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ABSTRACT: Estimating the impact of wind-driven snow transport requires modeling wind fields with a lower grid spac-
ing than the spacing on the order of 1 or a few kilometers used in the current numerical weather prediction (NWP) systems.
In this context, we introduce a new strategy to downscale wind fields from NWP systems to decametric scales, using high-
resolution (30 m) topographic information. Our method (named “DEVINE”) is leveraged on a convolutional neural net-
work (CNN), trained to replicate the behavior of the complex atmospheric model ARPS, and was previously run on a large
number (7279) of synthetic Gaussian topographies under controlled weather conditions. A 10-fold cross validation reveals
that our CNN is able to accurately emulate the behavior of ARPS (mean absolute error for wind speed 5 0.16 m s21). We
then apply DEVINE to real cases in the Alps, that is, downscaling wind fields forecast by the AROME NWP system
using information from real alpine topographies. DEVINE proved able to reproduce main features of wind fields in
complex terrain (acceleration on ridges, leeward deceleration, and deviations around obstacles). Furthermore, an
evaluation on quality-checked observations acquired at 61 sites in the French Alps reveals improved behavior of the
downscaled winds (AROME wind speed mean bias is reduced by 27% with DEVINE), especially at the most elevated
and exposed stations. Wind direction is, however, only slightly modified. Hence, despite some current limitations in-
herited from the ARPS simulations setup, DEVINE appears to be an efficient downscaling tool whose minimalist ar-
chitecture, low input data requirements (NWP wind fields and high-resolution topography), and competitive
computing times may be attractive for operational applications.

SIGNIFICANCE STATEMENT: Wind largely influences the spatial distribution of snow in mountains, with direct
consequences on hydrology and avalanche hazard. Most operational models predicting wind in complex terrain use a
grid spacing on the order of several kilometers, too coarse to represent the real patterns of mountain winds. We intro-
duce a novel method based on deep learning to increase this spatial resolution while maintaining acceptable computa-
tional costs. Our method mimics the behavior of a complex model that is able to represent part of the complexity of
mountain winds by using topographic information only. We compared our results with observations collected in com-
plex terrain and showed that our model improves the representation of winds, notably at the most elevated and ex-
posed observation stations.

KEYWORDS: Snow; Wind; Artificial intelligence; Data science; Deep learning; Machine learning

1. Introduction

The transport of snow particles by the wind, hereinafter re-
ferred to as drifting snow, is a key process for understanding
the spatial distribution of mountain snowpacks (Mott et al.
2018). Drifting snow redistributes both falling hydrometeors
before they reach the surface and snow originating from the
surface through mechanisms of ablation and deposition. As
the mountain snowpack acts as a major freshwater reservoir
during winter and spring in continental areas, its spatial distri-
bution prior to and during the melting periods is of high

importance for human activities, with consequences in terms
of flood hazard, hydropower management, and more gener-
ally water resource management (Lehning 2013; Jörg-Hess
et al. 2015; Vionnet et al. 2020). At the scale of a mountain
slope, drifting snow is also influencing the evolution of ava-
lanche hazard (Schweizer et al. 2003; Lehning et al. 2000),
thus impacting the safety of infrastructures and people.

In addition to its influence on snow preferential deposition,
wind fields are the major driving factor of snow erosion over
snow-covered areas (Xie et al. 2021). Topography has a strong
influence on wind fields, first influencing the motion of large-
scale air masses (Wanner and Furger 1990), and second intro-
ducing a strong spatial variability in wind fields at a very local
scale (Lewis et al. 2008; Sharples et al. 2010; Butler et al.
2015). Dynamic modifications of incoming flows, often re-
ferred to as terrain-forced flows (Whiteman 2000), occur
when air masses interact locally with topography. The most
noticeable features of terrain-forced flows are speedup on
mountain crests, accelerations across gaps and passes, or
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changes in wind direction with channeling in topographic de-
pressions and around obstacles (Whiteman 2000).

Mountain wind fields commonly present a high variability
at a local scale (,100 m) (Mott et al. 2018), intrinsically lim-
iting the benefit of numerical weather prediction systems
(NWP), which generally operate with a horizontal grid spac-
ing above 1 km (e.g., Baldauf et al. 2011; Seity et al. 2011;
Kehler et al. 2016; Pickering et al. 2020). Furthermore, basic
interpolation methods (i.e., linear, polynomial), when ap-
plied to synoptic winds provided by NWP models, do not ac-
curately represent the complex reality of mountain winds
(Wagenbrenner et al. 2016). Consequently, dynamic down-
scaling methods are often used to infer the behavior of
mountain winds at a local scale (Raderschall et al. 2008;
Mott and Lehning 2010; Vionnet et al. 2014). These meth-
ods rely on complex atmospheric models to handle coarse-
scale signal, and to generate high-resolution wind fields.
They solve equations of state describing the flow, including its
interaction with the terrain and more generally the representa-
tion of various physical processes that most directly determine
the large spatial variability of wind fields in complex terrain
(Mott and Lehning 2010). The counterpart of this complexity
lies in large computing requirements, hence restricting the use
of the method to small domains and/or limited time scales
(Mott and Lehning 2010; Vionnet et al. 2014). Therefore, mod-
els with relatively low complexity have been developed and
provide a good trade-off in terms of physical complexity versus
numerical costs (Forthofer et al. 2014; Vionnet et al. 2021).
Statistical parameterizations using topographic information
have also been largely used to bridge the gap between coarse-
scale-resolution wind fields provided by NWP models and the
high-resolution forcings required by small-scale applications
and, notably, drifting snow models (Liston and Elder 2006;
Helbig et al. 2017; Winstral et al. 2017). Such downscaling
methods identify parameters expected to capture the effect
of topography on the wind fields and then apply statistical
operations to transform the coarse-scale signal into a dis-
tributed signal at a higher target resolution. The choice of
accurate parameters relies both on the identification of
dominant physical processes at a local scale (e.g., sheltering,
exposition, channeling) and their formulation through a
mathematical expression (using, e.g., curvature, slope, and
Laplacian). For example, the MicroMet model (Liston and
Elder 2006) identified slope, terrain slope azimuth, and cur-
vature as relevant parameters to account for the effect of
local topography on wind fields, whereas Winstral et al. (2017)
modeled sheltering/exposure of locations to wind using the
terrain parameter Sx (Winstral et al. 2002; see section 3a) and
the topographic position index (TPI; Weiss 2001). Comple-
mentarily, Helbig et al. (2017) identified the local Laplacian
from terrain elevations and squared slope as valuable parame-
ters to downscale wind speeds. Recently, new statistical ap-
proaches have emerged to downscale wind fields in complex
terrain (Bonavita et al. 2021). Notably, Dujardin and Lehning
(2022) proposed an architecture based on convolutional neural
network (CNN) to process both topographic information and
NWP data in order to perform pointwise predictions of wind
fields in the Swiss Alps at high resolution (,100 m). Höhlein

et al. (2020) similarly used CNN to downscale wind fields but
at a larger spatial scale, capturing physical processes that influ-
ence the motion of synoptic air masses.

In this study, we leverage on a combination of simulations
obtained with a complex atmospheric model and deep learning
methods to tackle the issue of wind downscaling in complex ter-
rain. We proceed as follows: we use a high number of existing
atmospheric model simulations performed with the Advanced
Regional Prediction System (ARPS) atmospheric model, all ob-
tained under controlled atmospheric conditions over a set of
synthetic Gaussian topographies (Helbig et al. 2017). Using
those simulations, we derive a link between coarse-scale wind
fields (such as winds provided by an NWP), topography, and
high-resolution wind fields through a parameterization, in a
manner similar to statistical downscaling. However, in our case,
the statistical relationship is automatically determined using an
artificial intelligence model and, more specifically, a CNN.

2. Data

a. ARPS simulations

1) ARPS CONFIGURATION

ARPS is an atmospheric model that solves the nonhydro-
static and compressible Navier–Stokes equations. A detailed
description of the model implementation can be found in
(Xue et al. 2000, 2001). Notably, the model is able to repre-
sent several features of terrain-forced flow such as speedup
on crests, sheltering, separation, recirculation, topographic
channeling (Raderschall et al. 2008), and thermally driven
winds such as valley breezes (Anquetin et al. 1998).

Helbig et al. (2017) performed individual simulations with
ARPS on synthetic topographies derived from isotropic and
stationary Gaussian random fields (GRF). GRF are stochas-
tic processes, that have been identified as a good proxy for
real topographies, particularly in their ability to approxi-
mate real slope distributions (Helbig and Löwe 2012) and
have already been successfully used to develop topo-
graphic parameterizations (Helbig and Löwe 2012, 2014;
Helbig et al. 2017). In this study, we make use of ARPS
simulations performed on individual Gaussian topogra-
phies (Helbig et al. 2017). Each simulation covers a rectan-
gle of 79 3 69 pixels with a horizontal resolution of 30 m.
Notably, a broad range of topographic characteristics was
achieved by selecting nine combinations of the two charac-
teristic length scales: the typical width j [200–1000 m; see
Eq. (1)] and typical height sDEM (88–364 m) of topographic
features, for 5 spatial mean square slopes m (198–368) within a
topography:

j 5

��

2
√

3 sDEM

m
: (1)

Each combination of j, sDEM generated 200 realizations, re-
sulting in a total of 9000 topographies [for more technical de-
tails see Table 2 in Helbig et al. (2017)]. About 80% of the
topographies (7279) resulted in usable simulated wind fields
and were used in this study.
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For these ARPS simulations, constant initial atmospheric
conditions were chosen. Notably, all simulations were initial-
ized with a constant wind profile, initially oriented from left
to right (wind coming from the west) with a speed of 3 m s21.
The atmospheric stability was fixed as neutral (as frequently
observed during drifting snow episodes) and radiation effects
were neglected (Helbig et al. 2017). Thermally driven flows
were neglected to solely represent the interaction between
large-scale flow and topography. The total integration time
was limited to 30 s (with an integration time step of 0.1 s), pro-
hibiting the dominance of turbulence in the outputs, and re-
stricting the simulated flow to the resultant of the adaptation
of a mean flow to local topography (Raderschall et al. 2008;
Mott and Lehning 2010). In all simulations, the surface was
representative of uniform snow-covered areas, with an aero-
dynamic roughness length of 0.01 m. We give an example of
three ARPS simulations, encompassing different mean slopes
(308, 108, and 368) and j (400 and 800 m), and their associated
topography in Fig. 1 (see also the same figure with normal-
ized axis in section S.6 and Fig. S4 in the online supplemental
material). Notably, we observe accelerations on peaks (red ar-
rows) and deceleration windward and leeward (blue arrows).
The intensity of the modifications of the high-resolution wind
differs with mean slope and j, the largest modulations occur-
ring on the steepest topographies.

2) CHARACTERISTICS OF THE SIMULATIONS

We describe in this section the characteristics of ARPS
wind outputs (Fig. 2), which constitute our training database.

The speed of the wind outputs (three-dimensional outputs,
speed computed using

������������������

u2 1 y2 1 w2
√

) are distributed follow-
ing Fig. 2a. As noted in Helbig et al. (2017), the mean wind
speed simulated by ARPS is always slightly less than 3 m s21,
the speed that served as initialization. Notably, the steeper
the mean slope, the lower the mean wind speed. This behav-
ior exemplifies the mean drag exerted by the topography
on the flow and the associated loss of momentum, which is
intensified on rougher terrain. Oppositely, the distribution
tails highlight more frequent intense wind speeds on steep
topographies. We note that ARPS simulates accelerations
up to 4 times the initial wind speed and reductions to almost
null wind speeds.

ARPS simulated wind fields deviated from the direction of
the input wind (west) in both directions according to Fig. 2b.
Counterclockwise and clockwise deviations are equally rep-
resented in our dataset and range from 08 to 828. The distri-
bution of angular deviations is centered on zero for each
category of mean slope and deviations introduced by ARPS
are generally low. Such deviations can be representative of
flow deflections around obstacles, alignment of the flow on
ridges and more generally encompass an adaptation of the
flow to local topography. The formation of turbulent struc-
tures was deliberately prevented in the ARPS simulations
used here as training dataset: the ARPS wind fields thus do
not describe more complex behaviors of mountain winds,
such as turbulent recirculation or extremely strong devia-
tions (e.g., barrier jets), which are generally epitomized by
higher angular deviations (Raderschall et al. 2008; Sharples
et al. 2010; Whiteman 2000). Similar to the situation with

FIG. 1. (a)–(c) Maps featuring examples of Gaussian topographies, and (d)–(f) surface winds from the ARPS first layer on these topog-
raphies. The ARPS first layer has a mean elevation above ground of 2.95 m. These three simulations, as labeled, exemplify topography
and model output couples that constitute our training database.
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wind speeds, we observe that the most intense wind direc-
tion modifications from the input wind occur on the steepest
mean slopes.

b. AROME simulations

AROME is a limited-area NWP system used by Meteo-
France (Seity et al. 2011). It provides short-term forecasts of
atmospheric fields since 2008, over a domain encompassing
the French Alps. Benefiting from its high horizontal resolu-
tion (1300 m) and complex physics and dynamics, the model
has gained interest for mountain meteorology and snow sci-
ences, progressively bridging the gap with coarser atmo-
spheric products currently used to force snow models over
the French mountain ranges (Quéno et al. 2016; Vernay
et al. 2022; Gouttevin et al. 2023). AROME solves the
nonhydrostatic fully compressible Euler equations system
using hybrid pressure terrain-following coordinates. Nota-
bly, AROME uses a subgrid parameterization to describe
the influence of unresolved orography on wind fields, via an
effective roughness length described in Georgelin et al.
(1994). We used here 10-m AROME wind fields initialized
from the 0000 UTC analysis, from which we extracted daily
forecasts between 0000 UTC 1 7 h and 0000 UTC 1 30 h at
an hourly resolution. This way, we reconstructed continuous
time series of gridded wind fields over the French Alps for a
period of interest extending from 1 August 2017 to 31 May
2020.

c. Observations

Hourly observations of wind speed and direction have
been collected and quality-checked in order to evaluate
the downscaling scheme over real alpine topographies. A
total of 61 automatic weather stations (AWS) acquiring
wind measurements have been selected in the French Alps
(Fig. 3). Most of them are part of Meteo-France operational
observational network. Three stations: Vallot observatory
(latitude 5 45.838, longitude 5 6.858; elevation 5 4360 m),
Argentieres glacier (latitude 5 45.968, longitude 5 6.978;
elevation 5 2434 m), and Saint-Sorlin glacier (latitude 5 45.178,
longitude 5 6.178; elevation 5 2720 m) are part of the glacier

and climate observations {Glacier, anObservatory of theClimate
[les Glacier, un Observatoire du Climat (GLACIOCLIM)]}
network. Three other ones are located at Col du Lac Blanc
(latitude5 45.128, longitude5 6.118; elevation5 2720 m) in the
Grandes Rousses massif and belong to a high-mountain meteo-
rological observatory dedicated to drifting snow and snow–
atmosphere interactions (Vionnet et al. 2017; Guyomarc’h et al.
2019). The 61 sites cover the whole French Alps and a large vari-
ety of terrain, with some stations being located on flat surfaces,
other on slopes, and some on exposed terrain (e.g., Aiguille du
Midi: latitude 5 45.878, longitude 5 6.888; elevation 5 3845 m).
The observation stations are mainly located in nonforested areas
and aremostly snow covered during the winter seasons.

Wind observations are commonly subject to measurement
errors (DeGaetano 1997), particularly when collected in a
challenging mountainous environment. These measurement
errors can be of diverse nature and occur at different steps
during the data collection process (Lucio-Eceiza et al. 2018a).
A striking example of wind sensor dysfunction in mountain
terrain is null and constant wind speed observations for
several consecutive hours due to the accretion of ice on the
sensor. Because our data come from different networks,
their quality is unequal. Thus, we homogenized the quality
standard of our dataset by applying a quality check, deeply
inspired by Lucio-Eceiza et al. (2018a,b). These authors
proposed a series of sequential tests designed to detect
suspicious wind observations. We adapted the quality pro-
cess of Lucio-Eceiza et al. (2018a,b) to fit the specificities
of our dataset by selecting the most relevant tests and
eventually introducing some modifications, as listed in sec-
tion S.1 in the online supplemental material. We refer to
Lucio-Eceiza et al. (2018a,b) for the evaluation of the qual-
ity process.

3. Method

This paper’s method is organized as follows: we first build a
statistical model by notably fitting a CNN to ARPS simula-
tions. Then we use this statistical model to downscale wind
fields from the AROME NWP system in the French Alps.

Angular deviation from West [°]Wind speed [m/s]

Mean slope [°]

(a) (b)

FIG. 2. (a) Wind speed and (b) angular deviation distributions as simulated by ARPS on the 7279 Gaussian topogra-
phies. Such winds constitute the training dataset used to fit the CNN of the DEVINE model.
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a. Topographic descriptors

In this study we make use of several parameters describing
the topography and derived from digital elevation models
(DEMs), all with a 30-m horizontal resolution dx. Here, we
describe these parameters shortly with references: the TPI
(Weiss 2001) compares the elevation of a DEM pixel with the
mean elevation of the neighboring pixels given a fixed radius.
The radius is equal to 500 m in our study, and consequently
the TPI parameter is oriented toward the detection of topo-
graphic peaks/bowls on the slope scale. The Sx parameter
(Winstral et al. 2002), is a direction-dependent parameter and
quantifies how sheltered or exposed a pixel is within a given
radius [here 300 m, as in Winstral et al. (2017)]. In detail,

Sx 5 (zj 2 zi)/dij, where |tan[(zj 2 zi)/dij]| 5 maxk|tan[(zk 2

zi)/dik]|, with xi being the cell of interest and k being the index
of any pixel located in a zone starting from xi and extending
toward a direction defined by the incoming wind direction,
within a 308 window and a 300-m maximum distance from xi.
Last, dij indicates the distance between xi and xj. In summary,
positive values for Sx indicate sheltering for xi, that is, how
much xi is protected from incoming wind within a 300-m ra-
dius, whereas negative Sx values quantify exposure. TPI and
Sx are thus computed using information from neighboring
pixels within a given radius and thus integrate information
from areas located within a few hundreds of meters to charac-
terize each DEM pixel. In contrast, the discrete Laplacian Df:

D(fx, y) 5 f (x 1 dx, y) 1 f (x 2 dx, y) 1 f (x, y 1 dx) 1 f (x, y 2 dx) 2 4f (x, y)
dx2

, (2)

which aims at detecting local peaks and bowls in topographic
maps, and the squared slope, referred to as slope and com-
puted following Helbig et al. (2017), only consider nearest-
neighbor pixels in addition to the cell of interest and hence
provide very local topographic information. We use these
four parameters to characterize alpine and Gaussian topogra-
phies in sections 4 and 5.

b. Fully convolutional neural networks

CNN are a specific kind of neural network that benefits the
use of convolution operations on tensors and are well suited

for pattern recognition among spatialized data. Fully convolu-
tional neural networks (FCN) are a specific type of CNN, pro-
posing an end-to-end solution relying on convolutional and
pooling layers without any use of dense networks, making
them an efficient solution for gridded predictions. Convolu-
tional layers consist of convolving a filter (i.e., a matrix with a
predetermined size) to input data so as to detect spatial pat-
terns. The product of convolutions goes through pooling
layers that reduce their spatial resolution. Repeating both op-
erations hence permits us to encode spatial features with a
high level of abstraction. In FCN, encoding operations can be

FIG. 3. Locations of observation stations (colored triangles) used for model evaluation. The
colors of the observation sites indicate their elevation ranges. The small application domain used
later in Fig. 6 is outlined in blue, and the larger domain that is used later in Fig. 7 is outlined in
red and magnified in the zoom.
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followed by a decoding stage, where convolutions are mixed
with spatial interpolations of the encoded signal, to sequentially
increase the spatial resolution. The Unet architecture has been
introduced in 2015 (Ronneberger et al. 2015) and constitutes a
specific type of FCN frequently used for meteorological applica-
tions (Trebing et al. 2021; Fernández and Mehrkanoon 2021).
In Unet (Fig. 4), encoding and decoding stages are connected
through concatenation operations, which makes it possible to
transfer high-resolution information to lower-resolution infor-
mation within the model architecture. Indeed, data in the first
layers of the Unet have not been through almost any pooling
operation. Hence, this “raw” (or moderately encoded) infor-
mation from the encoding stage is used to complement en-
coded and processed information from the decoding stage.
Such an operation is also frequently referred to as “skip con-
nection” (Lagerquist et al. 2021).

Here, two-dimensional topographic maps are fed into a
Unet architecture. The model then outputs three features
maps, each one of them representing a component of the
wind vector. To determine the appropriate filters used in
the convolutional layers, the Unet is fitted during a training
step using Gaussian topographies as inputs and ARPS simu-
lations as labels (see section 1). Model architecture and

performance are investigated using 10-fold cross validation.
Cross validation consists of randomly partitioning our data-
base into “training” data (90% of the data) and “test” data
(the remaining 10%), which permits us to fit the CNN on the
first group and evaluate its performance on the second group.
For a more robust evaluation, the process is repeated 10 times
by rolling over 10 random training/test splits. Furthermore, we
extracted validation data from the training data (i.e., 10% of
the remaining 90% among the 10 folds) to follow a validation
loss (mean absolute error on validation data) during training.
We sequentially reduced the learning rate when the loss reached
a plateau (“reduce on plateau”), and eventually stopped the
learning process (“early stopping”) whenever the validation loss
stopped decreasing for 15 epochs (“patience”). This approach,
coupled with the fact that after validation the CNN outputs are
evaluated on an independent test set, aims at limiting the risk of
overfitting the training set. In our specific case, hyperparameter
tuning did not prove crucial to converge toward an efficient
CNN architecture, as the training statistics highlighted a low
sensibility to the different hyperparameters. We adopted a
shallower version of the initially published Unet with only
two additional layers corresponding to dropout connections,
added to limit overfitting during the training phase. The selected

FIG. 4. Workflow of the downscaling model DEVINE. Both preprocessing operations (labeled A–E) and postprocessing opera-
tions (labeled F) are required before and after calling the CNN for predictions. In detail, label A corresponds to the selection of
wind fields in the form of gridded outputs provided by an NWP system. This grid is interpolated (label B), and the following opera-
tions are done pixelwise: DEM data around each pixel are first selected (label C), then rotated with respect to the initial wind direc-
tion provided by the NWP system, and finally cropped (label E) to match the CNN input size. The CNN is then called and outputs
high-resolution maps of wind fields. Within the CNN, the following standard operations are used: normalization, padding maps
with zeros (“ZeroPadding”), convolutions (“Conv.”), dropout connection (“Dropout,” only during training), maximum pooling op-
eration (“MaxPooling”), concatenations (“Concat.”), cropping map borders (“Cropping”), and increasing the size of a matrix by re-
peating its rows and columns (“UpSampling2D”). Small numbers next to each layer represent the number of features maps. The
scaled outputs of the CNN go through an activation layer to ensure that plausible values are produced. Wind patches are ultimately
rotated back and placed on the high-resolution grid to constitute a continuous map of wind fields (label F).
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hyperparameters are summarized in section S.4 and Table S.1 in
the online supplemental material.

c. DEVINE downscaling model

Several preprocessing and postprocessing steps are required
before and after calling the CNN in order to generate high-
resolution wind predictions on real topographies (Fig. 4). Their
combination with the CNN forms a full downscaling scheme
that we named Downscaling Wind Fields in Complex Terrain
with Deep Learning, Applications for Nivology and Associated
Challenges [Descente d’Echelle de Vent par Méthodes d’Ap-
prentissage Profond, Application pour la Nivologie et ses En-
jeux (DEVINE)].

First, the initial NWP gridded outputs (Fig. 4: label A)
are upsampled using bilinear interpolation (using a factor
of 2) (Fig. 4: label B). This step is necessary to ensure that
the initial NWP signal is (i) dense enough to produce continu-
ous wind fields at 30-m spatial resolution, and (ii) smoothly
densified before calling the Unet, so that the final high-
resolution maps produced are not affected by chesslike
patterns. First, the initial NWP gridded outputs (Fig. 4:
label A) are interpolated using bilinear interpolation and
an interpolation rate of two (the dimensions of the inter-
polated grid are twice the original dimensions) (Fig. 4:
label B). Two reasons justify the use of interpolation:
firstly since the outputs of our CNN are of predetermined
size (79 3 69 pixels), we have to ensure that predicted
maps (around each NWP pixel) are sufficiently large to be
juxtaposed one next to each other without introducing any
hole in the final downscaled map. In our case, the grid
spacing configuration (DEM 5 30 m; NWP 5 1300 m) en-
sures having no holes in the final maps. But for applica-
tions with, for example, another NWP system of coarser
grid spacing, an initial interpolation of the NWP grid may
be used to ensure spatial continuity. Second the use of in-
terpolation is motivated by the necessity to reduce chess-
board-like patterns. Such patterns appear at the NWP gridcell
boundaries when downscaling gridded data (Winstral et al.
2017; Dujardin and Lehning 2022); see section 5c. They can be
largely diminished by downscaling an interpolated map, that is,
downscaling a higher-resolution grid where the transition be-
tween wind values of two neighboring grid points is less abrupt
than in the original grid. Then, each interpolated NWP pixel is
downscaled sequentially as described hereinafter. For each in-
terpolated NWP pixel, high-resolution topography patches sur-
rounding the pixel are first extracted (patches of size 140 3 140
pixels, Fig. 4: label C) and then rotated with respect to the
NWP wind direction so that the rotated direction is from the
west (Fig. 4: label D), similar to the ARPS simulations. The ro-
tated patches of topography are then cropped (to 793 69 pixel
size), normalized using their mean value and the standard de-
viation of the Gaussian topographies used during the training
phase, and then go through the CNN (Fig. 4: label E), which
produces three maps corresponding to the three components
of wind speed. Horizontal wind speed and direction are then
computed from wind components. This step eventually in-
volves a linear scaling [UVscaling; Eq. (3)] applied to the speeds

outputted by the CNN [UVcnn; Eq. (3)] using AROME wind
speed [UVAROME; Eq. (3)], as CNN outputs are only valid for
an input speed of 3 m s21 [UVinitARPS; Eq. (3) and section 2a]:

UVscaling 5 UVAROME 3
UVcnn

UVinitARPS
: (3)

We discuss the implication of this assumption in section 5.
Given that we extrapolate results obtained on a set of Gaussian
topographies under controlled atmospheric conditions to the
very vast diversity of real topographies and atmospheric condi-
tions (section 5a), we introduced a custom activation layer using
a modified arctan function g that eventually curbs predicted un-
realistic large wind speeds at extreme locations to plausible
wind speeds:

g(x) 5 a arctan(x/a): (4)

This function does not act as a bias corrective term, but
rather as a safety guard: we defined a maximum acceptable
mean speed in our model (60 m s21), which is above the
maximum observed speed in our historical observational da-
taset (36 m s21) and scaled the parameter a (538.2) so that
the g limit in positive infinity is equal to 60. The choice of the
function arctan is motivated by the shape of the function g
(monotonically increasing and progressively departing from the
1–1 line for speeds above 20 m s21; see section S.5 and Fig. S3
in the online supplemental material). Following these proper-
ties, g has an almost null impact on downscaled wind speeds
lower than 20 m s21 (i.e., most of the time) and starts lowering
speeds for outputs larger than .20 m s21. Hence, g limits the
simulation of unrealistic wind speeds that could potentially be
obtained when particularly high NWP wind speeds are associ-
ated with the highest accelerations, generally obtained on the
most exposed locations in real topographies.

In the final step of the DEVINE model, the downscaled
pixels generated by the CNN are rotated back to their original
position (Fig. 4: label F), in the opposite direction of the first
rotation (Fig. 4: label D), and assembled to reconstruct a con-
tinuous regularly spaced grid of wind predictions, with a hori-
zontal grid spacing of 30 m. CNN outputs can overlap one on
each other and are thus cropped (patch size 5 23 pixels) to
avoid overlapping areas in the final predictions.

4. Results

a. Performance at emulating ARPS

We first assess the performance of the CNN at emulating
ARPS on synthetic topographies on the test datasets, using
10-fold cross validation (Fig. 5 and Table 1). We computed the
error between all predicted maps and corresponding labels pix-
elwise and categorized the CNN errors (i.e., the difference be-
tween modeled and observed value, defined at each time step)
in terms of topographic characteristics (TPI, Sx, Laplacian, and
slope) to interpret the results encapsulated in integrated met-
rics. Each TPI, Sx, Laplacian, and slope values are sorted ac-
cording to their position in their respective distribution using
the 0.25 quantile q25, 0.5 quantile q50, and 0.75 quantile q75. We
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observe that all errors on the test groups are centered on 0, sug-
gesting that the CNN is able to produce unbiased estimations
of ARPS wind fields. Errors are relatively low: boxplots suggest
that most of the speed errors are lower than 0.25 m s21, with a
mean absolute error of 0.16 m s21 (5% of the initial wind speed;
Table 1). Similarly, most of wind direction errors range be-
tween 25 and 58. More specifically, we observe that the pixels
corresponding to the most complex terrain (i.e., steepest slopes
or tails of the parameter distributions) lead to larger errors, sug-
gesting the difficulty to capture wind behavior in the most ex-
treme terrains (Fig. 5). However, this could be explained by the

fact that the largest wind speeds and angular deviations are also
observed on the most complex terrain: when relative errors
(i.e., errors at each time steps divided by ARPS wind speed)
are considered, the performances of the CNN are more bal-
anced among all topographic classes (see section S.2 and
Fig. S1 in the online supplemental material). We note that
the meridional component of the wind presents lower errors
than the zonal component (Table 1), also in line with stron-
ger zonal wind speeds due to ARPS initial conditions (wind
coming from the west). Last, we analyzed the spatial loca-
tion of the errors and observed that most errors are located
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FIG. 5. Performance (errors) of the CNN at reproducing ARPS behavior on Gaussian topographies, using a 10-fold cross validation. All
of the statistics presented have been acquired using test data (i.e., data not used during the training phase) and explored using parameters
describing the topography (TPI, Sx, Laplacian, and slope). All parameters are categorized in four classes according to the quantiles of the
parameter distribution (q25, q50, and q75). Each boxplot has been computed using approximately 10 million samples.

TABLE 1. Performance of the Unet model at emulating ARPS on Gaussian topographies, using a 10-fold cross validation. All the
statistics presented have been acquired using test data (i.e., data not used during the training phase); U, V, and W respectively refer
to the zonal, meridional, and vertical component of wind speed; UV designates the horizontal wind speed (

������������

U2 1 V2
√

); and UVW is
the three-dimensional wind speed (

��������������������

U2 1 V2 1W2
√

). Also, AE refers to absolute error and r is the Pearson correlation coefficient.

U (m s21) V (m s21) W (m s21) UV (m s21) UVW (m s21) Wind direction (8)

Mean bias ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 }

Mean AE 0.15 0.13 0.06 0.16 0.16 3
q25 AE 0.04 0.04 0.01 0.04 0.04 1
q50 AE 0.10 0.08 0.03 0.10 0.10 2
q75 AE 0.19 0.17 0.08 0.20 0.21 3
r 0.96 0.94 0.99 0.96 0.95 }
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on the margins of topography maps (see section S.3 and
Fig. S2 in the online supplemental material).

b. Case study: Application to a small domain

We explore the behavior of DEVINE on real topographies
by first downscaling a single AROME grid cell surrounding
the Col du Lac Blanc experimental site in the French Alps
(Fig. 6). This observation site (see section 2c) is composed
of three distinct AWS located between tens to a few hundreds of
meters from each other. The Lac station (L in Fig. 6; elevation5

2720 m) and Muzelle (M in Fig. 6; elevation 2722 m) are
both located along a north–south pass. The relative proxim-
ity of the two stations makes them subject to very similar lo-
cal wind conditions. On the contrary the Dome station (D in
Fig. 6; elevation 5 2808 m) is located on a small hill, domi-
nating the pass by 85 m in elevation. This station is more
subject to the influence of the hill on the local flow and is
more exposed (TPI at Dome 5 164 m, TPI at Muzelle 5

224 m, and TPI at Lac 5 227 m). In our case study, infor-
mation from the nearest interpolated AROME grid point

(A in Fig. 6; distance to the Lac station5 148 m, and pixel ele-
vation 5 2681 m) is first extracted for three dates (Fig. 6a:
1100 UTC 7 March 2018; Fig. 6b: 0900 UTC 6 April 2021;
Fig. 6c: 0000 UTC 9 April 2021) and then downscaled using
DEVINE. We selected the dates using the following criteria:
(i) three distinct initial wind direction (respectively, west,
north, and east as simulated by AROME), (ii) different
AROME speeds (#3, ’3, and $3 m s21), (iii) AROME
roughly in phase with local observations (speed error less than
2 m s21 and direction error less than 908), and (iv) including
one “close to training” condition, that is, a neutrally stratified
boundary layer (20.1 # observed Richardson number ≤ 0.1)
with an AROME speed close to 3 m s21 (Fig. 6c).

At 1100 UTC 7 March 2018, a west flux blows above the
massif, with AROME locally simulating a low wind speed
(1.4 m s21) with a west-southwest direction, (2438). DEVINE
downscales the AROME signal and increases the speed on D
(2 m s21). The flow is decelerated on both the windward and
the leeward areas, but it is almost unchanged when compared
with AROME at M and L (1.3 m s21 at L and 1.4 m s21 at M;
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FIG. 6. Downscaling AROMEwind fields at Col du Lac Blanc using DEVINE for three specific dates: (a) 1100 UTC
7Mar 2018, (b) 0900UTC 6Apr 2021, and (c) 0000UTC 9Apr 2021;M, L, andD correspond to three in situ wind obser-
vations (Muzelle, Lac, and Dome stations), and A corresponds to the AROME forecast wind field. The x and y coordi-
nates are expressed in Lambert 93 projection, i.e. EPSG 2154. Note that the left y axes are divided by 13 106.
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model). DEVINE acceleration patterns at D are consistent
with the observations (observed wind speed at D 5 2 m s21),
but the model fails to fully capture deceleration at M and L
(respectively, 1 and 0.4 m s21 for the observations). In terms
of direction, the observed wind aligns perpendicularly to the
topographic barrier at D (2858, observation), a feature par-
tially captured by DEVINE (2538; model). The model then
suggests a small deviation of the flow toward the north of the
pass (2278; model), which is slightly confirmed by observation
at M (2578; observation). However, L suggests an orientation
of the flow toward the south of the pass (3038; observation),
but the direction observation is acquired for an almost null
wind speed (0.4 m s21; observation).

On the second example (Fig. 6b; 0900 UTC 6 April 2021),
the synoptic conditions indicate a flux from the north above
the western French Alps, and AROME locally forecasts a
278 wind direction (north-northeast) characterized by larger
speeds (5.5 m s21). DEVINE accelerates AROME wind at
D (6.8 m s21; model), and across the pass at L and M (6.9
and 7 m s21). The observed speed is larger at D (5.8 m s21;
observation) than at L and M (respectively, 4.1 and 4.6 m s21;
observation). Interestingly, the acceleration at the pass, cap-
tured by DEVINE but not retrieved in the observation at this
specific date, is a well-known behavior of wind fields at M and
L, where drifting snow measuring devices have been specifi-
cally installed to monitor wind driven processes. In terms of di-
rection, DEVINE suggests almost no deviation at D, L and M
(338, 198, and 188; model), a pattern not confirmed at L (648;
observation). The explanation of this divergence can also be
retrieved in the observation acquisition process, because the
quality control flagged as suspicious the direction observation
at L for this specific date.

On the third and final case (0000 UTC 9 April 2021), synoptic
conditions feature a flux from the south with AROME simulat-
ing a wind speed 5 2.4 m s21 and a wind direction 5 1308
(southeast). As in Figs. 6a and 6b, observations suggest stronger
winds at D (3.4 m s21; observation) than L and M and this vari-
ability is captured by DEVINE (3.7 m s21 at D; model). This
could be interpreted by the incidence of the incoming synoptic
wind forecast by AROME, which is rather perpendicular to
the hill around D. AROME speeds are almost unmodified by
DEVINE at M and L (respectively, 2.4 and 2.4 m s21; model),
a pattern confirmed by the observation at M and L (2.4 m s21

at M and 2.6 m s21 at L; observations). DEVINE agrees with
AROME direction without introducing any important direc-
tional shift at D, M, and L (respectively, 1268, 1438, and 1448).
Oppositely, the observations suggest a flow from the south
and a tendency to align along the pass at M and L (respec-
tively, 1638, 2088, and 1618 at D). In this example, a small dif-
ference in both speed and direction occurs between M and L,
which might highlight very local phenomena and more gener-
ally the spatial variability of wind speed at scales below 30 m
in complex terrain.

All the above examples illustrate how DEVINE produces ac-
celerations and decelerations with respect to the underlying to-
pographic features, and how zones of accelerations/deceleration
and their relative intensity are a function of the AROME wind
direction that served as initialization. This is of high interest for

the modeling of drifting snow, as, for example, the zones of
deceleration simulated in Fig. 6 could potentially favor flux
convergence and hence shape drifting snow deposition
(Vionnet et al. 2021). Further work might use more dense
observation networks such as in Taylor and Teunissen
(1987), Butler et al. (2015), and Wagenbrenner et al. (2016)
to better characterize the spatial variability of DEVINE
wind fields.

c. Case study: Application to a large domain

The DEVINE architecture can also be deployed on larger
domains than Fig. 6 to downscale wind fields provided by
gridded outputs of an NWP (Fig. 7). We selected a 40 km
by 30 km domain in the French Alps (Fig. 7a), and down-
scaled AROME wind forecast at 1500 UTC 11 July 2019
(Figs. 7b–d). For this specific date, the dominant wind direc-
tion was from the west with maximum AROME speeds
reaching 7.7 m s21. Figure 7 shows the initial AROME wind
with a 1300-m horizontal resolution (green/yellow arrows)
and the downscaled speeds at 30-m horizontal resolution
(violet/orange color). We observe strong modifications of speeds
on this domain (maximum downscaled speed 5 16.2 m s21).
Highest downscaled wind speeds appear on clear lines in
Fig. 7b, which mostly correspond to mountains ridges and sum-
mits as identified in Fig. 7a. Oppositely, dark violet areas corre-
spond to low wind speeds as simulated by DEVINE and are
often in phase with low AROME speeds (small arrows), sug-
gesting that even if DEVINE modifies the AROME signal, it
still respects important features provided by the NWP system
(areas of high wind speeds vs areas of low wind speeds).
Thus, even though DEVINE has been fitted to simulations per-
formed assuming certain weather conditions and is not able to
reproduce some processes of mountain winds at a local scale
(recirculation areas, thermally driven flows, etc.), the larger-
scale wind fields simulated by AROME, which can be obtained
under all types of weather conditions, can be used to drive the
downscaling model. Accelerations and decelerations lie in the
range of accelerations/decelerations as simulated by ARPS on
synthetic topographies (section 2). We also observe strong accel-
erations with DEVINE on the Grandes Rousses massif (Fig. 7a;
white ellipse) and on the Aiguille d’Arves massif (Fig. 7a; red
ellipse), which are both oriented toward a north–south axis
(thus perpendicular to the dominant synoptic wind on 11 July
2019). Oppositely, the north of the Ecrin massif (Fig. 7a; black
ellipse) is oriented east–west, along the main wind direction,
and DEVINE does not suggest any strong acceleration on this
more complex and higher massif. Thus, we draw the conclusion
that on this example DEVINE is able not only to detect ridges
and complex terrain but also to interpret the incidence angle be-
tween AROME wind fields and topographic features. We also
observe angular deviations with respect to the AROME initial
direction (Fig. 7c; red and blue colors). These deviations mainly
lie in the range of ARPS deviations on Gaussian topogra-
phies (deviations from AROME direction up to 818 on this
specific case study). The presence of red features (counter-
clockwise deviations) in Fig. 7 next to blue features (clock-
wise deviations) suggests local circumventions of the flow
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around topographic obstacles and channeling within valleys.
Last, we projected in Fig. 7d DEVINE 3D wind fields on an
18 km west–east transect (see the black horizontal bar in
Figs. 7a–c). We observe on this transect accelerations
(larger arrows) on peaks and changes in the vertical compo-
nent of the wind field, which generally tend to follow the
terrain and to be oriented with respect to topographic fea-
tures. From a modeling perspective, topography imposes
surface conditions that force the wind speed to orient fol-
lowing the terrain.

d. Performance on real topographies

When compared with in situ observations collected at the
61 observation sites in the French Alps, AROME wind fields
are characterized by a negative speed bias for high wind
speeds (.10 m s21) (Fig. 8a). This behavior has already been
documented (Vionnet et al. 2016; Gouttevin et al. 2023) and
might be to some extent explained by the 1.3-km horizontal
grid spacing of the model that fails to capture wind accelera-
tions on ridges and speed variability due to subkilometric var-
iations of elevation. For lower wind speeds (,10 m s21),
AROME is closer to the observations. The departure of the
points from the 1–1 line for high wind speeds in Fig. 8a
is partly corrected by DEVINE downscaling (Fig. 8b),

supporting our above hypothesis. Conversely, some low ob-
served wind speeds are overestimated by DEVINE. Further
analyses show that the overestimation of low wind speeds by
DEVINE is, among other factors, imputable to the behav-
ior of the model at a few exposed observation stations,
such as the Aiguille du Midi station (TPI 5 288 m). These
behaviors are discussed in section 5a.

A quantile-to-quantile analysis complements the compari-
son of model wind speeds with in situ observations and indi-
cates that the observed wind distribution is better captured by
DEVINE than by AROME (Fig. 8c). The underestimation of
high wind speeds in AROME is reflected by a departure from
the 1–1 line in Fig. 8c for high quantiles. As partially observed
in Fig. 8b, high wind speeds are better captured by DEVINE,
which is reflected by a better representation of the highest
wind speed quantiles. However, as previously pointed out in
Fig. 8b the overestimation of low wind speeds contributes to
simulating larger speeds and hence to obtain a better match
on the 1–1 plot with DEVINE than with AROME in Fig. 8c.

Further analysis reveals that DEVINE reduces wind speed
mean biases at most of the observation stations, whereas di-
rection is only slightly affected. In Fig. 9, wind speed errors
have first been normalized by the observed wind speed and
then categorized by TPI. Only speeds above 1 m s21 are

AROME wind speed [m/s]

Elevation [m] DEVINE wind speed [m/s] Angle between DEVINE and 
AROME wind fields [°]

]
m[

noitavelE

(a) (b) (c)

(d)

0 km 18km

0 km 18 km

(e) Zoom

FIG. 7. (a) Topography of an alpine domain and wind field simulations at 1500 UTC 11 Jul 2019, with (b) AROME (colored arrows)
and DEVINE wind speed (color shading) on the domain, (c) AROME (colored arrows) and DEVINE angular deviations from AROME
(color shading) on the domain, and (d) topography and DEVINE wind speeds projected on a vertical west–east transect, with (e) an en-
largement of the area within the red-outlined box in (d). On this transect, the bases of the arrows locate the associated wind field.
AROME wind fields are two-dimensional 10-m wind fields, whereas DEVINE wind fields also incorporate a vertical dimension.
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considered in this process. Error normalization is preferred in
our case as generally elevated stations are characterized by
stronger winds and consequently larger errors, thus scram-
bling the interpretation when compared with stations located
at lower elevations that are less prone to strong winds.
DEVINE reduces speed median errors among half of the TPI
classes, with a notable improvement for the most exposed sta-
tions, characterized by the largest TPI (q75 , TPI), where the
negative speed mean bias is reduced by 66%. Among the 61 ob-
servation stations, DEVINE significantly reduces wind speed
mean bias at 37 stations (dependent Student’s t test at a 95%
confidence interval, using Bonferroni method for multiple-
comparison correction), a feature concerning 58% of the sta-
tions located above 1500 m. We also notice that correlation in
speed signals is only slightly improved with DEVINE (0.56 for
AROME vs 0.58 for DEVINE; Table 2). However, Fig. 9b indi-
cates that errors in direction are almost unchanged between
AROME and DEVINE (average change in direction error less
than 18). Furthermore, we observe that AROME can be af-
fected by strong direction errors (.908), for which only small

modifications are brought by DEVINE: the maximum modifi-
cation in direction introduced by DEVINE, at the 61 stations,
is equal to 378. We link this to the fact that (i) our CNN is fitted
on ARPS model outputs where wind direction is generally only
slightly modified by topography (Fig. 2a) and (ii) the largest
wind direction modifications are expected on the most complex
terrain (Fig. 2a), which corresponds to areas not necessarily
equipped with AWS (section 5).

We finally investigate the errors of DEVINE when com-
pared with AROME, in a seasonal and diurnal perspective
(Fig. 10). This is done by considering the difference in the
normalized absolute error (defined as the absolute value of
the error at each time step divided by the observed speed) of
both wind products, categorized into three distinct groups
based on the observed wind speed. The evolution of the nor-
malized absolute error confirms that DEVINE mostly im-
proves forecast for higher wind speeds (Fig. 10). Lowest wind
speeds are generally characterized by an increased absolute
error with DEVINE (brown color in Fig. 10), and wind speeds
above 3 m s21 are on the contrary characterized by a
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FIG. 8. (a) AROME 1–1 plot (modeled vs observed hourly values), (b) DEVINE 1–1 plot, and (c) quantile–quantile
plot (each point being a quantile in the respective distributions, both discretized in 10 000 quantiles). In (a)–(c), the
red line represents the 1–1 line. The color bar in (b) represents data density for (a) and (b).
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decreased error with DEVINE (green color in Fig. 10). It
is interesting to note that for wind speeds below 3 m s21,
the largest increases in normalized absolute error occur
between April and September, and between 0900 and
1700 UTC. This tends to occur at periods of highest incom-
ing shortwave radiations and temperatures, suggesting some
influence of thermal processes (section 5c). Oppositely, visi-
ble improvements occur with DEVINE during nights of sum-
mer months where atmospheric stability could be closer to
neutral conditions than during afternoons of the same periods.
More generally, we observe that improvements/degradations
with DEVINE tend to be more linked with validity hour

rather than forecast lead time hour, also suggesting an influ-
ence of thermal processes.

5. Discussion

a. Representativity of Gaussian topographies

The characteristics of Gaussian topographies accurately ap-
proximate the mean characteristics of alpine topographies
(Fig. 11). For every pixel of a digital elevation model covering
the French Alps, thus including the observation sites that
served for model evaluation in section 4d, we computed the
TPI, Sx (using a fixed direction of 2708), Laplacian, and slope.

Wind speed error / observed wind speed
 []

Wind direction error
 [°]

(b)(a)

FIG. 9. Performances in wind (a) speed and (b) direction of AROME and DEVINE on real topographies with
respect to in situ observations (for observed wind speed $ 1 m s21). Results are clustered by TPI according to
the quantiles of the TPI distribution (q25 5215 m, q50 5 3 m, and q75 5 32 m).

TABLE 2. Evaluation statistics of AROME and DEVINE when compared with 61 AWS located in the French Alps, in terms of
wind speed and direction. DEVINEc designates DEVINE performances when DEVINE is initialized by realistic AROME forecasts.
AROME forecasts are here considered to be realistic when the speed error is less than 3 m s21 and the direction error is less than
308 (AROMEc).

Variable Metric AROME DEVINE AROMEc DEVINEc

Speed Mean bias (m s21) 20.33 20.24 20.29 20.17
r (}) 0.56 0.58 0.73 0.72
Mean AE (m s21) 1.40 1.37 1.06 1.07
q25 AE (m s21) 0.44 0.44 0.41 0.40
q50 AE (m s21) 0.98 0.96 0.91 0.89
q75 AE (m s21) 1.89 1.84 0.91 0.89

Direction Mean AE (8) 58 57 14 14
q25 AE (8) 18 17 7 6
q50 AE (8) 43 41 14 13
q75 AE (8) 88 87 14 13
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We then compare the results with the same parameters obtained
on the Gaussian topographies forming our training dataset
(Fig. 11). We observe that for each parameter, the distribu-
tion obtained on Gaussian topographies (yellow distribu-
tion) overlaps most of the distribution obtained on real
topographies (green distribution) suggesting that, with re-
spect to the chosen parameters, most of the alpine topo-
graphic pixels are represented in our Gaussian topographies
dataset. This strengthens the results of Helbig and Löwe

(2012), who showed that Gaussian statistics outperformed
other statistical models when representing slopes of real
topographies in complex terrain.

However, for individual pixels, some terrain parameters
derived on the real alpine topographies are not encom-
passed in the range of the same parameters derived on the
Gaussian topographies. These correspond to pixels located
in extremely complex terrain. Notably, the tail of the distribu-
tion of Laplacians [Df; Eq. (2)] computed on real topographies

FIG. 10. Evolution of the mean of the normalized absolute error (nAE) for wind speed between AROME and DEVINE (nAEDEVINE 2

nAEAROME), categorized by hour of the day and month of the year (the mean of the nAE corresponds to the mean of the absolute value
of the error at each time step divided by the observed wind speed) (a) only considering observed wind speed between 1 and 3 m s21, (b) for
wind speeds between 3 and 7 m s21, and (c) for wind speeds above 7 m s21. Negative values correspond to improvements (green), and
positive values correspond to degradations (brown).
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FIG. 11. Parameters computed for each point of a real digital elevation model (“real topographies”; green), only at
sites with wind observations (“observation stations”; red), and on Gaussian topographies used in our training dataset
(“Gaussian topographies”; orange): (a) TPI vs Sx and (b) Laplacian [Eq. (2)] vs slope. The Sx values are computed us-
ing a wind direction of 2708; A indicates the Aiguille du midi station, and V indicates the Vallot station.
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exhibits the largest discrepancies with respect to their Gaussian
counterparts.

Most of the topographies surrounding the observation sta-
tions, however, have characteristics well represented in our
Gaussian topographies (red dots in Fig. 11). We nevertheless
note that some extreme locations such as the Aiguille du Midi
(TPI 5 288 m, Sx 5 20.88 rad, Laplacian 5 20.039 m s21,
and slope 5 0.29) or the Vallot station (TPI 5 120 m,
Sx 5 20.3 rad, Laplacian 5 20.033 m21, and slope 5 0.58)
are localized on the tails of the distributions obtained on the
Gaussian topographies. We note that DEVINE frequently
overestimates low wind speeds at Aiguille du midi, suggest-
ing current limitations of our method on such extremely ex-
posed and complex terrain, for which only few information
can be derived from the training dataset. It would be ques-
tionable that adding more complex topographies to our
training dataset would be beneficial for DEVINE since nu-
merical limitations and errors can arise when computing
wind fields on very steep slopes with mesoscale models (e.g.,
Lundquist et al. 2012).

b. Efficient downscaling by using a CNN with
reduced complexity

Wind downscaling with DEVINE is particularly useful as it
comes with a low computational cost, when compared with
much more computationally expensive atmospheric models
such as ARPS. Here, we optimized the model implementation
using a strategy leveraged on the graphical processing unit
(GPU) only for raw CNN predictions plus computationally
expensive rotations and left other pre- and postprocessing op-
erations (interpolation, normalization, final activation, etc.)
for the CPU. As a result, it is possible to downscale AROME
fields as presented in Fig. 7, in 14 s (Table 3). These perform-
ances pave the way for the use of our method in time con-
strained applications, for instance as a downscaling tool to
reach decametric scales within operational forecasting sys-
tems in complex terrain.

Such a low computational cost is also attributable to our
choice of limiting input channels of the CNN to topographic
maps only. As a consequence, DEVINE only requires mini-
mal inputs (i.e., topography and initial wind fields provided by
an NWP system) to output downscaled wind predictions at a
high resolution. Following the topographic nature of the se-
lected inputs, we observed that DEVINE is able to detect
main features of terrain-forced flow, including the representa-
tion of acceleration on ridges, deceleration on leeward areas,
flow deflections and moderate deviations around obstacles
(Figs. 6 and 7). It is worth noting that contrary to Dujardin
and Lehning (2022), who reached state-of-the-art results using
a downscaling model also based on CNN, we did not used
precomputed topographic parameters (TPI, aspect, etc.) as in-
puts. Indeed, we converged to low errors on the test dataset
by simply using raw topographic maps. Three factors emerge
to explain our choice to use raw topographic data as inputs
versus preprocessed topographic data as in Dujardin and
Lehning (2022): our training dataset encompasses more top-
ographies [7279 vs 261 for Dujardin and Lehning (2022)], our
CNN learns topographic features related to Gaussian topog-
raphies versus real topographies in Dujardin and Lehning
(2022) and as we only have one channel in input, feature de-
tection is directly oriented toward topographic characteristics
whereas Dujardin and Lehning (2022) join topographic maps
with many other atmospheric variables when constituting the
input channels, which could eventually make the detection of
topographic characteristic less direct.

The impact of high-resolution topography on wind fields is
reflected in the evaluation statistics, including a decrease in
the mean bias, a more moderate reduction in MAE and a
slightly increasing correlation. We emphasize the fact that our
method is only based on an emulation of the atmospheric
model ARPS and does not need to be calibrated with any ob-
servation, in contrast to Pohl et al. (2006), Liston and Elder
(2006), Winstral et al. (2017), and Dujardin and Lehning
(2022). It highlights that DEVINE upsamples NWP wind
fields but does not explicitly involve a bias correction, as was

TABLE 3. DEVINE computing performances on a 1250-km2 domain presented in Fig. 7 (40.9 km by 30.5 km; horizontal resolution
of 30 m). The computing time does not account for data loading overhead (loading DEM map, NWP gridded outputs, etc.). Note
that because the downscaling operation is not sequential through time it can be easily parallelized across time by using different
processing units.

Name Value

Domain Domain size 40.9 km by 30.5 km
Horizontal resolution (input) 1300 m
Initial interpolation rate 2
Horizontal resolution (interpolated) 650 m
No. of interpolated NWP grid points to downscale 3072

Performance on CPU CPU model Intel Core i7-10610U CPU at 1.80 GHz
No. of CPU 1
Prediction (downscaling 1 time step) 64 s
Prediction (downscaling 24 time steps) 1461 s

Performance on a GPU 1 CPU GPU model Nvidia Tesla V100
No. of GPU 1
Prediction (downscaling 1 time step) 14 s
Prediction (downscaling 24 time steps) 97 s
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done, for example, in Winstral et al. (2017) and Dujardin and
Lehning (2022). Thus, DEVINE is independent from the NWP
system providing the initial information. However, as the initial
errors of the NWP are not compensated with any calibration
step, they can eventually be propagated (Wagenbrenner et al.
2016) and amplified through DEVINE. For instance, we ob-
serve that when the wind fields simulated by AROME are in
phase with the observation, that is, a direction error less than
308 and a speed error less than 3 m s21, DEVINE mean bias is
even more reduced (Table 2).

c. Limits of our approach

Apart from error propagation due to the initial errors of
the NWP (section 5b), limitations on the most extreme alpine
terrain (section 5a), and even though the CNN reproduces
particularly well the ARPS simulations, some errors remain
when predicting wind on real topographies (section 4). In-
deed, for simplicity and computational efficiency, we pruned
DEVINE to a minimalist architecture. In particular this was
possible following the assumptions used in the setup of the
ARPS model (Helbig et al. 2017). Inheriting the assumption
of the ARPS configuration, DEVINE assumes (i) a neutral
stratification of the atmosphere, (ii) an absence of thermal
processes, (iii) mostly nonturbulent flow, and (iv) a linear be-
havior between the wind flow obtained for a 3 m s21 initial
speed and output obtained with any other speed.

For DEVINE, the assumption i on the neutral stratification
of the atmosphere may explain the model’s limited ability to
drastically change wind direction. The thermal stability of the
atmosphere influences the motion of air masses in complex
terrain, and more particularly, is responsible for large devia-
tions of stable and heavy air masses (Whiteman 2000) that
tend to get around obstacles rather than above. Additionally,
assumption iii is responsible for the absence of small-scale tur-
bulent eddies in DEVINE simulations and thus also explain
the model difficulty to simulate large modifications in wind
direction.

We also attribute increasing normalized errors observed in
Fig. 10, for the lowest wind speeds, to the absence of thermal
processes in DEVINE. Butler et al. (2015) and Sharples et al.
(2010) indicated the prominence of along-slope and valley
flows during spring/summer months, underlining that the in-
tensity of some thermal flows largely depends on seasonality.
Interestingly, we observe that the largest degradations with
DEVINE occur for observed wind speeds less than 3 m s21

during days of spring and summer month.
Moreover, using additional ARPS simulations performed

by Helbig et al. (2017) on a small group of the Gaussian top-
ographies using a different initial wind speed (5 m s21 instead
of 3 m s21), we challenged our assumption iii on linearity. We
observed that the acceleration rates obtained with an initial
speed of 3 m s21 are consistent with the acceleration rates ob-
tained at 5 m s21, thus suggesting that the assumption on line-
arity holds (not shown). However, we can expect that a
nonlinear relation would arise with higher wind speeds, which
is still to be benchmarked.

As described in section 1, DEVINE exhibits features of a
mostly nonturbulent flow, including the absence of recircula-
tion zones (Raderschall et al. 2008; Sharples et al. 2010), whose
impact on snow deposition is important (Vionnet et al. 2021).
Avoiding the inclusion of turbulent features favors the devel-
opment of simple yet generalizable outputs and is in phase
with the choice of an initial speed of 3 m s21 in ARPS simula-
tions, where the generation of turbulent eddies due to wind–
topography interaction is probably low (Whiteman 2000).
Again, this assumption might not stand for higher speeds.

We underline that simultaneous occurrence of assumptions
i, ii, iii, and iv in the atmosphere is probably rare. However,
even though DEVINE is limited in terms of physical processes
it can represent at the slope scale, it proves to add value as a
downscaling tool of NWP wind fields in all weather conditions
(Table 2, Fig. 10). Furthermore, the NWP system driving
DEVINE is not bound to these assumptions so that it provides
a representation of all atmospheric situations, to the extent en-
abled by its spatial resolution and inherent assumptions.

Note that AROME uses a parameterization of the subgrid
topography following Georgelin et al. (1994). Consequently,
high-resolution wind fields obtained using DEVINE have inter-
acted twice with the topography: a first time through AROME
subgrid parameterization and a second time through DEVINE.
This redundancy could contribute to errors in wind fields
estimations.

Also note that AROME wind fields (arrows in Fig. 7) are
first interpolated to double the horizontal resolution and limit
the establishment of chesslike patterns in the output signal
(section 3c). Chessboard-like patterns correspond to colored
squares in the downscaled signal: as (i) two neighbors in an
NWP grid can forecast different wind conditions and (ii) as
each (interpolated) NWP grid point is treated independently
from its neighbors by DEVINE, discontinuity can appear at
the border of each grid cell in the downscaled signal. Such
patterns progressively disappear by increasing the interpola-
tion rate, at the expense of more computing time. Ultimately,
we note that the impact of chesslike patterns on the down-
scaled signal could impact drifting snow modeling, a task that
requires spatially coherent wind forcing for the computation
of snow flux divergences. This impact still has to be quantified
through the evaluation of distributed snowpack simulations.

6. Summary and conclusions

DEVINE is a downscaling scheme based on deep learning,
relying on a fully convolutional neural network (Unet-like),
that downscales NWP gridded wind fields from a grid spacing
on the order of several kilometers to tens of meters using to-
pographical information only. This model has been fitted using
simulations obtained with the model ARPS on a set of 7279
Gaussian topographies. We demonstrated that the Unet archi-
tecture is performant on a cross-validation dataset to emulate
the behavior of ARPS on synthetic topographies. By evaluat-
ing our model using simulations performed on real topogra-
phies and by using quality-checked data from 61 observation
stations in the French Alps, we showed that DEVINE partially
improves AROMEwind speed forecasts, and is able to reproduce
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observed wind speed patterns, thus providing a numerically effi-
cient alternative to complex atmospheric models for simulations
of high-resolution wind fields. Most notably, DEVINE reduces
AROME mean bias, slightly reduces the absolute error, and in-
creases the correlation. Moreover, DEVINE outputs are consis-
tent with the well-known influence of main topographic features
(peaks, slopes, and ridges) on airflow at local scale. Our method is
developed for snow-transport applications and therefore does not
account for some processes that may be controlling the wind pat-
terns at a local scale in other conditions like thermal stability and
thermal winds. Using transfer learning and additional model
simulations could be of interest to complement current capabili-
ties of DEVINE. This would probably require thousands of new
high-resolution simulations to be used as labels and may induce
modifying DEVINE architecture. Additionally, we discussed the
influence of several factors that could restrict DEVINE appli-
cability and conclude that future work might focus on an
indirect distributed evaluation of the downscaling model,
through the use, for example, of remotely sensed data and
drifting snow models. Moreover, we note that reducing the
initial biases of the NWP could limit error propagation when
increasing the spatial resolution of wind fields using DEVINE.
A comprehensive intercomparison exercise of state-of-the-art
downscaling models could help to benchmark solutions for
drifting snow applications.
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Helbig, N., and H. Löwe, 2012: Shortwave radiation parameteriza-
tion scheme for subgrid topography. J. Geophys. Res., 117,
D03112, https://doi.org/10.1029/2011JD016465.

}}, and }}, 2014: Parameterization of the spatially averaged
sky view factor in complex topography. J. Geophys. Res.
Atmos., 119, 4616–4625, https://doi.org/10.1002/2013JD020892.

}}, R. Mott, A. Van Herwijnen, A. Winstral, and T. Jonas,
2017: Parameterizing surface wind speed over complex topog-
raphy. J. Geophys. Res. Atmos., 122, 651–667, https://doi.org/
10.1002/2016JD025593.
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