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Black-box optimization does not require any specification on the function to optimize nor its gradient. As such, it represents one of the most general problems in optimization, and is central in many areas such as hyper-parameter tuning. However in many practical cases, one must solve a sequence of black-box problems from functions sampled from a specific class and hence sharing similar patterns. Classical algorithms such as evolutionary methods would treat each problem independently and would be oblivious of the general underlying structure. In this paper, we introduce MELBA (MEta bLack Box optimizAtion), an algorithm that exploits the similarities among a given class of functions to learn a task-specific solver that is tailored to efficiently optimize every function from this task. More precisely, given a class of functions, the proposed algorithm learns a Transformerbased Reinforcement Learning (RL) black-box solver. First, the Transformer embeds a previously gathered set of evaluation points and their image through the function into a latent state. Then, the next evaluation point is sampled depending on the latent state. The black-box solver is trained using PPO and the global regret on a training set. We show experimentally the effectiveness of our solvers on various tasks including the hyper-parameter optimization of machine learning models and demonstrate that our approach is competitive with existing methods.

Introduction

Over the past decades, research on black-box optimization has focused on designing algorithms agnostic to the type of problems they can solve. The idea behind this approach was to propose algorithms that could solve as many optimization problems as possible. However, in many real-world applications such as automated machine learning [START_REF] Hutter | Automated machine learning: methods, systems, challenges[END_REF] or asset and energy management [START_REF] Waring | Automated machine learning: Review of the state-of-the-art and opportunities for healthcare[END_REF][START_REF] Salimans | Evolution strategies as a scalable alternative to reinforcement learning[END_REF][START_REF] Alarie | Two decades of blackbox optimization applications[END_REF], it is often the case that a similar optimization problem is solved again and again, maintaining the same problem structure but differing in the input data. Moreover, as it has long been known by the celebrated No Free Lunch Theorems for Optimization [START_REF] Wolpert | No free lunch theorems for optimization[END_REF], averaged over all problems, the cost of finding a solution is the same for any optimization algorithm. Thus, whenever an algorithm is efficient on vast classes of problems, it is suboptimal on a more specific class of functions. Following this, we propose to directly learn black-box solvers which are tailored to optimize a specific class of functions. To do so, it is necessary to (1) define a class of algorithms that can be learned and act as black-box solvers and (2) define a way to learn these algorithms, despite the fact that the gradients of the functions are unavailable. To overcome these challenges, we first propose to learn an expressive latent representation of the optimization problem using Transformers. Secondly, we show how to train this model by casting the problem as a RL instance to overcome the non-diffentiability. Combining these ideas, we propose a meta-algorithm called MEta bLack Box optimizAtion (MELBA) which aims at optimizing task-specific black-box functions through meta-learning and we show applications to hyper-parameter optimization of Machine Learning algorithms.

Meta-learning for black-box optimization: problem formulation

We consider the problem where we wish to find the maximum of a black-box function f : X → R defined on some input space X ⊂ R d , which is assumed to be sampled from a known class function distribution F of potentially non-convex and non-differentiable functions. Here, the only thing we assume is that for any black-box function f ∼ F from the distribution, we can query its values at any point of the input domain X but we do not have access to its gradient. This setting corresponds, for example, to the case where we wish to design a specific algorithm that can optimize the hyperparameters of an SVM trained on a dataset: choosing a dataset would correspond to sampling a function f ∼ F, and training the SVM on some arbitrary hyper-parameters would correspond to querying the value of the function at some point. As an example, Figure 1 displays the opposite of the cross-validation error as a function of the two parameters of a SVM on three different datasets showing strong similarities. To solve this type of problems, most standard black-box optimization (BBO) algorithms rely on a sequential procedure, denoted here by A, that starts with no gathered observations on the function (o 0 = {}), and iterates as follow: (1) select a candidate solution x n+1 that depends on the information gathered so far o n ; , (2) evaluate the objective function (e.g. the opposite of the cross validation error) at the candidate solution f (x n+1 ); and (3) update information gathered so far

o n+1 ← o n ∪ {(x n+1 , f (x n+1 ))}, n ← n + 1.
In practice, the performance of an algorithm A on a black-box function f with a budget of N iterations is generally measured through the difference between the true value of the optimum and the maximum found so far:

r(A, f, N ) := f * -max i=1...N f (x i ) , (1) 
where f * = max x∈X f (x) and x 1 , . . . , x N denotes the series of evaluation points chosen by the algorithm A. Thus, given the a priori knowledge that the objective is sampled from a distribution F, we can measure the meta-loss of the algorithm A on the class function distribution F with a budget of N evaluations as follows:

R(A, F, N ) := ∫ f ∼F r(A, f, N )df. (2) 
In this paper, we investigate the problem of finding the best algorithm A * that minimize the metaerror for a class of problems F by minimizing the meta-loss R(A, F, N ). Since it is assumed that we have access to the distribution F, a natural approach would be to minimize its empirical counterpart:

A * (F, N ) ∈ arg min A∈Alg 1 M M ∑ j=1 r(A, f j , N ) , ( 3 
)
where f 1 , . . . , f M are independent problems sampled from the distribution F and Alg denotes the set of all sequential black-box algorithms. However, this approach suffers from two major drawbacks:

(1) how do we define a class of trainable parametrized algorithms Alg large enough to effectively learn efficient sequential algorithms? and (2) how do we perform the optimization over (3) when the quantities r(A, f j , N ) depends on black-box functions f j for which the gradient is not available? 

f i ∼ F , o 0 = {}, f max = -∞, τ = {} 4:
for n = 0 to N -1 do ▷ Inner meta-loop: applying the solver 5:

z b n = B θ T (o n ) ▷ Compute latent belief state 6: x n ∼ π θ P (•|z b n ) ▷ Sample a candidate solution 7: f max = max(f max , f i (x n ))
▷ Evaluate and update max observed so far 8:

c n = f * -f max ▷ Compute reward 9: o n+1 = o n ∪ {(x n , f i (x n )} ▷ Update information gathered so far 10: τ = τ ∪ {(o n , x n , r n , o n+1 )} ▷ Update RL trajectory 11:
end for 12:

Compute PPO objective L RL (τ )

13:

Update π θ P , B θ T according to L RL (τ ) ▷ Gradient descent steps 14: end for 3 Meta-learn problem-specific solvers through reinforcement learning Using Transformers to define a class of learnable algorithms. First, in order to solve (3), we define a large class of algorithms Alg through the use of Transformers. More precisely, at any time n ≤ N , based on the set of previously evaluated points o n = ((x 1 , f (x 1 )), . . . , (x n , f (x n ))), an algorithm A selects the next evaluation points x n+1 based on the history o n . One general way to formalize this process is to consider algorithms (without loss of generality) that sample the next points according to a Gaussian distribution with learnable parameters:

x n+1 ∼ π θ P (•|z b n ) = N (µ θ P (z b n ), Σ θ P ) , ( 4 
)
where z b n denotes a latent representation of the current observations o n , and µ θ P , Σ θ P are two learnable functions (e.g. feed-forward networks) that represent the mean and covariance matrix of the gaussian. Inspired by [START_REF] Xiang | Recent advances in deep reinforcement learning applications for solving partially observable markov decision processes (pomdp) problems: Part 1fundamentals and applications in games, robotics and natural language processing[END_REF], the idea here is to learn a latent representation z b n of the current information o n informative enough such that the more evaluated points, the less uncertain the belief. To take the information o n into account, a natural approach is to consider a state-of-the-art model such as the Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF] which allows us to compute pairwise interactions between the collected evaluation points. Formally, the parametrized belief function B θ T embeds the set of observations o n = {(x i , f (x i ))} i∈{1,...n} in a latent space through several layers of Transformer encoders. Finally, the final representations are averaged to provide the belief latent representation z b n = B θ T (o n ) which is used as the input of the algorithm π θ P through µ θ P instead of the raw observation o n .

Minimizing the meta-loss using reinforcement learning. Second, equipped with the class of learnable algorithms, the first potential idea is to directly differentiate the loss (3) that assesses the performance of the learned algorithm as in [START_REF] Tv | Meta-learning for black-box optimization[END_REF]Chen et al., 2016). However, to differentiate (3), it is necessary for the functions f 1 , . . . , f M in F to be differentiable, which greatly restricts the range of applications of the meta-approach to black-box functions. With these considerations in mind, RL appears as a natural way to optimize this non-differentiable loss. Indeed, similarly to RL problems, our framework relies on optimizing a parametrized algorithm (here the policy π θ P ) to minimize the observed error (here the regret (1)) that is not necessarily differentiable. Our algorithm is thus optimized in a RL fashion by computing the standard surrogate loss L RL of the Proximal Policy Optimization (PPO, [START_REF] Schulman | Proximal policy optimization algorithms[END_REF]) and performing gradient descent, learning together the Transformer parameters θ T and the policy parameters θ P . As classical metalearning approaches, our algorithm called MELBA (Algorithm 1) consists in two optimization loops: an outer meta-loop optimizing the parameters of the learned solver by gradient descent (line 2); an inner meta-loop optimizing the black-box function with the current parametrized solver (line 4). More precisely, the outer loop contains the optimization of a meta-loss that is designed to learn the optimization algorithm over F. 

Experimental evaluation

Algorithms. Random Search (RS) is the standard random search method. CMA-ES is a state-ofthe-art evolutionary algorithm that samples the next evaluation points according to a multivariate normal distribution. Bayesian Optimization (BO) builds a surrogate model of the black-box function and chooses points according to an acquisition function that trades off uncertainty and best known regions. SMAC [START_REF] Lindauer | Smac3: A versatile bayesian optimization package for hyperparameter optimization[END_REF]) is an extension of BO adapted to a mix of categorical and continuous parameters and several instances. MELBA, our algorithm, the policy is parametrized by a 512-dimension latent space, a four-layer Transformer encoder with four heads followed by two fully connected layers. Details regarding the experiments are provided in the Appendix. Lastly, we point out that HypRL [START_REF] Jomaa | Hyp-rl : Hyperparameter optimization by reinforcement learning[END_REF]), a pioneering previous work on hyper-parameter optimization using RL similar to our approach, uses LSTMs [START_REF] Hochreiter | Long short-term memory[END_REF]) to treat sequentially the hyper-parameters evaluated so far and Q-Learning [START_REF] Mnih | Playing atari with deep reinforcement learning[END_REF]) to learn a discrete policy over a discrete grid. However, MELBA is designed for continuous systems while HypLR is tailored to grids of discrete values. Moreover, HypRL considers the sequential aspect of the previous candidates by using LSTMs while MELBA considers them as a set of points. Finally, HypRL adds meta-features associated to the dataset which are not available in our benchmark. For these reasons, we did not compare MELBA to HypRL, but point out that it is a similar approach.

Test problems. Support Vector Machines (SVM). This problem consists of learning an algorithm specifically tailored to optimize the hyper-parameters of an SVM. Precisely, the parameters to be optimized are the regularization constant 10 log(C) and the bandwidth 10 log(γ) of the Radial Basis Function kernel for any dataset. Fully Connected Networks (FCNet). This problem consists of finding the parameters that define the architecture of dense neural network to perform classification: learning rate, batch size, the width of the first layer, the width of the second layer, the dropout rates for the first and second layer. XGBoost. This problem consists of finding the hyper-paramaters of an XGBoost [START_REF] Chen | XGBoost: A scalable tree boosting system[END_REF] regardless of the dataset. The hyper-parameters are: the learning rate, gamma, res_alpha, reg_lambda, n_estimators, sub_sample, max_depth, min_child_weight. In all of the benchmarks, The parameters were rescaled to be in X = [-1, 1] d , d being the dimension. We used the benchmarking suite for hyper-parameter optimization called PROFET [START_REF] Klein | Meta-surrogate benchmarking for hyperparameter optimization[END_REF], which uses generative models to create realistic tasks, allowing to query the value at some point in the space of the black-box functions f 1 , . . . , f M that represents the metric of the trained model as a function of its hyper-parameters corresponding to the above problems. Each instance of MELBA has been trained on M = 970 test problems with a budget of N = 50 evaluations.

Performance metrics and discussion. For each algorithm A and each task F, we computed the regret R(A,

F, n) = 1 M ∑ M j=1 r(A, f j , n)
for each iteration n ≤ N where f 1 , . . . , f M are randomly sampled from the family of functions F and unseen during the training phase with M = 30. Results are displayed in Figure 2. MELBA shows high-performance compared to the baselines on all tasks, outperforming CMA-ES and SMAC on all tasks. It outperforms RS on all tasks but the SVM one where it has comparable performance. MELBA outperforms BO on XGBoost while having comparable performances on SVM and FCNet. We observe that MELBA finds a significantly better solution than the competitors within only 10 function evaluations. Then, MELBA is slightly overtaken by BO on SVM and FCNet. In the case of XGBoost, the MELBA is efficient and reaches a better value in 20 steps than the results reached by competitors in 50 steps. These promising results outline the relevance of learning task-specific solvers with Meta-learning for hyper-parameter optimization. Finally, methods suchs as BOHB [START_REF] Falkner | Bohb: Robust and efficient hyperparameter optimization at scale[END_REF] detect early in training if a candidate will perform poorly by combining Bayesian Optimization with hyperband. Future works will focus on such combination with MELBA to prune, early in training, poor candidates.

A Time Complexity of MELBA vs BO

The time complexity of one iteration of MELBA in comparison with Bayesian Optimization is presented in table 1. We show that MELBA's time complexity is quasi-constant with the dimension and that it is from 70 times faster in dimension 2 to more than 150 times faster in dimension 8. This is due to the inner maximization of the acquisition function in BO. Furthermore, time complexity is almost constant with the dimension in our approach while getting higher and higher in BO. This is a significant advantage of our approach. 

Benchmark Dimension

Figure 1 :

 1 Figure 1: Examples of three objective functions f 1 , f 2 , f 3 corresponding to the opposite of the crossvalidation error of a SVM as a function of the hyper-parameters on three different datasets where the x-axis denotes the regularization parameter and y-axis denotes the bandwidth parameter in log-scale.

Figure 2 :

 2 Figure 2: Performance of the algorithms on the hyper-parameter optimization problems.

Table 1 :

 1 Average time of an iteration (in seconds) of MELBA instances vs Bayesian Optimization as a function of the dimension B Details of the experimental section

			MELBA	BO
	SVM	2	0.08	5.66
	FCNet	6	0.08	10.68
	XGBoost	8	0.08	12.51

The PROFET HPO benchmark[START_REF] Klein | Meta-surrogate benchmarking for hyperparameter optimization[END_REF] has been introduced to allow more reproducible research in AutoML. It avoids heavy and time-consuming training computations when testing HPO methods. Each HPO task is created thanks to some generative model fitted on some results of true training datasets. The generative model, then, allows to infer the value of the targeted metric (MSE or classification error) on unseen and continuous values of hyperparameters.

C Hyperparameter validation

In this section, we provide the technical details of our implementation and the hyperparameters we used for our experiments.

C.1 Proximal Policy Optimization algorithm and Transformer encoder

We validated the hyperparameters of our framework (both PPO and the Transformer encoders) by random search on each benchmark over a discrete grid of predefined values. Grids are presented in tables 2 and 3 for PPO and the attention network architecture respectively. We train all the models on 1000000 time-steps.

Name

Values Learning rate 3 × 10 -3 , 3 × 10 -4 , 1 × 10 -4 , 7.5 × 10 -5 , 3 × 10 Tables 4 and5 provide the hyperparameters selected for each benchmark for the PPO algorithm and the network architecture respectively:

C.2 Baselines

To run CMA-ES, we used the same values as in [START_REF] Klein | Meta-surrogate benchmarking for hyperparameter optimization[END_REF], i.e., σ = 0.6 as the initial standard deviation and 10 for the population size. We used the pymoo library ( For the Bayesian Optimization baseline, we used the Expected Improvement as the acquisition function and we used the implementation of Scikit-Optimize [START_REF] Head | scikit-optimize/scikit-optimize[END_REF].

D Computational details

All the experiments, both training and inference, were done on a Tesla P100 GPU. During training, we used multiprocessing with 8 CPUs to run 8 parallel environments.

E Ablation studies

In this section, we present some ablation studies on the impact of the Transformer architecture. For this purpose, we compare the results obtained on the different benchmarks with our architecture against Deep Set [START_REF] Zaheer | Deep sets[END_REF]