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Motivated by modelling rotating turbulence in planetary fluid layers, we investigate
precession-driven flows in ellipsoids subject to stress-free boundary conditions (SF-
BC). The SF-BC could indeed unlock numerical constraints associated with the no-slip
boundary conditions (NS-BC), but are also relevant for some astrophysical applications.
Although SF-BC have been employed in the pioneering work of Lorenzani & Tilgner (J.
Fluid Mech., 2003, 492, pp. 363–379), they have scarcely been used due to the discovery
of some specific mathematical issues associated with angular momentum conservation.
We revisit the problem using asymptotic analysis in the low-viscosity regime, which
is validated with numerical simulations. First, we extend the reduced model of uniform-
vorticity flows in ellipsoids to account for SF-BC. We show that the long-term evolution of
angular momentum is affected by viscosity in triaxial geometries, but also in axisymmetric
ellipsoids when the mean rotation axis of the fluid is not the symmetry axis. In a regime
relevant to planets, we analytically obtain the primary forced flow in triaxial geometries,
which exhibits a second inviscid resonance. Then, we investigate the bulk instabilities
existing in precessing ellipsoids. We show that using SF-BC would be useful to explore
the non-viscous instabilities (e.g. Kerswell, Geophys. Astrophys. Fluid Dyn., 1993, 72,
pp. 107-144), which are presumably relevant for planetary applications but are often
hampered in experiments or simulations with NS-BC.

Key words: rotating flows, waves in rotating fluids, geophysical and geological flows

1. Introduction

Motivated by numerous natural applications (e.g. Le Bars et al. 2015), we aim to
explore the long-term dynamics of rapidly rotating fluids enclosed in ellipsoids subject to
(harmonic) mechanical forcings. Global rotation is indeed ubiquitous in many planetary
fluid layers or stars, which are usually ellipsoidal at the leading order (e.g. due to
the combined action of centrifugal effects and gravitational interactions with nearby
orbital partners, see Chandrasekhar 1969). In particular, mechanically driven flows in
ellipsoids (e.g. flows driven by precession or tides) have received much attention in the
fluid community. Mechanical forcings can indeed sustain bulk instabilities (e.g. Kerswell
1993, 2002), turbulence (e.g. Grannan et al. 2017; Le Reun et al. 2019) and possibly
dynamo magnetic fields (e.g. Reddy et al. 2018; Vidal et al. 2018). These works have also
renewed interest in a key fundamental question in the theory of rotating fluids, which is
the generation of two-dimensional geostrophic motions (Greenspan 1969). However, this
problem has only received scant attention in global geometries exhibiting the so-called
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topographic beta effect (which strongly modifies the geostrophic flows, e.g. Greenspan
1968). Exploring rotating turbulence thus deserves further work using global models.

The incompressible Navier-Stokes equation is commonly adopted to explore the tur-
bulence driven by mechanical forcings, together with the no-slip boundary conditions
(NS-BC). The latter are appropriate to model the flow dynamics in the presence of
a rigid boundary (e.g. the solid interface between a liquid core and a solid overlying
mantle in planetary interiors). However, the range of parameters that is accessible to
global simulations with NS-BC is severely limited, in particular for the Ekman number E
(which crucially controls the dynamics of rapidly rotating flows). Typical values in natural
systems are E 6 O(10−12), whereas direct numerical simulations (DNS) and laboratory
experiments of mechanically driven rotating turbulence can only reach much larger values
E & 10−6 (e.g. Grannan et al. 2017; Le Reun et al. 2019). As a consequence, the Ekman
boundary layer is often a prominent feature in the models (whereas the smallness of
E in planetary systems suggests that viscosity should rather play a minor dynamical
role), and its resolution requires considerable computational resources when E is lowered.
Moreover, the overestimated viscous torque at the boundary can also largely inhibit the
fluid response to mechanical forcings (which is primarily driven by the shape deformation
of the fluid boundary, combined with non-stationary effects due to the possibly oscillatory
angular velocity of the container). Therefore, different modelling approaches are worth
considering to simulate such flows at more realistic parameters for planetary applications.

One natural way to avoid the physical and computational disadvantages of NS-BC is
to employ stress-free boundary conditions (SF-BC). A thin outer Ekman boundary layer
is still present for stress-free boundaries (e.g. Livermore et al. 2016), but its dynamical
role is expected to be less important because the boundary-layer flow is much weaker in
amplitude than the bulk flow (e.g. Rieutord 1992). Moreover, SF-BC are also commonly
employed in astrophysical modelling since they are often believed to yield similar results
to those obtained with a realistic free surface (Barker 2016a). However, SF-BC have
scarcely been used in spheres and ellipsoids because of mathematical difficulties. The
most serious one is related to angular momentum conservation. Angular momentum can
indeed be arbitrary in axisymmetric geometries, leading to spurious solutions on long
time scales (e.g. Jones et al. 2011; Guermond et al. 2013). The usefulness of SF-BC for
simulating rotating flows in ellipsoids has thus been questioned, but we believe that this
mathematical set-up deserves further analysis.

In this paper, we thus revisit the influence of SF-BC for rotating ellipsoids using
asymptotic analysis when E � 1 and targeted numerical simulations. The paper is
organised as follows. The model is presented in §2 and applied to precessing ellipsoids in
§3. The results are discussed in §4, and we end the paper in §5.

2. Mathematical modelling

2.1. Fluid dynamic equations

We consider a fluid-filled ellipsoid of uniform density and volume V , which is assumed
to co-rotate with the surrounding mantle at the angular velocity Ωc(t) = Ω0 [Ω + δ(t)]
with respect to the inertial frame (δ(t) being the time-dependent departure from the
steady global rotation Ω along the unit vector 1Ω = Ω/|Ω|). To have a tractable
mathematical problem, we seek mechanically driven flows in the mantle reference frame
in which the ellipsoidal boundary S is steady and δ(t) 6= 0. This set-up allows us to
model flows driven by precession or librations, which have already received consideration
using NS-BC (e.g. Noir & Cébron 2013; Zhang et al. 2012, 2014; Vantieghem et al. 2015).
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We non-dimensionalise the problem using Ω−10 as the time scale, and a typical length R
as the length scale (which is here arbitrary). Considering a Newtonian fluid of uniform
kinematic viscosity ν, the dimensionless equations for the velocity v are

∂tv + (v ·∇)v + 2Ωc × v = −∇p+ 2E∇ · ε(v) + r × dtδ, (2.1a)

∇ · v = 0, (2.1b)

where r is the position vector, ε(v) = (1/2)[∇v + (∇v)>] is the strain-rate tensor, and
E = ν/(Ω0R

2) is the Ekman number. The ellipsoidal geometry, which is assumed to be
steady in the mantle frame, is given by the dimensionless equation

(x/a)2 + (y/b)2 + (z/c)2 = 1 (2.2)

where [a, b, c] are the (dimensionless) ellipsoidal semi-axes and [x, y, z] are the Cartesian
coordinates. In the following, axisymmetric geometries refer to ellipsoids with a revolution
symmetry axis (i.e. when either a = b, b = c or a = c). Finally, spheroids will refer to
the particular axisymmetric geometries for which the revolution symmetry axis is aligned
with the rotation axis (with a = b and Ω ∝ 1z in this study). We aim to consider the
SF-BC given in the mantle frame by

v · 1n|S = 0, [ε(v) · 1n]× 1n|S = 0, (2.3a,b)

where 1n is the outward normal unit vector at the boundary, instead of the NS-BC

v · 1n|S = 0, v × 1n|S = 0. (2.4a,b)

It is obvious from SF-BC (2.3) and NS-BC (2.4) that the tangential velocity at the
boundary will differ between the two cases (since the flow is allowed to freely slip on
the boundary with the SF-BC). One may thus wonder in which circumstances the above
conditions will lead to similar flows in the bulk (i.e. far from the boundary region).

A necessary condition is that the mechanical forcings can sustain flows against viscous
dissipation for the two BC in the mantle frame. This is evidenced by the conservation
equation for the volume-averaged kinetic energy Ek. In a frame where the fluid boundary
is steady, it is given by (e.g. equation 5 in Wu & Roberts 2009)

dtEk =

∫

V

v · [r × dtδ] dV + 2E

(∫

S

v · T dS −Dν
)

(2.5)

where T = ε(v) · 1n is the surface traction and Dv > 0 is a volume-averaged viscous
dissipation (for both the NS-BC and SF-BC). For a velocity satisfying the no-penetration
condition such that v = (v ·1n) 1n−1n× (1n×v) = −1n× (1n×v), the surface integral
can actually be written as

∫

S

v · T dS = −
∫

S

T · [1n × (1n × v)] dS = −
∫

S

[T × 1n] · [v × 1n] dS (2.6)

where we have used a property of the scalar triple product to obtain the last expression.
Thus, the above surface integral exactly vanishes for both SF-BC (2.3) and NS-BC (2.4)
in the mantle frame. Then, equation (2.5) shows that we can have dtEk > 0 for both
SF-BC and NS-BC if the mechanical forcings are oscillatory in the mantle frame (i.e.
when dtδ 6= 0). Harmonic mechanical forcings, such as precession or librations, can thus
sustain flows against viscous dissipation in the mantle frame (even with the SF-BC).
Note that a very different conclusion is obtained for steady forcings, such as precession
viewed in the frame of precession for spheroidal geometries (Lorenzani & Tilgner 2003;
Wu & Roberts 2009). We indeed have dtEk < 0 at every time for the SF-BC in the
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precession frame, whereas precession could sustain non-vanishing flows against viscous
dissipation for the NS-BC (since v × 1n|S 6= 0 for a no-slip boundary in the precession
frame, e.g. Cébron et al. 2019). In the following, we will only investigate the dynamics
driven by oscillatory forcings in the mantle frame with SF-BC.

2.2. Angular momentum

The angular momentum L =
∫
V
r × v dV of the flow plays a central dynamical role

for mechanically driven flows in ellipsoids. Actually, the Cartesian components of the
angular momentum L = (Lx, Ly, Lz)

> are exactly given for incompressible flows by

Lx =

∫

V

(yvz − zvy) dV =

∫

V

v · (1x × r +∇Ψx) dV, (2.7a)

Ly =

∫

V

(zvx − xvz) dV =

∫

V

v · (1y × r +∇Ψy) dV, (2.7b)

Lx =

∫

V

(xvy − yvx) dV =

∫

V

v · (1z × r +∇Ψz) dV, (2.7c)

where [Ψx, Ψy, Ψz] are arbitrary scalar potentials if ∇ · v = 0 and if the flow obeys
the no-penetration BC in rigid ellipsoids. The scalar potentials are thus often discarded
to simply express the angular momentum as projections onto the solid-body rotations
1i× r (e.g. Guermond et al. 2013). Yet, the solid-body rotations are not admissible flow
solutions in non-spherical geometries (even without viscosity), since they do not satisfy
the no-penetration condition.

A more appropriate definition of the angular momentum for incompressible flows is
thus given in ellipsoids by

L · 1i =

∫

V

ei · v dV, (2.8)

where {ei}i∈{x,y,z} is the set of uniform-vorticity (flow) elements defined by

ei = 1i × r +∇Ψi, ∇ · ei = 0, ei · 1n|S = 0. (2.9a–c)

The scalar functions Ψi allow the elements ei to satisfy the no-penetration condition. In
ellipsoidal geometries, they are explicitly given by (e.g. Noir & Cébron 2013)

Ψx =
c2 − b2
b2 + c2

yz, Ψy =
a2 − c2
a2 + c2

xz, Ψz =
b2 − a2
a2 + b2

xy. (2.10a–c)

It is worth noting that definition (2.8) is purely kinematic. It thus remains valid in the
presence of additional effects, for instance without global rotation or with magnetic effects
(e.g Gerick et al. 2020). Moreover, this definition can also be generalised for compressible
flows under the anelastic approximation (see Appendix A). Consequently, we can always
rigorously expand incompressible velocity fields in ellipsoids as

v(r, t) = U(r, t) + vf (r, t),

∫

V

r × vf dV = 0, (2.11a,b)

where the uniform-vorticity flow U carrying the angular momentum is given by

U(r, t) = ωx(t) ex(r) + ωy(t) ey(r) + ωz(t) ez(r), U · 1n|S = 0, (2.12a,b)

and with the effective rotation vector of the fluid ω(t) = (ωx(t), ωy(t), ωz(t))
>. The ve-

locity vf , which does not carry angular momentum by definition since
∫
V
U ·vf dV = 0,

contains bulks flows of higher spatial complexity (e.g. flow instabilities or turbulence) and
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Figure 1. Non-convergence of the angular momentum Lz in DNS after several viscous time
units. Precession forcing given by definition (3.1) with Px = 10−2 in stress-free spheroids
(a = b = 1, c = 0.95). At t = 0, [ωx, ωy] are chosen to match asymptotic solution (3.7).
(a) DNS at Po = −1 for the two values of the Ekman number E = 5× 10−3 (e.g. as considered
in Wu & Roberts 2009) and E = 5 × 10−4. At t = 0, ωz ≈ 0 for the two simulations. (b) DNS
at Po = −1.8 and E = 5× 10−4 for ωz ≈ 0 (top panel) and ωz = 0.1 (bottom panel) at t = 0.

also viscous structures (e.g. the Ekman boundary layer, Rieutord 1992). The Cartesian
components of L are then exactly given by

L = L−1 ω, L−1 =
16π

15
abc diag

[
b2c2

b2 + c2
,
a2c2

a2 + c2
,
a2b2

a2 + b2

]
. (2.13a,b)

Finally, the time evolution of the angular momentum (or equivalently that of ω) is
affected by viscosity through the action of the viscous torque Γ ν on long time scales. We
have for example Γ ν = 0 in spheres, such that angular momentum has to be conserved
for uniformly rotating fluids in the inertial frame (e.g. Jones et al. 2011). To clarify the
dynamical role of SF-BC in ellipsoids, it is worth computing the viscous torque.

2.3. Viscous torque in stress-free ellipsoids

Because of definition (2.8), the Cartesian components of the viscous torque Γ ν =
(Γ ν · 1x,Γ ν · 1y,Γ ν · 1z)> are exactly given for SF-BC (2.3) by

Γ ν · 1i = 2E

∫

V

ei ·∇ · ε(v) dV = −2E

∫

V

ε(ei) : ε(v) dV, (2.14)

where we have used integration by parts and the decomposition ei = (1n · ei) 1n − 1n ×
(1n×ei) = −1n×(1n×ei) to cancel out the surface integral for SF-BC (e.g. see the proof
of proposition 2.1 in Guermond et al. 2013). We recover from the formula that Γ ν = 0 in
spheres since ε(ei) exactly vanishes when ei is a solid-body rotation, but we also obtain
that Γ ν 6= 0 in triaxial geometries (because ε(ei) 6= 0 when a 6= b 6= c). Moreover,
it shows that Γ ν · 1i = 0 when the Cartesian vector 1i is an axis of revolution of the
geometry (irrespective of the fluid global rotation, as ei is then a solid-body rotation).

We can now inspect the long-term evolution of angular momentum since pathological
behaviours have been reported in some axisymmetric configurations (Guermond et al.
2013). To illustrate this behaviour, we expand the angular momentum as L = L0 +L1,
where L0 is the angular momentum of a dynamical solution of the problem and L1

is a modification of L0 associated with an additional uniform-vorticity flow. The time
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evolution of L1 is then given in the rotating frame by (e.g. Roberts & Aurnou 2012)

dtL1 +Ωc ×L1 = Γ p,1 + Γ ν,1, (2.15)

where Γ p,1 =
∫
S
p1 1n×r dS is the pressure torque and Γ ν,1 is the viscous torque. Since

the viscous and pressure torques are non-zero when a 6= b 6= c, equation (2.15) shows
that the angular momentum is affected by viscosity in triaxial ellipsoids. The situation
is possibly different in axisymmetric geometries. If the fluid is not globally rotating (i.e.
when Ω = 0), then the component L1 · 1i carried by the uniform-vorticity element ei
is arbitrary when 1i is a revolution symmetry axis (since Γ p,1 · 1i = Γ ν,1 · 1i = 0).
Similarly, if the fluid is globally rotating along the revolution symmetry axis 1i, then
the perturbation angular momentum L1 ∝ 1i is arbitrary (it will depend on the initial
conditions, e.g. as shown in Guermond et al. 2013).

The two situations are illustrated numerically in figure 1 for a spheroid a = b subject
to the precession forcing (see its definition below in §3). We have performed DNS using
the standard finite-element method as implemented in the commercial software comsol.
The latter has already been employed to simulate precession-driven flows in ellipsoids
with NS-BC (e.g. Noir & Cébron 2013) and can also account for SF-BC (e.g. for tidal
flows in Cébron et al. 2013). The geometry is modelled by an unstructured mesh with
tetrahedral elements in the bulk, surrounded by a boundary-layer mesh (made of prism
elements) to ensure the convergence of the thin Ekman layer. We have employed Lagrange
elements P2-P3 (i.e. quadratic for the pressure field and cubic for the velocity field). The
total number of degrees of freedom ranges between 3× 105 and 5× 105, such that every
targeted simulation took a few days to run in parallel on a cluster (to investigate the
long-term evolution of L). We observe that the axial angular momentum Lz does not
converge in time for the considered stress-free spheroid (it is still growing or decaying
even after several viscous time scales) if either the fluid is non-rotating in average as
in panel (a) or Ω ∝ 1z as in panel (b). However, a definitive conclusion should not be
drawn for every axisymmetric geometry. The situation is indeed different if the global
rotation is not aligned with the revolution axis, since the three components of the angular
momentum should be strongly coupled in equation (2.15) for such configurations (even
if Γ ν · 1i = 0, see §3).

3. Application to precession-driven flows

We consider precession-driven flows in ellipsoids, which have only received scant
attention with SF-BC (Lorenzani & Tilgner 2003; Wu & Roberts 2009; Guermond et al.
2013). We work in the mantle frame rotating with respect to the inertial frame at the
dimensionless angular velocity (e.g. Noir & Cébron 2013)

Ωc(t) = (1 + Pz)1z︸ ︷︷ ︸
Ω

+ δ(t), δ(t) = Px [cos(t)1x − sin(t)1y] , (3.1a,b)

with Px = Po sin(α) and Pz = Po cos(α), where Po = Ωp/Ω0 is the Poincaré number
(Ωp being the angular velocity of precession and Ω0 that of the mantle) and α is the angle
of precession measured from 1z. Because the Poincaré force r×dtδ is linear in Cartesian
coordinates, the primary response of the fluid is a laminar uniform-vorticity flow (e.g.
Noir & Cébron 2013; Kida 2020), on top of which secondary flows and turbulence can
develop. For analytical progress, we expand the velocity field as v = v0 + v1, where
v0 is the primary forced flow (which is mainly of uniform vorticity) and v1 represents
small-amplitude additional flows such that |v1| � |v0|. We first seek analytical solutions
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of the primary flow in §3.1, which are compared with DNS in §3.2. Then, we explore the
flow instabilities v1 growing upon the forced flow in §3.3.

3.1. Laminar forced flows

The forced laminar flows, which have been explored for a long time after the seminal
work of Poincaré (1910), can be obtained using boundary-layer theory (BLT) in the
low-viscosity regime E � 1 for SF-BC. To do so, we seek v0 as

v0(r, t) ' ωx(t)ex + ωy(t)ey + ωz(t)ez︸ ︷︷ ︸
U(r,t)

+E1/2Ũ(r, t) (3.2)

where U(r, t) is a forced uniform-vorticity flow carrying angular momentum, and Ũ(r, t)
is the viscous flow within the boundary layer at the leading order in E1/2 (e.g. Rieutord
1992). A direct consequence of asymptotic expansion (3.2) is that the bulk flow for SF-
BC can be determined without explicitly solving for the boundary-layer flow (since the
latter has an amplitude that is E1/2 smaller than the bulk flow amplitude). The exact
viscous torque given by formula (2.14) can then be approximated as

Γ ν ' −
16π

3
abcE diag

[
(b2 − c2)2

(b2 + c2)2
,

(a2 − c2)2

(a2 + c2)2
,

(a2 − b2)2

(a2 + b2)2

]
ω. (3.3)

The viscous flow E1/2 Ũ in expansion (3.2) has a contribution of amplitude O(E3/2) to

the viscous torque (since |ε(Ũ)| = O(E−1/2) and the volume scales as O(E1/2) within the
Ekman layer), which can be neglected compared with expression (3.3) in the asymptotic
regime E � 1. We recover from formula (3.3) that Γ ν ·1i = 0 when the Cartesian vector
1i is a revolution symmetry axis, but also that the three components of the viscous torque
are non-zero when a 6= b 6= c. Then, the momentum equation reduces to

dtω − [(ω +Ωc) ·∇]U = −dtΩc + LΓ ν , (3.4)

where Γ ν is the viscous torque given by formula (3.3) and L is the matrix given by the
inverse of expression (2.13b). The approximated viscous term is thus

LΓ ν = −5Ediag

[
(b/c− c/b)2
b2 + c2

,
(a/c− c/a)2

a2 + c2
,

(a/b− b/a)2

a2 + b2

]
ω. (3.5)

Equations (3.4) and (3.5) extend the asymptotic viscous model of Noir & Cébron (2013)
to stress-free ellipsoids, but we remind the reader that this stress-free model is not valid
in spheres (since the angular momentum would be arbitrary in spheres because of Γ ν =
0). The close similarity between the no-slip and stress-free cases, for which only the
expression of the viscous term in equation (3.4) differs, suggests that the same interior
solution should be approached when E → 0 in no-slip and stress-free ellipsoids.

Precession is often characterised by |Px| � 1 in planetary liquid cores (e.g. Noir &
Cébron 2013). Hence, we seek asymptotic solutions of equation (3.4) in powers of Px as

ω(t) = ω(0)(t) + Px ω
(1)(t) + P 2

x ω
(2)(t) + . . . (3.6)

Since the mean rotation axis is Ω ∝ 1z when |Px| � 1, we assume that a 6= b (to avoid
the pathological situations outlined in §2 for the angular momentum conservation). The
zeroth-order solution ω(0)(t) corresponds to a decaying transient when t→∞ (because
of viscosity). We thus discard ω(0)(t) in the following and solve the first-order problem
in Px. In the regime of vanishing viscosity E → 0, we obtain the first-order solution

ω(1)
x (t) ' − 1 + [1 + Pz]A1

1− [1 + Pz]2λ2so
cos(t), ω(1)

y (t) ' 1 + [1 + Pz]B2

1− [1 + Pz]2λ2so
sin(t) (3.7a,b)
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Figure 2. DNS of precessing ellipsoids with SF-BC at Po = −1.8, E = 5 × 10−4 and
Px = Po sin(α) = 10−2. Axisymmetric geometry a = 1.5 and b = c = 1. (a) Time evolution of
the Cartesian component ω · 1x and (b) absolute value |ω| of the angular velocity, computed
in the DNS either from the volume-averaged vorticity as ω = (1/2)

∫
V
∇ × v dV or using the

angular momentum as ω = LL using expression (2.13).

and ω
(1)
z (t) → 0, with A1 = 2a2/(a2 + c2), B2 = 2b2/(b2 + c2), and λso =

√
A1B2. We

have finally to compute the second-order solution ω(2), accounting for weakly nonlinear
interactions in the viscous interior, to estimate the axial angular velocity (since it is
undefined at the first order). An analytical solution can be obtained when E 6= 0, showing

that ω(2) = ω
(2)
z 1z, but the general expression of ω

(2)
z is too lengthy to be given here. In

the regime of vanishing viscosity E → 0, it simplifies into

ω(2)
z (t) =

c2

4D2
2

[
ω(2)
z + δω(2)

z cos(2t)
]

(3.8a)

with the denominator D2 = a2b2P̃z (Pz + 1/2)− c2
(
a2 + b2 + c2

)
/4 and P̃z = Pz + 3/2,

where the amplitude of the mean geostrophic flow is given by

ω(2)
z = −

(
c2

2
+ a2P̃z

)(
c2

2
+ b2P̃z

)
a2 + b2

(a/b− b/a)2

[(a
c
− c

a

)2
+

(
b

c
− c

b

)2
]

(3.8b)

and that of the oscillatory component by δω
(2)
z = (Pz + 1)(a2 − b2)(a2b2P̃ 2

z − c4/4). It is

worth noting that the mean geostrophic flow ω
(2)
z has an amplitude that is independent of

E in the vanishing regime E → 0, which is somehow similar to the mean geostrophic flows
driven by nonlinear boundary-layer interactions for NS-BC (e.g. Cébron et al. 2021).

A striking property of the asymptotic solution is that it exhibits two inviscid direct
resonances, which occur when the common denominator in expressions (3.7a,b) vanishes
at the two resonant values Po± given by λso [1 + Po± cos(α)] = ±1. The resonance
associated with Po+ actually corresponds to the inviscid resonance initially predicted by
Poincaré (1910), which has been observed for no-slip boundaries (e.g. Vormann & Hansen
2018; Nobili et al. 2021; Burmann & Noir 2022). However, the second resonance at Po−

is new, although precession-driven flows have been explored for more than a century in
triaxial ellipsoids (e.g. Poincaré 1910; Noir & Cébron 2013).
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3.2. Numerical simulations

We have checked that the analytic expressions are in excellent agreement with the
numerical integration of the exact uniform-vorticity model (3.4) when E → 0 (not shown).
Yet, it remains to confirm the validity of the asymptotic solutions against DNS with SF-
BC. We first show in figure 2 the time evolution of the rotation vector ω(t) in the DNS
(performed with comsol, as explained in §2). We illustrate the DNS at Px = 10−2

with Po = −1.8 and E = 5 × 10−4, in the particular axisymmetric geometry a = 1.5
and b = c = 1 (other parameters yield similar results, not shown). The fluid angular
velocity ω has been computed in the DNS using either the volume-averaged vorticity or
formula (2.13a) after having computed the angular momentum. Both methods are found
to be in excellent quantitative agreement for the SF-BC (as observed in the figure).
For such an axisymmetric geometry, we may naively think (before any computation)
that the long-term evolution of ωx (or equivalently that of Lx) is unconstrained due to
the vanishing component of the viscous torque Γ ν · 1x = 0 according to formula (3.3).
We observe that ωx initially displays a complicated transient (panel a), which dies out
because of viscosity as expected from the asymptotic theory. Then, it converges towards
a well-defined oscillatory state after a few viscous time scales (i.e. when E t � 1 in
dimensionless units). The total angular velocity ω, which exhibits no long-term spurious
dynamics (panel b), has a small amplitude compared with the mean rotation axis of the
fluid Ω = 1z with respect to the inertial frame. We have checked that the final state
is robust, as it is recovered by varying the numerical resolution and adopting different
initial conditions for a few values of Po and E (although multiple solutions may exist
close to the inviscid resonances, as shown for sufficiently small Ekman numbers with
NS-BC in Cébron 2015).

The comparison between the asymptotic results and the DNS is further illustrated in
figure 3, still considering the illustrative axisymmetic geometry a = 1.5 and b = c = 1
(other geometries with a 6= b give again similar results, not shown). The DNS are in
excellent quantitative agreement with the asymptotic solution, although the latter has
been obtained assuming E → 0, for both the time-averaged and the instantaneous angular

velocity (see panel b after seven viscous time scales). We also have checked that δω
(2)
z

is accurately recovered in the DNS (not shown). The observed excellent quantitative
agreement with theoretical precession-driven flows has not been obtained using NS-BC
in ellipsoids, both in DNS (e.g. Noir & Cébron 2013) and laboratory experiments (e.g.
Nobili et al. 2021; Burmann & Noir 2022). Finally, the DNS also confirm the physical
existence of the two inviscid resonances of solutions (3.7).

3.3. Asymptotic theory of flow instabilities

The forced laminar flow U(r, t), given by equation (3.4) when E � 1, can be desta-
bilised by various hydrodynamic instabilities in ellipsoids. Precession-driven instabilities
are classified either as viscously driven if they only exist when E 6= 0, or as inertial if they
survive when E = 0. Viscous instabilities exist in no-slip spheres, such as boundary-layer
instabilities (e.g. Lorenzani & Tilgner 2001; Buffett 2021) or the conical-shear instability
(e.g. Lin et al. 2015; Cébron et al. 2019). On the contrary, the inertial instabilities
only exist in non-spherical geometries (e.g. Kerswell 1993; Wu & Roberts 2011; Vidal &
Cébron 2017). In the following, we extend the prior inviscid linear analyses of the inertial
instabilities, which all considered precession at α = π/2 and in the precession frame (i.e.
only for spheroids), to account for the SF-BC and the time-dependent background flow
(3.7) in the mantle frame. To do so, we expand the governing equations with respect to

U (discarding the small-amplitude viscous flow E1/2Ũ in the bulk, which is negligible
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Figure 3. Precession-driven flows (SF-BC) at Px = Po sin(α) = 10−2 for a = 1.5 and b = c = 1.
Comparison between asymptotic solution (3.7) and DNS at E = 5 × 10−4. (a) Time-averaged

angular velocity ε = |ω| as a function of Po. The fluid is not globally rotating when Po ' −1
if |Px| � 1 (grey area). Vertical dashed lines show the two resonances of asymptotic solutions

(3.7) at Po± = −
√
P 2
x + (1/λso ∓ 1)2. Teal vertical line shows the region |Po| < 10−2 where no

α can satisfy Px = 10−2. (b) Value of |ω| as a function of the re-scaled time E t at Po = −1.8.

when E � 1 as found in the DNS). The perturbation velocity v1, which is assumed to
be of small amplitude compared with U , is governed in the mantle frame by

∂tv1 + 2Ωc × v1 = L(v1) + 2E∇ · ε(v1)−∇p, (3.9a)

∇ · v1 = 0, (3.9b)

with the linearised advection operator L(a) = −(a ·∇)U − (U ·∇)a. The perturbation
velocity v1 then satisfies the SF-BC (Mason & Kerswell 2002; Wu & Roberts 2009)

v1 · 1n|S = 0, [ε(v1) · 1n]× 1n|S = 0. (3.10a,b)

To explore the low-viscosity regime E � 1, which is difficult to probe using DNS, we
develop an asymptotic model. We seek v1 using BLT as (e.g. Rieutord 1992)

v1(r, t) ' u(r, t) + E1/2 ũ(r, t), ∇ · u = 0, u · 1n|S = 0, (3.11a–c)

where u(r, t) represents the inviscid bulk flow and ũ(r, t) is the leading-order viscous flow
within the Ekman layer to satisfy SF-BC (3.10). Because the boundary-layer flow has
an amplitude that is E1/2 smaller than the bulk flow amplitude, SF-BC strongly weaken
the viscous instabilities in ellipsoids. In particular, the critical shear layers spawned by
the Ekman layer at the critical latitudes are almost suppressed in stress-free ellipsoids
without an inner core (Tilgner 1999). Consequently, the inertial instabilities triggered
in the (nearly) inviscid bulk are expected to be largely favoured in stress-free ellipsoids
(compared with viscous instabilities).

To solve problem (3.11), we introduce the finite-dimensional polynomial vector space
Vn spawned by the global real-valued incompressible elements {uk}, made of Cartesian
monomials xiyjzk of maximum degree i + j + k 6 n and satisfying the no-penetration
BC (e.g. Vidal et al. 2020; Vidal & Cébron 2021a). Such vector elements are indeed
known to form a complete basis for smooth velocity fields in ellipsoids when n→∞ (e.g.
Lebovitz 1989; Backus & Rieutord 2017). Then, we seek the bulk flow using the Galerkin
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expansion (written using Einstein’s convention)

u(r, t) = αk(t)uk(r), ∇ · uk = 0, uk · 1n|S = 0, (3.12a–c)

where α = (α1, α2, . . . , αN )> is the state vector of the modal coefficients. The number of
elements N for a given maximum degree n in expansion (3.12) is N = n(n+1)(2n+7)/6.
In practice, we truncate the polynomial expansion at the maximum degree n, substitute
the truncated expansion into equation (3.9) and, finally, project the resulting equations
onto every basis element ui to minimise the residual with respect to the real-valued inner
product defined by 〈a, b〉V =

∫
V
a · b dV . The governing equations then reduce to

M dtα = (L−C −D)α, (3.13)

whereM ij = 〈ui,uj〉V is the mass matrix, Cij = 〈ui, 2Ωc×uj〉V represents the Coriolis
force, Lij = 〈ui,L(uj)〉V is the matrix representing the linearised advection terms and
the viscous matrix D is given by (after integration by parts)

Dij = 2E

∫

V

ε(ui) : ε(uj) dV (3.14)

in which we have enforced SF-BC (3.10) in the projection to simplify the integration (e.g.
Guermond et al. 2013). As already noticed for the forced flow, a useful consequence of
expansion (3.11) is that the bulk flow u can be determined in equation (3.13) without
an explicit solution of ũ for SF-BC. This has also been reported for asymptotic models
of thermal convection or waves in rotating stress-free spheres (Liao et al. 2001; Zhang &
Liao 2004). This is a noticeable difference from asymptotic models using NS-BC, which
require a matching between the boundary-layer flow and the interior solution (which are
of the same order of magnitude, e.g. Zhang et al. 2007, 2014).

Since asymptotic solution (3.7) is periodic of period T = 2π, we investigate the linear
stability using Floquet theory. We first compute the eigenvalues χ of the monodromy
matrix Φ(2π) given by

M dtΦ = (L−C −D)Φ, Φ(0) = I, (3.15a,b)

where I is the identity matrix. Then, we compute the complex-valued Lyapunov expo-
nents as µ = (1/T ) logχ whose real part Re(µ) = σ is the growth rate of the instability.
As initially noticed by Kerswell (1993) and Wu & Roberts (2011), the finite-dimensional
polynomial is left invariant by the linear operator in the momentum equation, that is
L(Vn) ∈ Vn. Therefore, we can construct exact polynomial solutions of equation (3.9)
giving sufficient conditions for linear instability in the inviscid regime E = 0.

We show in figure 4(a) the results of the linear inviscid stability analysis at Px = 10−2.
We have numerically solved equation (3.15) using a fourth-order Runge-Kutta solver and
standard linear algebra routines. As in Kerswell (1993) and Wu & Roberts (2011), there
are no instabilities associated with the linear elements n = 1. The first instabilities, which
are here associated with the quadratic modes with n = 2, only occur near the resonance
at Po+. When n is increased, additional tongues of inertial (topographic) instabilities
appear with a growth rate scaling in the inviscid regime as

σtopo = O(εη), (3.16)

where ε = |ω| is the mean value of the differential rotation between the fluid and the
mantle and η = a2/c2 − 1 is the polar flattening. The numerical prefactor is found to
be σtopo/(εη) ≈ 0.1 when n 6 20 (as shown in the figure). Moreover, when n → ∞,
the growth is expected to approach the upper bound given in the unbounded short-
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Figure 4. Growth rate σ of the inertial (topographic) instabilities growing upon flow (3.7) at
Px = Po sin(α) = 10−2, as a function of Po (using sampled values). Teal vertical line shows the
interval |Po| < 10−2 in which no α can satisfy Px = 10−2. The fluid is not globally rotating
near Po ' −1 when |Px| � 1 (grey area). (a) Inviscid growth rate for various degrees n of the
global modes. Dashed black curve is obtained in the unbounded short-wavelength limit (Kerswell
1993). (b) Viscous effects. Dotted blue line shows the upper bound of the inviscid growth rate.
Olive coloured area shows the unstable region for SF-BC at E = 3 × 10−6, and thick red line
shows the unstable zone for SF-BC at E = 5×10−4 (both computed at n = 20). Purple coloured
curves show viscous growth rate (3.17) for NS-BC, with K ∈ [4, 10] to account for the Ekman
damping of the large-scale modes (see figure 5).

wavelength approximation (Kerswell 1993). This shows that the forced laminar flow is
generically unstable to short-wavelength perturbations without viscosity.

However, the short-wavelength modes are more damped by viscosity than the large-
scale ones. Consequently, viscous effects will select the allowable unstable modes for a
given value of the Ekman number. To show this, we have explored the linear stability
including viscous damping in figure 4(b). At E = 5 × 10−4, the forced flow is only
unstable in extremely thin tongues near the two resonances at Po± for the SF-BC. This
is consistent with the absence of instabilities in the DNS performed at E = 5×10−4 (see
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figure 3). More challenging DNS with SF-BC at smaller values E = O(10−6), which are
beyond the scope of the present paper, could allow us to obtain instabilities for values
of Po in a larger interval. Finally, it is also useful to compare the stability of the forced
flow with SF-BC and NS-BC. A proper asymptotic theory for the no-slip case, rooted
in the BLT of the inertial modes (e.g. Greenspan 1968), will be considered elsewhere.
Nonetheless, an upper bound for the viscous growth rate of the inertial instabilities can
be estimated as

σtopo ≈ 0.1 εη −K
√
E[1 + Pz], (3.17)

assuming that the fluid is rotating on average at 1 + Pz in the mantle frame. Here, the
numerical prefactor K = 4 − 10 heuristically accounts for the Ekman damping of the
large-scale flow structures with NS-BC (see figure 5). For the small value E = 3× 10−6,
we observe that the forced flow at Px = 10−2 would be mainly stable with NS-BC (except
near the resonance Po+), whereas it would be unstable for other values of Po with SF-
BC. Therefore, the figure clearly illustrates that adopting SF-BC (instead of NS-BC) can
be useful to explore the turbulence driven by inertial instabilities in the bulk of the fluid.

4. Discussion

4.1. Physical insight from the Coriolis eigenmodes

We have illustrated with the case of precession-driven flows that the long-term evo-
lution of angular momentum is damped by viscosity in triaxial ellipsoids. Similarly,
viscosity affects the angular momentum in axisymmetric rotating ellipsoids if the mean
rotation axis Ω is not aligned with the revolution symmetry axis (even if Γ i · 1i = 0 in
such geometries, where 1i is the revolution axis along one of the principal semi-axes).
Asymptotic analysis offers a physical understanding of why the cases Ω ∝ 1i and Ω 6∝ 1i
strongly differ in axisymmetric ellipsoids.

When E � 1, the solutions of equations (2.1a,b) in stress-free or no-slip ellipsoids can
be rigorously expanded onto a combination of the inviscid eigenmodes of the (steady)
Coriolis operator given by (e.g. Backus & Rieutord 2017)

iλk∇×Qk = −2∇× (Ω ×Qk), ∇ ·Qk = 0, Qk · 1n|S = 0, (4.1a–c)

where [λk,Qk(r)] is the kth eigenvalue-eigenfunction pair. Only three of these eigenmodes
carry a non-zero angular momentum in ellipsoids (by virtue of the orthogonality of the
eigenmodes, see Ivers 2017), namely the spin over mode Qso, its complex conjugate
Q†so and the zero-frequency geostrophic mode Qsup associated with axial (differential)
rotation along Ω. Because these three modes are uniform-vorticity flows such as Qk =
ωk,x ex + ωk,y ey + ωk,z ez, they are given by the matrix eigenvalue problem




0 2a2Ωz/(a
2 + c2) −2a2Ωy/(a

2 + b2)
−2b2Ωz/(b

2 + c2) 0 2b2Ωx/(a
2 + b2)

2c2Ωy/(b
2 + c2) −2c2Ωx/(a

2 + c2) 0


ωk = iλkωk (4.2)

with Ω = (Ωx, Ωy, Ωz)
>, where the rotation vector ωk = (ωk,x, ωk,y, ωk,z)

> of the
eigenmode Qk is given by the kth eigenvector of matrix (4.2). Consequently, the uniform-
vorticity components ωi(t) ei of the flow in expansion (2.11) are not mutually independent
in rotating ellipsoids but, instead, are tied to the dynamics of these modes. More precisely,
the equatorial components of the angular momentum L × 1Ω are coupled through the
dynamics of the two spin-over modes. Similarly, the axial angular momentum L · 1Ω
(related to the fluid spin-up) is piloted by the dynamics of the geostrophic mode Qsup.

From a physical viewpoint, whether viscosity affects the long-term evolution of angular
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given by formula (4.6) for SF-BC.

momentum or not is thus deeply rooted in the viscous dynamics of these three eigen-
modes. We can quantify how viscosity impacts the inviscid eigenmodes by estimating the
global viscous decay rates τk of the Coriolis modes as

∂tQk|t=0 ' τkQk. (4.3)

For NS-BC, τk is a complex-valued quantity with a real part Re(τk) 6 0 representing
the volume-averaged viscous decay rate, and an imaginary part Im(τk) characterising the
frequency shift due to viscous effects (e.g. Greenspan 1968). Typical values are illustrated
in figure 5 for a particular ellipsoidal geometry. It has also been recognised for a long time
that, for NS-BC (2.4), the viscous torque in the mantle frame is related to the viscous
damping of these three eigenmodes (e.g. Rochester 1976). In no-slip spherical geometries,
it is given by (see formula 35 in Rochester 1976)

Γ ν ∝ E1/2 [Re(τso)ω⊥ − Im(τso) 1z × ω⊥ + τsup ωz1z] (4.4)

at the leading order in E (assuming Ω = 1z), where ω = ω⊥ + ωz1z = (ωx, ωy, ωz)
>

is the uniform vorticity of the forced flow. Note that similar expressions have been later
rediscovered for the particular case of precession as viewed in the precession frame (e.g.
Noir et al. 2003; Noir & Cébron 2013). Formula (4.4) clearly shows that the equatorial
components L × 1z are damped by viscosity when Re(τso) 6= 0 and, similarly, τsup 6= 0
(which is a real number for this mode) ensures that the axial angular momentum L ·1z is
affected by viscosity. Since Re(τso) 6= 0 and τsup 6= 0 in no-slip spheres and ellipsoids, we
have Γ ν 6= 0 from formula (4.4) such that the angular momentum is affected by viscosity
on long time scales for NS-BC.

Similar reasoning can be applied to the stress-free rotating case. It can be shown that
leading-order viscous torque (3.3) depends on the viscous decay rates [τso, τsup] for the
SF-BC (not given here, since it vainly makes the expression more complex because a full
description of the viscous cross-interactions between Qso and Qsup is required contrary
to the no-slip case). We can thus get physical insight into formula (3.3) by computing

the viscous decay rates for SF-BC. To do so, we expand the velocity as Qk + E1/2Q̃k

(Rieutord 1992), where Q̃k is the boundary-layer flow such that Qk + E1/2Q̃k satisfies
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SF-BC (2.3). The viscous decay rate for SF-BC is then given at the leading order in E
by (e.g. Liao et al. 2001)

τk

∫

V

|Qk|2 dV = E

∫

V

Q†k ·∇2(Qk + E1/2Q̃k) dV. (4.5)

Contrary to the no-slip case (for which the boundary-layer flow is of the same order

of magnitude as the inviscid flow, e.g. Greenspan 1968), an explicit solution of Q̃k for
SF-BC is not required to estimate τk in equation (4.5). Indeed, the representative volume-
averaged viscous decay rate of all the eigenmodes is given at leading order in E for our
SF-BC by (e.g. Rieutord & Zahn 1997)

τk

∫

V

|Qk|2 dV = −2E

∫

V

ε(Qk) : ε(Q†k) dV. (4.6)

Expression (4.6) generalises formula (3.14) in Liao et al. (2001), which is only valid for
spheres (see Appendix B), to triaxial ellipsoids. Since the right-hand side of equation
(4.5) is real, we have τk 6 0 for SF-BC. Consequently, there is no viscous correction of
the inviscid eigenfrequency λk at the leading order in E for SF-BC (as initially reported
in Liao et al. 2001). Formula (4.6) is illustrated in figure 5 for a particular configuration.
We recover from the formula that τso = τsup = 0 in spherical geometries (since Qso and
Qsup are exact solid-body rotations in spheres), which agrees with the fact that Γ ν = 0
in spheres (e.g. Jones et al. 2011).

Explicit expressions of τso and τsup can be obtained for the uniform-vorticity modes
in ellipsoids, because the eigenvectors [ωso,ωsup] of matrix (4.2) can be analytically
obtained. The analytical formula of τso, which is too lengthy to be given here, shows that
τso 6= 0 in every non-spherical geometry. The mathematical reason is that the spin-over
mode Qso is no longer a solid-body rotation in ellipsoids (i.e. ε(Qk) is non-zero for the
spin-over mode in ellipsoids). Thus, from a physical viewpoint, a non-zero boundary-layer

flow Q̃so is required to match the SF-BC within a thin Ekman boundary layer. Since the
spin-over mode is damped by viscosity in ellipsoids, the equatorial angular momentum
L×1Ω is affected by viscosity on long time scales (even in axisymmetric ellipsoids). After
little algebra, the decay rate τsup is explicitly given by

τsup
E

∫

V

|Qsup|2 dV = −16π

3
abc
[
Ω2
x(b2 − c2)2 +Ω2

y(a2 − c2)2 +Ω2
z (a2 − b2)2

]
, (4.7)

where the axial geostrophic mode is Qsup = ωsup,x ex+ωsup,y ey+ωsup,z ez with ωsup,x =
Ωx(b2+c2), ωsup,y = Ωy(a2+c2) and ωsup,z = Ωz(a

2+b2). Formula (4.7) shows that τsup 6=
0 when a 6= b 6= c, illustrating that the axial geostrophic mode is damped by viscosity
in triaxial geometries. Therefore, the physical reason why Γ ν 6= 0 in triaxial stress-
free ellipsoids is that the spin-over and geostrophic modes are damped by viscosity (as
evidenced by the non-zero decay rates τso 6= 0 and τsup 6= 0 in such geometries). Moreover,
formula (4.7) shows that τsup = 0 when Ω is an axis of revolution of the geometry (i.e.
when Ω ∝ 1x if b = c, Ω ∝ 1y if a = c, or Ω ∝ 1z if a = b). The axial geostrophic mode
is thus unaffected by viscous dissipation, which explains why the long-term evolution
of L · 1Ω is physically unconstrained in such pathological configurations. This was the
situation previously considered for precession-driven flows in spheroids (Lorenzani &
Tilgner 2003; Wu & Roberts 2009; Guermond et al. 2013). Yet, the conclusion is not
valid for every axisymmetric geometry with global rotation. Indeed, we have τsup 6= 0 in
axisymmetric geometries if Ω is not the revolution symmetry axis (such that L · 1Ω will
be damped by viscosity).

The BLT of Coriolis eigenmodes has thus explained why the long-term angular mo-
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Figure 6. Double resonance at Po± of the forced precession-driven flow in ellipsoids for SF-BC
with a = 1 and c = 0.9 (values of b given in the legend). Time-averaged differential rotation

ε = |ω| of numerical solutions of equation (3.4) at E = 10−3 and small precession angle α = 3◦.
Vertical dashed lines show Po± predicted by equation (4.8) at b = 1.

mentum evolution is damped by viscosity in triaxial geometries, but also in axisymmetric
ellipsoids if the mean rotation axis Ω is not the revolution symmetry axis.

4.2. Resonance conditions for mechanical forcings

A key property of the primary uniform-vorticity flow is its ability to enter in direct
resonance with the precession forcing (as evidenced by the divergent amplitude of
the asymptotic solution). A direct resonance requires a close spatial and temporal
matching between the Poincaré force and the flow response (e.g. Greenspan 1968). The
spatial matching is ensured by the fact that both the Poincaré force and the forced
uniform-vorticity flow are linear in the Cartesian coordinates. Heuristically, the temporal
resonance condition requires that the frequency ωp of the forcing (for monochromatic
forcings) must be equal (or close) to the angular frequency f of the forced flow in
the mantle frame, which gives f = ±ωp. The latter condition generally predicts the
existence of two resonances for mechanically driven flows in ellipsoids (if the spatial
resonance conditions are satisfied). A quick inspection of equation (3.4) shows that the
uniform-vorticity dynamics roughly corresponds to that of a harmonic oscillator driven
by the Poincaré force in the inviscid regime E = 0. Consequently, direct resonances occur
when the forced flow corresponds to a free oscillatory eigenmode of the unforced system,
namely the spin-over mode Qso such that f ∝ λso (up to a normalisation prefactor).
For this reason, longitudinal librations (which only directly excite the zero-frequency
geostrophic mode) do not exhibit any inviscid resonance in spheres (e.g. Zhang et al.
2013) or ellipsoids. On the contrary, latitudinal librations can trigger the spin-over mode
and the corresponding forced laminar flow exhibits two inviscid resonances occurring
at λso = ±ωp in non-spherical geometries (Zhang et al. 2012; Vantieghem et al. 2015),
where ωp is the libration angular frequency. Similarly, a second resonance has already
been found for the interaction between tides and precession in triaxial ellipsoids (Cébron
et al. 2010). A second resonance for pure precession is thus also expected in ellipsoids
from simple theoretical arguments. Assuming that the forced uniform-vorticity flow is
oscillating in the mantle frame at the effective angular frequency f ' [1 + Pz]λso when
|Px| � 1, the temporal resonance condition predicts two direct resonances for precession
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Figure 7. Behaviour of the forced flow near the second resonance Po− in stress-free ellipsoids
with b = 1 and Px = 10−2. The resonant value is fixed at the value Po− obtained with
a = 1.5 and c = 1 (as in figure 3). To maintain a fixed resonance when a is varied, the

polar axis is given by c = 0.5[−2a2 − 2 + 2
√
−32a2∆1/2 + 1 + a4 + 2 (8∆+ 7)a2]1/2 with

∆ = (Po−−Px)(Po− +Px). In the two panels, the dashed teal line shows the expected inviscid
value from Poincaré solution (4.9) for a = b = 1. (a) Comparison between DNS at E = 5× 10−4

and asymptotic solution (3.7). (b) Numerical solutions of equation (3.4) for SF-BC at Po = Po−

and E = 10−3.

at the resonant Poincaré numbers Po± given by

1 + Po± cos(α) = ±1/λso, (4.8)

where λso = 2ab/
√

(a2 + c2)(b2 + c2) is here the eigenfrequency of the spin-over mode in
equation (4.2) with Ω = 1z (see also formula 3.21 in Vantieghem 2014). The above
condition is exactly the resonance condition of asymptotic solution (3.7). The two
resonances at [Po−, Po+] are thus robust features of precession-driven flows, but it
remains to elucidate why the second resonance at Po− has not been reported before.

We have numerically solved equation (3.4) in time to explore the behaviour of the
solutions near the double resonances in figure 6. The two resonances at Po± are con-
tinuously shifted when b is varied and, at b = 1, the resonant value Po− differs from
Po+ as observed in panel (b). This directly results from condition (4.8), which predicts
that the two resonances are linked by [Po+ +Po−] cos(α) = −2. This clearly shows that
the two direct resonances do not merge together in ellipsoids. We further explore the
behaviour near Po− in figure 7. We have fixed the resonant value Po− at its value given
in figure 3 for a = 1.5 and b = c = 1 and, then, adjusted the polar axis c to maintain the
resonance at Po− for different values of a. We observe that the width of the resonance
peak decreases when a→ b (panel a). This is a purely inviscid feature of the asymptotic
solution, which is recovered in the DNS. The particular case a = b is not formally defined
for SF-BC, but it can be approached by decreasing a − b (panel b). The amplitude of
the stress-free solution at Po = Po− is limited by the viscosity and approaches, when
a→ b, the inviscid Poincaré solution for a = b. The differential rotation ε of the inviscid
Poincaré solution is given by (assuming ωz = 1, see Appendix B in Wu & Roberts 2011)

ε =

∣∣∣∣
Px(2 + η)

η + 2(1 + η)Pz

∣∣∣∣ , (4.9)

which is non-divergent when Po = Po−. This agrees with a lengthy mathematical analysis
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Figure 8. DNS of precession-driven flow with SF-BC at Po = −1.8, Px = Po sin(α) = 10−2 and

E = 5× 10−4. Axisymmetric geometry a = 1.5 and b = c = 1. Normalised velocity vf/(UE1/2),
as defined in expansion (2.11), at time t = 39530 where U = 0.0129 is the maximum of |vf |. (a)
Three-dimensional rendering of the velocity magnitude using a linear scale. (b) Axial velocity
component as a function of z along the c-axis.

of the behaviour near the inviscid resonances (not given here), which shows that the
second inviscid resonance at Po− disappears in spheroids with a = b contrary to the
other resonance at Po+ (e.g. Busse 1968; Noir & Cébron 2013).

We have thus understood why precession-driven flows are subject to two inviscid
resonances in triaxial ellipsoids, which occur at the resonant Poincaré numbers Po±

given by equation (4.8) when |Px| � 1. Since the two resonances are inviscid features of
the forced flow in ellipsoids, they exist for both SF-BC and NS-BC. The second resonance
actually disappears in spheroidal geometries a = b (i.e. its amplitude is vanishing), which
explains why previous works in spheroids have not observed it (e.g. Cébron 2015; Nobili
et al. 2021). Previous studies in triaxial geometries (e.g. Noir & Cébron 2013; Burmann
& Noir 2022) have also overlooked it, because it usually occurs at |Po−| � |Po+|.

4.3. Implications for DNS

We have shown that the long-term evolution of angular momentum is affected by
viscosity, due to the existence of an Ekman boundary layer in rapidly rotating ellipsoids.
The uniform-vorticity elements carrying angular momentum in expansion (2.11) do not
indeed satisfy the SF-BC in triaxial geometries. Thus, they are associated with an Ekman
boundary layer to match the boundary conditions. This is a noticeable difference with
the more usual spherical geometry, in which Γ ν = 0 (e.g. Jones et al. 2011). The Ekman
boundary layer in ellipsoids is clearly observed in figure 8. Its typical thickness is still
O(E1/2) but, contrary to the case of NS-BC, the amplitude of the boundary-layer flow
is O(E1/2) smaller than the bulk flow amplitude (in agreement with Rieutord 1992).

This could have implications for numerical studies using stress-free boundaries. A
numerical strategy has to be employed to ensure the conservation of angular momentum
in spherical codes (e.g. Jones et al. 2011). This is no longer necessary in triaxial ellipsoids
since Γ ν 6= 0 (albeit such a strategy may be considered to ensure the conservation of
the axial angular momentum if the mean rotation axis is an axis of revolution symmetry,
as proposed in Guermond et al. 2013). However, for the moderate values of the Ekman
number achievable in DNS, the flow within the Ekman layer will modify the value of
the viscous torque (which pilots the long-term evolution of angular momentum). Indeed,
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instead of using expression (2.14), the viscous torque is usually computed with the surface
integral Γ ν = 2E

∫
S
r × (∇ · ε) dS as

Γ ν = 2E

∫

S

r × T dS = 2E

∫

S

r × [(T · 1n) 1n] dS, (4.10)

in which we have used formula (9) in Rochester (1962) for a symmetric tensor to obtain
the first equality and, then, have written the surface traction as T = (T · 1n) 1n − 1n ×
(1n × T ) = (T · 1n) 1n on the boundary for SF-BC (2.3). Formula (4.10) shows that
the normal component of the surface traction, which is non-zero in the presence of an
Ekman layer in stress-free ellipsoids, contributes to the viscous torque. Hence, numerical
and local approximations of SF-BC (2.3) have no reasons to yield a vanishing torque
component in formula (4.10) for axisymmetric ellipsoids if the boundary layer is not
sufficiently resolved (as observed in some DNS, not shown). Using a refined boundary-
layer mesh may thus be required to properly describe the Ekman layer in ellipsoids and
ensure sufficient torque accuracy (which can be used to check the numerical convergence).

4.4. Scaling laws

Despite the existence of a thin Ekman layer, we believe that adopting SF-BC in
global simulations is useful to probe bulk mechanisms that can be hampered by viscous
effects when NS-BC are employed. The case of precession is illuminating in this respect.
Indeed, the laminar precession-driven flow can be destabilised by several hydrodynamic
instabilities in no-slip ellipsoids, such as the inertial (topographic) instabilities outlined
in §3.3 and the conical-shear instability (CSI). The former are due to the ellipticity
of the boundary and survive in the inviscid regime E = 0. On the contrary, the CSI
is a parametric instability existing because of the viscous conical shear layers spawned
from the Ekman layer at the critical latitudes (Lin et al. 2015). In addition, precession
also often triggers boundary-layer instabilities within the Ekman layer for NS-BC (e.g.
Lorenzani & Tilgner 2001; Cébron et al. 2019; Buffett 2021). A comprehensive study of
these instabilities deserves further work, but we can estimate their relevance as follows.
As outlined in §3.3, the typical inviscid growth rate of the precession-driven inertial
instabilities is given by formula (3.16) for the large-scale modes. For the CSI, the growth
rate in full spheres and ellipsoids is given by (Lin et al. 2015; Horimoto et al. 2020)

σCSI = O(εE1/5). (4.11)

Quantitatively, a necessary condition for the existence of the two instabilities is that
growth rates (3.16) and (4.11) are larger than the viscous damping. For the NS-BC, this
damping is mainly due to the Ekman layer and its amplitude is of the order O(E1/2)
(Greenspan 1968). Actually, it appears that large-scale inertial instabilities are difficult
to obtain for the moderately small values of the Ekman number usually considered in
experiments or DNS (as outlined in figure 4).

A linear analysis is, however, not sufficient to determine the physical relevance of
these instabilities. In particular, scaling laws are worth finding to estimate the strength
of the precession-driven flows driven by such instabilities. Indeed, the inertial instabilities
have presumably a saturation amplitude almost independent of the Ekman number (as
found for the turbulence driven by tidal instabilities, e.g. Grannan et al. 2017), whereas
the CSI amplitude could decrease when E → 0 as the instability results from viscous
effects. A rigorous description of the nonlinear regimes requires dedicated simulations,
but the saturation amplitudes can be crudely estimated using simple order-of-magnitude
arguments (which have already proven useful for tidal flows, e.g. in Barker & Lithwick
2013; Barker 2016b). We assume that the flow amplitude U resulting from the primary
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Figure 9. (a) Comparison between scaling law (4.13) and DNS for |Po| < 0.1 in no-slip full
spheres from the database of figure 7 in Cébron et al. (2019), with Ef = E/|1 + Po| ' E
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estimate of the onset value (see equation 17 in Cébron et al. 2019). (b) Competition between the
inertial instabilities and the CSI in precessing ellipsoids. Empty blue squares � show conditions
for which inertial (topographic) instabilities are expected, and red crosses × indicate where the

CSI is expected or observed. Grey area shows η ∝ E2/5 with a (unknown) prefactor chosen in
the range [1, 100], in which we expect Utopo ∼ UCSI when both instabilities exist. Hatched area
is the region where σtopo & σCSI (if the two instabilities coexist). White area is the region where
Utopo � UCSI. Estimates for the early Moon and Earth taken from Appendix C with η ≈ 2f .

instability grows until secondary instabilities, characterised by the growth rate σsec,
become strong enough to prevent further growth of the primary instability. A saturated
turbulent regime would then be obtained when U ∼ σsec`, where ` is a characteristic
length scale of the primary unstable flow. The nonlinear saturation of the inertial
(topographic) instabilities would thus be given by (in dimensionless units)

Utopo = O(εη) (4.12)

with ` ∼ 1 for a large-scale instability. A good agreement with the above scaling law
has been found using DNS in shearing periodic boxes (Barker 2016b), but the scaling
law might be different for short-wavelength instabilities with ` � 1. Using the same
reasoning for the CSI, the relevant length scale is likely the width of the critical shear
layer ` ∼ E1/5 (Lin et al. 2015). Assuming that the CSI is limited by secondary CSI
within the critical shear layers, we obtain the (dimensionless) scaling law

UCSI = O(εE2/5). (4.13)

We compare in figure 9(a) the above scaling law with previously published DNS in no-slip
full spheres (Lin et al. 2015; Cébron et al. 2019). Considering the full sphere geometry
allows us to discard the possible CSI resulting from the inner boundary (which would give
a different scaling). However, even in the full sphere, identifying the instability mechanism
is difficult due to the competition between the CSI and the boundary-layer instabilities.
Moreover, due to the non-trivial dependence of the two viscously driven instabilities
with the forcing parameters, it is unlikely that a single scaling law could fully describe
the entire simulation dataset. The onset distance is indeed difficult to estimate (e.g. see
figure 6 in Cébron et al. 2019). Besides, the simulations may not be in the asymptotic
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regime E � 1. Despite such uncertainties, a fairly good agreement is found between the
DNS and scaling law (4.13) sufficiently far from the onset. This suggests that the CSI
was present in the nonlinear regime and that its saturation amplitude obeys scaling law
(4.13) for sufficiently small values of the Ekman number.

Finally, the comparison between scaling laws (4.12) and (4.13) shows that the inertial
instability would have a larger amplitude than the CSI when η � E2/5 (if the two
instabilities were simultaneously triggered). The resulting regime diagram is illustrated
in figure 9(b), using planetary estimates given in Appendix C. Precession-driven inertial
instabilities may only have been excited in the primitive liquid cores of the Earth and
Moon, whereas the CSI is expected to be present (respectively absent) in the core of
the Moon (respectively the Earth) during its whole history (Lin et al. 2015; Landeau
et al. 2022). In the early Moon, the inertial instabilities may have dominated the CSI
in flow amplitude (although the CSI may have had a larger growth rate than the
inertial instabilities according to previous formulas, not shown). Therefore, the inertial
instabilities may actually be more relevant than the CSI for some planetary conditions
(although they have not been convincingly observed yet in experiments, e.g. Nobili et al.
2021; Burmann & Noir 2022). This could be key for the generation of planetary magnetic
fields, as initially postulated for the geodynamo (Malkus 1968). Preliminary estimates of
the dynamo capability of the precession-driven instabilities, obtained using (speculative)
order-of-magnitude arguments, are given in Appendix C.

5. Conclusion

5.1. Summary

We have investigated precession-driven flows in stress-free ellipsoids, using asymptotic
analysis and targeted DNS. We have developed a reduced model for SF-BC to determine
the forced uniform-vorticity flows, which carry angular momentum. We have shown that
angular momentum is affected on long time scales by viscosity in triaxial ellipsoids,
but also in axisymmetric geometries if the mean rotation axis is not a revolution
symmetry axis. This is a noticeable difference from spherical geometries, in which angular
momentum is unaffected by viscosity. The fundamental reason is that the flows carrying
a non-zero angular momentum in ellipsoids are associated with an Ekman boundary
layer in rotating ellipsoids. From a numerical viewpoint, a boundary-layer mesh may be
necessary to get numerical convergence of the angular momentum in rotating ellipsoids.
We also have obtained the analytical solution of the time-dependent laminar flow forced
by precession in the mantle frame, which is valid for planetary parameters and triaxial
geometries. The comparison with the DNS has shown that, even for moderately small
values of the Ekman number, the forced laminar flow in the DNS converges to the
asymptotic solution in the vanishing viscosity regime. Moreover, we have uncovered a
second (inviscid) resonance of the forced laminar flow in triaxial ellipsoids.

Then, we have explored the inertial instabilities growing upon the forced laminar flow
in the bulk, which survive in the inviscid regime E = 0. We have shown that these
instabilities could be more easily observed in stress-free ellipsoids than in no-slip ones (at
least for the moderate values E & 10−6 considered in DNS). We have finally proposed
scaling laws for the velocity amplitude of the inertial instabilities and of the CSI, which
are in good agreement with previous DNS. The comparison between the two scaling
laws confirms that replacing NS-BC with SF-BC in the mantle frame could be useful
to directly probe scenarios of bulk turbulence in the low-viscosity regime (which are of
interest for planetary modelling).
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5.2. Perspectives

Despite the presence of a thin Ekman boundary layer, we believe that SF-BC are
relevant for global models of mechanically driven flows. The stress-free model could be
used to investigate the saturated flows driven by the inertial (topographic) instabilities
in precession ellipsoids and, then, their dynamo capability for planetary applications (as
outlined in Appendix C). Stress-free models could indeed shed new light on alternative
mechanisms giving birth to dynamo fields in planetary interiors. For instance, the past
dynamo of the Moon may have been driven by precession (e.g. Dwyer et al. 2011). Yet,
previous numerical investigations of precession-driven dynamos failed to reproduce large-
scale magnetic fields in spherical geometries (Cébron et al. 2019). This could result from
the fact that the turbulence was driven in those simulations by viscous flows (e.g. the
CSI or boundary-layer instabilities), which may be negligible in amplitude compared
with the turbulence driven by the inertial (topographic) instabilities in the early Moon
(as discussed in §4.4). This hypothesis could be tested in simulations using stress-free
ellipsoids. Similarly, energetic arguments suggest that the dynamo of the early Earth
may have been sustained by tidal flows (Landeau et al. 2022). However, the associated
fluid dynamics remains to be quantitatively studied to go beyond prior proof-of-concept
simulations (Reddy et al. 2018; Vidal et al. 2018). Precessing stress-free ellipsoids are
also relevant for short-period hot Jupiters (Barker 2016b), or gaseous planets with a big
moon outside the equatorial plane (e.g. the Neptune/Triton pair, Wicht & Tilgner 2010).

Finally, SF-BC could also be used to revisit the long-standing problem associated
with the generation of geostrophic flows in rotating fluids (Greenspan 1969). Nonlinear
interactions within the Ekman boundary layers for NS-BC (e.g. Busse 1968; Cébron
et al. 2021) or in the bulk through the action of the Reynolds stresses (e.g. Zhang
& Liao 2004; Livermore et al. 2016), are usually invoked, but geostrophic flows can
also result from bulk turbulence. However, it remains unclear whether two- or three-
dimensional rotating bulk turbulence is established in natural systems (e.g. Le Reun
et al. 2019). This fundamental problem has been attacked in cylindrical or plane-layer
geometries (e.g. Kerswell 1999; Brunet et al. 2020; Le Reun et al. 2020). Yet, the latter
geometries are not directly relevant for planetary modelling, due to the absence of the
so-called topographic beta effect that strongly modifies the geostrophic flows in spheres
and ellipsoids (e.g. Greenspan 1968). We believe that using SF-BC opens the way for
new fundamental studies dealing with the interplay between waves and geostrophic flows
in global geometries.
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ID David Cébron https://orcid.org/0000-0002-3579-8281.

Author contributions. The paper is an idea of J.V., who designed the study, conducted the
asymptotic theory and developed the bespoke numerical code. D.C. conducted the finite-element
computations using comsol, and analytically obtained the second-order geostrophic flow. Both
authors discussed and approved the results presented in the article. J.V. drafted the paper, and
both authors gave final approval for submission.

https://orcid.org/0000-0002-3654-6633
https://orcid.org/0000-0002-3579-8281


Precession-driven flows in stress-free ellipsoids 23

Appendix A. Angular momentum for compressible fluids

We investigate whether alternative definition (2.8), which has proven useful for incom-
pressible flows, can be extended to compressible flows with a spatially varying density
ρ(r). For mathematical tractability, we assume that the density does not vanish on
the ellipsoidal boundary. Then, we expand the velocity of compressible flows using the
weighted Helmholtz decomposition in rigid ellipsoids as (e.g. Vidal & Cébron 2020)

v = (1/ρ)∇×A+∇Φ, v · 1n|S = 0, (A 1a,b)

where A is a vector potential and Φ is a scalar potential. The first subspace represents
anelastic flows satisfying ∇ · (ρv) = 0 (e.g. Jones et al. 2011), whereas the irrotational
subspace represents compressible flows with ∇ · (ρv) 6= 0 (such as the acoustic modes
without rotation, e.g. Vidal & Cébron 2021a). This spectral decomposition has the great
advantage of being compatible with the natural inner product of the fully compressible
(and anelastic) problem (e.g. Sobouti 1981; Clausen & Tilgner 2014)

〈a, b〉V =

∫

V

ρa† · bdV, (A 2)

where a† is the complex conjugate of the vector a, contrary to the usual Helmholtz
decomposition v = ∇ × A + ∇Φ. Consequently, the two subspaces in decomposition
(A 1) are mutually orthogonal with respect to inner product (A 2). Guided by planetary
applications, we only consider in the following density profiles of the form

ρ(r) = ρ0(x2/a2 + y2/b2 + z2/c2), (A 3)

for which the density is constant on every homothetic ellipsoidal shell in the interior.
Such density profiles are indeed often assumed in compressible planetary models, where
they represent background density profiles (e.g. in ellipsoids Clausen & Tilgner 2014;
Vidal & Cébron 2020).

A.1. Direct calculation

The angular momentum is defined for compressible fluids as L =
∫
V
r × (ρ0v) dV . As

in the incompressible case, the anelastic subspace has elements with non-zero angular
momentum (e.g. in spheres Jones et al. 2011). Hence, it only remains to calculate the
angular momentum associated with the compressible subspace in decomposition (A 1).
A direct calculation gives (using formula B26 in Mathews et al. 1991)

∫

V

r × (ρ0∇Φ) dV = −
∫

V

Φ (r ×∇ρ0) dV −
∫

V

∇× (ρ0Φ r) dV, (A 4a)

= −
∫

V

Φ (r ×∇ρ0) dV +

∫

S

ρ0Φ (r × 1n) dS. (A 4b)

It shows that, if the density is of the form (A 3), the compressible subspace has no angular
momentum in spheres (since ∇ρ0 ∝ r). On the contrary, the compressible subspace in
spectral decomposition (A 1) has always a non-zero angular momentum in ellipsoids.

A.2. Projection approach

We have outlined that the two subspaces in decomposition (A 1) have a non-zero
angular momentum in compressible ellipsoids. The remaining question is whether, as for
incompressible flows, this angular momentum is solely carried by the uniform-vorticity
elements ei(r) given by formula (2.9) in rigid ellipsoids. We project the velocity onto the
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three uniform-vorticity elements with respect to inner product (A 2), obtaining
∫

V

ei · (ρ0v) dV =

∫

V

(1i × r) · ρ0v dV

︸ ︷︷ ︸
L·1i

+

∫

V

∇Ψi · (ρ0v) dV (A 5)

where L · 1i are the Cartesian components of the angular momentum. We recover from
the above expression that the compressible angular momentum is the projection onto
the solid-body rotations 1i× r in spherical geometries (for which Ψi = 0). An admissible
decomposition for compressible spherical flows is thus (e.g. Mathews et al. 1991)

v(r, t) = ω(t)× r + vf (r, t),

∫

V

r × (ρ0vf ) dV = 0, (A 6a,b)

where the compressible flow vf has no angular momentum by definition since 〈ω ×
r,vf 〉 = 0. In ellipsoids, the last volume integral in equation (A 5) can be simplified by
using the divergence theorem and decomposition (A 1). It gives

∫

V

∇Ψi · (ρ0v) dV =

∫

S

Ψx (ρ0v) · 1n dS

︸ ︷︷ ︸
0

−
∫

V

Ψi∇ · (ρ0v) dV, (A 7a)

=

{
0 if ∇ · (ρ0v) = 0,

−
∫
V
Ψi∇ · (ρ0∇Φ) dV if ∇ · (ρ0v) 6= 0.

(A 7b)

Equation (A 7) shows that the angular momentum of anelastic flows with ∇ · (ρ0v) = 0
is rigorously given by L · 1i = 〈ei,v〉, as in the incompressible case. We can thus extend
formula (2.11) to anelastic flows as

v(r, t) = U(r, t) + vf (r, t), ∇ · (ρ0vf ) = 0,

∫

V

r × (ρ0vf ) dV = 0, (A 8a–c)

where U(r, t) is the uniform-vorticity flow given by expression (2.12), and vf is an
anelastic flow with 〈U ,vf 〉 = 0 by definition. However, in the fully compressible case, the
angular momentum cannot be obtained as the projections of the compressible flow onto
the uniform-vorticity elements in ellipsoids (because (A 7) does not vanish). Moreover,
we have by virtue of the divergence theorem

∫

V

ei · (ρ0∇Φ) dV = −
∫

V

Φ∇ · (ρ0ei) dV = −
∫

V

φ (ei ·∇ρ0) dV = 0 (A 9)

if the density is of the form (A 3) because ei · ∇ρ0 ∝ ei · 1n = 0 on every homothetic
ellipsoidal shell in the volume (i.e. not only on the outer ellipsoidal boundary). Thus,
the compressible subspace can have a non-zero angular momentum that is not carried by
the uniform-vorticity elements in ellipsoids (since we have simultaneously 〈ei,∇Φ〉 = 0
and

∫
V
r× (ρ0∇Φ) dV 6= 0). In such configurations, a possible generalisation of anelastic

expansion (A 8) to the compressible case could be

v(r, t) = U(r, t) + vf (r, t) +∇Φ, ∇ · (ρ0vf ) = 0,

∫

V

r × (ρ0vf ) dV = 0, (A 10a–c)

where U(r, t) is a uniform-vorticity flow given by expression (2.12) in rigid ellipsoids,
vf is an anelastic flow having no angular momentum (i.e. ρ0vf = ∇ × A but with
〈U ,vf 〉 = 0), and ∇Φ is a potential flow carrying a non-zero angular momentum even if
〈U ,∇Φ〉 = 0 according to equation (A 9).

The anelastic and fully compressible cases may thus give different results for the
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Figure 10. (a) Decay rate |τso/E| for Ω = 1z as a function of the semi-axis c, in spheroids with
a = b = 1. Comparison between correct formula (B 1b) and erroneous one (B 2) for the surface
integral in expression (B 1a). Note that |τso| → 0 when c→ 1. (b) Decay rate |τsup/E| computed
from formula (4.6) as a function of the semi-axis b, for two rotation vectors Ω in ellipsoids with
a = 1.5 and c = 1. Note that |τsup| → 0 when b→ a (i.e. in the spheroid).

evolution of angular momentum in rotating compressible ellipsoids. Differences between
the two formulations can be expected when the compressible subspace significantly
interacts with the anelastic one in spectral decomposition (A 1). This for instance happens
in the presence of global rotation when MΩ = O(10−1), where MΩ = RΩ0/C0 is
the rotational Mach number (Vidal & Cébron 2020, 2021a) and C0 is the speed of
sound. Planetary estimates give MΩ = O(10−3) for planetary moons, but larger values
MΩ = O(10−1) are obtained in Jupiter-like gaseous planets (which are also non-
spherical because of centrifugal gravity, e.g. Zhang et al. 2017). Investigating the long-
term evolution of angular momentum in such strongly compressible rotating bodies
certainly deserves further work.

Appendix B. Viscous decay rates

We present an alternative formula for the viscous decay rate of the Coriolis eigenmodes
in stress-free ellipsoids, which is equivalent to formula (4.6). To enforce SF-BC (2.3) in
equation (4.5), we employ the curvilinear orthogonal coordinates [q1, q2, q3] (such that the
boundary is given by a constant value of q1). Then, the volume integral can be rewritten
using the divergence theorem as

τk
E

∫

V

|Qk|2 dV = IS −
∫

V

|∇ ×Qk|2 dV (B 1a)

with the surface integral (dS = h2h3 dq2dq3 being the surface element)

IS = 2

∫

S

(
1

h1h2

∂h2
∂q1
|Qk · 1q2 |2 +

1

h1h3

∂h3
∂q1
|Qk · 1q3 |2

)
dS, (B 1b)

where [h1, h2, h3] are the curvilinear scale factors and [1q1 ,1q2 ,1q3 ] are the orthogonal
basis vectors. In the sphere, expression (B 1b) reduces to

IS = 2

∫

S

|Qk × 1n|2 dS, (B 2)
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Body E f = η/2 α [◦] Po Px ε

Earth 10−15 2.5× 10−3 23.5 −1.1× 10−7 −4.4× 10−8 1.7× 10−5

Early Earth 5× 10−16 1.0× 10−2 17.5 −3.3× 10−8 2.5× 10−6

Moon 10−12 2.5× 10−5

1.54 −4.0× 10−3 −2.2× 10−4 2.7× 10−2

3.0× 10−4 3.0× 10−2

Early Moon 5× 10−13 1.0× 10−4

33.2 −3.7× 10−4 −2.0× 10−4 5.5× 10−1

1.2× 10−3 6.4× 10−1

Table 1. Precession forcing in the liquid core of the Earth and Moon. Ekman number E based
on the typical viscosity value ν = 10−6 m2.s−1, polar flattening f = (a− c)/a, precession angle
α. Currently, f is well enough known for the Earth (Mathews et al. 2002), but the lunar values of
f vary from f = 2.5×10−5 for a purely hydrostatic Moon (Le Bars et al. 2011) to f = 3.0×10−4

when considering the present-day non-hydrostatic lithosphere and a liquid core of radius 350 km
(Viswanathan et al. 2019). Parameters for the Early Moon and Earth, estimated ∼ 4 Gy ago,
are deduced from the current values by considering a spin rate Ω0 two times larger, leading to
values of E twice smaller and of f fourth time larger than the present estimates (due to the
centrifugal acceleration in Ω2

0). Typical estimates for the Moon’s history from Cébron et al.
(2019) and the orbital evolution model of Touma & Wisdom (1994), and for the Early Earth
from the low-obliquity scenario in Landeau et al. (2022).

recovering formula (3.14) of Liao et al. (2001) in the sphere. Note that vector expression
(B 2) has been erroneously employed in the spheroid (see formula (6.21) in Maffei et al.
2017, which is incorrect because of the missing curvature terms). Expression (B 1a) is
very difficult to implement in practice (because of the curvilinear coordinates), contrary
to formula (4.6) in which the volume integral can be performed fully analytically in
ellipsoids (e.g. see formula 50 in Lebovitz 1989).

For a numerical (cross-validation) benchmark of formulas (4.6) and (B 1a), we can
compute the decay rate Qso of the spin-over mode in spheroidal geometries (i.e. with
a = b = 1). To do so, we take the formula (3.25) in Vantieghem (2014), giving Qso for
Ω = 1z in triaxial ellipsoids, and express it using the curvilinear spheroidal coordinates
(e.g. equation 3.1 in Cébron et al. 2021)

x = ηT sin(q2) cos(q3), y = ηT sin(q2) sin(q3), z = η (dq1T ) cos(q2), (B 3a–c)

with η = |1 − (c/a)2|1/2 and T = cosh(q1) for oblate spheroids (i.e. a > c) or
T = sinh(q1) for prolate spheroids (i.e. a 6 c). The scale factors are then h1 = h2 =
η[sinh2(q1) + cos2(q2)]1/2 when a > c or h1 = h2 = η[cosh2(q1) − cos2(q2)]1/2 when
a 6 c, and h3 = ηT sin(q2). The differences between formulas (B 1b) and (B 2) are
illustrated in figure 10(a). For the particular geometry a = b = 1 and c = 0.9, we
have

∫
V
|Qk|2 dV ' 3.36965,

∫
V
|∇ × Qk|2 dV ' 37.64855 and IS ' 37.23369 from

formula (B 1b). Formulas (4.6) and (B 1a) then both predict that τso/E ' −0.12312 in
this spheroidal geometry (as observed in the figure). On the contrary, we would get
IS ' 35.30153 with formula (B 2), yielding the erroneous value τso/E ' −0.69652.
Finally, we show in figure 10(b) the decay rate τsup for different orientations of the
mean rotation axis in triaxial ellipsoids.
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Appendix C. Planetary extrapolation for dynamo action

We can crudely estimate the dynamo capability of precession-driven flows using ener-
getic arguments. To do so, we compute a magnetic Reynolds number Rm as

Rm = Utopo/Em, Em = νm/(Ω0R
2), (C 1a,b)

where Em is the magnetic Ekman number and νm ∼ 0.5 − 4 m2.s−1 is the magnetic
diffusivity of the fluid at typical core conditions (estimated from measurements and
computations of the electrical conductivity, e.g. see figure 1 in Ohta & Hirose 2021).
A necessary condition for large-scale dynamo action is that Rm > O(102) in spheres or
ellipsoids (e.g. Chen et al. 2018; Holdenried-Chernoff et al. 2019; Vidal & Cébron 2021b).
Estimating the magnetic Reynolds number thus crucially depends on the scaling law for
the flow strength Utopo, whose order of magnitude is expected to be given by formula
(4.12). To be more quantitative, we rewrite formula (4.12) using asymptotic flow (3.7) in
the planetary regime |Px| � 1, which gives at the leading order in η � 1

Utopo ' Kεη ∼ K
{

2|Po| when α = π/2,

| tan(α)| η when α 6= π/2,
(C 2)

where α is the precession angle measured from 1z, and K is an unknown numerical
prefactor that must be determined for planetary extrapolation. We recover from our
asymptotic solution that the quantity εη is actually independent of η at the leading
order when α = π/2 (e.g. see formula 9.b in Horimoto et al. 2020) and that, when
α 6= π/2, the differential rotation ε becomes independent of Po in the regime |Px| � 1
(e.g. Williams et al. 2001; Cébron et al. 2019). Moreover, local DNS in periodic shearing
boxes, performed at α = π/2, are actually consistent with the scaling law Utopo ∝ 0.1|Po|
(see figure 7 in Barker 2016b), which is of the form (C 2) with the numerical constant
K ' 0.05. Assume that K is a constant (without further numerical results), we can
crudely estimate the dynamo capability of the flows driven by the (topographic) inertial
instabilities for realistic planetary conditions by combining equations (C 1) and (C 2).

Using acceptable scenarios for the lunisolar precession over time (see table 1), we obtain
Rm 6 O(10) in the Earth’s core over geological ages, showing that precession was not
strong enough to drive dynamo action (even billion years ago, which agrees with the
conclusions of Landeau et al. 2022). Similarly, the estimate Rm 6 O(1) in the current
Moon’s core shows precession is not presently dynamo capable (in agreement with the
end of the lunar dynamo observed in paleomagnetic studies, e.g. Mighani et al. 2020).
However, we can obtain larger values Rm 6 140 for the liquid core of the early Moon
(depending on the uncertainties on the polar flattening η and the magnetic diffusivity).
Our estimate thus suggests that precession might have been dynamo capable in the early
Moon (as initially suggested by Dwyer et al. 2011). Further work is obviously needed to
rigorously assess the relevance of scaling law (C 2) in precessing ellipsoids, which is key
for planetary extrapolation. Adopting SF-BC would be particularly useful to strongly
weaken the viscous turbulent flows (which are a priori not well suited to sustain large-
scale dynamo fields, see Cébron et al. 2019) and extract a robust scaling law for the
saturation amplitude of the inertial (topographic) instabilities.
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Reddy, K. S., Favier, B. & Le Bars, M. 2018 Turbulent kinematic dynamos in ellipsoids
driven by mechanical forcing. Geophys. Res. Lett. 45 (4), 1741–1750.

Rieutord, M. 1992 Ekman circulation and the synchronization of binary stars. Astron.
Astrophys. 259, 581–584.



30 J. Vidal & D. Cébron
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