂

that satisfy 
∂tw + (w · ∇)w + (û · ∇)w + (w · ∇)û− div σ(w, q) = g1ω in (0, T )× Ω,

divw = 0 in (0, T )× Ω,
w · ν = 0 on (0, T )× ∂Ω,

[2µD(w)ν + αw]τ = − [2µD(û)ν]τ on (0, T )× ∂Ω,
w(0, ·) = 0 in Ω.

(2.5)

To obtain our estimates, we multiply the first equation of (2.5) by w and we deduce

1

2

d

dt

∫
Ω

|w|2 dx+

∫
∂Ω

b · ν
2
w2
τ dγ +

∫
Ω

[(w · ∇)û] · w dx+ 2µ

∫
Ω

|D(w)|2 dx+ α

∫
∂Ω

w2
τ dγ

=

∫
ω

g · w dx− 2µ

∫
∂Ω

[D(û)ν]τ · wτ dγ. (2.6)

Using Hölder’s inequality, the Sobolev embedding H1(Ω) ⊂ L6(Ω) and the Korn inequality, we deduce∣∣∣∣∫
Ω

[(w · ∇)û] · w dx

∣∣∣∣ 6 ‖w‖L6(Ω)‖∇û‖L3(Ω)‖w‖L2(Ω) 6 C‖w‖H1(Ω)‖û‖
1/2

H1(Ω)
‖û‖1/2

H2(Ω)
‖w‖L2(Ω)

6 µ‖D(w)‖2L2(Ω) + C(1 + ‖û‖H1(Ω)‖û‖H2(Ω))‖w‖
2
L2(Ω). (2.7)
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Using (2.1), we deduce from (2.6) and from (2.7) that∫
Ω

|w(t, ·)|2 dx+ 2µ

∫ t

0

∫
Ω

|D(w)|2 dx ds+ α

∫ t

0

∫
∂Ω

w2
τ dγ ds

6 C
(
‖g‖2L2(0,T ;L2(ω)) + ‖û‖2L2(0,T ;H2(Ω))

)
+ C(1 + ‖û‖2L∞(0,T ;H2(Ω)))

∫ t

0

∫
Ω

|w|2 dx ds, (2.8)

where the constants C are independent of α.
Using the Grönwall lemma, we deduce

‖w‖2L∞(0,T ;L2(Ω)) + ‖w‖2L2(0,T ;H1(Ω)) + α‖wτ‖2L2(0,T ;L2(∂Ω))

6 C
(
‖g‖2L2(0,T ;L2(ω)) + ‖û‖2L2(0,T ;H2(Ω))

)
exp

(
C(1 + ‖û‖2L∞(0,T ;H2(Ω)))T

)
, (2.9)

where the constants C are independent of α.
Then, we multiply the first equation of (2.5) by −Pµ∆w where P is the Leray projector. We obtain after

integration by parts

d

dt

(
µ

∫
Ω

|Dw|2 dx+
α

2

∫
∂Ω

|wτ |2 dγ +

∫
∂Ω

wτ · [2µD(û)ν]τ dγ

)
−
∫
∂Ω

wτ · [2µD(∂tû)ν]τ dγ

+

∫
Ω

(w · ∇)w · (−µP∆w) dx+

∫
Ω

(û · ∇)w · (−µP∆w) dx+

∫
Ω

(w · ∇)û · (−µP∆w) dx

+

∫
Ω

|µP∆w|2 dx =

∫
ω

g · (−µP∆w) dx. (2.10)

Note that in (0, T ), 
−µ∆w +∇Q = −µP∆w in Ω,

divw = 0 in Ω,
w · ν = 0 on ∂Ω,

[2µD(w)ν + αw]τ = − [2µD(û)ν]τ on ∂Ω,

(2.11)

and thus from Theorem 2.2 in [1] (see also [2]),

‖w‖W1,6(Ω) 6 C
(
‖µP∆w‖L2(Ω) + ‖û‖H2(Ω)

)
(2.12)

where C is independent of α. We deduce from (2.12)∣∣∣∣∫
Ω

(w · ∇)w · (−µP∆w) dx

∣∣∣∣ 6 ‖w‖L6(Ω)‖∇w‖
1/2

L2(Ω)
‖∇w‖1/2

L6(Ω)
‖µP∆w‖L2(Ω)

6 C‖w‖3/2
H1(Ω)

(
‖µP∆w‖3/2

L2(Ω)
+ ‖û‖1/2

H2(Ω)
‖µP∆w‖L2(Ω)

)
6 C

(
‖w‖6H1(Ω) + ‖û‖2H2(Ω)

)
+

1

8
‖µP∆w‖2L2(Ω) (2.13)

and similarly,∣∣∣∣∫
Ω

(û · ∇)w · (−µP∆w) dx+

∫
Ω

(w · ∇)û · (−µP∆w) dx

∣∣∣∣
6 C

(
‖û‖6H1(Ω) + ‖w‖6H1(Ω) + ‖û‖2H2(Ω)

)
+

1

8
‖µP∆w‖2L2(Ω). (2.14)

Combining (2.13) and (2.14) with (2.10), we deduce

µ

∫
Ω

|Dw(t, ·)|2 dx+
α

2

∫
∂Ω

|wτ (t, ·)|2 dγ +

∫
∂Ω

wτ (t, ·) · [2µD(û(t, ·))ν]τ dγ

−
∫ t

0

∫
∂Ω

wτ · [2µD(∂tû)ν]τ dγ ds+
1

2

∫ t

0

∫
Ω

|µP∆w|2 dx

6 C

(
‖g‖2L2(0,T ;L2(ω)) + ‖û‖6L∞(0,T ;H1(Ω)) + ‖û‖2L2(0,T ;H2(Ω)) +

∫ t

0

‖w(s, ·)‖6H1(Ω) ds

)
. (2.15)
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The above estimate combined with (2.8), Korn’s inequality and trace properties yields

‖w(t, ·)‖2H1(Ω) +
α

2

∫
∂Ω

|wτ (t, ·)|2 dγ

+ 2µ

∫ t

0

∫
Ω

|D(w)|2 dx ds+
α

2

∫ t

0

∫
∂Ω

w2
τ dγ ds+

1

2

∫ t

0

∫
Ω

|µP∆w|2 dx ds

6 C1

(
‖g‖2L2(0,T ;L2(ω)) + ‖û‖6L∞(0,T ;H1(Ω)) + ‖û‖2H1(0,T ;H2(Ω))

)
+ C2(1 + ‖û‖2L∞(0,T ;H2(Ω)))

(∫ t

0

‖w(s, ·)‖2L2(Ω) ds+

∫ t

0

‖w(s, ·)‖6H1(Ω) ds

)
, (2.16)

where C1, C2 are independent of α.
Using Grönwall’s lemma, we deduce that if

C1

(
‖g‖2L2(0,T ;L2(ω)) + ‖û‖6L∞(0,T ;H1(Ω)) + ‖û‖2H1(0,T ;H2(Ω))

)
exp

(
C2(1 + ‖û‖2L∞(0,T ;H2(Ω)))T

)
<

√
ln(2)

T
(2.17)

then

∀t ∈ [0, T ], ‖w(t, ·)‖2H1(Ω)

6 2C1

(
‖g‖2L2(0,T ;L2(ω)) + ‖û‖6L∞(0,T ;H1(Ω)) + ‖û‖2H1(0,T ;H2(Ω))

)
exp

(
C2(1 + ‖û‖2L∞(0,T ;H2(Ω)))t

)
and thus remains bounded on [0, T ] by a constant independent of α. This concludes the proof.

Remark 2.2. With the conditions (1.4) and (1.5), classical results (see for instance [22], [5], [13]) give the

existence and uniqueness of a strong solution (û, p̂) of (1.1) associated with f̂ provided that

‖a‖H1(Ω) + ‖b‖L2(0,T ;H3/2(∂Ω))∩H1/4(0,T ;L2(∂Ω)) + ‖f̂‖L2(0,T ;L2(ω))

is small enough. To obtain a stronger solution and the bound (2.2) one needs stronger hypotheses on the

regularity and the smallness of a, b and f̂ (see [13]).

In particular, one can see the condition (2.2) as a smallness condition on the data a, b and f̂ , uniform
with respect to α in order to have strong solutions of the systems (1.6) on a uniform time interval and with
the uniform bounds (2.4). To simplify the presentation, we only keep here the condition (2.2) on the solution

(û, p̂) of (1.1) as the hypothesis instead of the sufficient conditions on a, b and f̂ .

In what follows
U :=

{
f ∈ L2(0, T ;L2(ω)) ; ‖f − f̂‖L2(0,T ;L2(ω)) 6 ε

}
, (2.18)

where ε is given by Proposition 2.1.
For any f ∈ U , we denote by (uf , pf ) the strong solution of (1.1) on (0, T ) and by (uα,f , pα,f ) the strong

solution of (1.6) on (0, T ).

3 Adjoint systems and convergence as α → ∞
In this section, we define the adjoint systems for the optimal control problems (1.2) and (1.7) and we show
convergences results for the direct state and the adjoint state as α→∞.

First let us define the adjoint systems of (1.1) and of (1.6):
−∂tφ+ (∇uf )>φ− (uf · ∇)φ− div σ(φ, π) = (uf − zd) in (0, T )× Ω,

div φ = 0 in (0, T )× Ω,
φ = 0 on (0, T )× ∂Ω,

φ(T, ·) = 0 in Ω,

(3.1)
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and 
−∂tφ+ (∇uα,f )>φ− (uα,f · ∇)φ− div σ(φ, π) = (uα,f − zd) in (0, T )× Ω,

div φ = 0 in (0, T )× Ω,
φ · ν = 0 on (0, T )× ∂Ω,

[2µD(φ)ν + αφ+ (b · ν)φ]τ = 0 on (0, T )× ∂Ω,
φ(T, ·) = 0 in Ω.

(3.2)

We denote by (φf , πf ) and by (φα,f , πα,f ) the corresponding solutions. These adjoint systems are related to
the optimal control problems (1.2) and (1.7) (see Theorem 4.1 below). Before giving these relations, let us
state and prove the following important result:

Proposition 3.1. Assume (2.1), and that f, fα ∈ U with

fα ⇀ f weakly in L2(0, T ;L2(ω)) as α→∞.

Then, the solutions (uf , pf ), (uα,fα , pα,fα), (φf , πf ) and (φα,f , πα,f ) of respectively (1.1), (1.6), (3.1), (3.2),
satisfy, as α→∞

uα,fα ⇀ uf weakly * in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), (3.3)

∂tuα,fα ⇀ ∂tuf weakly in L4/3(0, T ;V −1
0 ), (3.4)

uα,fα → uf strongly in L2(0, T ;L2(Ω)), (3.5)

uα,fα → b strongly in L2(0, T ;L2(∂Ω)), (3.6)

φα,fα ⇀ φf weakly * in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), (3.7)

∂tφα,fα ⇀ ∂tφf weakly in L4/3(0, T ;V −1
0 ), (3.8)

φα,fα → φf strongly in L2(0, T ;L2(Ω)), (3.9)

φα,fα → 0 strongly in L2(0, T ;L2(∂Ω)). (3.10)

Proof. From Proposition 2.1, we already know that the sequence (uα,fα)α is bounded in L2(0, T ;H1(Ω)) ∩
L∞(0, T ;L2(Ω)) and that (3.6) holds. Let us consider ϕ ∈ L4(0, T ;V 1

0 ). Then

〈∂tuα, ϕ〉 = −
∫ T

0

∫
Ω

[(uα · ∇)uα] · ϕ dx dt−
∫ T

0

∫
Ω

2µD(uα) : D(ϕ) dx dt+

∫ T

0

∫
ω

fα · ϕ dx dt. (3.11)

We have ∣∣∣∣∫ T

0

∫
Ω

2µD(uα) : D(ϕ) dx dt

∣∣∣∣ 6 C‖uα‖L2(0,T ;H1(Ω))‖ϕ‖L4(0,T ;V 1
0 ) (3.12)

and∣∣∣∣∫ T

0

∫
Ω

[(uα · ∇)uα] · ϕ dx dt

∣∣∣∣ 6 ∫ T

0

‖uα‖L3(Ω)‖∇uα‖L2(Ω)‖ϕ‖L6(Ω) dt

6 C

∫ T

0

‖uα‖1/2L2(Ω)
‖uα‖3/2H1(Ω)

‖ϕ‖H1(Ω) dt

6 C‖uα‖1/2L∞(0,T ;L2(Ω))
‖uα‖3/2L2(0,T ;H1(Ω))

‖ϕ‖L4(0,T ;V 1
0 ). (3.13)

Gathering (3.11), (3.12) and (3.13), we deduce that (∂tuα,fα)α is bounded in L4/3(0, T ;V −1
0 ). Using the

Banach-Alaoglu theorem combined with the Aubin-Lions compactness result (see, for instance, [22, p. 271]),
we deduce that, up to a subsequence,

uα,fα ⇀ U weakly * in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), (3.14)

∂tuα,fα ⇀ ∂tU weakly in L4/3(0, T ;V −1
0 ), (3.15)

uα,fα → U strongly in L2(0, T ;L2(Ω)). (3.16)
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Now, let us consider ϕ ∈ C∞c ([0, T ) × Ω), divϕ = 0. Multiplying the first equation of (1.6) by ϕ and
integrating by parts, we deduce that

−
∫ T

0

∫
Ω

∂tϕ · uα dx dt−
∫ T

0

∫
Ω

[(uα · ∇)ϕ] · uα dx dt+

∫ T

0

∫
Ω

2µD(ϕ) : D(uα) dx dt

=

∫ T

0

∫
ω

fα · ϕ dx dt+

∫
Ω

ϕ(0, ·) · a dx.

Using (3.14), (3.15), (3.16), we deduce that U ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) satisfies

−
∫ T

0

∫
Ω

∂tϕ · U dx dt−
∫ T

0

∫
Ω

[(U · ∇)ϕ] · U dx dt+

∫ T

0

∫
Ω

2µD(ϕ) : D(U) dx dt

=

∫ T

0

∫
ω

f · ϕ dx dt+

∫
Ω

ϕ(0, ·) · a dx,

with
divU = 0, U = b on (0, T )× ∂Ω.

It means that U is a weak solution of (1.1). Using the weak-strong uniqueness (see [22, pp. 298-299]), we
deduce that U = uf .

The proof for the adjoint systems is similar: first we multiply the first equation of (3.2) by φα,fα :

− 1

2

d

dt

∫
Ω

|φα,fα |
2 dx+

∫
Ω

(∇uα,fα)>φα,fα · φα,fα dx−
∫
∂Ω

(uα,fα · ν)
|φα,fα |2

2
dγ

+ 2µ

∫
Ω

|D(φα,fα)|2 dx+

∫
∂Ω

(α+ b · ν) |[φα,fα ]τ |2 dγ =

∫
Ω

(uα,f − zd) · φα,fα dx. (3.17)

Then, integrating the above relation in (t, T ), we find

1

2

∫
Ω

|φα,fα(t, ·)|2 dx+ 2µ

∫ T

t

∫
Ω

|D(φα,fα)|2 dx ds+

∫ T

t

∫
Ω

(∇uα,fα)>φα,fα · φα,fα dx ds

+

∫ T

t

∫
∂Ω

(α+
1

2
b · ν)|φα,fα |

2 dγ =

∫ T

t

∫
Ω

(uα,fα − zd) · φα,fα dx ds. (3.18)

Using (2.1), Hölder’s inequality, the Sobolev embedding H1(Ω) ⊂ L6(Ω) and the Korn inequality, we deduce

1

2

∫
Ω

|φα,fα(t, ·)|2 dx+ µ

∫ T

t

∫
Ω

|D(φα,fα)|2 dx ds+
α

2

∫ T

t

∫
∂Ω

|φα,fα |
2 dγ

6
1

2

∫ T

t

∫
Ω

|uα,fα − zd|
2 dx ds+ C

∫ T

t

(1 + ‖∇uα,fα‖
4
L2(Ω))‖φα,fα‖

2
L2(Ω) ds. (3.19)

Since (uα,fα)α is bounded in L∞(0, T ;H1(Ω)), we deduce from Grönwall’s lemma that (φα,fα)α is bounded
in L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) and that (

√
αφα,fα)α is bounded in L2(0, T ;L2(∂Ω)). Then we multiply

the first equation of (3.2) by ϕ ∈ L4(0, T ;V 1
0 ):

〈∂tφα,fα , ϕ〉 =

∫ T

0

∫
Ω

(∇uα,fα)>φα,fα · ϕ dx dt−
∫ T

0

∫
Ω

(uα,fα · ∇)φα,fα · ϕ dx dt

+

∫ T

0

∫
Ω

2µD(φα,fα) : D(ϕ) dx dt−
∫ T

0

∫
Ω

(uα,fα − zd) · ϕ dx dt. (3.20)

We have∣∣∣∣∫ T

0

∫
Ω

(∇uα,fα)>φα,fα · ϕ dx dt

∣∣∣∣ 6 C

∫ T

0

‖uα,fα‖H1(Ω)‖φα,fα‖
1/2

L2(Ω)
‖φα,fα‖

1/2

H1(Ω)
‖ϕ‖H1(Ω) dt

6 C‖uα,fα‖L2(0,T ;H1(Ω))‖φα,fα‖
1/2

L∞(0,T ;L2(Ω))
‖φα,fα‖

1/2

L2(0,T ;H1(Ω))
‖ϕ‖L4(0,T ;H1(Ω))

6 C‖ϕ‖L4(0,T ;H1(Ω)), (3.21)
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and∣∣∣∣∫ T

0

∫
Ω

(uα,fα · ∇)φα,fα · ϕ dx dt

∣∣∣∣ 6 C

∫ T

0

‖uα,fα‖
1/2

L2(Ω)
‖uα,fα‖

1/2

H1(Ω)
‖φα,fα‖H1(Ω)‖ϕ‖H1(Ω) dt

6 C‖uα,fα‖
1/2

L∞(0,T ;L2(Ω))
‖uα,fα‖

1/2

L2(0,T ;H1(Ω))
‖φα,fα‖L2(0,T ;H1(Ω))‖ϕ‖L4(0,T ;H1(Ω))

6 C‖ϕ‖L4(0,T ;H1(Ω)). (3.22)

Combining (3.20), (3.21), (3.22) with standard estimates, we deduce that the sequence (∂tφα,fα)α is bounded

in L4/3(0, T ;V −1
0 ). Using the Banach-Alaoglu theorem and the Aubin-Lions compactness result (see, for

instance, [22, p. 271]), we deduce that, up to a subsequence,

φα,fα ⇀ Φ weakly * in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), (3.23)

∂tφα,fα ⇀ ∂tΦ weakly in L4/3(0, T ;V −1
0 ), (3.24)

φα,fα → Φ strongly in L2(0, T ;L2(Ω)). (3.25)

Now, let us consider ϕ ∈ C∞c ((0, T ] × Ω), divϕ = 0. Multiplying the first equation of (3.2) by ϕ and
integrating by parts, we deduce that∫ T

0

∫
Ω

φα,fα · ∂tϕ dx dt+

∫ T

0

∫
Ω

(∇uα,fα)>φα,fα · ϕ dx dt−
∫ T

0

∫
Ω

(uα,fα · ∇)φα,fα · ϕ dx dt

+

∫ T

0

∫
Ω

2µD(φα,fα) : D(ϕ) dx dt =

∫ T

0

∫
Ω

(uα,fα − zd) · ϕ dx dt.

Using (3.23), (3.25), (3.14), (3.16), we deduce that Φ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) satisfies∫ T

0

∫
Ω

Φ · ∂tϕ dx dt+

∫ T

0

∫
Ω

(∇uf )>Φ · ϕ dx dt−
∫ T

0

∫
Ω

(uf · ∇)Φ · ϕ dx dt

+

∫ T

0

∫
Ω

2µD(Φ) : D(ϕ) dx dt =

∫ T

0

∫
Ω

(uf − zd) · ϕ dx dt,

with
div Φ = 0, Φ = 0 on (0, T )× ∂Ω.

It means that Φ is a weak solution of (3.1). Using the weak-strong uniqueness of the linear system (3.1), we
deduce that Φ = φf .

4 Existence for the optimal control problems

This section is devoted to the following classical result, showing the existence of an optimal control and
giving a first order necessary condition in terms of the adjoint states (that is the solutions φf , φα,fα of (3.1),
(3.2)):

Theorem 4.1. The problems (1.2) and (1.7) admit at least a solution. Moreover, if f ∈ U is a solution to
(1.2), then ∫ T

0

∫
ω

(g − f) · φf dx dt+M

∫ T

0

∫
ω

(g − f) · f dx dt > 0 ∀g ∈ U . (4.1)

Similarly, if fα ∈ U is a solution to (1.7), then∫ T

0

∫
ω

(g − fα) · φα,fα dx dt+M

∫ T

0

∫
ω

(g − fα) · fα dx dt > 0 ∀g ∈ U . (4.2)

Proof. The proof is quite standard (see for instance [4]) and we only sketch the proof in the case of the
Navier boundary conditions for the sake of completeness. First to show the existence of a solution of (1.7) ,
we consider a minimizing sequence (fα,k) ∈ U ,

Jα(fα,k)→ inf
U
Jα,
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as k → ∞. Using the definition (1.8) of Jα, we deduce from the above limit that (fα,k)k is a bounded
sequence of L2(0, T ;L2(ω)). Thus

fα,k ⇀ fα weakly in L2(0, T ;L2(ω)).

Then following the same steps of the proof of Proposition 3.1, we can show that

uα,fα,k ⇀ Uα weakly * in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), (4.3)

∂tuα,fα,k ⇀ ∂tUα weakly in L4/3(0, T ;V −1
0 ), (4.4)

uα,fα,k → Uα strongly in L2(0, T ;L2(Ω)), (4.5)

and passing to the limit in the weak formulation of (1.6), we deduce that Uα is a weak solution of (1.6)
associated with fα. Using the weak-strong uniqueness (see [22, pp. 298-299]), we deduce that Uα = uα,fα .
Moreover,

Jα(fα) 6 lim inf
k

Jα(fα,k) = inf
U
Jα.

To obtain the first order optimality condition, we use the Gateaux-differentiability of Jα and of the state
Λ : f 7→ (uα,f , pα,f ). More precisely, by denoting by

dΛf (g) := (v, q)

the derivative of Λ in f and in the direction g, we can check that
∂tv + (uα,f · ∇)v + (v · ∇)uα,f − div σ(v, q) = g1ω in (0, T )× Ω,

div v = 0 in (0, T )× Ω,
v · ν = 0 on (0, T )× ∂Ω,

[2µD(v)ν + αv]τ = 0 on (0, T )× ∂Ω,
v(0, ·) = 0 in Ω.

(4.6)

Then we have from (1.8)

(dJα)f (g) =

∫ T

0

∫
Ω

(uα,f − zd) · v dx dt+M

∫ T

0

∫
ω

f · g dx dt. (4.7)

Multiplying the first equation of (3.2) by v:∫ T

0

∫
Ω

(uα,f − zd) · v dx dt =

∫ T

0

∫
Ω

−∂tφα,f · v dx dt+

∫ T

0

∫
Ω

(∇uα,f )>φα,f · v dx dt

−
∫ T

0

∫
Ω

(uα,f · ∇)φα,f · v dx dt−
∫ T

0

∫
Ω

div σ(φα,f , πα,f ) · v dx dt

=

∫ T

0

∫
ω

φα,f · g dx dt+

∫ T

0

∫
∂Ω

−(uα,f · ν)φα,f · v + σ(v, q)ν · φα,f − σ(φα,f , πα,f )ν · v dγ dt

=

∫ T

0

∫
ω

φα,f · g dx dt.

Now, since U is convex set, if fα is a solution of (1.7), we have

(dJα)fα(g − fα) > 0 ∀g ∈ U .

With the above computation, this writes (4.2).

Remark 4.2. Note that conditions (4.1) and (4.2) can be written as

f = PU
(
− 1

M
φf

)
and fα = PU

(
− 1

M
φα,fα

)
where PU is the projection on the convex set U .
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5 Proof of the main result

We are now in a position to prove Theorem 1.1:

Proof of Theorem 1.1. Let us consider a family of optimal controls fα of problem (1.7). For simplicity, in
this proof we use the notation fα instead of fα. First we note that

M

2

∫ T

0

∫
ω

|fα|2 dx dt 6 Jα(fα) 6 Jα(f̂) =
1

2

∫ T

0

∫
Ω

|uα,f̂ − zd|
2 dx dt+

M

2

∫ T

0

∫
ω

|f̂ |2 dx dt. (5.1)

Applying Proposition 3.1, we deduce that
(
uα,f̂

)
α

is bounded in L2(0, T ;L2(Ω)) and thus from (5.1) we

obtain that (fα)α is bounded in L2(0, T ;L2(ω)). Consequently, there exists f ∈ L2(0, T ;L2(ω)) up to a
subsequence,

fα ⇀ f weakly in L2(0, T ;L2(ω)). (5.2)

Using that U is convex and closed in L2(0, T ;L2(ω)) (see (2.18)), we deduce that it is also closed for the
weak topology and thus f ∈ U .

We can thus apply Proposition 3.1 and we obtain relations (3.3)–(3.10). In particular, from (3.5), we
deduce

1

2

∫ T

0

∫
Ω

|uα,fα − zd|
2 dx dt→ 1

2

∫ T

0

∫
Ω

|uf − zd|2 dx dt (5.3)

and (5.2) implies ∫ T

0

∫
ω

|f |2 dx dt 6 lim inf
α→∞

∫ T

0

∫
ω

|fα|2 dx dt.

Combining the two last relations, we obtain

J(f) 6 lim inf
α→∞

Jα(fα). (5.4)

On the other hand, by definition of fα, we have

Jα(fα) 6 Jα(f)

and applying again Proposition 3.1, we deduce that

uα,f → uf strongly in L2(0, T ;L2(Ω)),

so that
lim sup
α→∞

Jα(fα) 6 lim sup
α→∞

Jα(f) = J(f).

The above relation and (5.4) yields that

lim
α→∞

Jα(fα) = J(f). (5.5)

Moreover since
Jα(fα) 6 Jα(g) ∀g ∈ U

and since, by using again Proposition 3.1

lim
α→∞

Jα(g) = J(g),

we deduce that f is a solution to (1.2).
From (5.3) and (5.5), we deduce that∫ T

0

∫
ω

|fα|2 dx dt→
∫ T

0

∫
ω

|f |2 dx dt.

as α→∞ and thus we obtain (1.10) from (5.2).
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6 The bidimensional case

In that case, we can work with weak solutions (that are unique) for systems (1.1), (1.6). More precisely, we
assume (instead of (1.4) and (1.5))

a ∈ L2(Ω), div a = 0, a · ν = b(0, ·) · ν on ∂Ω (6.1)

and
b ∈ H1(0, T ;L2(Ω)) ∩ C0([0, T );H1(Ω)) ∩ L2(0, T ;H2(Ω)), div b = 0 in (0, T )× Ω.

In particular,

b ∈ L2(0, T ;H3/2(∂Ω)) ∩H1/4(0, T ;L2(∂Ω)),

∫
∂Ω

b(t, ·) · ν dγ = 0 (t ∈ [0, T ]). (6.2)

The weak solutions of (1.1) satisfies

uf ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)) ∩H1(0, T ;V −1
0 ),{

div uf = 0 in (0, T )× Ω,
uf = b on (0, T )× ∂Ω,

and

−
∫ T

0

∫
Ω

∂tϕ · uf dx dt−
∫ T

0

∫
Ω

[(uf · ∇)ϕ] · uf dx dt+

∫ T

0

∫
Ω

2µD(ϕ) : D(uf ) dx dt

=

∫ T

0

∫
ω

f · ϕ dx dt+

∫
Ω

ϕ(0, ·) · a dx, (6.3)

for any ϕ ∈ C1
c ([0, T );V 1

0 ). We recall that V 1
0 is defined by (1.9).

The definition of weak solutions for (1.6) is similar:

uα,f ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)) ∩H1(0, T ;V −1
ν ),{

div uα,f = 0 in (0, T )× Ω,
uα,f · ν = b · ν on (0, T )× ∂Ω,

and

−
∫ T

0

∫
Ω

∂tϕ · uα,f dx dt−
∫ T

0

∫
Ω

[(uα,f · ∇)ϕ] · uα,f dx dt+

∫ T

0

∫
Ω

2µD(ϕ) : D(uα,f ) dx dt

+

∫ T

0

∫
∂Ω

[(b · ν)uτ + α(u− b)τ ] · ϕτ dγ dt =

∫ T

0

∫
ω

fα · ϕ dx dt+

∫
Ω

ϕ(0, ·) · a dx, (6.4)

for any ϕ ∈ C1
c ([0, T );V 1

ν ) where

V 1
ν :=

{
u ∈ H1(Ω) ; div u = 0, u · ν = 0 on ∂Ω

}
, (6.5)

V −1
ν := (V 1

ν )′.

With this framework, the hypotheses on U are weaker than in the 3d case: we only assume that

U is a closed convex non empty subset of L2(0, T ;L2(ω)) (6.6)

instead of (2.18).
With these assumptions, Theorem 4.1 holds true with the same proof. The main result becomes

Theorem 6.1. Assume that (a, b) and U satisfy the above hypotheses.
Then for any α large enough, the problem (1.7) admits a solution fα and there exist f ∈ U and a sequence

such that as α→∞
fα → f strongly in L2(0, T ;L2(ω)), (6.7)
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and f is a solution of (1.2). Moreover, the corresponding solutions (uf , pf ) and (uα,fα , pα,fα) of (1.1) and
(1.6) satisfy

uα,fα ⇀ uf weakly * in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), (6.8)

∂tuα,fα ⇀ ∂tuf weakly in L2(0, T ;V −1
0 ), (6.9)

uα,fα → uf strongly in L2(0, T ;L2(Ω)), (6.10)

uα,fα → b strongly in L2(0, T ;L2(∂Ω)). (6.11)

The solutions of the adjoint systems (defined by (3.1) and (3.2)) (φf , πf ) and (φα,f , πα,f ) satisfy

φα,fα ⇀ φf weakly * in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), (6.12)

∂tφα,fα ⇀ ∂tφf weakly in L4/3(0, T ;V −1
0 ), (6.13)

φα,fα → φf strongly in L2(0, T ;L2(Ω)), (6.14)

φα,fα → 0 strongly in L2(0, T ;L2(∂Ω)). (6.15)

The proof of Theorem 6.1 is the same as the proof of Theorem 1.1, we only use the following result
instead of Proposition 3.1:

Proposition 6.2. Assume (2.1) and that f, fα ∈ U with

fα ⇀ f weakly in L2(0, T ;L2(ω)). (6.16)

Then, the (weak) solutions (uf , pf ), (uα,fα , pα,fα), (φf , πf ) and (φα,f , πα,f ) of respectively (1.1), (1.6), (3.1),
(3.2), satisfy (3.3)–(3.10) and

∂tuα,fα ⇀ ∂tuf weakly in L2(0, T ;V −1
0 ). (6.17)

Proof. From (6.16), we deduce that (fα)α is bounded in L2(0, T ;L2(ω)). We set

w := uα,fα − b, g := fα1ω − ∂tb− (b · ∇)b+ ∆b ∈ L2(0, T ;L2(Ω))

that satisfy 
∂tw + (w · ∇)w + (b · ∇)w + (w · ∇)b− div σ(w, p) = g in (0, T )× Ω,

divw = 0 in (0, T )× Ω,
w · ν = 0 on (0, T )× ∂Ω,

[2µD(w)ν + αw]τ = 0 on (0, T )× ∂Ω,
w(0, ·) = a− b(0, ·) in Ω.

(6.18)

To obtain our estimates, we multiply the first equation of (6.18) by w and we deduce

1

2

d

dt

∫
Ω

|w|2 dx+

∫
∂Ω

b · ν
2
w2
τ dγ +

∫
Ω

[(w · ∇)b] · w dx+ 2µ

∫
Ω

|D(w)|2 dx+ α

∫
∂Ω

w2
τ dγ

=

∫
Ω

g · w dx. (6.19)

Using Hölder’s inequality, the Sobolev embedding H1/2(Ω) ⊂ L4(Ω) and the Korn inequality, we deduce∣∣∣∣∫
Ω

[(w · ∇)b] · w dx

∣∣∣∣ 6 ‖w‖2L4(Ω)‖∇b‖L2(Ω) 6 C‖w‖L2(Ω)‖w‖H1(Ω)‖b‖H1(Ω)

6 µ‖D(w)‖2L2(Ω) + C(1 + ‖b‖2H1(Ω))‖w‖
2
L2(Ω). (6.20)

Using (2.1), we deduce from (6.19) and from (6.20) that∫
Ω

|w(t, ·)|2 dx+ 2µ

∫ t

0

∫
Ω

|D(w)|2 dx ds+ α

∫ t

0

∫
∂Ω

w2
τ dγ ds

6 ‖a− b(0, ·)‖2L2(Ω) + C‖g‖2L2(0,T ;L2(Ω)) + C

∫ t

0

(1 + ‖b‖2H1(Ω))‖w‖
2
L2(Ω) ds, (6.21)
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where the constants C are independent of α.
Using the Grönwall lemma and the Korn lemma, we deduce

‖w‖2L∞(0,T ;L2(Ω)) + ‖w‖2L2(0,T ;H1(Ω)) + α‖wτ‖2L2(0,T ;L2(∂Ω))

6
(
‖a− b(0, ·)‖2L2(Ω) + C‖g‖2L2(0,T ;L2(Ω))

)
exp

(
C(T + ‖b‖2L2(0,T ;H1(Ω)))

)
, (6.22)

where the constants C are independent of α.
We deduce that the sequence (uα,fα)α is bounded in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) and that (3.6)

holds. Let us consider ϕ ∈ L2(0, T ;V 1
0 ). Then

〈∂tuα, ϕ〉 =

∫ T

0

∫
Ω

[(uα · ∇)ϕ] · uα dx dt−
∫ T

0

∫
Ω

2µD(uα) : D(ϕ) dx dt+

∫ T

0

∫
ω

fα · ϕ dx dt. (6.23)

We have ∣∣∣∣∫ T

0

∫
Ω

2µD(uα) : D(ϕ) dx dt

∣∣∣∣ 6 C‖uα‖L2(0,T ;H1(Ω))‖ϕ‖L4(0,T ;V 1
0 ) (6.24)

and∣∣∣∣∫ T

0

∫
Ω

[(uα · ∇)ϕ] · uα dx dt
∣∣∣∣ 6 ∫ T

0

‖uα‖2L4(Ω)‖∇ϕ‖L2(Ω) dt 6 C

∫ T

0

‖uα‖L2(Ω)‖uα‖H1(Ω)‖ϕ‖H1(Ω) dt

6 C‖uα‖L∞(0,T ;L2(Ω))‖uα‖L2(0,T ;H1(Ω))‖ϕ‖L2(0,T ;V 1
0 ). (6.25)

Gathering (6.23), (6.24) and (6.25), we deduce that (∂tuα,fα)α is bounded in L2(0, T ;V −1
0 ). Using the

Banach-Alaoglu theorem combined with the Aubin-Lions compactness result (see, for instance, [22, p. 271]),
we deduce that, up to a subsequence,

uα,fα ⇀ U weakly * in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), (6.26)

∂tuα,fα ⇀ ∂tU weakly in L2(0, T ;V −1
0 ), (6.27)

uα,fα → U strongly in L2(0, T ;L2(Ω)). (6.28)

Now, let us take ϕ ∈ C∞c ([0, T ) × Ω), divϕ = 0 in (6.4). Using (6.26), (6.27), (6.28), we deduce that
U ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) satisfies (6.3) with

divU = 0, U = b on (0, T )× ∂Ω.

It means that U is a weak solution of (1.1). Using the uniqueness of weak solutions (see [22, p. 294]), we
deduce that U = uf .

The proof for the adjoint systems is the same as in the 3d case.

Remark 6.3. From the Sobolev embeddings in the 2d case, we can improve the convergence (3.8) and obtain

∂tφα,fα ⇀ ∂tφf weakly in L2−ε(0, T ;V −1
0 ), (6.29)

for any ε > 0. The “worst” term to estimate is∣∣∣∣∫ T

0

∫
Ω

(∇uα,fα)>φα,fα · ϕ dx dt

∣∣∣∣ 6 C

∫ T

0

‖uα,fα‖H1(Ω)‖φα,fα‖
(2−2ε)/(2−ε)
L2(Ω)

‖φα,fα‖
ε/(2−ε)
H1(Ω)

‖ϕ‖H1(Ω) dt

6 C‖uα,fα‖L2(0,T ;H1(Ω))‖φα,fα‖
(2−2ε)/(2−ε)
L∞(0,T ;L2(Ω))

‖φα,fα‖
ε/(2−ε)
L2(0,T ;H1(Ω))

‖ϕ‖L(2−ε)/(1−ε)(0,T ;H1(Ω))

6 C‖ϕ‖L(2−ε)/(1−ε)(0,T ;H1(Ω)). (6.30)
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