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Abstract: Sibiriline is a novel drug inhibiting receptor-interacting protein 1 kinase (RIPK1) and
necroptosis, a regulated form of cell death involved in several disease models. In this study, we aimed
to investigate the metabolic fate of sibiriline in a cross-sectional manner using an in silico prediction,
coupled with in vitro and in vivo experiments. In silico predictions were performed using GLORYx
and Biotransformer 3.0 freeware; in vitro incubation was performed on differentiated human HepaRG
cells, and in vivo experiments including a pharmacokinetic study were performed on mice treated
with sibiriline. HepaRG culture supernatants and mice plasma samples were analyzed with ultra-high-
performance liquid chromatography, coupled with tandem mass spectrometry (LC-HRMS/MS). The
molecular networking bioinformatics tool applied to LC-HRMS/MS data allowed us to visualize the
sibiriline metabolism kinetics. Overall, 14 metabolites, mostly produced by Phase II transformations
(glucuronidation and sulfation) were identified. These data provide initial reassurance regarding the
toxicology of this new RIPK1 inhibitor, although further studies are required.

Keywords: molecular networking; Sibiriline; metabolism; LC-HRMS/MS

1. Introduction

Receptor-interacting protein 1 kinase (RIPK1) inhibitors are emerging as a new pharma-
cological class proposed for inflammatory, autoimmune, and neurodegenerative diseases
such as rheumatoid arthritis, ulcerative colitis, psoriasis, Alzeihmer disease, amyotrophic
lateral sclerosis, or multiple sclerosis [1–4]. Among them, Sibiriline appeared as a novel
drug inhibiting necroptosis (a regulated form of cell death involved in several disease mod-
els). Sibiriline was shown to protect liver functions on a RIPK1-dependent concanavalin
A-induced hepatitis, positioning it as a potential drug candidate for the treatment of
immune-dependent hepatitis [5]. However, the therapeutic potential of Sibiriline will
depend on its risk/benefit ratio and pharmacokinetic profile, including knowledge of
its metabolism and potential drug-drug interactions. To date, nothing is known about
the metabolism of Sibiriline, and its comprehensive exploration would require the use of
cross-sectional analytical approaches.

In vitro, numerous models exist to study metabolism, including acellular models such
as human microsomes and cell-based models such as the HepaRG line. Differentiated
HepaRG cells (a bipotent cell line capable of differentiating into either cholangiocyte- or
hepatocyte-like cells under specific culture conditions) have been described as a robust
model to explore both toxicity and metabolism of xenobiotics [6–9]. In particular, this
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model expresses the majority of the drug processing genes including major CYPs [10],
SULTs [11], and UGTs [11,12] and has long-term functional stability whereas the human
hepatocytes in primary culture lose their differentiated phenotype and drug metabolism
over time. Moreover, HepaRG cells have shown greater metabolite production compared
with human liver microsomes motivating its growing use [13].

To complete the in vitro data, several in vivo models are also described and allow the
addition of some pharmacokinetic notions to the metabolism study [14,15]. In particular,
the rodent model is currently widely used to study the metabolism of xenobiotics for which
we do not have human in vivo samples, as in the case of new psychoactive products [16,17].
While the quantitative aspect of rodent metabolism cannot be extrapolated to humans, the
qualitative identification of metabolites is particularly relevant.

In order to reprocess complex analytical data collected in vitro and in vivo, innovative
bioinformatic approaches have recently emerged. This is notably the case of molecular
networking (MN) which allows the organization and representation of untargeted tandem
mass spectrometry (MS/MS) data in a graphical form [18]. Each node represents an ion and
its associated fragmentation spectrum, the links between the nodes indicating similarities
between spectra. By allowing structural information to be propagated through the network
and facilitating sample-to-sample comparison, the MN approach provides valuable insights
into drug metabolism [19]. Consequently, a semi-quantitative visualization of molecule
repartition in different matrix samples can be provided by a multi-matrix approach. MN
has already proven its interest in drug metabolism analysis for in vitro, in vivo clinical, or
forensic purposes [9,19–24].

Going further, the knowledge evolution of metabolism mechanisms has allowed the
development of in silico metabolism prediction algorithms, which are a convenient, open
access, time-saving, and inexpensive tool to broaden the metabolite search and confirm
data found in vivo or in vitro [25]. Several approaches can be used in metabolism studies to
produce in silico systems and include models based on (i) the quantitative structure-activity
relationship (QSAR), which assumes that molecules with similar structures potentially have
similar metabolic properties, or (ii) quantum mechanical calculations used to predict reac-
tivity and/or (iii) docking of potential substrates into the active site of the enzyme [26–30].

In the present study, we aimed to investigate the metabolic fate of Sibiriline in a
cross-sectional manner using an in silico prediction, coupled with in vitro and in vivo
experiments.

2. Materials and Methods
2.1. In Silico Metabolite Prediction

Sibiriline putative metabolites were predicted using Sibiriline SMILES string
(OC(C=C1)=CC=C1C2NC3=NC=CC=C3C2) through the free online software GLORYx [31]
and Biotransformer 3.0 [32]. Briefly, GLORYx integrates machine learning-based site
of metabolism prediction with reaction rule sets to predict and classify the putative
structures of metabolites that could be formed by phase I and/or phase II metabolism.
Biotransformer 3.0 is an open-access software tool that supports the rapid, accurate, and
comprehensive prediction of the metabolism of small molecules in both mammals and
environmental microorganisms. All metabolite structures were generated using ChemDraw
software (PerkinElmer, Inc., Waltham, MA, USA).

2.2. Pharmacokinetic Study in Mice

Mice treatment. The in vivo pharmacokinetic study of Sibiriline was performed with
male Swiss mice. A dose of 5 mg/kg Sibiriline was administered to 18 mice intraperitoneally
(IP). After the times of 15 min, 30 min, 1 h, 2 h, 3 h, and 4 h, the mice were sacrificed. Blood
was collected and plasma was separated by centrifugation. The samples were frozen and
stored at −80 ◦C before processing.

Samples extraction. Each mouse plasma sample (400 µL) was mixed with 1 mL
acetonitrile to precipitate the proteins and extract the compound. The samples were then
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vortexed for 5 min and placed in an ultrasonic bath for 1 min. The precipitated proteins
were sedimented by centrifugation (15,000× g, 5 min at 16 ◦C) and the supernatants were
transferred to a microplate for analysis by LC-MS/MS.

Analytical method for the quantitation of Sibiriline in mice. All samples are analysed
with a validated Ultra-High Performance Liquid Chromatography method coupled to a
Shimadzu LC-MS 8030 triple quadrupole. Solutions of a standard range, prepared with
plasma from untreated mice, were analysed in the same series of injections.

LC separation was performed using a gradient on a C18 Phenomenex Kinetex column
(50 × 2.1 mm, 2.6 µm). The mobile phase consisted of water 0.5% formic acid (solvent A)
and acetonitrile (solvent B) delivered at a flow rate of 0.5 mL/min using the following
stepwise gradient elution program: initial conditions of 95:5 (A:B) run maintained from 0
to 1.2 min, run from 5:95 (A:B) at 1.2 min maintained from 1.2 to 1.4 min, run from 95:5
(A:B) at 1.4 min, maintained from 1.4 to 2.8 min, Injections of 2 µL into the LC–HR-MS
system were performed in a thermostated column at 40 ◦C. The tuning parameters of mass
spectrometry (MS) were optimized by direct infusion of Sibiriline at the concentration
of 10 µg/mL in a 1:1 acetonitrile/water mixture into the ionization probe in positive ion
mode. The detection parameters were optimized to increase the sensitivity and signal stabil-
ity by infusion of Sibiriline. Multiple reaction monitoring transitions (i.e., 211.0→ 118.0 m/z
and 211.0→ 183.1 m/z) were used respectively for Sibiriline quantitation and confirmation.
These analytical parameters provided satisfactory separation and peak shapes of Sibiriline
in less than 3 min, and retention times (RTs) for Sibiriline was 0.86 min.

2.3. In Vitro and In Vivo Metabolism Studies

Material. William’s E medium (ref: 12551032) was purchased from Gibco (Ther-
moFischer Scientific, San Jose, CA, USA). Penicillin-streptomycin was obtained from Life
Technologies (Grand Island, NY, USA). Fetal Bovine Serum (FBS) was purchased from
Eurobio (Courtaboeuf, France) and from Hyclone GE Healthcare Life Sciences (Logan, UT,
USA). Hydrocortisone hemisuccinate was purchased from Serb (Paris, France). Dimethyl
sulfoxide (DMSO), formic acid, and insulin were obtained from Sigma-Aldrich (Saint Louis,
MO, USA). Sibiriline was generously donated by SeaBeLife Biotech (Roscoff, France).

Cell culture and treatment. Progenitor HepaRG cells were cultured as already de-
scribed [10]. Briefly, HepaRG cells were seeded at a density of 105 cells/well in 96-well
plates and cultured for two weeks in culture medium (William’s E medium (1X) supple-
mented with 10% FBS, 50 U/mL penicillin, 50 µg/mL streptomycin, 5 µg/mL insulin,
2 mM glutamine, 50 µM sodium hydrocortisone hemisuccinate and 2% DMSO). Cells were
then cultured for two more weeks in the same medium supplemented with 2% DMSO to
induce cell differentiation into cholangiocyte- and hepatocyte-like cells [6]. The detection
of Sibiriline and its metabolites was performed using this model as already described [9,33].
Differentiated HepaRG cells were incubated with 100 µL of Sibiriline (10 µM) during H0,
H8, H24, or H48.

Mice treatment. The metabolism study was performed in male C57BL/6J mice (Jan-
vier Labs, Le Genest Saint Isle, France). A dose of 5 mg/kg Sibiriline was administered
to 10 mice intraperitoneally (IP). After the times 1 h and 3 h, the mice were sacrificed.
Blood was collected and plasma was separated by centrifugation. The samples were frozen
and stored at −80 ◦C before processing. Mice were housed in cages in a conventional
animal facility with a 12 h dark-light cycle with controlled temperature between 19 ◦C
and 20 ◦C. Experiments were done in compliance with French laws and the institution’s
guidelines for animal welfare. Authors were authorized to conduct animal experimentation
by “la Direction des Services Vétérinaires” (License M Samson #A3523840). The project
was authorized by the “Comité Rennais d’Ethique en matière d’Experimentation Animal”
[CREAA] and the license was given by the “Ministère de l’Enseignement Supérieur, de la
Recherche et de l’Innovation”, #32246-2021061616397414).

Samples extraction. In vitro samples (200 µL) and in vivo plasma samples (100 µL)
obtained from mice at the Rennes University Hospital were extracted as previously de-
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scribed [20,33]. Briefly, samples were supplemented with 500 µL of methanol containing
internal standard (risperidone-D4) and then extracted with 300 µL of 0.1 M zinc sulfate
solution. After supernatant evaporation, the residue was dissolved in 200 µL of LC-MS
grade water and transferred into chromatographic vials for LC-HR-MS analysis.

LC-MS settings. Non-targeted screening LC-HRMS/MS method used for MN building
was performed as already described [9,33]. Briefly, liquid chromatography was performed
on an Accucore Phenyl Hexyl (100× 2.1 mm, 2.6 µm) (Thermo Scientific, San Jose, CA, USA)
at 40 ◦C using an elution gradient at a flow rate of 500 µL/min during 15 min with 10 µL
as injection volume. An orbitrap mass spectrometer was operated in positive ESI mode
and the acquisition range was 100–700 m/z. Ionic precursor selection was performed in a
“data-dependent” mode of operation, where the 5 most intense ions from the previous scan
were selected for fragmentation (Top N of 5).

MN generation. Spectral data allowed us to generate MN using a semi-quantitative
approach. Data acquisition, processing (i.e., MS data conversion, preprocessing, MS1
annotation, and generation of molecular networks), visualization, and network analysis
have already been described [19]. Briefly, raw data were converted to an open MS format
(.mzXML) with ProteoWizard’s MSConvert module [34]. The mzXML files were then
preprocessed (deconvolution, de-isotoping, alignment, gap-filling) with MZmine 2 soft-
ware [35]. The single mgf output file was then loaded on the Global Natural Products Social
networking (GNPS) web-based platform in order to generate the multi-matrix molecular
network [18]. For the use of high-resolution data, the basic parameters were modified to
m/z 0.02 for the mass tolerance of precursor and fragment ions used for MS/MS spectral
library searching, and m/z 0.02 for the mass tolerance of fragment ions used for MN. The
minimum cluster size was set to 1. In addition, links between nodes were created when
the cosine score was greater than 0.70, and the minimum number of common fragment
ions shared by two MS/MS spectra was 6. Links between two nodes were only kept in the
network if each node was in the top 10 most similar nodes.

The molecular network was visualized using Cytoscape 3.8.0 software [36]. The nodes
were annotated by comparison with reference standards by spectral matching with the
curated GNPS, mzCloud online mass spectral libraries, and information propagation [37].

Figure 1 shows the overall methodology of the cross-sectional metabolic study ap-
proach used in this study.
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3. Results
3.1. In Silico Prediction of Sibiriline Metabolism

In silico prediction of Sibiriline metabolism was performed on GloryX and Biotrans-
former 3.0 freeware and results are shown in Table 1. Predicted Sibiriline derivatives with
an assigned GloryX score were considered probable (P1 to P14), while derivatives without
an assigned score were considered minority and less likely (P15 to P21). Overall, Phase I
and Phase II metabolites were predicted. Major Phase I metabolites included hydroxylated
(P2, P4, P5, P7, P13, P14, P16, P17, P18, P19, P20) and oxidated (P10, P12, P15) derivatives.
Major Phase II metabolites included glucuronoconjugated (P1, P6, P9, P16, P17, P18, P19),
sulfoconjugated (P3, P20) and methylated (P8, P21) derivatives.

Table 1. In silico predicted sibiriline metabolites and associated m/z, molecular structure, elemental
composition, metabolic reaction, exact mass shift, predictive score (GLORYx software) and enzyme
predicted to be involved in biotransformation (BT3: Biotransformer 3.0).

Predicted Metabolite (m/z)
Elemental

Composition
Metabolite Reaction

Putative
Biotransformation

Reaction
Exact Mass Shift

Molecular Structure Prediction
Software

Score and/or Enzyme
Involved

Sibiriline (m/z 211.0871)
C13H10N2O

None
Not applicable
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Table 1. Cont.

Predicted Metabolite (m/z)
Elemental

Composition
Metabolite Reaction

Putative
Biotransformation

Reaction
Exact Mass Shift

Molecular Structure Prediction
Software

Score and/or Enzyme
Involved

P7 (m/z 227.0820)
C13H10N2O2
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to nitrogen)
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+15.994
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Unknown
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Table 1. Cont.

Predicted Metabolite (m/z)
Elemental

Composition
Metabolite Reaction

Putative
Biotransformation

Reaction
Exact Mass Shift

Molecular Structure Prediction
Software

Score and/or Enzyme
Involved

P17 (m/z 403.1141)
C19H18N2O8

Hydroxylation +
O-glucuronidation

+C6H8O7
+192.027
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+CH2
+14.015
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3.2. In Vitro Sibiriline Metabolism

To assess in vitro Sibiriline metabolite production, differentiated human HepaRG
cells were incubated with Sibiriline for 24 h. Analysis of culture media by LC-HRMS/MS
allowed us to generate a molecular network. Nodes are labelled with the exact protonated
mass (m/z) and the links are labelled with the exact mass shift. Nodes were linked together
in cluster according to their MS2 spectral similarities (Figure 2).

In the sibiriline-containing cluster (Figure 2B), a specific color was assigned to each
type of biotransformation reaction (glucuronidation in blue, sulfation in green, oxida-
tion + sulfation in black, oxidation + glucuronidation in yellow, 2 × oxidation + 2 ×
glucuronidation in orange, methylation + sulfation reaction in pink and methylation + glu-
curoconjugaison in salmon). Sibiriline was associated with 18 structurally related molecules.
Using information propagation, a node identified using a spectral library can be used as
a starting point to identify another node in the same cluster The aim is to determine the
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structure of an unknown molecule using structural information from known neighboring
nodes. Especially, spectrally related molecules may have mass shifts corresponding to
well-known biotransformation reactions as shown in Table 1 [20].
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Figure 2. In vitro Sibiriline metabolism. Differentiated HepaRG were incubated with Sibiriline 10 µM
during 24 h and culture supernatants were analyzed using LC-HR/MSMS. (A) The overall molecular
network. (B) In this sibiriline-containing cluster, each type of biotransformation reaction was depicted
in different colors (glucuronidation in bleu, sulfation in green, oxidation + sulfation in black, oxidation
+ glucuronidation in yellow, 2 × oxidation + 2 × glucuronidation in orange, methylation + sulfation
reaction in pink and methylation + glucuroconjugaison in salmon). Nodes are labelled with the
exact protonated mass (m/z), retention time (RT) in minute and the links are labelled with the exact
mass shift.

Figure 2 shows two compounds with the same exact mass (m/z 387.116) but with
two different retention times (RT: 4.8 and 3.7 min). These nodes are linked to Sibiriline
(m/z 211.087) with a mass shift of +176.032, corresponding to glucuronidation reaction.
From these nodes, we found three compounds with m/z 403.113 that could correspond to a
hydroxylated derivative of Sibiriline glucuronide (RT: 4.1, 4.3, and 5 min) due to the mass
delta of +15.994. We also found mass shifts that could correspond to sulfation (+79.956),
giving rise to two m/z 291.043 compounds (RT: 5.2 and 4.4 min) (Figure 2) as well as mass
shifts that could correspond to oxidation + sulfation (+ 95.951), giving rise to two m/z 307.038
compounds (RT: 5.2 and 4.4 min). Due to the mass shift of +28.031 that might correspond to a
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double methylation, the m/z 415.150 and m/z 319.075 nodes could be methylated derivatives
of Sibiriline glucuronide and Sibiriline sulfate, respectively. Lastly, we identified a mass
shift of 192.060 that could correspond to a hydroxylation + glucuronidation of m/z 403.113
compound (sibiriline + 2× hydroxylation + 2× glucuronidation). Structure and annotation
proposals were made based on the m/z found during in silico prediction. Taken together,
these results suggest that these Sibiriline spectrally related molecules are putative Sibiriline
metabolites.

3.3. Sibiriline Pharmacokinetic Study in Mice

To determine how Sibiriline is metabolized in vivo, a pharmacokinetic study was
performed by treating Swiss mice with an IP injection of sibiriline (5 mg/kg) (Figure 3).
Sibiriline rapidly reached a peak plasma concentration within 15 min. The half-life was
estimated at 21 min. The volume of distribution at 3247 mL/kg is indicative of a hydrophilic
molecule (Figure 3).
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3.4. In Vivo Sibiriline Metabolism

In order to strengthen the confidence level of the potential metabolites that we found
in vitro, we performed an MN approach following LC-HRMS/MS on plasma samples from
mice treated with Sibiriline (5 mg/kg IP) (Figure 4). As Sibiriline is rapidly metabolised
in mice (half-life: 21 min), we tested for the presence of metabolites at 1 h and 3 h after
the Sibiriline IP injection. Analysis of plasma samples at different times after Sibiriline
treatment allowed us to generate a corresponding multi-matrix molecular network. A
specific color was assigned to each time (H1 in salmon, H3 in red) so that we can visualize
the fate of molecules structurally close to Sibiriline. The different colored areas in each
node represent concentrations of the corresponding compound in each condition in a
semi-quantitative manner.
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Figure 4. In vivo Sibiriline metabolism kinetic. Mice plasma sample collected 1 h or 3 h af-
ter intraperitoneal injection of Sibiriline (5 mg/kg) were analyzed using LC-HRMS/MS. In this
sibiriline-containing cluster, each type of biotransformation reaction was depicted in different colors
(glucuronidation in bleu, sulfation in green, oxidation + glucuronidation in yellow, and oxida-
tion/hydroxylation in grey). Nodes are labelled with the exact protonated mass (m/z), putative
chemical structures and the links are labelled with the exact mass shift. RT = retention time in minute.

Sibiriline-containing cluster visual analysis revealed that all putative metabolites
found in the mice plasma samples were found in our previous in vitro experiment (Sibiri-
line glucuronide; Sibiriline sulfate, hydroxy-sibiriline glucuronide and hydroxy-sibiriline
sulfate), except m/z 227.081 compounds which were not found in vitro. Due to the mass shift
of +15.994, these compounds could be hydroxylated derivatives of Sibiriline, as predicted
in silico. Interestingly, we found that almost all Sibiriline structurally related molecules
are in the highest concentrations at 1 h of incubation, compared with 3 h of incubation.
Only m/z 403.114 (RT: 4.3 min), which was found outside the sibiriline-containing cluster,
showed higher concentrations at 3 h, compared with 1 h. These results show that Sibiriline
and its structurally related compounds disappear rapidly over time.

Taken together, these results suggest that the Sibiriline structurally related compounds
found in vitro and in vivo using molecular networking are putative metabolites. Also,
we show that differentiated HepaRG is a powerful model in metabolism studies. Table 2
reports putative Sibiriline metabolites found in silico, in vitro and in vivo and provides
annotations from M1 to M8, with the letters a, b, and c denoting isomers.
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Table 2. Putative identified compounds or metabolites contained in the Sibiriline molecular network.
RT: retention time; BT: Biotransformer 3; X = presence; - = absence.

Metabolite
Proposal

Formula
Proposal Biotransformation m/z Mass Shift

RT
(min)

In
Vivo

In
Vitro

In Silico

GLORYx BT3

- C6H4O2 Unknown 109.029 −102.058 - - - X -

- C7H6N2 Unknown 119.061 −92.026 - - - X -

- C13H10N2O Parent molecule
(sibiriline) 211.087 0 5.8 X X X X

M1a
C13H10N2O2 Hydroxylation 227.082 15.995

5.0 X -
X X

M1b 5.2 X -

M2a
C13H10N2O4S Sulfation 291.044 79.957

4.4 - X
X X

M2b 5.2 X X

M3a
C13H10N2O5S Hydroxylation +

sulfation
307.038 95.952

4.4 - X
- X

M3b 5.2 X X

M4 C15H14N2O4S
2 ×methylation +

sulfation 319.075 107.988 5.1 - X - -

M5a
C19H18N2O7 Glucuronidation 387.119 176.033

3.7 X X
X X

M5b 4.8 X X

M6a

C19H18N2O8
Hydroxylation +
glucuronidation 403.113 192.027

4.1 X X

- XM6b 4.3 X X

M6c 5.0 X

M7 C21H22N2O7
2 ×methylation +
glucuronidation 415.150 204.063 4.3 - X - -

M8 C25H26N2O15
2 × hydroxylation + 2
× glucuronidation 595.183 384.096 5.9 - X - -

4. Discussion

In this study, we aimed to investigate the metabolic fate of Sibiriline in a cross-sectional
manner using an in silico prediction, coupled with in vitro and in vivo experiments.

Overall, this cross-sectional approach allowed us to identify 8 Sibiriline putative
metabolites in mice plasma (in vivo) and 12 putative metabolites in a human in vitro model
(M1 to M8, Table 2). The higher number of metabolites found in vitro compared with
in vivo could probably be due to the accumulation of metabolites in the culture medium
(unlike the mouse model which includes all pharmacokinetic steps). As we have already
shown that the metabolites identified in the HepaRG supernatant were quite similar
to those found in urine, a comparison with mouse urine would be interesting in this
context [33]. Interestingly, the in silico predictions proposed the main compounds found
in vitro/in vivo showing that this approach is suitable for Sibiriline and strengthening
the confidence of our in vitro/in vivo results. Biotransformer 3 outperformed GLORYx in
predicting Sibiriline metabolites based on in vivo/in vitro data. However, two inconsistent
metabolites (m/z 109.029 and m/z 119.061) were predicted by the in silico approach, leading
to caution in the interpretation of the results. Most significantly, these complementary
approaches allow (i) to come closer to the comprehensiveness of a metabolic study and
(ii) to increase the degree of confidence in the separately generated results.

In terms of biotransformation reactions, we showed in silico, in vivo, or in vitro that the
metabolism of Sibiriline is mainly performed by phase II enzymes (m/z 291.044, m/z 307.038,
m/z 319.075, m/z 387.119, m/z 403.113, m/z 415.149, m/z 595.183), despite phase I metabolites
were also identified (m/z 227.082). These results constitute a first reassuring basis from
a toxicology point of view, as phase II metabolism is widely regarded as detoxifying.
These reactive metabolites can exert initial cellular stress, through many mechanisms, such
as glutathione depletion, or binding to proteins, nucleic acid lipids, and other cellular
structures. Toxicological studies on sibiriline will be interesting in this context.
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Phase II metabolism produces very hydrophilic compounds and may explain the rapid
elimination of conjugated compounds shown in vivo in this study. While commonly used
laboratory animals such as mice have many anatomical, physiological, and biochemical
similarities to humans, there are marked differences between the species in their ability to
process a drug [38–41]. Therefore, the interpretation of the pharmacokinetic data in mice
presented in this study must be weighed against these considerations and a pharmacoki-
netic study in humans would be interesting here to evaluate Sibiriline elimination. Also,
future pharmacokinetic studies of repeated-dose Sibiriline should take into account the
selected animal species because the pharmacokinetics of the molecules may differ between
species [42]. In terms of metabolism and toxicity, further studies are also needed, due to
the fact that a molecule may be toxic due to a particular metabolism in one species, but not
toxic to other species [43].

In addition, this would be of great importance in apprehending the administration
modalities if used for therapeutic purposes. A short half-life should necessitate the use of
strategies to prolong the effect of the molecule and could include the use of continuous
intravenous infusion [44], the use of liposomal forms [45], intramuscular [46] or subcu-
taneous [47] administration, or the use of sustained-release oral forms [48]. Also, the
pharmacokinetic and pharmacodynamic parameters of each of these strategies should be
able to be based on trough concentration or area under the curve to further optimize the
administration modalities [49].

This study presents several limitations. First, pharmacokinetic data in mice should
be interpreted with caution due to interspecies differences in drug processing as drug
metabolism is generally faster in rodents than in humans. Also, the pharmacokinetic study
was performed by IP which is not the route of administration in acute liver failure. Second,
the analysis of metabolites in mouse plasma does not necessarily allow the visualisation
of metabolites excreted in urine, and an analysis in this matrix could be of interest. Third,
since we analysed the culture supernatant of differentiated HepaRGs in vitro, it cannot be
excluded that reactive metabolites have conjugated to intracellular proteins, not allowing
their detection. Lastly, since the data presented in this study are mostly qualitative, it is
difficult to determine which are the main metabolites.

5. Conclusions

This cross-sectional approach to studying metabolism using in silico, in vitro, and
in vivo models brings us closer to a comprehensive exploration of xenobiotic metabolism
and is a valuable tool in the study of new drug candidates. In addition, we applied an
original MN-based approach to make the best use of the complex analytical data acquired
by LC-HRMS/MS. In this study, we propose 14 putative metabolites that have mainly
undergone phase II biotransformations. Pharmacokinetic data in mice showed rapid
elimination of Sibiriline and its metabolites. Overall, these data provide initial reassurance
regarding the toxicology of this new RIPK-1 inhibitor, although further studies are required.
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