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Abstract—The enormous success of direct communication
applications has shed light on the practical interest of Device-
to-device (D2D) communications. However, to set up a direct
link between two neighboring nodes, they have first to detect
each other, which introduces a delay before they can start
sending and receiving data. The link establishment delay can
be particularly unfavorable in situations of strong mobility, as
the availability of the direct communication link depends on
how long the devices stay within communication range of each
other. This paper reports on our experiments to evaluate the link
establishment delay. We focus on Android devices and use the
Nearby Connection Application Programming Interface (API),
which supports Bluetooth Classic and Bluetooth Low Energy
(BLE) to perform link connectivity. In a nutshell, we observe that
the link establishment delay requires several seconds to complete
in the case of Bluetooth Classic and even tens of seconds for BLE.

Index Terms—Device-to-device, neighbor discovery, Bluetooth.

I. INTRODUCTION

Device-to-device (D2D) communications do not depend on
fixed network infrastructure and therefore open up a range
of applications that can be used to enhance existing net-
work infrastructures or leverage them to perform independent
services [1]. Among others, it is an attractive solution to
generate local wireless networks as a substitute for cellular
networks [2], [3], thus relieving the traffic load on base
stations. Most importantly, we observe a renewed interest in
D2D communications in far-edge architecture, opening a more
efficient and consistent integration in global architecture.

In many scenarios, mobile nodes may establish direct links
among them opportunistically, i.e., whenever they get close
to each other. When a communication opportunity occurs,
one of the goals is to maximize the time the nodes use to
exchange data. Nevertheless, the nodes must first go through
a link establishment phase. Though within wireless range, the
nodes do not communicate valuable data during this period,
leading to a waste of resources. Although many papers have
investigated the contact time among nodes [4], [5], very few
have focused on the connection establishment phase.

We investigate experimentally the time it takes for devices to
perform neighbor discovery before connecting. We considered
Android devices running the Nearby Connections Application
Programming Interface (API) provided by Google Develop-
ers [6]. We focus on the link establishment procedures of
both Bluetooth Classic and Bluetooth Low Energy (BLE). The
choice of the technology is essential as it impacts the link
establishment delay. Although technologies such as Wi-Fi have
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Fig. 1: D2D communication connectivity flow diagram.

better response times than other technologies, they are seldom
considered for the neighbor detection phase because they
introduce significant overhead [7]. For example, the power
consumption required by Wi-Fi is much higher than the one
required by Bluetooth Classic [8]–[10]. Furthermore, given
that connection establishment does not require large packets of
information and assuming that a device automatically requests
connectivity with several devices as it goes along, attempting
multiple connections with certain technologies may lead to
higher battery life consumption than others.

To measure the connection establishment delay finely and
collect other useful statistics about the D2D links, we have
developed a dedicated application called AtomD. This appli-
cation works with Nearby Connections API to analyze the
behavior of D2D links in real environments. We present the
features of AtomD in Section II. We run several measurement
experiments in different conditions to introduce diversity in
our analyses. In particular, we launch the neighbor detection
and connection procedures for multiple distances separating
the two nodes. Our goal here is to assess the influence
of the signal strength on the link establishment delay. We
also consider four different smartphone models of varying
generations (OnePlus 5T, Samsung S20, Samsung S8, and
Xiaomi Redmi 9T). As we will see in Section III, each has
its specific behavior. Finally, we evaluate separately when a
device operates in “discoverer” or “advertiser” modes. We
consider all twelve arrangements of the devices and show that
their modes also influence the results.

Our experiments reveal several observations. First, the link
establishment process requires a few seconds when using
Bluetooth Classic and several seconds (frequently above ten
seconds) when using BLE. Secondly, devices from different
brands behave differently, and some of them show clear insta-
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Fig. 2: Process to establish a connection, where Node A is a
Discoverer and Node B is an Advertiser.

bility. Also, the behavior changes whether the device operates
as a discoverer or an advertiser node. Another observation
is that, contrary to what one would expect, the distance
separating the nodes does not impact the link establishment
delay. In conclusion, we point out in this paper that the link
establishment phase is far from negligible. Therefore, network
designers should consider this time when conceiving forward-
ing algorithms and protocols for opportunistic networks.

The remainder of this paper is structured as follows. We
present in Section II the context and functionalities of the
Nearby Connections API that we use in our experiments.
We also present AtomD, a dedicated measurement application
to assess the behavior of the D2D links. We present the
details of the experimental setup in Section III, including the
environmental conditions and device models. In Section IV,
we give the results to estimate the impact of the connection
establishment delay on the communication opportunity. Re-
lated works are the topic of Section V. Finally; we conclude
the paper and list topics for future investigation in Section VI.

II. CONTEXT AND MEASUREMENT METHODOLOGY

Nearby Connections is a high-level peer-to-peer (P2P) API
developed by Google that acts as a medium-agnostic socket.
It uses Bluetooth Classic or BLE to perform neighbor dis-
covery and mainly Wi-Fi Direct (WFD) to perform data
transfers. As shown in Figure 1, Nearby Connections assigns
the participating devices with roles. Advertisers announce their
presence, while Discoverers detect nearby Advertisers; when a
Discoverer finds an Advertiser, it sends a connection request.
If they both agree to connect, they establish a P2P link so that
both parties can send and receive data.

We focus on capturing and analyzing the different stages
of the connectivity process using Bluetooth Classic and BLE
technologies. We measure the time it takes for a Discoverer
to detect an Advertiser, as well as the time it takes for these
two devices to establish a connection. In Figure 2, we depict
the message exchanges between nodes A and B to establish a
D2D link. We measure the time that elapses from the moment
node A (Discoverer) initiates the discovery process until the
time it detects node B (Advertiser), plus the time that elapses
from the instant node A sends a connection request until the
instant it receives a response from B.

Fig. 3: AtomD’s dashboard and experimental configuration.

To measure with precision the delays involved in the
connection establishment phase, we have developed AtomD.
AtomD uses the Nearby Connections API (see Section II) to
generate D2D and manage connections between neighboring
devices.1 More specifically, AtomD establishes Nearby Con-
nections as a service, allowing devices to perform background
and foreground D2D communications. Furthermore, as shown
in Figure 3, the AtomD interface allows the user to set the
device as either “Disc.” (Discoverer) or “Adv.” (Advertiser).
In addition, it allows translating a device ID into a user-
readable name and displaying the GPS location of the device.

AtomD displays the current state of the device out of three
possibilities. The first, Idle, indicates that the device does
not have an instance to generate a D2D connection. The
second, Discovering, indicates that the device has created a
new instance for D2D communication and is currently doing
beacon listening or beacon broadcasting. Finally, the state
Connected corresponds to the case where two devices have
already discovered each other and have made the correspond-
ing connection requests to establish a D2D connection.

Among the experiments that the user can generate, we
include the transmission of a single message over data chunks,
the transmission of a fixed-size binary file over multiple
data chunks, and the execution of multiple automatic link
establishment procedures through a Discoverer node.

Focusing on executing multiple automatic link establish-
ment procedures, AtomD stores the time instants in nanosec-
onds of the neighbor detection and the connection establish-
ment procedures in a database. In particular, it stores the
instant at which a device starts its discovery instance, the
instant at which it discovers a device, the instant at which
it sends a connectivity request, and the instant at which these
devices establish the D2D connection.

Once the experiment starts, AtomD performs the connec-

1Details on AtomD can be found on https://github.com/tlagos1/AtomD.

https://github.com/tlagos1/AtomD


Fig. 4: AtomD in two devices close to each other.

tivity iterations set by the user. It should be noted that in
addition to these experiments, AtomD’s modular design allows
the incorporation of developer-defined add-ons.

III. EXPERIMENTAL SETUP

We performed a set of experiments to evaluate the time
it takes for two devices running to establish a D2D link
using both Bluetooth Classic and BLE. More specifically, we
evaluate the delay for a Discoverer node to perform neighbor
detection and connection establishment with an Advertiser
node for various distances setting them apart. In our experi-
ments, we configured AtomD in P2P point-to-point mode (see
Section II). We used one of its pre-configured experiments
consisting of 25 link establishment attempts per pair of devices
in which one takes the role of the Discoverer and the other
the Advertiser. In average, the experiment takes 2.5 s with
Bluetooth Classic and 9.5 s with BLE.

To account for the impact of distance on the link establish-
ment delay, we varied the distance separating the Advertiser
from the Discoverer. The Discoverer is placed at coordinate
p0, while the Advertiser is placed at p0 to p5. The distance
separating p1, . . . , p5 from p0 are, respectively, 20 , 40 , 60 ,
80 , and 100m. In Figure 4, we show the configuration when
both devices are at p0.

To assess the influence of the devices’ specificities, we
decided to run the experiments with multiple brands and
models. For the results we will show below, we used the
following devices:

• OnePlus 5T: Android 10, Qualcomm MSM8998 Snap-
dragon 835, Bluetooth (5.0, A2DP, LE, aptX HD).

• Samsung S20 FE 5G: Android 10, Qualcomm SM8250
Snapdragon 865 5G, Bluetooth (5.0, A2DP, LE).

• Samsung S8: Android 9, Exynos 8895 - EMEA, Blue-
tooth (5.0, A2DP, LE, aptX).

• Xiaomi Redmi 9T: Android 10, Qualcomm SM6115
Snapdragon 662, Bluetooth (5.0, A2DP, LE).

We run experiments for all possibilities of Advertisers
and Discoverers, which leads to a total of 12 combinations.
Unfortunately, because of limitations of the Samsung S8, this
device could only operate in Discoverer mode when running
BLE. Thus, we had in total 12 combinations when evaluating

Bluetooth Classic and 9 combinations when evaluating BLE.
Out of curiosity, taking into account that the human factor in
switching devices takes approximately 5min, time required
to perform a set of measurements for a specific distance is
approximately 1.2 h for Bluetooth Classic and 1.3 h for BLE.

IV. EXPERIMENTAL RESULTS

We have considered data with a z-score of 3, which we
represent using boxplots in Figures 5 to 12. We present the
results in pairs of plots: the boxplot data on the left correspond
to the values obtained with Bluetooth Classic, while the
boxplots on the right show the values obtained with BLE.

In the plots, the x-axis corresponds to the distance, in
meters, separating the Advertiser from the Discoverer (see
Section III). In the case of Bluetooth Classic, the experiments
were performed up to a distance of 100m, while with BLE
they were performed up to 20m (beyond this distance, the two
nodes do not detect each other). The y-axis gives the delay,
in seconds, for the link establishment process, which includes
both the neighbor detection procedure (Figures 5 to 8) and the
connection request procedure (Figures 9 to 12). In addition,
we present the mean values of each box in the header of the
graph and show them as a green triangle in each set.

It is also important noticing that all graphs correspond to
statistics from the Discoverer’s point of view. The Discoverer’s
name is shown at the top left of the graph, while the scenario
is specified at the top right.

A. Neighbor detection delay

From the results obtained with the OnePlus 5T (Figure 5),
we see that the average delay for neighbor detection via
Bluetooth Classic is around 1 s and 3 s. In contrast, the average
delay in detecting the Samsung S8 at 100m is 5.7 s, indicating
dependency on the device. As for the neighbors detected by
the OnePlus 5T, the delay of the Redmi 9T was the shortest,
with an average value of 1.7 s. In addition, the data dispersion
of the Redmi 9T is lower than its counterparts at 0m, 80m,
and 100m. Finally, 75% of the neighbor detection delays that
the OnePlus 5T observed with the other devices were less
than 4 s. In contrast, the OnePlus 5T with BLE requires 689%
longer to discover an advertiser than the Bluetooth Classic,
with 75% of its delays above 10 s.

As for the Redmi 9T (Figure 6), we can observe that the
average neighbor detection delay of each of its cases using
Bluetooth Classic is between 1 s and 4 s. Moreover, most of
the neighbor detection delays with the Redmi 9T show that
75% of the data are below 4 s. On the contrary, with BLE, we
can observe that the Redmi 9T needs 50.37% less time to find
a device at 0m than the One Plus 5T.

Continuing with the Samsung S20 (Figure 7), we can see
that, like the OnePlus 5T and the Redmi 9T, 75% of its
neighbor detection delays using Bluetooth Classic do not
exceed 4 s. However, its average neighbor detection delay has
a minor deviation than the other devices. In fact, the variance
is 2 s for the Samsung S20, 0.45 s for the Redmi 9T, 1 s for
the OnePlus 5T, and 1.36 s for the Samsung S8. Regarding
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Fig. 5: Bluetooth Classic and BLE discovery latency using the
One Plus 5T as a discovery device.
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Fig. 6: Bluetooth Classic and BLE discovery latency using the
Redmi 9T as a discovery device.

discovery delay via BLE, the Samsung S20 performs similarly
to the Redmi 9T. Furthermore, as with Bluetooth Classic, the
disparity in average discovery delay is narrower.

Finally, focusing on the Samsung S8 discovery delay data
(Figure 8), 75% of the values per case using Bluetooth Classic
remain below 4 s, except for the OnePlus 5T at 80m and
100m. Also, when comparing these results with the values
in Figure 5, a similarity is observed at 100m, where we can
intuit that the same physical impediment affected the results.
Regarding BLE, the Samsung S8, unlike the other devices,
maintains the neighbor detection delays as the devices move
away. In fact, 75% of the delays in each case do not exceed
9 s. Therefore, the Samsung S8 has the best performance to
find an advertiser with BLE.

B. Connection establishment delay

In contrast to neighbor detection delays, connection es-
tablishment delays are faster. If we focus on the values
obtained with the OnePlus 5T (Figure 9), we can see that, with
Bluetooth Classic, the mean values in each case are between
0.5 s and 0.2 s. Moreover, each mean value maintains a slight
difference in most cases as the devices move away. In the case
of the transmission speed of each connection establishment,
the graph shows that the OnePlus 5T has faster responses with
the Samsung S20, followed by the Redmi 9T and finally the
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Fig. 7: Bluetooth Classic and BLE discovery latency using the
Samsung S20 as a discovery device.
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Fig. 8: Bluetooth Classic and BLE discovery latency using the
Samsung S8 as a discovery device.

Samsung S8. As for the data obtained with BLE, contraryly
to the neighbor detection delays, the connection establishment
delays are four times faster than when using Bluetooth Classic,
with average values between 0.08 s and 0.07 s.

Moving on to the Redmi 9T (Figure 10), with Bluetooth
Classic, 75% of the delays obtained by the Samsung S20
and the OnePlus 5T are between 0.3 s and 0.2 s. As for the
Samsung S8, its delay increases as it moves away from the
Redmi 9T, placing its average delays between 0.25 s and
0.44 s. Concerning its performance with BLE, it performs
similarly to the Redmi 9T, with faster values compared to
those obtained with Bluetooth Classic. However, unlike the
previous case, the Redmi 9T is 0.03 s slower.

Then with the Samsung S20 (Figure 11), the OnePlus 5T
and the Samsung S8 with Bluetooth Classic maintain a similar
behavior to the previous case (Figure 10). In contrast, the
Redmi 9T presents a greater dispersion, with 75% of its values
between 0.1 s and 0.3 s, although with an average between
0.2 s and 0.3 s. As for its average delays with BLE, the
Samsung S20 has the lowest delay compared to other devices,
with an average of 0.06 s per case.

Finally, considering the data obtained by the Samsung S8
(Figure 12), we can observe that, using Bluetooth Classic,
the OnePlus 5T and the Samsung S20 have similar delays.
Moreover, in each case tested with the Samsung S8, 75% of
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Fig. 9: Bluetooth Classic and BLE connection establishment
delay using the OnePlus 5T as a discovery device.
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Fig. 10: Bluetooth Classic and BLE connection establishment
delay using the Redmi 9T as a discovery device.

the delays are below 0.3 s. Meanwhile, the Redmi 9T has a
lower average delay than the other cases since 50% of its
average values are between 0.1 s and 0.2 s at 20m and 0.1 s
and 0.3 s at the other distances. As for its performance with
BLE, its average values remain between 0.9 s and 1 s.

C. Lessons learned

Let’s compare the results obtained during this experimen-
tation. First, we can state that the latency of the D2D link
establishment depends directly on the search for beacons
sent from an advertiser device. More specifically, running
Bluetooth Classic on a device takes approximately seven
times longer to find a beacon than to process a connection
establishment. In contrast, with BLE, takes approximately 62
times longer. On the other hand, in terms of the neighbor
detection performance, we can observe that Bluetooth Classic
performs better than BLE, as it can operate up to distances
of 100m and is approximately 2.5 times faster. However, in
terms of the connection establishment process performance,
we can observe that BLE performs better in terms of delay,
being approximately three times faster than Bluetooth Classic.

In terms of dispersion, Figure 13 shows that the delays per
detection attempt using Bluetooth Classic are five times lower
than using BLE. Furthermore, Figure 13a (Bluetooth Classic)
shows that the delay range is between 1 s and 3.5 s, while in
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Fig. 11: Bluetooth Classic and BLE connection establishment
delay using the Samsung S20 as a discovery device.
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Fig. 12: Bluetooth Classic and BLE connection establishment
delay using the Samsung S8 as a discovery device.

Figure 13b (BLE), the average delays are between 5 s to 7.5 s
and 10 s to 18 s.

Finally, we can observe that regardless of the technology
used to perform the link establishment, the delays observed
do not vary as the devices move away from each other.

V. RELATED WORK

Several studies evaluate the efficiency of D2D in different
technologies and offer proposals to speed up the neighbor
discovery process. Hayat et al. compare several in-band and
out-of-band algorithm protocols, taking discovery latency,
energy efficiency, and mobility into account [11]. Their study
concludes that discovery through neighbor discovery affects
the behavior of such algorithms and routing techniques. In a
companion paper, the authors provide a list of possible ways
to perform D2D neighbor discovery in underlying cellular
networks, pointing out the limitations of existing mechanisms
and proposing possible directions for future research [12].

Other studies evaluate the energy consumption for the
link establishment process. Usman et al. present an energy
consumption model for devices performing neighbor discovery
using Wi-Fi Direct, showing that beacon exchange produces a
significant energy cost [13]. In the literature, there are multiple
criteria to select a specific neighbor from a set of potential
neighbors depending on the metrics required by the target
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Fig. 13: Neighbor detection average delay vs. standard deviation where the distances are represented inside the circles.

function: transmission rate [14], energy consumption [15], and
network lifetime [16]. However, few studies have focused on
evaluating the delay performance of the neighbor detection
process in real environments. The work the closest to ours is
Medel and Brito’s comparison of discovery methods between
Wi-Fi Direct, Bluetooth Classic, and BLE technologies [7].
Cerio et al. contributed to the field by analyzing several
scanning devices from different BLE chipset manufacturers
and showing that they do not perform as expected in their
scanning process, which the authors claim to have a severe
impact on the performance of the discovery process [17].

VI. CONCLUSION

We focused on understanding the consequences of the delay
that Bluetooth Classic and BLE take to discover a device
and to establish a connection between them. We observe
from experimentation that most of the delay in establishing
a connection goes towards the beacon search to discover a
neighboring device. Although BLE is more energy-efficient,
the numbers show that Bluetooth Classic performs better,
both in terms of range and speed, requiring approximately
2 s to discover a device within a 100 m range (where
BLE takes between 8 and 20 s to detect a neighbor within
20 m). On the other hand, BLE has a better performance for
exchanging point-to-point messages over short distances; thus,
it is possible to use it in short-range D2D connection processes
or other possible short-range D2D applications. We intend to
run the experiments with more devices and in other locations
(indoors and outdoors) as future work.
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