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Abstract: FasterAI is a PyTorch-based library, aiming to facilitate the use of deep neural network
compression techniques, such as sparsification, pruning, knowledge distillation, or regularization.
The library is built with the purpose of enabling quick implementation and experimentation. More
particularly, compression techniques are leveraging callback systems of libraries, such as fastai and
Pytorch Lightning to propose a user-friendly and high-level API. The main asset of FasterAI is its
lightweight, yet powerful, simplicity of use. Indeed, because it has been developed in a very granular
way, users can create thousands of unique experiments by using different combinations of parameters,
with only a single line of additional code. This allows FasterAI to be suited for practical usage, as it
contains the most common compression techniques available out-of-the-box, but also for research, as
implementing a new compression technique usually boils down to writing a single line of code. In
this paper, we propose an in-depth presentation of the different compression techniques available
in FasterAI. As a proof of concept and to better grasp how the library is used, we present results
achieved by applying each technique on a ResNet-18 architecture, trained on CALTECH-101.

Keywords: sparse neural networks; pruning; knowledge distillation; PyTorch library

1. Introduction

Over the last few years, deep neural networks have witnessed an important increase
in their amount of parameters and computation. As a result, the memory footprint and
inference time have severely hindered the deployment of such methods, especially in
resource-constrained environments, such as embedded systems or mobile devices. For that
reason, neural network compression has been the subject of extensive research recently.
Although many theoretical research studies have been conducted on compression, the field
still lacks convenient tools for (1) practical applications but also (2) research. Additionally,
because of this lack of tools, there is no standard way of implementing new compression
techniques, making the comparison with previous techniques more difficult [1]. To solve
this issue, we propose FasterAI [2], an open-source library, released under an Apache-2.0
license and available at https://nathanhubens.github.io/fasterai (accessed on 20 September
2022). It also includes extensive documentation and several tutorials to help users become
acquainted with the library.

1.1. Related Work

The research field of neural network compression has recently been extremely active,
leading to lots of published ideas [3–5], but also to the release of their corresponding
implementations [6,7]. However, the available implementations may operate on different
deep learning libraries and be designed for different application cases, thus requiring
extensive adaptation in order to compare them. As a result, the field of compression can
appear overwhelming for researchers that are willing to implement new techniques and
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compare them with current methods, but also to newcomers that desire to compress their
neural network for a concrete application.

Several pieces of work have proposed solutions to that problem by creating libraries
allowing to seamlessly implement compression techniques, such as PyTorch Pruning [8] and
Sparse ML [9]. However, those are mainly concerned with sparsification, neglecting other
compression techniques, such as knowledge distillation and regularization. Another library,
Nervana Distiller [10], provides a more thorough compression toolset, but is intended
primarily for research usage. Additionally, most of those libraries require to implement new
compression techniques in a self-contained way, limiting the opportunities for extensive
experiments. In FasterAI, we aim at reducing the need of custom implementation to its
bare minimum. Indeed, implementing a new method in FasterAI usually boils down to
writing a single line of code. Moreover, to the best of our knowledge, FasterAI is the first
compression library available for both fastai [11] and PyTorch Lightning [12].

1.2. Overview

The objective of FasterAI is twofold: (1) allow users not familiar with the domain
to apply compression techniques; and (2) allow researchers to easily implement new
compression methods and perform various experiments. FasterAI is organized around four
modules, each one providing distinct compression capabilities, and which might depend
on several arguments, as represented in Figure 1.

Sparsify §2 Distill §3 Regularize §4 Misc §5

• SparsifyCallback • KnowledgeDistillationCallback • RegularizationCallback • BNFolding
• FCDecomposer! granularity §2.1

! context     §2.2
! criteria    §2.3
! schedule    §2.4

! logit_loss
! feature_loss

! granularity

Figure 1. Illustration of the design followed by FasterAI.

Sparsify. The first module is responsible for making sparse neural networks, either
in a static way, when retraining cannot be considered, or in a dynamic way, using callback
systems, thus occurring during the training of the neural network.

Distill. This module is in charge of knowledge distillation techniques, i.e., training
with a teacher–student paradigm, where a large model guides a smaller one to reach better
performance, thus compressing the knowledge of a large model into a smaller one.

Regularize. The regularize module handles group regularization methods, i.e., tech-
niques adding a penalty term on the magnitude of the weights, acting as a feature selection
method, where some weights will be pushed toward 0, leading to a learned sparse model.

Misc. The last module includes singular compression methods, such as batch normal-
ization folding, removing batch normalization layers, which can be considered useless after
the training phase. It also includes factorization methods for fully connected layers that
replace large weight matrices with smaller ones, thus reducing the total amount of weight.

To summarize, with FasterAI, we provide:

• An extensive, documented and open-source PyTorch-based neural network compres-
sion library.

• A new granular design approach for compression techniques, allowing to seamlessly
perform thousands of different compression methods, by simply choosing between
available options.

• A framework suited for practical cases as well as for research, by providing common
compression techniques available out-of-the-box and allowing the conception of new
compression methods in a single line of code.

This paper is divided into four sections, each one describing a compression module
of FasterAI. In particular, we want to highlight how convenient it is to perform different
kinds of experiments, either using well-known techniques, or creating novel ones. Indeed,
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by leveraging the callback system of recent deep learning libraries, such as fastai and
Pytorch Lightning, FasterAI provides a user-friendly and high-level API, allowing to easily
combine and customize compression techniques. Although FasterAI is suitable for many
types of architecture, we illustrate its use for convolutional neural networks.

2. Sparsify

The core of FasterAI resides in its sparsify module, containing capabilities for creating
sparse networks, i.e., networks in which a large number of weight values are zeroes.
FasterAI possesses two main ways to create a sparse network: (1) the static way, by using
the Sparsifier class, able to sparsify either a specified layer, or the whole model, (2) the
dynamic way, by using the SparsifyCallback, that must be used in conjunction with training,
and that removes weights while the network is learning. Examples of usage for both
methods are expressed in Listing 1.

Listing 1. The two ways of sparsifying a model. The static is performed offline, disconnected from
training, while the dynamic is performed during training.

1 # (1) Static
2 sp=Sparsifier(model , granularity , context , criteria)
3 sp.prune_model(sparsity)
4

5 # (2) Dynamic
6 sp_cb=SparsifyCallback(sparsity , granularity , context , criteria , schedule)
7 learner.fit(n_epochs , cbs=sp_cb)

While the static way is faster to apply, as it does not require any additional steps,
the lack of retraining after the removal of some parameters deeply impairs the model
performance. For that reason, the dynamic way is most of the time preferred when trying
to achieve compression while keeping the performance as high as possible. Although the
distinction is not always clear in the literature, we make the difference within FasterAI
between the process of sparsification, i.e., making neural network weights sparse, and prun-
ing, i.e., physically removing those sparse weights. Indeed, the SparsifyCallback does not
allow to remove any network’s weight but rather to create a binary mask, of the same
structure as the weights, and applies it to either sparsify a weight (when the mask value
is 0) or keep it unchanged (when the mask value is 1). Weights sparsified during such
a process are still present in the computation graph but do not participate in the final
decision anymore.

The whole power of the sparsification capabilities of FasterAI lies in its SparsifyCall-
back, designed around four independent building blocks: granularity, context, criteria,
and schedule, which are sufficient to fully describe the most common sparsification tech-
niques. Those building blocks correspond to the four main axes of research in the field,
each providing an answer to the following questions:

• Granularity: how to sparsify?
• Context: where to sparsify?
• Criteria: what to sparsify?
• Schedule: when to sparsify?

The purpose is to decompose the sparsifying problem into four subproblems. By doing
so, each argument can be modified independently from the others, which allows to (1) create
a vast number of opportunities and combinations for experiments and, (2) provide a
unique and versatile callback, reducing the problem of implementing a novel sparsification
technique to the modification of a single argument.

2.1. Granularity: How to Sparsify?

In FasterAI, the granularity designates the structure of the blocks of weights that are
removed during the sparsification process. FasterAI handles most common sparsifying
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granularities, e.g., weight, kernel and filter, but also allows the use of more seldom ones,
e.g., horizontal slices and shared kernels. In the literature, the terms unstructured and
structured sparsity are often used to designate when sparsity is applied on weights (un-
structured) or larger blocks (structured). In FasterAI, we adopt a more nuanced approach
by defining as many granularities as there are slicing combinations of the weight tensor.
In the case of 2D convolutions, 16 granularities are thus available by default. By following
PyTorch conventions [8], the weights of a 2D convolutional layer are given by a 4D tensor
of dimension [I, O, Kx, Ky], with I, O being, respectively, the input and output dimensions,
and Kx, Ky, the dimensions of the convolutional kernel. The granularities available by
default are defined by Listing 2.

Listing 2. Different available granularities for 4D weight tensor of dimension [I, O, Kx, Ky].

1 Weight (0D) = Weights[i, o, kx, ky]
2 Column (1D) = Weights[i, o, kx, : ]
3 Row (1D) = Weights[i, o, : , ky]
4 Shared-Weight (1D) = Weights[i, :, kx, ky]
5 Channel (1D) = Weights[:, o, kx, ky]
6 Kernel (2D) = Weights[i, o, : , : ]
7 Shared-Channel (2D) = Weights[:, :, kx, ky]
8 Shared-Column (2D) = Weights[i, :, kx, : ]
9 Shared-Row (2D) = Weights[i, :, : , ky]

10 Vertical-Slice (2D) = Weights[:, o , : ,ky]
11 Horizontal-Slice (2D) = Weights[:, o , :, ky]
12 Shared-Vertical-Slice (3D) = Weights[:, :, kx, : ]
13 Shared-Horizontal-Slice (3D) = Weights[:, :, : , ky]
14 Shared-Kernel (3D) = Weights[i, :, : , : ]
15 Filter (3D) = Weights[:, o, : , : ]
16 Layer (4D) = Weights[:, :, : , : ]

These granularities are represented in Figure 2, sorted by “how structured” the granu-
larity is. On top of the presented granularities, suited for ConvNets, FasterAI also proposes
granularities for fully connected Layers, as well as for self-attention layers, required in
the transformers’ architectures. FasterAI allows a wide variety of granularities, along
which the network’s parameters will be sparsified. Among less common granularities, we
introduce the concept of “shared granularity”, indicating granularity structures that are
shared between all filters. For example, shared_weight in Figure 2d defines a granularity,
where weights are selected individually in each filter, but the same selection pattern is
applied to each filter in the layer.

As a proof of concept, we conduct an experiment to highlight the impact of pruning
granularity on the performance of a neural network. We choose the ResNet-18 architec-
ture [13], as it is a model commonly used for pruning benchmarking, and apply it to the
CALTECH-101 dataset [14], various in images and classes, that is split using a 80:20 split
between training and validation sets. The model is trained for 30 epochs, using a learning
rate value of 1× 10−3 , the Adam [15] optimizer, and a batch size of 64. We then compare
the final validation accuracy, obtained after sparsifying with each of the available granulari-
ties. There are 4 sparsity levels that are studied: 30%, 50%, 70% and 90%. Two initialization
methods are considered: either the model is trained from scratch, i.e., the weights are
randomly initialized, or finetuned from a pretrained version. The context, criteria and
schedule are respectively set to local, large_final and one_cycle. The results, as well as the
baseline, i.e., the unpruned model, are presented in Table 1. For readability constraints,
the name of the granularities in Table 1 are abbreviated, e.g., s-v-slice corresponds to the
shared_vertical_slice granularity. The layer sparsity is voluntarily omitted, as it is not
available in the local context.
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(a) ‘weight’ (b) ‘column’ (c) ‘row’ (d) ‘shared_weight’

(e) ‘channel’ (f) ‘kernel’ (g) ‘shared_channel’ (h) ‘shared_column’

(i) ‘shared_row’ (j) ‘v_slice’ (k) ‘h_slice’ (l) ‘shared_v_slice’

(m) ‘shared_h_slice’ (n) ‘shared_kernel’ (o) ‘filter’ (p) ‘layer’

Figure 2. Common granularities, available in FasterAI. Weights are arranged in 9 filters of 3 channels
and dimension 3× 3, where colored weights are sparsified according to the chosen granularity.

Table 1. Results of sparsifying ResNet-18 for all available granularities. Context, criteria and schedule
are respectively set to local, large_final and one_cycle. Mean and standard deviation of accuracy over
3 rounds are reported. The darker the shade of red, the further the accuracy is from the baseline.

Scratch Finetune

30% 50% 70% 90% 30% 50% 70% 90%

Baseline 80.61 ± 0.42 90.03 ± 0.54
weight 80.40 ± 0.22 80.20 ± 0.71 79.74 ± 0.85 78.46 ± 0.40 91.39 ± 0.14 91.67 ± 0.56 91.43 ± 0.10 88.75 ± 0.90
column 81.04 ± 0.46 80.58 ± 0.15 80.34 ± 0.22 75.60 ± 0.50 91.85 ± 0.59 91.23 ± 0.34 90.43 ± 0.47 83.55 ± 1.53
row 81.13 ± 1.01 80.18 ± 0.56 79.80 ± 0.19 75.97 ± 0.65 91.56 ± 0.79 90.57 ± 0.54 90.88 ± 1.06 85.12 ± 0.97
s-weight 80.49 ± 0.69 80.14 ± 0.19 78.57 ± 1.03 66.23 ± 0.97 90.83 ± 1.20 90.06 ± 0.25 88.40 ± 0.67 46.97 ± 0.87
channel 81.29 ± 0.43 79.50 ± 0.62 79.81 ± 0.63 65.85 ± 0.32 91.16 ± 0.41 90.34 ± 1.03 86.60 ± 0.43 44.97 ± 0.62
kernel 80.27± 0.49 79.50 ± 0.51 79.52 ± 1.52 67.34 ± 1.57 91.79 ± 0.43 91.25 ± 0.43 89.88 ± 0.73 77.64 ± 0.80
s-channel 79.54 ± 0.87 80.85 ± 0.98 78.21 ± 0.56 38.60 ± 3.12 90.75 ± 0.55 90.55 ± 0.52 86.20 ± 1.34 23.03 ± 0.92
s-column 79.69± 0.64 79.87 ± 0.23 80.23 ± 0.40 59.90 ± 1.71 90.70 ± 0.69 89.93 ± 0.31 86.00 ± 0.32 41.28 ± 3.53
s-row 80.51± 0.34 79.78 ± 0.29 77.92 ± 0.56 57.99 ± 0.89 90.30 ± 0.51 89.88 ± 0.53 85.38 ± 0.57 40.43 ± 0.92
v slice 80.01 ± 0.85 80.43 ± 0.91 78.28 ± 0.35 48.09 ± 1.55 90.59 ± 0.45 89.46 ± 0.71 82.90 ± 0.30 29.81 ± 1.78
h slice 80.22 ± 0.79 79.19 ± 0.82 77.13 ± 1.60 43.95 ± 1.02 91.01 ± 0.87 88.75 ± 0.36 82.48 ± 0.96 29.60 ± 2.35
s-v-slice 79.91 ± 0.84 80.40 ± 0.50 76.97 ± 0.47 74.98 ± 0.92 89.28 ± 0.35 89.17 ± 0.62 75.47 ± 0.75 73.49 ± 1.09
s-h-slice 79.81 ± 0.76 80.07 ± 0.64 76.22± 0.11 74.58 ± 0.35 89.77 ± 0.22 88.60 ± 0.58 73.41 ± 1.21 69.15 ± 0.77
s-kernel 79.96± 0.11 81.00± 0.21 75.84 ± 1.60 48.56 ± 0.94 89.77 ± 0.43 89.30 ± 0.48 81.25 ± 0.27 31.86 ± 1.23
filter 80.76 ± 1.65 78.41 ± 1.01 72.92 ± 2.40 37.47 ± 1.90 89.86 ± 0.85 87.78 ± 0.18 77.52 ± 1.84 29.05 ± 0.09

From those results, it can be observed that the general trend is that the more structured
granularity is, i.e., the larger the size of structures removed, the larger the drop in final
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performance. This can be explained by the fact that more structured granularities are less
precise in their selection of weights, potentially removing weights that might be important
for the network. It is, however, important to mention that, although less performant,
more structured granularities allow for an easier speed-up in practice, as they require
less overhead to store sparse weight indices [4]. Additionally, it can be observed that
smaller granularities and low sparsity levels can lead to better performance than the
baseline, illustrating the regularization capabilities of sparsification, thus helping to reduce
overfitting and increase generalization.

2.2. Context: Where to Sparsify?

In FasterAI, the context refers to the locality of the selection of the weights. In the
literature, the two most common options are: (1) local pruning, i.e., the selection of the
weights is performed in each layer separately, producing equally sparse layers in the
network, and (2) global pruning, i.e., the selection of the weights is performed by comparing
those of the whole network, producing a network with different sparsity levels for each
layer. Both techniques are expressed in a simplified way in Listing 3.

Listing 3. Simplified representation of local sparsification, comparing weights in each layer indepen-
dently and global sparsification, comparing weights from all the layers.

1 # (1) Local
2 for layer in layers:
3 mask = compute_mask(layer.weight , sparsity)
4 pruned_model = prune_layer(layer , mask)
5

6 # (2) Global
7 global_weights = concat[(layer.weight) for layer in layers]
8 mask = compute_mask(global_weights , sparsity)
9 pruned_model = prune_model(mask)

FasterAI handles both methods by default, only by selecting the local or global method
accordingly in the SparsifyCallback. Local and global sparsification have different impli-
cations on the final sparsity of the network, with local context leading to equally sparse
layers in the network and global context leading to layers with differences in sparsities,
which can pose issues for networks possessing bottlenecks, where it can be undesirable
to remove too many parameters. In the case that the user wants to specify a particular
sparsity level for certain layers, FasterAI accepts a list of sparsities that will be applied to
corresponding layers.

We propose to compare the impact of each context on the performance of a neural
network. For this purpose, we use the same architecture, datasets and training parameters
as the experiment conducted in Subsection 2.1 but using a global context instead. The results
are provided in Table 2. For readability constraints, the same abbreviations are applied to
the name of granularities in Table 2.

As can be observed in Table 2, the general trend seems to be that more coarse granu-
larities perform worse than more precise ones. Additionally, the drop in performance for
high sparsities is larger when the network has been fine-tuned than when trained from
scratch. By comparing Tables 1 and 2, it can be observed that global sparsifying seems
to achieve better results in the scratch training regime, while providing similar results
when fine-tuning.
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Table 2. Results of sparsifying ResNet-18 for all available granularities. Context, criteria and schedule
are respectively set to global, large_final and one_cycle. Mean and standard deviation of accuracy
over 3 rounds are reported. The darker the shade of red, the further the accuracy is from the baseline.

Scratch Finetuned

30% 50% 70% 90% 30% 50% 70% 90%
weight 80.58 ± 1.21 80.42 ± 0.73 80.31 ± 1.01 79.63 ± 0.59 91.12 ± 0.59 91.17 ± 0.19 91.79 ± 0.35 89.90 ± 0.14
column 80.51 ± 0.58 80.78 ± 0.48 80.03 ± 1.08 78.87 ± 0.85 91.54 ± 0.50 90.90 ± 0.46 91.43 ± 0.61 87.48 ± 0.44
row 81.13 ± 1.30 80.65 ± 0.71 79.50 ± 1.52 78.57 ± 0.45 91.19 ± 0.88 91.72 ± 0.26 91.32 ± 0.90 87.78 ± 0.48
s-weight 79.96 ± 0.57 80.45 ± 0.30 76.84 ± 0.72 58.92 ± 3.78 90.99 ± 0.23 90.96 ± 0.68 84.65 ± 1.28 35.83 ± 1.12
channel 80.78 ± 0.52 80.53 ± 0.12 77.79 ± 1.31 63.91 ± 0.74 91.27 ± 0.22 90.55 ± 0.38 80.91 ± 0.70 18.29 ± 1.88
kernel 81.89 ± 0.39 80.49 ± 0.29 79.74 ± 0.41 72.08 ± 1.91 91.08 ± 0.37 91.05 ± 0.52 90.43 ± 0.36 85.25 ± 0.66
s-channel 79.01 ± 1.33 78.70 ± 0.72 73.54 ± 0.92 72.87 ± 1.10 89.00 ± 0.35 85.65 ± 1.72 74.03 ± 1.52 61.82 ± 1.69
s-column 80.87 ± 0.93 79.74 ± 0.39 75.78 ± 0.54 68.85 ± 3.59 90.28 ± 0.22 89.26 ± 0.51 72.14 ± 0.52 18.47 ± 5.31
s-row 80.36 ± 0.87 80.80 ± 0.67 74.58 ± 1.68 68.31 ± 1.23 91.21 ± 0.45 89.57 ± 0.11 65.55 ± 4.13 23.01 ± 6.27
v slice 80.34 ± 0.99 78.72 ± 0.54 75.09 ± 0.39 45.40 ± 4.10 90.81 ± 0.62 87.98 ± 0.64 76.68 ± 0.66 25.36 ± 1.99
h slice 80.36 ± 0.67 79.83 ± 0.34 75.47 ± 0.22 47.52 ± 1.77 90.85 ± 0.41 87.96 ± 0.34 78.46 ± 0.62 27.66 ± 2.97
s-v-slice 79.54 ± 0.36 78.67 ± 0.27 78.14 ± 1.03 78.39 ± 0.90 90.04 ± 0.43 87.56 ± 0.86 85.45 ± 0.40 81.89 ± 0.85
s-h-slice 79.72 ± 0.23 79.19 ± 0.45 78.79 ± 0.49 78.36 ± 0.79 89.30 ± 0.42 86.49 ± 1.05 85.39 ± 0.43 83.39 ± 0.47
s-kernel 79.18 ± 0.56 76.79 ± 1.32 75.64 ± 1.47 75.05 ± 1.64 86.34 ± 0.47 84.76 ± 1.43 75.33 ± 6.07 25.60 ± 2.26
filter 79.36 ± 1.22 78.52 ± 0.65 72.83 ± 1.44 68.09 ± 4.39 90.39 ± 0.89 84.43 ± 0.11 62.64 ± 1.58 44.15 ± 1.64

2.3. Criteria: What to Sparsify?

The criteria are a fundamental component of any sparsifying technique, as they act
as a proxy for weight importance. In practice, applying the desired criteria to each group
of weights returns a score, according to which the selection of weights is based. Group of
weights with the lowest score will be zeroed out first, while those having the largest will be
retained. There exist many sparsifying criteria [16], with 14 currently available by default
in FasterAI, and expressed in a simplified way, following PyTorch notation, in Listing 4.
To that end, we define wi and wf, respectively, being the initial and final values of the
weights, i.e., their values at the initialization and at the current step of training.

Listing 4. The list of criteria available in FasterAI and their PyTorch implementation.

1 random = torch.randn_like(wf)
2 large_final = torch.abs(wf)
3 squared_final = torch.square(wf)
4 small_final = torch.neg(torch.abs(wf))
5 large_init = torch.abs(wi)
6 small_init = torch.abs(torch.neg(wi))
7 large_init_large_final = torch.abs(torch.min(wf, wi))
8 small_init_small_final = torch.abs(torch.neg(torch.max(wf, wi)))
9 magnitude_increase = torch.sub(torch.abs(wf),torch.abs(wi))

10 movement = torch.abs(torch.sub(wf,wi))

Because of the way the criteria are implemented in FasterAI, it is very convenient to
create custom criteria. Indeed, implementing new selection criteria boils down to writing
a single function that will be applied to each weight before computing the sparsification
mask to be applied. For example, we introduce a novel criterion named mov_large_final,
which is similar to the movement one, but puts more emphasis on the final value of weights.
Similarly, we introduce another criterion, named mov_mag, which considers weights
whose absolute value has moved the most. Those criteria are expressed in Listing 5.

Listing 5. Custom criteria and their corresponding implementation in PyTorch.

1 mov_large_final = torch.abs(torch.mul(x, torch.sub(x,y))))
2 mov_mag = torch.abs(torch.sub(torch.abs(x),torch.abs(y))))

The decision boundaries of available criteria are represented in Figure 3. In this figure,
we represent the weight distribution at initialization, Wi, against their value at the current
training step, W f .



Electronics 2022, 11, 3789 8 of 19

Wi
W

f

(a) random

Wi

W
f

(b) large_final

Wi

W
f

(c) squared_final

Wi

W
f

(d) small_final

Wi

W
f

(e) large_init

Wi
W

f

(f) small_init

Wi

W
f

(g) large_i_large_f

Wi

W
f

(h) small_i_small_f

Wi

W
f

(i) magnitude_increase

Wi

W
f

(j) movement

Wi

W
f

(k) mov_large_final

Wi

W
f

(l) mov_mag

Figure 3. Common pruning selection criteria. A schematic weight distribution is represented, where
colored weights are considered important by the criteria, while greyed out ones are removed.

In practice, at each sparsifying phase, the chosen criteria are applied to each weight,
before aggregating them according to the desired granularity. The pruning mask is com-
puted by retaining the weights having the largest score, according to the desired context
and sparsity level. It is then applied to replace weights considered less important by the
criteria by zeroes. Additionally, FasterAI keeps track of the values of the weights during
training. This paves the way to creating criteria using first-order information, taking the
training dynamics into account.

In Table 3, we report the comparison between all the available criteria. Experiments
are conducted in the same conditions as for the previous experiments, and with the same
architecture and dataset. The granularity is set to weight, the context to local, and the
schedule to one_cycle. For readability constraints, the names of criteria in Table 3 are
abbreviated, e.g., large i,f corresponds to the large_i_large_f criteria.

From those results, we can observe that the criteria has a minor effect on the perfor-
mance at low sparsity level, e.g., 30%. This can be explained by the fact that the network,
although having a part of parameters that are removed, still possesses enough capacity to
compensate for the removed weights and achieve decent performance. When the sparsity
level increases, however, criteria based on lower weight values, e.g., small f, small i, small
i,f, seem to perform badly. This phenomenon happens because weights with low values
do not participate much in the final results, and thus are not holding much discriminative
information about the data.
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Table 3. Results of sparsifying ResNet-18 for all available criteria. Granularity, context and schedule
are respectively set to weight, local and one_cycle. Mean and standard deviation of accuracy over
3 rounds are reported. The darker the shade of red, the further the accuracy is from the baseline.

Scratch Fine-Tune

30% 50% 70% 90% 30% 50% 70% 90%
random 80.53 ± 0.70 80.38± 0.23 80.01 ± 0.94 66.34 ± 0.92 90.24 ± 1.47 90.32 ± 0.55 86.38 ± 0.80 30.23 ± 4.25
large f 80.03 ± 1.07 80.93± 0.97 80.82 ± 0.48 77.99 ± 0.72 91.41 ± 0.43 91.17 ± 0.32 91.41 ± 1.08 88.09 ± 0.45
small f 79.05 ± 0.66 75.42± 0.44 48.49 ± 1.42 19.38 ± 3.42 84.37 ± 0.61 74.20 ± 0.50 18.76 ± 0.27 0.91 ± 0.52
sq f 80.76 ± 0.71 79.34± 1.10 79.58 ± 0.58 78.61 ± 0.23 91.39 ± 0.35 90.99 ± 0.30 90.97 ± 0.12 88.97 ± 0.92
large i 80.42 ± 0.85 79.67± 0.44 79.61 ± 0.73 75.62 ± 0.25 91.56 ± 0.52 92.58 ± 0.49 92.34 ± 1.13 90.30 ± 0.49
small i 80.67 ± 0.90 80.78± 1.19 79.60 ± 0.74 73.19 ± 0.50 86.52 ± 0.09 85.61 ± 1.03 83.42 ± 1.20 0.88 ± 0.31
large i,f 80.03 ± 0.43 80.07± 0.54 79.18 ± 0.57 72.37 ± 0.78 92.21 ± 0.43 92.43 ± 0.89 91.74 ± 0.12 88.00 ± 0.67
small i,f 80.25 ± 0.97 76.39± 0.83 65.50 ± 0.76 23.27 ± 1.66 85.23 ± 0.83 76.75 ± 1.07 31.27 ± 1.31 3.48 ± 3.88
mag inc 80.40 ± 0.44 80.27± 0.34 79.72 ± 0.16 79.19 ± 1.99 90.83 ± 0.92 90.06 ± 0.52 88.88 ± 0.38 83.13 ± 0.61
mov 80.45 ± 0.63 79.98± 0.43 80.20 ± 0.39 78.26 ± 0.37 89.73 ± 0.19 89.99 ± 0.43 88.58 ± 0.63 80.56 ± 1.23
mov_large_f 80.16 ± 1.16 82.24± 0.67 81.47 ± 0.38 79.12 ± 0.14 90.90 ± 0.14 90.96 ± 0.99 89.93 ± 0.22 86.18 ± 0.48
movmag 80.05 ± 0.37 80.99 ± 0.97 80.32 ± 0.61 79.69 ± 0.57 90.12 ± 1.52 90.55 ± 0.83 90.06 ± 0.34 88.22 ± 0.25

2.4. Schedule: When to Sparsify?

The last argument required in the SparsifyCallback is the sparsification schedule. It
defines when the sparsification process will occur during the training phase. Traditionally,
the most common schedules are the one-shot, which performs the sparsification in a single
step, and iterative, which performs it in several steps. Those methods usually required a
fine-tuning phase after each sparsification stage to help the network to recover from the
lost performance. In FasterAI, all schedules are implemented within a single class, the only
differentiation being defined according to three parameters:

• start_pct (default to 0): the percentage of training at which the sparsification process
starts, i.e., for how long the model will be pretrained.

• end_pct: the percentage of training at which the sparsification process stops, i.e., for
how long the model will be fine-tuned after being sparsified.

• schedule_function: the function describing the evolution of the sparsity during the
training. There are four currently available by default: one_shot, iterative, gradual
[17], and one_cycle [18]. Those schedule functions are expressed in Listing 6.

Listing 6. Schedules available by default in FasterAI and their corresponding implementation.

1 def one_shot(sparsity , t_step): return~sparsity
2

3 def iterative(sparsity , t_step , n_steps=5):
4 return (sparsity/n_steps)*(np.ceil(( t_step)*n_steps))
5

6 def gradual(sparsity , t_step): return sparsity * (1 - t_step)**3
7

8 def one_cycle(sparsity , t_step , α=14, β=6):
9 return (1+np.exp(-α+β)) /(1 +(np.exp(-α*t_step+β)))*sparsity

By shifting the complexity of the pruning schedule to the schedule_function, we ensure
that all schedules can be defined in FasterAI. By doing so, we remove the need for complex
training loops, as all schedules are applied in a single main training phase.

In Figure 4, we represent variations of the four available sparsifying schedules,
where adjustments are made to customize the schedule behavior. As can be observed,
the start_epoch and end_epoch can further help the user to alter the pruning schedule as
desired. For example, in Figure 4b, the one-shot pruning schedule could also be used with
a value of start_pct=0, becoming what is more well-known as pruning at initialization [19],
achieving the target amount of sparsity right from the start of training. For readability
constraints, we abbreviate the names of our schedules, e.g., one_shot becomes os.
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Figure 4. Evolution of sparsity along training for the available pruning schedules. While the
sched_func parameters defines the general evolution, the schedule can further be customized by
modifying the start_pct and end_pct values.

We report in Table 4 the results of applying the schedules represented in Figure 4. Ex-
periments were conducted in the same training conditions as previous ones. The granularity
was set to weight, context to local and criteria to large_final. For readability constraints,
in Table 4, the name of the schedule directly refers to the subfigure index in Figure 4.

Table 4. Results of sparsifying ResNet-18 for all available criteria. Granularity, context and criteria
are respectively set to weight, local and large_final. Mean and standard deviation of accuracy over
3 rounds are reported. The darker the shade of red, the further the accuracy is from the baseline.

Scratch Finetune

30% 50% 70% 90% 30% 50% 70% 90%
(a) 79.60 ± 1.02 79.69 ± 0.69 79.29 ± 0.38 77.33 ± 0.25 91.47 ± 0.54 91.48± 0.27 91.63 ± 0.13 91.08 ± 0.34
(b) 80.32 ± 0.95 81.02 ± 0.39 80.31 ± 0.31 78.59 ± 0.94 91.99 ± 0.56 91.28± 0.18 91.65 ± 0.36 90.55 ± 0.73
(c) 80.58 ± 0.73 80.12 ± 0.34 80.49 ± 0.61 79.45 ± 1.00 91.90 ± 0.74 90.94± 0.48 91.34 ± 0.57 89.28 ± 0.34
(d) 80.73 ± 0.14 80.31 ± 0.71 80.31 ± 0.43 77.94 ± 1.05 91.59 ± 0.94 91.28± 0.25 91.32 ± 0.20 88.42 ± 0.18
(e) 80.65 ± 1.12 80.49 ± 1.07 81.33 ± 0.80 72.39 ± 1.34 90.86 ± 0.18 90.65± 0.50 90.34 ± 0.63 85.47 ± 0.67
(f) 81.05 ± 0.67 81.05 ± 0.52 79.80 ± 0.72 69.91 ± 3.01 90.90 ± 0.34 90.63± 0.34 91.08 ± 0.31 80.94 ± 0.57
(g) 80.78 ± 0.55 80.01 ± 0.41 80.65 ± 0.69 79.54 ± 0.83 90.96 ± 0.43 90.43± 0.65 91.52 ± 0.57 90.94 ± 0.49
(h) 80.31 ± 0.86 81.24 ± 0.58 80.47 ± 0.54 79.96 ± 0.42 91.34 ± 0.28 91.05± 0.97 90.96 ± 0.41 89.72 ± 0.47
(i) 81.25 ± 1.18 81.35 ± 0.88 80.65 ± 1.21 78.26 ± 0.94 90.86 ± 0.69 91.36± 0.43 91.25 ± 0.66 87.24 ± 0.65
(j) 80.56 ± 0.76 80.74 ± 0.26 81.27 ± 0.69 79.60 ± 0.12 91.45 ± 0.53 91.89± 0.05 92.01 ± 0.65 91.87 ± 0.22
(k) 80.74 ± 0.27 80.11 ± 0.86 79.08 ± 0.35 78.83 ± 0.38 91.58 ± 0.50 91.94± 0.56 92.03 ± 0.85 90.61 ± 0.45
(l) 80.32 ± 0.36 81.25 ± 0.33 80.80 ± 0.43 79.46 ± 0.62 91.58 ± 0.23 90.83± 0.19 91.87 ± 0.51 88.13 ± 0.20
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As can be observed, schedules implying a weight removal later in training seem
to produce suboptimal results, especially in the fine-tuning regime. Indeed, removing
parameters close to the end of training does not let enough time for the network to adjust
its remaining weights to accommodate its weight loss. Additionally, schedules producing a
gradual increase in sparsity, such as the gradual and one-cycle, seem to provide better and
more stable results.

By modifying the three schedule parameters, users can also create their own prun-
ing schedule or easily implement other existing ones, such as the dense–sparse–dense
(DSD) schedule [20] for example, which increases the sparsity for the first half of train-
ing, then gradually decay it until the network is 0% sparse again. The corresponding
schedule_function would be defined as in Listing 7.

Listing 7. Implementation of the dense–sparse–dense technique in FasterAI.

1 def dsd(sparsity , t_step):
2 if t_step<0.5: return (1 + math.cos(math.pi*(1-t_step*2))) * sparsity / 2
3 else: return (1 - math.cos(math.pi*(1-t_step*2))) * sparsity / 2

By then modifying the values of start_pct and end_pct in the SparifyCallback, we can
further customize our pruning schedule, as displayed in Figure 5. Such a schedule_function
also shows that it is possible not only to use a schedule to perform sparsification, but also
weight growing, i.e., start from a sparse network, and gradually allow zeroed-out weights
to be retrained, creating new connections in the network.

Training Steps

S
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ity

(a) dsd, start_pct=0, end_pct=1

Training Steps

S
pa

rs
ity

(b) dsd, start_pct>0, end_pct=1
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S
pa

rs
ity

(c) dsd, start_pct=0,end_pct<1

Figure 5. Variation of the dsd schedule. The use of start_epoch and end_epoch help to further
customize a given pruning schedule.

2.5. Lottery Ticket Hypothesis

Recent studies have demonstrated that an optimal sparse network could be discov-
ered right from the initialization of a neural network, i.e., without any training being
required [21,22]. This particularity is named the lottery ticket hypothesis (LTH) and was
empirically demonstrated for simple datasets and architectures [21]. The optimal subnet-
work is thus said to have “won” at the initialization lottery and is consequently named the
“winning ticket”. To generalize the concept to more complex cases, authors had to weaken
the hypothesis, not extracting the optimal network from initialization anymore, but after a
few iterations of training. This generalized method is called Lottery Ticket Hypothesis with
Rewinding (LTHR) and the found subnetworks named “matching tickets” [23]. To discover
such subnetworks, authors proposed to go through a five-step experiment, represented in
Figure 6 and detailed below:

1. Train a freshly initialized network (W0) for t iterations and save its set of weights (Wt).
2. Continue the training until completion (WT).
3. Apply a pruning mask according to the desired sparsity level, granularity, context,

criteria (m�WT).
4. Reset the weights to their saved values, still applying the pruning mask (m�Wt).
5. Continue training and repeat the previous steps, each time updating the mask until

the desired sparsity is achieved.
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W0
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m ⊙ WT

(4)

m ⊙ Wt

(5)

Wt
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Figure 6. Illustration of the lottery ticket experiment, consisting of 5 steps, and providing the so-called
winning (or matching) ticket.

In the case of the original LTH experiment being applied, the rewinding iteration t
at which the set of weights is saved is equal to 0. For those experiments, authors used
to sparsify their network according to the weights, globally, using the l1-norm criteria,
and following an iterative schedule. FasterAI handles such LTH experiments by default
but allows to expand them to any granularities, contexts, criteria and schedules, opening
the way to many novel experiments about finding winning tickets. To accomplish such a
procedure in FasterAI, some additional arguments can be provided to the SparsifyCallback:

• lth: whether weights are reinitialized to their saved value after each pruning round.
• rewind_epoch (default to 0): the epoch of training where weights values are saved for

further reinitialization.
• reset_end: whether to reset the weights to their saved values after training.

The classic Lottery Ticket Experiments [21,23] can be performed with Listing 8.

Listing 8. Changes to SparsifyCallback to perform lottery tickets experiments.

1 # Classic LTH
2 SparsifyCallback(sp,'weights ','global ', large_final , iterative , lth=True)
3

4 # LTH with Rewinding
5 SparsifyCallback(sp, 'weights ', 'global ', large_final , iterative , lth=True ,\
6 rewind_epoch=1)

In Table 5, we report the results obtained when performing the classic LTH and LTHR
techniques using the same architecture and datasets as the previous experiments. Each
pruning round is performed for 30 epochs and the rewind_epoch is set to 1 for LTHR.
We can observe that, in our case, both techniques provide similar results. Additionally,
results show that it is possible to find high-performing pruned networks, even for high
sparsity levels.

Table 5. Results of performing LTH and LTHR experiments on ResNet-18 trained on CALTECH-101.
Mean and standard deviation of accuracy over 3 rounds are reported. The darker the shade of red,
the further the accuracy is from the baseline.

LTH LTH with Rewinding
30% 50% 70% 90% 30% 50% 70% 90%

80.05 ± 0.72 81.86 ± 0.40 84.59± 0.09 84.79± 0.37 80.65 ± 1.02 82.97± 1.15 83.92± 0.49 84.77± 0.46

2.6. Prune

As described previously, sparsification is usually introduced by applying a binary
mask, multiplying the value to keep by 1, and those to remove by 0. This leads to a sparse
network, difficult to accelerate in practice. However, some particular granularities allow
the sparse weights to be physically removed from the network, effectively taking advantage
of the compression to witness speed-up without any dedicated resource. Two granularities
allow to perform such a feature: (1) filter and (2) shared-kernel.

Once a filter is completely zeroed out, it can be removed from the network, leading to
a dense but smaller architecture. There is one subtlety, however, as removing the zeroed
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filter is not enough for the architecture to be operational. When removing a filter, it changes
the output shape of the concerned layer, as there is one less feature map. This means that
the following convolutional layer now receives an input with fewer channels and thus,
in all of its filters, the kernel corresponding to the removed feature map has to be removed.
As depicted in Figure 7, removing a single filter in layer i + 1 results in the removal of
its corresponding feature maps and of the corresponding kernels in layer i + 2. On the
other hand, if we decide to zero out shared kernels, we perform the exact inverse operation,
as once a shared kernel is removed from the network in layer i + 2, the corresponding input
feature map is now useless and can also be removed. As a result, the corresponding filter
in layer i + 1 can also be removed.

. 

. 

.

Feature maps of 
layer i

Filters of layer 
i + 1

. 

. 

.

Filters of layer 
i + 2

Feature maps of layer 
i + 1

Feature maps of layer 
i + 2

.  .  .
.  .  .

.  .  .

.  .  .
.  .  .

.  .  .

Figure 7. Filters containing zeroes can be removed from the model. By doing so, the corresponding
feature maps, as well as their corresponding channel in the next layer, have to be removed.

As it removes parameters that have no impact on the computation of the result,
the pruning is considered to be lossless, as it reduces the number of parameters and
operation of the network, without altering its performance. To perform such an operation
in FasterAI, the code required is expressed in Listing 9, with model being the model,
sparsified according to the filter granularity beforehand.

Listing 9. Code required to prune a filter-sparse model.

1 pruner = Pruner ()
2 pruned_model = pruner.prune_model(model)

Such a technique is currently only available on strictly feed-forward operations. In-
deed, the implementation for operations containing skip connections is not straightforward,
as there is no exclusive connection between a filter and its corresponding kernels.

3. Distill

FasterAI also brings knowledge distillation [24] capabilities to users with the help
of its Distill module. Knowledge distillation methods are a set of techniques involving
student–teacher-based training. In such a training, a large and performant model (the
teacher) guides a small and less performant model (the student) in its learning process,
as depicted in Figure 8. Knowledge distillation can generally be used to make a teacher
provide information about its predictions, and a chosen loss is applied to encourage the
student to replicate those predictions. The loss is applied on the respective logits of the
teacher and student and is thus called the Logits loss (Ll). A teacher may also be used to
provide information about intermediate computation states, e.g., activation maps. The loss
responsible for incentivizing the student to replicate similar computation states is called
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the feature loss (L f ). A total knowledge-distillation loss can be interpolated from those two
losses and the classic training loss (Lc), e.g., cross entropy between student’s predictions
and data labels, with two interpolation parameters α[0, 1] and β[0, 1], as

Loss = β(αLl + (1− α)L f ) + (1− β)Lc

Teacher  Logits

Student Logits

Input

Lf Ll
Data

Preds

Labels

Lc

Teacher

Student

softmax

Figure 8. Illustration of the knowledge distillation process. Besides learning the labels from data,
the student is also given some cues from the teacher, either from intermediate features, or from the
teacher’s predictions.

In FasterAI, this is managed by KnowledgeDistillationCallback, which offers Knowl-
edge Distillation capabilities in a single line of code. As knowledge distillation is managed
by another callback, it can be used in conjunction with SparsifyCallback, for even more
flexibility for extreme compression or performing original experiments. The FasterAI usage
for the KnowledgeDistillationCallback is given below in Listing 10, where layers_std and
layers_tch are optional lists of layers, which will be used to compute the feature loss L f
if desired.

Listing 10. Code required to perform knowledge distillation in FasterAI.

1 kd_cb = KnowledgeDistillationCallback(tch , L_l , L_f , layers_std , layers_tch , α, β)

Knowledge distillation losses can be modified or created according to the user’s
needs. There are currently 3 logit losses and 4 feature losses available by default in
FasterAI. We compare two of those losses in the same training conditions as previous
experiments. In this scenario, the teacher model is a ResNet-34 model trained for 30 epochs
from pretrained weights, and the student is a ResNet-18 model starting from random
initialization. In particular, two distillation losses are compared with different interpolation
values of β: (1) SoftTarget, the loss computed between the logits of the teacher and the
student and (2) Attention, a loss computed from features extracted after each residual block
of the teacher and the student. We report the results in Table 6. It can be observed that basing
the knowledge distillation process on logits provides better results than attention. While
SoftTarget compares the respective predictions of the teacher and the student, Attention
holds a stronger hypothesis, that the layers used to compare are extracting the same
information, which can make it harder to set up correctly.
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Table 6. Results of applying knowledge distillation from a ResNet34 to a ResNet18 architecture for 4
different β interpolation values. Mean and standard deviation of accuracy over 3 rounds are reported.
The darker the shade of red, the further the accuracy is from the baseline.

SoftTarget Attention

0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9

83.32 ± 0.14 84.65± 0.31 84.74 ± 0.49 84.34 ± 0.17 81.56 ± 0.25 81.55 ± 0.41 81.64 ± 0.27 81.73 ± 0.67

4. Regularize

The regularize module of FasterAI concerns regularization techniques reducing the
magnitude of weights in the network, according to a chosen granularity. This technique is
often called weight decay when it concerns the granularity of weights. In practice, it adds a
penalty term to the training loss. This penalty term acts as a regularization term, pushing
the group of weights toward a value as small as possible during the optimization process.
When the regularization is used to penalize weights according to their l1-norm, it creates
sparsity in the network. Eventually, this acts as a feature selection method, sparsifying
some weights according to the desired granularity. However, as it is dependent on the
optimization process, the sparsity level cannot be defined beforehand. It is nonetheless
possible to control the importance of the penalty, to impose more or less sparsity in the final
network, thanks to a penalty factor α. The final loss thus receives an extra term, adding the
absolute value of weights for each layer l, according to the chosen granularity, as

Loss = Lc + α ∑
l

R(Wl)

with Lc as the classification loss, generally a cross-entropy computed between the predic-
tions and the labels, and R(Wl) =

1
G ∑g ∑i |wg,i| as the regularization term, G being the

number of elements in each group. Such regularization can be applied in FasterAI by using
the RegularizationCallback, according to a chosen granularity. This callback is presented in
Listing 11.

Listing 11. Code required to perform group regularization in FasterAI.

1 reg_cb = RegularizationCallback(granularity , α)

We provide the results of the experiments conducted for different values of α in
Table 7. As can be observed, a higher value of α leads to a degradation in accuracy, as too
much penalty is being added to the loss value, making the optimization process put more
emphasis on having small magnitude weights instead of an accurate network. Moreover,
we can see that, as opposed to sparsifying, regularization performs better for more coarse
granularities. This can be explained by the fact that the penalty value is dependent on
the granularity structure, as the l1-norm is averaged over the size of each block. This
means that smaller structures will be penalized more, with the regularization term driving
the loss value, thus giving more importance to the l1-norm of weights than to the correct
classification of data.
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Table 7. Results of regularizing ResNet-18 with 4 different penalty strengths. Mean and standard
deviation of accuracy over 3 rounds are reported. The darker the shade of red, the further the accuracy
is from the baseline.

1 × 10−7 1 × 10−5 1 × 10−3 1 × 10−1

weight 80.91 ± 0.44 79.45 ± 0.88 54.50 ± 0.94 23.91 ± 0.54
column 80.45 ± 0.29 81.02 ± 1.32 65.68 ± 1.32 25.91 ± 0.41
row 80.62 ± 1.31 79.39 ± 0.58 65.35 ± 0.49 25.67 ± 0.92
s-weight 80.11 ± 0.30 80.49 ± 0.65 80.67 ± 0.42 66.05 ± 0.59
channel 80.40 ± 0.49 81.56 ± 0.31 80.67 ± 0.11 63.02 ± 1.14
kernel 80.34± 0.14 81.29 ± 0.16 73.16 ± 0.14 27.81 ± 0.84
s-channel 80.35 ± 0.63 79.94 ± 0.59 80.31 ± 0.90 81.00 ± 1.22
s-column 80.09± 1.14 80.80 ± 0.31 81.46 ± 0.23 72.96 ± 0.49
s-row 80.71± 0.91 81.47 ± 0.30 80.29 ± 0.83 74.25 ± 0.21
v slice 80.46 ± 0.92 80.45 ± 0.52 80.43 ± 0.35 72.96 ± 0.84
h slice 80.73 ± 0.40 80.85 ± 0.85 80.98 ± 0.76 71.85 ± 0.63
s-v-slice 81.02 ± 0.74 81.31 ± 0.39 80.58 ± 0.74 80.56 ± 1.52
s-h-slice 80.40 ± 0.14 80.98 ± 0.89 80.12 ± 1.07 81.33± 1.92
s-kernel 81.42± 0.59 80.93± 0.57 81.66 ± 0.41 77.70 ± 0.84
filter 81.13 ± 0.43 81.15 ± 1.31 80.56 ± 0.47 76.48 ± 1.01

5. Misc

The last module of FasterAI is composed of compression techniques that do not fall into
previous categories. In particular, two techniques are considered: (1) batch normalization
folding; and (2) fully connected layer decomposition.

5.1. Batch Normalization Folding

The batch normalization layer is a normalization layer, usually placed between the
computation layer and the non-linearity, and whose role is to normalize input data. This
is performed by subtracting the mean and dividing by the standard deviation computed
by a moving average on input data batches. Normalizing each incoming batch to a mean
of 0 and standard deviation of 1 at each computation layer has been shown to greatly
improve the training performance and to help to obtain a better-behaved optimization
process. However, once the training has been completed, the moving statistics of each
batch normalization layer are fixed. They can thus be incorporated into the computation
layer preceding each of them. This can be achieved by re-expressing in a mathematically
identical way, the weights and bias of the computation layer, taking the normalization
effect into account. The output of a batch normalization layer y, is given by

y = γ
z− µB√

σ2
B + ε

+ β (1)

with µB and σ2
B being the moving statistics computed on each input batch and γ and β,

the learnable parameters of the batch normalization, and z = W × x + b the output of the
previous computation layer, of weight W and bias b. We can thus re-express those weights
and bias, accounting for the parameters of the batch normalization layer as

Wfold = γ · µB√
σ2
B + ε

bfold = γ · b− µ√
σ2
B + ε

+ β
(2)

Once the weights and bias of the computation layer have been changed, the batch
normalization layer can be considered useless and removed, slightly reducing the total
amount of parameters and computation of the network. This operation is called batch
normalization folding, and can be achieved in FasterAI by following Listing 12.



Electronics 2022, 11, 3789 17 of 19

Listing 12. Code required to perform batch normalization folding in FasterAI.

1 bn = BN_Folder ()
2 bn.fold(model)

Batch norm folding can also be considered as a lossless compression technique, as
it does not affect the performance of the model. Indeed, as can be observed in Table 8, it
allows to slightly decrease the parameter count, at no cost for accuracy.

Table 8. Results of performing batch normalization folding on ResNet-18. Mean and standard
deviation of accuracy over 3 rounds are reported. The darker the shade of red, the further the
accuracy is from the baseline.

Trained Model BN Folded Model
Accuracy (%) 80.61 ± 0.42 80.61 ± 0.42
# Parameters 11,228,838 11,224,038

5.2. Fully Connected Layers Decomposition

Traditional neural network architectures such as VGG16 or AlexNet have fully con-
nected layers accounting for up to 95% of their total amount of parameters, thus largely
dominating the global storage footprint of such networks. An efficient way to reduce the
contribution of the fully connected layer to the total amount of parameters is to decompose
those layers using factorization techniques, such as truncated SVD. SVD decomposition
allows to express a large weight matrix X into 3 smaller ones as:

X = UΣV∗

with Σ being the diagonal matrix of singular values, ordered by importance. We can ap-
proximate the matrix X by selecting the leading r× r sub-block of Σ, and the corresponding
r leading columns of U and V. The larger the value of r, the better the approximation
will be.

We can choose the value r according to the desired compression rate. By then replac-
ing the large weight matrix by its decomposition, we are able to reduce the number of
parameters of the model. This can be achieved by applying Listing 13.

Listing 13. Code required to perform knowledge distillation in FasterAI.

1 fc = FC_Decomposer ()
2 fc.decompose(model , pct_removed)

The pct_removed term corresponds to the percentage of singular values kept from
the diagonal of the Σ matrix. The results of applying fully connected layer decomposition
are reported in Table 9. As can be observed, high compression can be achieved before
affecting performance. The compressed model can also be further fine-tuned to recover
from the lost performance.

Table 9. Results of decomposing fully connected layers of ResNet-18 with 3 different compression
levels. Mean and standard deviation of accuracy over 3 rounds are reported. The darker the shade of
red, the further the accuracy is from the baseline.

Trained Model pct_removed 25% pct_removed 50% pct_removed 75%
Accuracy (%) 80.61 ± 0.42 80.84 ± 0.17 80.67 ± 0.61 77.24 ± 0.74
# FC Parameters 52,326 46,766 31,416 15,452

6. Conclusions and Future Development

In this paper, we detail the FasterAI library, which provides a lightweight framework
enabling quick and diverse experiments on neural network compression techniques. More
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particularly, we present the four modules along which the library is developed: (1) sparsify,
concerning techniques introducing sparsity in neural networks; (2) distill, which concerns
knowledge distillation techniques, helping a small model to reach a higher performance;
(3) regularize, providing capabilities to perform grouped weight decay; and (4) misc,
with other compression techniques such as batch normalization folding or fully connected
layer decomposition. For each technique available in FasterAI, we provide extensive proof-
of-concept experiments, performed with ResNet-18 trained on CALTECH-101, validating
the different techniques available in the library, and demonstrating the range of parameters
available by default.

More than just a compression library, we believe that the way FasterAI was built
laid solid foundations to allow an easier implementation of novel compression techniques.
Indeed, its unique granular approach to implementing compression techniques allows
to seamlessly combine and customize them. Additionally, because it possesses many
default options, it will help enthusiasts to apply compression techniques to their neural
networks. Additionally, as demonstrated in the paper, because the implementation of
novel techniques usually comes down to the writing of a single line of code, we hope that
the library will help researchers in the field to create new compression techniques and to
easily perform extensive experiments. We would like to continue developing FasterAI
with the same philosophy in mind, striving for an increasingly flexible and convenient
framework. We would also like to keep it up to date with new compression techniques,
such as quantization [25] and conditional computation [26].
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