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Nested ADMM for PET Reconstruction with Two
Constraints: Deep Image Prior and Non-Negativity

in Projection Space
Alexandre Merasli, Tie Liu, Thomas Carlier, Diana Mateus, Maël Millardet, Saı̈d Moussaoui, Simon Stute

Abstract—Radioembolization with 90Y-microspheres is used as
a treatment for non-resectable liver cancer. 90Y is mainly a β-
emitter but a few β+ particles are also emitted. It enables to
quantify the amount of radioactivity in the body using PET
imaging, which could be especially useful for dosimetry purpose.
Yet, the reconstructed images are very noisy due to the limited
amount of collected data with 90Y, and the usual reconstruction
algorithms have positive bias in regions with low activity. In this
context, we propose to combine two complementary approaches
recently published, both using the Alternating Direction Method
of Multipliers (ADMM) algorithm, within a nested ADMM. The
first one allows for negative values in the image by enforcing the
non-negativity in the projection space only, hence reducing the
bias. The second one intends to lower the noise in the image by
adding the constraint that the reconstructed image is the output
of a Deep Image Prior (DIP) network.

I. METHODS

PET data y are modelled as a sample of a Poisson distri-
bution of mean ȳ = Ax + b̄, where x is the image, A is the
system matrix modelling the PET system acquisition and b̄
is an additive background (random and scatter coincidences).
We want to reconstruct the image by minimizing the negative
log-likelihood as in usual PET reconstruction algorithms but
adding two constraints:

• The reconstructed image x is the output of the DIP
network f(θ|z) (z being the network input and θ the
network weights), as proposed in [3]. The network has a
U-Net architecture, with an encoder and a decoder part
to denoise the labeled image. The input image z can be
random noise, or a prior information like the attenuation
µ-map (used in preprocessing steps of the reconstruction
to correct for the attenuation effect) or any anatomical
image (CT or MR) for real data. The last ReLU layer
was removed from the architecture in [3] to not impose
positivity on the image.

• The non-negativity is enforced in the projection space
(ȳ ≥ 0) while x can be negative, as proposed in [5].

To solve this optimization problem, we adapted the ADMM
algorithm in [3] (called ADMMLim here) to deal with the
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network constraint, with the idea of a barrier function g to
replace the non-negativity constraint as in [5]. Figure 1 shows
the resulting nested ADMM algorithm.

Nested ADMM : ADMM with both constraints

ADMM 1 : Non-negativity in projection space

Gradient descent with line-search

xk+1 := argmin
x

ρ

2
‖x− f(θn|z) + µn‖22 +

α

2
‖Ax− vk + uk‖22

vk+1 := argmin
v

1T (v + b̄)− yT ln(v + b̄) + g(v + b̄) +
α

2
‖Axk+1 − v + uk‖22

uk+1 := uk +Axk+1 − vk+1

Neural network optimization

θn+1 := argmin
θ
‖xn+1 − f(θ|z) + µn‖22

µn+1 := µn + xn+1 − f(θn+1|z)

1

Fig. 1: Complete scheme of the proposed nested algorithm where each
block is an iterative algorithm and α and ρ are the ADMM

hyper-parameters. The output of the network f after a given number of
iterations is taken as the final image.

The nested ADMM algorithm requires several hyperparam-
eters to be tuned. The following two hyperparameters were
automatically updated:

• The penalty strength α coming from the first derived
ADMM (the blue box in Fig. 1.) was tuned with residual
balancing using relative residuals instead of more classi-
cal residuals, as suggested in [12].

• The DIP requires to be stopped before convergence to
avoid overfitting the noise [10]. Therefore, we used the
Window Moving Variance [11] early stopping method for
the initialization denoising task of the DIP before the
nested ADMM process.

The other hyperparameters were manually tuned, inspired by
the tuning in [3].

The deep learning step of the algorithm was done with the
Pytorch library, and the reconstruction step was implemented
within the CASToR [6] reconstruction framework.

II. EXPERIMENTS

We used 2D analytical simulations [9] of a cylindrical
phantom filled with 90Y, including a cold region and a hot
region with 5:1 contrast (Fig. 2). 1.5M prompt coincidences
were simulated with 90% random fraction and 30% scatter
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fraction. Activity recovery was measured in the cold and hot
regions and plotted against the image roughness (standard-
deviation of pixel values in the background region).

We compared our algorithm to:
• the DIPrecon algorithm [3] which also uses a DIP net-

work inside the reconstruction,
• ADMMLim [5] and APPGML [7] which are algorithms

designed to reduce the positive bias in cold regions,
• BSREM [1] and OSEM [4] used in clinical routines.
One hundred statistical replicates of the simulations were

reconstructed. DIPRecon and nested ADMM were initialized
with a DIP-denoised BSREM as shown in Fig. 2, with stan-
dardization scaling, for respectively 100 and 300 iterations.
The number of iterations used for ADMMLim was chosen
to reach the convergence [12]. APPGML was run for 15
iterations and 28 subsets, with a value of shift A equal to the
phantom background. These two algorithms used a Markov
Random Field (MRF) quadratic penalty. BSREM was used as
in clinics [2], with 30 iterations and 28 subsets and Relative
Difference Penalty. These three algorithms were run with
different values of penalty strength. OSEM was run for 36
iterations and 28 subsets. Different full-width half-maximum
(FWHM) Gaussian filtering were used.

III. RESULTS

Fig. 2 depicts the simulated phantom and an image recon-
structed with the current BSREM method available in clinics
[2]. Fig. 3 presents images obtained for three methods : the
DIPrecon and the proposed algorithms both with hyperpa-
rameters tuning as previously explained, and a DIP-denoised
BSREM (same settings as in Fig. 2. for BSREM, and without
the last ReLU layer for the DIP). Images are shown for one
statistical replicate and with average and standard deviation
over replicates. Fig. 4 shows trade-off curves of bias and image
roughness for all compared algorithms, in the cold and hot
regions, for one hundred replicates.

First, in Fig. 3, the cold region is qualitatively whiter for the
nested ADMM compared to the DIPRecon. This is expected
as the main difference between the two algorithms is the non-
negativity constraint in projection space, intending to reduce
positive bias in cold regions for the proposed algorithm. Then,
we can also see the difference between including the DIP into
the reconstruction instead of only using it as a post processing
step: the phantom is more clearly defined and less blurry.

Second, in Fig. 4, the nested ADMM algorithm achieves
interesting quantitative performance in the hot region, with
a high activity recovery for a low amount of noise, even if
BSREM can achieve higher activity recovery for a reasonable
amount of noise. Then, in the cold region, APPGML and
ADMMLim have a small negative bias, whereas DIPRecon
and algorithms used in clinics have a positive bias. As for the
proposed algorithm, it has low positive bias in the cold region.

IV. DISCUSSION AND PERSPECTIVES

We developed and implemented a new reconstruction
method aiming at reducing bias in cold region as well as
reducing the image noise thanks to the Deep Image Prior. We
used Window Moving Variance and relative residual balancing

Fig. 2: Left and middle: 2D simulated emission and attenuation images.
Right: image reconstructed using the BSREM algorithm [1] with the relative

difference penalty (RDP) [8] as in clinics [2]

Fig. 3: Comparison between the DIPRecon and the proposed algorithm. For
each column, left: image for 1 replicate, middle: averaged over 100

replicates, right: standard deviation over 100 replicates. For each row: top:
DIPRecon image after 100 global iterations, middle: BSREM image

denoised by the DIP without ReLU, bottom: nested ADMM image after 100
global iterations.

which seemed successful for automatic parameterization in our
case. Furthermore, DIP inside the reconstruction leads to better
activity and shape recovery than DIP post processing. Finally,
the nested ADMM can be seen as a stable way to go from
the initialization image (BSREM here) to ADMMLim without
penalty, and thus may present low positive bias in the cold
region.

Some hyperparameters are still important to tune for the
nested ADMM, such as the penalty strength ρ, and DIP
learning rate and optimizer which influence the denoised
DIP image. Eventually, selecting an appropriate number of
iterations is necessary. Real data from a liver phantom and
patients will then be used for clinical evaluation.
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