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Reuse of reclaimed wastewater for agricultural irrigation is an expanding practice worldwide. This
practice needs to be monitored, partly because of pathogens that water may contain after treatments.
More particularly, sprinkler irrigation is known to generate aerosols which may lead to severe health
risks on the population close to irrigated areas in case of presence of Legionella bacteria in the water.
A pilot experiment was conducted on two corn fields in South-Western France, irrigated with wastew-
ater undergoing two different water treatments (ultra-filtration and UV). Water analyses have shown
high levels of Legionella in the water even after standard WasteWater Treatment Plant (WWTP)
cleaning process followed by the UV treatment (up to 106 GC/L in 2019). In this context, an updated
General Bayesian Network (GBN), using discrete and continuous random variables, in Quantitative
Microbial Risk Assessment (QMRA) is proposed to monitor the risk of Legionella infection in the
vicinity of the irrigated plots. The model’s originality is based on i) a graphical probabilistic model
that describes the exposure pathway of Legionella from the WWTP to the population using observed
and non-observed variables and ii) the model inference updating at each new available measurement.
Different scenarios are simulated according to the exposition time of the persons, taking into account
various distances from the emission source and a large dataset of climatic data. From the learning
process included in the Bayesian principle, quantities of interest (contaminations before and after
water treatments, inhaled dose, probabilities of infection) can be quantified with their uncertainty
before and after the inclusion of each new data collected in situ. This approach gives a rigorous tool
that allows to monitor the risks, facilitates discussions with reuse experts and progressively reduces
uncertainty quantification through field data accumulation. For the two pilot treatments analyzed
in this study, median annual risk of Legionella infection did not exceed the US EPA annual infection
benchmark of 10−4 for any of the population at risk during the past months of the pilot experiment
(DALYs are estimated up to 10−5). The risk still bears watching with support from the method
shown in this work.

1 Introduction

In the context of climate change, growing global water scarcity
and more severe and frequent drought events have intensified the
need to find alternative water resources1,2. Reclaimed wastewa-
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ter is a renewable resource from which renewable energy can be
produced, but also materials and water can be recovered3,4. It
is a possible alternative supply to address such water shortages5.
The combination of climate change, population growth and ur-
banisation has lead the European Parliament to foster increased
water reuse to alleviate the stress on freshwater supply and pre-
vent the fall in groundwater levels, due in particular to agricul-
tural irrigation6 which represented more than half of the water
used annually in Europe in 2017 according to the European Envi-
ronment Agency.7

However, the wastewater reuse still remains uncommon in
some countries. Several factors can explain this observation
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among them the pathogens that water may contain, which re-
sulted in strict reuse guidelines. Adegoke, et al. (2018)8 have
reported the different pathogens found in wastewaters and the
associated risks. Quality indicators are commonly used, but they
are more and more debated on their representativeness (particu-
larly for viruses and Legionella e.g., they are not explicitly taken
into account as indicators despite their wide occurrence in the
environment). Pragmatic recommendations and guidelines were
defined by the World Health Organization (WHO)9–12 on the ba-
sis of health risk considerations. The new European regulations
on minimum requirements for water reuse for agricultural irriga-
tion will apply from 26 June 2023.13

Sprinkler irrigation with reclaimed wastewater is widely prac-
ticed throughout the world but may enhance hazards relative to
the dispersion of pathogens by bioaerosols.14–16 A collective ex-
pertise appraisal has been performed by ANSES in 201217, which
assessed various secondary risks (e.g. ingestion) and pointed
out the lack of knowledge on health risks, particularly due to
pathogen inhalation.

An experiment has been conducted in South-Western France
to evaluate the impact of two different treatments on the water
quality, reused for sprinkler irrigation of two corn fields (Smart-
FertiReuse project, https://www.smartfertireuse.fr/, accessed on
October 4th 2022) controlling the population risks. Among the
different analyzed pathogens in the water, Legionella was found
at high level both at the entrance and output of the WasteWater
Treatment Plant (WWTP) (up to 107 GC/L). In the new EU regu-
lations, criteria have been defined for water quality. A minimum
required values for Legionella has been set to <1000 CFU/L for
a reclaimed water class A used for food culture irrigation. These
rules are expected to stimulate and facilitate water reuse in the
EU and shall also be accompanied by appropriate monitoring of
the health risks linked to this practice.

Legionella is an opportunistic bacteria which may be inhaled
by human through water aerosol.18–20 Legionella has around 50
species among them Legionella pneumophila which is responsible
of the most severe infections such as Legionnaire’s disease and
pneumonia illness (Pontiac fevers)21. These infections due to Le-
gionella pneumophila are particularly problematic for people who
have a certain fragility or those who are exposed for a long pe-
riod to these pathogens and may cause in some mortality cases.
In France, an increasing trend of Legionellosis is observed since
1995*. A lot of cases were linked to cooling towers22 but some
studies have shown contaminated aerosols by Legionella pneu-
mophila in the vicinity of WWTP23 and associated diseases have
been observed for example in Netherlands.24

Different approaches have been proposed to quantify health
risk applied to Legionella (reviewed by Hamilton, et al. (2018)19

and Hamilton, et al. (2016)20). Often there are few observa-
tions and numerous authors have shown a wide variability in both
space and time of the punctual measurements.18,25 It is therefore

* https : / / www . santepubliquefrance . fr / maladies-et-traumatismes /
maladies-et-infections-respiratoires / legionellose (accessed on October
4th 2022)

important to take into account this variability and the uncertainty
in risk assessment.

Quantitative Microbial Risk Assessment (QMRA) is an estab-
lished framework recommended by multiple international orga-
nizations (WHO, US EPA, EFSA) to monitor such risks of infec-
tion.26 QMRA models have been widely used for food safety man-
agement27, in the risk assessment of waterborne disease,28–30,
for bioaerosol risk14,31–34 and for water reuse systems35, and
are often coupled with Monte Carlo (MC) simulation approaches
which consist of drawing values for all the inputs in the model
from distributions defined by external knowledge (e.g., exper-
imental or historical data, expert knowledge) and then propa-
gating these values to all the intermediate variables and out-
puts through the system in a way that takes the variability and
uncertainty of the inputs into account. It is, by definition, a
unidirectional approach that prevents the inversion of the de-
pendency relationship between the variables. A Bayesian Net-
work (BN) approach as an alternative to MC simulation ap-
proach in QMRA, overcomes this unidirectional path among other
things.36,37 While QMRA may not be able to incorporate the
many factors that influence the quantification of the risk (for ex-
ample, epidemiological data), models based on BNs are an effec-
tive framework that addresses this limitation. BNs approaches
in QMRA provide a powerful approach where the dependency
relationship between variables can be inverted (‘backward calcu-
lation’, by which the states of the model’s variables are updated
using ‘downstream’ data).

A BN is a flexible graphical model based on directed acyclic
graph (DAG) where conditional dependencies between the vari-
ables are qualitatively represented by the directed arcs on the
graph38,39 and quantitatively defined with local transition prob-
abilities or deterministic equations. BNs offer transparency and
the ability to support causal reasoning because based on causal
connections. The visual representation in a BN of large quanti-
ties of complex information provides an information platform for
improved communications with experts through their graphical
representation.36,37,40,41. BN as a system approach encompasses
both holistic and modular views, enables the synthesis of knowl-
edge of the parts to help understand the whole and makes the
complex system more manageable42. BNs can be applied to a
wide range of application domains such as environmental mod-
elling,43 artificial intelligence44 and as mentioned above to quan-
titative microbial risk assessment (for a review, see Beaudequin,
et al. (2015)45), and water reuse and QMRA.41,42,46–48 While
QMRA are often constrained by the availability of required data
(for example, in the dose-response assessment), system models
based on BNs are an effective framework that tackle the lack of
data. As all data in the network contributes to the whole, accu-
rate predictions can be made with incomplete data or quite small
sample size48. BNs were also used for scenario assessment46,
risk minimisation36 and work with uncertainty and variability as
a probabilistic tool41,49

One of the objectives of this paper is the combination of Gen-
eral Bayesian Netwok (GBN) and QMRA. GBNs, known also as
Graphical Independence Networks in the context of continuous
and discrete random variables, are the more general case of

2 | 1–17Journal Name, [year], [vol.],

https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/legionellose
https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/legionellose


the BN in which each variable in the data is modelled with the
random variable that best suits it rather limiting ourselves to
multinomial and normal distributions as in other more classical
BNs39,50,51. GBNs can be used as an attractive way of modelling
complex systems because it most closely models the expert knowl-
edge and data. Due to their ability to incorporate diverse data
types, a GBN enables a complex, multivariate statistical problem
(such as QMRA) to be efficiently addresses where classical sta-
tistical methods are inept. The method allows the integration of
a broad range of quantitative or semi-quantitative information,
which is particularly useful in domains where traditional experi-
mental and observational data are missing, inaccurate, sparse, or
costly. In this paper, compared to other applications in water
reuse and QMRA context previously cited, there is no discretiza-
tion of the continuous variables in the BN for the learning al-
gorithm. The joint posterior distribution of all the random vari-
ables in the BN are obtained by a MCMC (Markov Chain Monte
Carlo) algorithm52 as used in computational Bayesian model in-
ference. The powerful capacity of conceptualization available by
the BN approach via the graphical network is used to construct
the core model36 and the knowledge is updated via computa-
tional Bayesian inference via data in the spirit of Bayesian model
approach (see Verbyla, et al. (2016)53 in the water reuse QMRA
context).

Another objective was the development and application of an
updated GBN to monitor health risks associated with exposure
to Legionella pneumophila during irrigation events with reclaimed
wastewater. The impact of two types of water treatments were
analyzed (described in the following section). Keeping the steady
monitoring aspect in mind, the constructed GBN is reevaluated
with each arrival of new data. At each step posterior distributions
for all the variables in the model were computed using priors de-
fined as the posterior distributions at the previous step. The final
purposes were to assess different risk scenarios according to the
population activities, accounting their distance from the irrigated
areas and the environmental conditions in order to get infection
probabilities for each configuration.

In the following, material and methods section describes the
study site, the data and the models implemented for the devel-
oped risk assessment monitoring tool. The update process of the
risk quantification as well as three scenarios on simulated data are
described in the results section. The update can occur whenever
desired and discussed with the experts. The discussion section
discusses the benefits of the developed approach for the contin-
uous monitoring of health risks in the context of QMRA, empha-
sizing over the necessity of informed use of such tools when few
data are available.

2 Material and methods

2.1 Study site and data

A pilot experiment was conducted on an area near Tarbes
(43°15’45.78"N, 0° 5’16.95"E) where irrigated corn fields from
two farms having different agricultural managements are mon-
itored for various quality criteria since 2018 in the framework of

the SmartFertireuse project (FUI SmartFertiReuse project†). Irri-
gation generally occurs from end of June up to the end of August,
with 3, 4 or 5 water supplies of 30-40 mm/ha. Two different
water treatment pilots (ultra-filtration (A) and UV (B)) were in-
stalled at the wastewater treatment plant outlet in order to reach
the required log reduction after standard treatment of the initial
WWTP (stopping only at the secondary level). The different water
compartments were sampled at each irrigation dates in order to
monitor the classical indicators for water quality13 and to quan-
tify Legionella and additional pathogens such as enteric viruses.
For each sample the following were collected: 100 ml at the en-
trance of WWTP (6 samples with 2 replicates each), 250 ml after
standard WWTP treatments (6 samples with 2 replicates each),
250 ml after A treatment (4 samples with 2 replicates each), 250
ml after B treatment (6 samples with 2 replicates each), and 400
ml at the groundwater (4 samples at each of 2 different sites on
the field and with 2 replicates each) for PCR analysis. Addition-
ally, 2 biosamplers (AGI4-Ace Glass incorporated USA, connected
to a 12 L/min pump) containing 40 ml of ultrapure Milli-Q wa-
ter, were used to sample bioaerosols in the air above corn during
irrigation (see Figure 1).

All samples were analyzed to quantify Legionella from molecu-
lar biology (qPCR from the standard NFT90-471‡). All Legionella
species are considered potentially pathogenic for humans, but Le-
gionella pneumophila is the etiological agent responsible for most
reported cases of community-acquired and nosocomial legionel-
losis.54,55 Additionally, some cultivations were made for samples
showing high values. Figure 2 shows the data collected for Le-
gionella spp. presence using qPCR method and differentiated
by sampling zone. The graph presents a large variability both
between the different analyzed compartments and for the three
studied years. As expected the raw water at the entrance of the
WWTP presented the highest values of Legionella and the ground-
water the lowest values from 2019 to 2021. The impact of the
two tertiary treatments (A and B) tend to decrease the quantities
compared to values found in raw water. A large variability was
also observed according to the dates in 2021 which is difficult to
explain. Many factors among them climatic and water storage
conditions, can lead variability. These points will be discussed in
the results.

In parallel to theses analyses, the meteorological conditions
are monitored thanks to a climatic station set up on the area,
which records continuously wind speed and direction, global ra-
diation, air temperature and moisture. To complete this dataset,
daily data acquired from the Meteo-France weather station
(Tarbes (43°11’12"N, 0°00’00"E) have been used between May
and September over the period from 04/29/2010 to 06/18/2020
in order to better take into account the temporal variability of
environmental conditions. The crop height was also measured
during the irrigation events to assess the aerodynamic roughness
(z0) occurring on the atmospheric transport. Values of the crop
height varied from 80 cm to 3.2 m for the studied period.

† https://www.smartfertireuse.fr/les-moyens (accessed on October 4th 2022)
‡ https://tinyurl.com/5n6v4y38 (accessed on October 4th 2022)
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Fig. 1 Location of the study site with the monitored fields and the different water sampling. Two fields were irrigated with treated wastewater (the
blue arrows show the water transfert from the WWTP then the pilots A or B, to the irrigated plots).

2.2 The QMRA model

The first step of the modelling is to construct a QMRA model that
describes the transmission of Legionella along the water exposure
pathway described in Figure 3.

2.2.1 Water quality model

Three different exposure pathways were modeled for the water
used for the irrigation of the fields:

1. Irrigation directly from the groundwater table with quality
CGT [genome copies per liter (GC/L)], currently in use;

2. Irrigation from wastewater sequentially treated by standard
WWTP treatments and experimental pilot A with quality
CA [GC/L];

2b. Irrigation from wastewater sequentially treated by standard
WWTP treatments and experimental pilot B with quality
CB [GC/L].

In the process currently used (part 1 above), the groundwater
is not treated in WWTP before being used for irrigation. In the
experimental processes (parts 2 and 2b above) reclaimed wastew-
ater is used. The initial wastewater coming to the WWTP is se-
quentially treated by standard WWTP treatments and experimen-
tal pilot (A or B). These treatments effects on the water quality
are modelled by the following logarithmic decays formulas:

CA =CT P/10kA , (1)

CB =CT P/10kB , (2)

with CT P =CWW /10kT P , (3)

where CT P denotes the concentration of Legionella in wastewater
treated by standard WWTP treatments [GC/L], CWW denotes the
concentration of Legionella in the raw water at the entrance of
the WWTP (wastewater) [GC/L], kT P denotes the decay rate of
the filtration process of the WWTP [unitless], and kA (resp. kB)
denotes the decay rate of the filtration process of experimental
pilot A (resp. B) [unitless].

Concentration in Legionella pneumophila CLp,P [GC/L] in each
treatment train P ∈ {GT,A,B} was deduced from the concentra-
tions CP above by the following formula19:

CLp,P =CP fLp, (4)

where fLp denotes the fraction of Legionella pneumophila among
the measured Legionella spp.

2.2.2 Spray irrigation

Two different sprinklers are used on the fields. They are char-
acterized by their respective flow rate F1 and F2 [m3/h] from
which a portion p150 of particles is smaller than 150µm (por-
tion of aerosols in respirable range, < 150µm). Experimental pi-
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Fig. 2 Data collected on site differentiated by sampling zone. Points represent mean concentration of Legionella spp. for replicates and vertical bars
represent their variability. A Complete data from November 2018 to June 2021. B Zoom on year 2021.

lot A is associated with sprinkler 1 and experimental pilot B is
associated with sprinkler 2. The following formula models the
quality QLp,P [GC/m3] of the water used for the irrigation after
aerosolization:

QLp,P = FSP p150CLp,P3600/103, (5)

where CLp,P is the concentration of Legionella pneumophila in the
water used for irrigation defined in equation (4) above [GC/L],
QLp,P denotes the concentration of Legionella pneumophila in the
aerosolized water used for irrigation [GC/m3], SP denotes the
sprinkler associated to the treatment train P ∈ {GT,A,B}, with
FSGT = (F1 +F2)/2, FSA = F1 and FSB = F2 and the 103 and 3600
multipliers ensure the unit for QLp,P (in GC/m3).

2.2.3 Atmospheric dispersion model for spray irrigation

A modified Gaussian plume atmospheric transport model was
used to describe the concentration of Legionella pneumophila
Cx,P [GC/m3] at x ∈ {100;300;500;1000} meters downwind from
the irrigation sprinkler for each treatment train P:

Cx,P =
QLp,P

2πuσyσz
exp

(
− y2

2σ2
y

){
exp
(
− (z− z0)

2

2σ2
z

)
+

exp
(
− (z+ z0)

2

2σ2
z

)}
exp
(
−λx

u

)
, (6)

where QLp,P is defined in equation (5) [GC/m3], y is the hor-
izontal distance perpendicular to wind [m], z is the downwind

receptor breathing zone height [m]; z0 is the estimated aerody-
namic rugosity [m], u is the wind speed [m/s]; λ is the microbial
decay coefficient [s−1], and σy, σz denote respectively the hori-
zontal and vertical dispersion coefficients [m] and are calculated
by the following equations: σy = Ryxry and σz = Rzxrz , where Ry,
ry, Rz and rz are constants depending on the wind speed u [m/s]
and the insolation value E [J/cm2] (see Seinfeld, et al. (2016)56

and Tables 1 and 2 in Supplementary Materials).

2.2.4 Exposure model

Three exposure models were constructed depending on the activ-
ity of the population at risk:

• passersby with a supposed average tpasserby of 1 minute of
exposure per irrigation day17,

• residents with a supposed average tresident of 2 seconds of
exposure over the 2.27 hours spent outside per irrigation
day17,57, and

• farmers with a supposed average t f armer of 30 minutes of
exposure per irrigation day (chosen according to the local
farmer behavior knowledge).

For each population, the fraction of day this population was ex-
posed was computed and an uncertainty of a half minute around
it was considered. For example tpasserby was taken as a Gaussian
distribution centered around 1/(60×24) = 6.94e-4 with standard
deviation 1/(

√
2×60×24) = 4.91e-4 truncated on [0;1].
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Fig. 3 Overview of the exposure pathway of Legionella pneumophila in the context of agricultural irrigation of the experimental plots in Tarbes.

The inhaled dose DA,x,P [genome copies per day] was calcu-
lated for each treatment train P, distance x and activity A taking
values in {passerby;resident; f armer} as follows:

DA,x,P =Cx,PItA, (7)

where Cx,P is defined in equation (6) [GC/m3], I denotes the
mean inhalation rate [m3 air/day], and tA the fraction of day each
population at risk A is exposed [unitless].

2.2.5 Risk characterization

In the chosen dose-response model, clinical severity infections csi
(corresponding to an infection requiring a clinical visit) were dis-
tinguished from other infections in f (corresponding to subclinical
infection or potentially Pontiac Fever endpoint). The daily prob-
ability Pi,A,x,P was calculated for each treatment train P, distance
x, activity A ∈ {passerby;resident; f armer} and type of infection
i ∈ {in f ,csi} using the exponential dose response model for Le-
gionella pneumophila from Armstrong, et al. (2007)58 defined as
follows:

Pi,A,x,P = 1− e−riDA,x,P fCFU , (8)

where DA,x,P is defined in equation (7) [CFU/day], ri is the proba-
bility of the bacteria bypassing the host defenses and initiating re-
sponse [unitless], and fCFU denotes the relation between colony-
forming units (CFU) and genome copies (GC) for Legionella pneu-
mophila. The annual risk, which is the probability to be infected
at least once during one irrigation day in a year was calculated as
per the following equation:

Pyear,i,A,x,P = 1− (1−Pi,A,x,P)
nede , (9)

where nede is the total annual number of days of irrigation with
ne the number of episodes of irrigation over a year and de the
duration of one irrigation episode in days.

Figure 4 represents the directed acyclic graph (DAG) of the
QMRA model constructed with the equations above. The input
distributions (or prior distributions in the Bayesian framework)
for each parameters are defined in Table 1.

2.3 Coupling the datasets

An augmented model presented in Figure 5 (on the right, the
QMRA model from Figure 4 is augmented by the data, in quan-
tity nm for the microbiological data and in quantity nday and nyear

for the climatic data, represented by rectangles using graphical
conditional independence links) was built to account for the ex-
perimental data described in Section 2.1.
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Description Symbol X Unit Value Reference

Water contamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Water quality in groundwater table in Legionella CGT GC/L log10(X)∼ N (10,1) Expert knowledge and literature data

Water quality before treatment in Leg. CWW GC/L log10(X)∼ N (15,1) Expert knowledge and literature data

Log decay in WWTP by standard treatment kT P log10(GC/L) X ∼ N (8,1) Project expert knowledge

Log decay by experimental pilot A kA log10(GC/L) X ∼ N (4,1) Project expert knowledge

Log decay by experimental pilot B kB log10(GC/L) X ∼ N (3,1) Project expert knowledge

Portion of Legionella pneumo. fLp Unitless X ∼ N (1e-3,2e-4)T (0,) From testing lab analytical techniques

Air contamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Flow rate of sprinkler 1 F1 m3/h X ∼ N (44,1) Sprinklers properties 59

Flow rate of sprinkler 2 F2 m3/h X ∼ N (42,1) Sprinklers properties 59

Portion of aerosols in respirable range (< 150µm) p150 Unitless X ∼ U (5e-4,7e-4) Sprinklers properties 59

Horizontal distance perpendicular to wind y m X ∼ U (0,2.5) From literature 19,60

Downwind receptor breathing zone height z m X ∼ U (1,1.7) Height of breathing zone

Estimated aerodynamic rugosity on the field z0 m X ∼ U (0.1,0.45) Prior knowledge on the field

Wind speed and Insolation rate (u,E) m/s and J/cm2 log(X)∼ N2

((2
8
)
, 1

8 I2
)

Vague climatic prior

Microbial decay coefficient λ s−1 X ∼ N (1.32e-4,3.44e-4)
61,62

Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Inhalation rate I m3/day X ∼ N (20,2) From literature 63,64

Fract. of day a passerby is exposed tP Unitless X ∼ N (6.94e-4,4.91e-4)T (0,1) From literature 17

Fraction of day a resident is exposed tR Unitless X ∼ N (3.15e-3,4.91e-4)T (0,1) From literature 17,57

Fraction of day a farmer is exposed tF Unitless X ∼ N (2.08e-2,4.91e-4)T (0,1) Knowledge on local farmer behavior

Illness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Portion of CFU fCFU Unitless X ∼ N (1e-3,2e-4)T (0,) From testing lab analytical techniques
from uncensored data

Dose response parameter for Legionella pneumophila infection
endpoint

rin f Unitless log(X)∼ N (−2.934,0.488) From literature 19,58,65

Dose response parameter for Legionella pneumophila clinical
severity infection endpoint

rcsi Unitless log(X)∼ N (−9.688,0.296) From literature 19,58,66

Number of irrigation episodes per year ne Unitless X ∼ Multi{3,4,5} Process knowledge

Irrigation episodes duration de Days X ∼ Multi{2,3,4,5,6,7} Process knowledge

Table 1 Model input parameters and distributions for the QMRA model. N (µ,σ) denotes the normal distribution of mean µ and standard deviation
σ , eventually truncated on the interval T (,), N2(M,Σ) denotes the bivariate Gaussian distribution of mean M and variance Σ. I2 denotes the identity
matrix of order 2. U (a,b) denotes the uniform distribution on the interval (a,b). X ∼ Multi{a1,a2, . . .} stands for equiprobable sampling from the
values a1,a2, . . . (multinomial distribution).

This new model takes into account the measure uncertainty for
the microbiological data and the inter and intra annual variabili-
ties for the climatic data. In the case of the microbiological data,
let CQ,i be the ith measured concentration of Legionella (in GC/L)
at step Q ∈ {WW,GT,T P,A,B}. This random variable is linked to
the concentration of Legionella CQ defined in section 2.2.1. These
random variables are linked through the following model:

log10(CQ,i)∼ N (log10(CQ),σQ),

where N (,) is the normal distribution and σQ represents the
measure uncertainty. A Gamma distribution was assigned to the
square of its inverse i.e. 1/σ2

Q ∼ Γ(100,1) which represents a
vague prior confidence interval of [0.09;0.11] at 95% for σQ (in
GC/L).

In the case of the climatic data, a bivariate distribution was
chosen to model the joint distribution of wind speed and inso-
lation value to get the distribution that best suits these jointly
observed data capturing the correlation between both quantities.
Let (u,E)obs

j,k denote the vector of the observed wind speed (in m/s)
and insolation value (in J/cm2) at the jth day ( j = 1, . . . ,nday)
of the kth year (k = 1, . . . ,nyear). This random vector is linked
through the following model to the vector (u,E) of the QMRA

model:

log
[
(u,E)obs

j,k

]
∼ N2(Mk,Σintra), (10)

Mk ∼ N2(Mm,Σinter), (11)

Myear ∼ N2(Mm,Σinter), (12)

and log [(u,E)]∼ N2(Myear,Σintra), (13)

where N2(,) is the bivariate normal distribution, Σintra and Σinter

are the measured variability between days of each year and the
measured variability between each year respectively, Mk and Mm

are the mean of the kth year and the global mean over the years
respectively. Myear is the predicted mean vector for a random-
ized year given by Myear ∼ N2(Mm,Σinter). (u,E) is the vector of a
predicted wind speed and insolation value in a randomized year.
The following prior distributions were assigned to the variance
and mean parameters described above:

Σ
−1
intra ∼W2(I2;24), (14)

Σ
−1
inter ∼W2(I2;24), (15)

and Mm ∼ N2

((
2
8

)
,

1
24

I2

)
, (16)

where I2 is the identity matrix of order 2, W2(,) is the bivariate
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Fig. 4 Directed acyclic graph of the Bayesian network model.

Wishart distribution, and N2(,) denotes the bivariate Gaussian
distribution chosen to recover the vague climatic priors defined
in Table 1 for (u,E) vector.

The R67 package rjags68 was used to compute the Bayesian
inference of the augmented model. MCMC sampling algorithms
were applied as implemented in the software JAGS 4.3.0.69

3 Results
The QMRA model (Prior), and the augmented model were run
at each month for which data was collected (May and September
2019 and each month from March to June 2021) (Posteriors 1 to
6). For each model, two independent MCMC chains (using dif-
ferent initial values for the parameters) of 1,400,000 simulations
with a burn-in period of 1,000,000 were run. Convergence of the
MCMC run was assessed by graphical inspection of the chains.

In the following, the results and the update of prior beliefs in
the model are described module by module.

3.1 Water contamination

The priors described in Table 1 yielded the following 95% cred-
ible intervals for water quality concentrations expressed here
in log: kA ∈ [2;6], kB ∈ [1;5], kT P ∈ [6;10], fLp ∈ [0.06,0.14],
log10(CA) ∈ [−0.4;6.5], log10(CB) ∈ [0.6;7.3], log10(CGT ) ∈ [8;12],
log10(CWW ) ∈ [13;17], log10(CT P) ∈ [4;10], log10(CLp,A) ∈ [−5;1],
log10(CLp,B) ∈ [−4;2.5], and log10(CLp,GT ) ∈ [3;7]. These credible
intervals are derived from the distributions described in Table 1
and the propagation of the uncertainty according to Figure 5 for
non terminal variables (or parameters).

Figure 6 as well as Figure 7 illustrate that the groundwater
(CLp,GT ) and the water after treatment by the pilot A or B (CLp,A,
CLp,B) show similar contamination levels (∼ 102 GC/L) indicat-
ing that the new irrigation process is as safe as the previous one
(with groundwater without treatment). As expected, a significant
log reduction between contamination of raw and treated wastew-
ater for the posterior distributions appears (∼ 3 log10 reduction).
Nevertheless, one observes that the parameters kT P, kA and kB

are smaller in the posterior distributions than in the prior distri-
bution indicating that the data introduced at the CT P’s, CA’s and
CB’s level (see Figure 5) are more contaminated than expected.
This may be due to the storage of the water between treatments
in large reservoirs or poor control of the treatment chain as dis-
cussed below.

From the prior distributions (in red in Figure 6) to the posterior
ones, one observes reduced uncertainties (narrower distributions
in posterior). The posterior distribution at June 2021 (in pink in
Figure 6) shows reduction of the concentration after treatments:
1 log10 reduction (from 106 to 105 GC/L) for the wastewater af-
ter treatment in treatment plant and treatment A and similarly
for treatment B. The transition to Legionella pneumophila from
Legionella measurements analysed by PCR reduces again the con-
tamination by 3 log10.

Although a significant log reduction between raw and treated
wastewater is observed, the differences between treatments A and
B and groundwater are very slim compared to what would have
been expected by the prior knowledge of processes A and B which

8 | 1–17Journal Name, [year], [vol.],
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Fig. 5 Directed acyclic graph of the augmented model.
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Fig. 6 Prior (red) versus posterior marginal distributions of selected parameters and variables of the water contamination module of the augmented
Bayesian network. Dashed lines represent the median of the prior marginal distributions. Distributions represented are in log10(CFU/L)

should eliminate most of the bacteria. This may be due to storage
issues or lack of control in the chain of experimentation and will
be discussed in the following.

3.2 Air contamination

The air contamination module output is the concentration Cx,P

(in GC/m3) of Legionella pneumophila in the air at distances
x ∈ {100m,300m,500m,1000m} from the source due to the irri-
gation using water of quality P ∈ {A,B,GT} (see Figure 8). One
observes reduced uncertainty from the prior to the posterior dis-
tributions of the concentration of Legionella pneumophila in the
air for all treatments and distances. As expected, the distributions
are globally decreasing with the distance: from 10−3 at 100m to
10−5 at 1000m for wastewater after treatment in TP and treat-
ment A and similarly for treatment B and groundwater GT. Final
predicted air concentrations are of similar intensity for irrigation
using water from treatments A and B and groundwater which
comforts the previous remarks on the quality of the proposed ir-
rigation process.

3.3 Illness

Figures 9 to 11 represent the probabilities of clinical severity in-
fection over one year, for farmers (see Figure 9), for residents
(see Figure 10) and for passersby (see Figure 11). For both clini-
cal severity infections (csi) and others (inf) a decrease in the risk
of contamination is observed with the distance for each category
of people at risk: from 10−10 at 100m to 10−13 at 1000m for the
risk of clinical severity infection for the farmers exposed to treat-
ment A (and after treatment TP). A decay of approximately 1
log10 is observed between farmers and residents for the probabil-
ity of clinical severity infection (which is again the case between
residents and passersby). Treatments A and B and groundwater
give similar probabilities of infection with a slightly higher risk for
groundwater which confirms the previous results that the new ir-
rigation process is slightly safer than the one under use (with
groundwater, without further treatment). It is also notable that
the upper bound of the 95% credibility intervals never exceeds
the US EPA annual infection benchmark70 of 10−4 infections per
year (for drinking water) for clinical severity infections.
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Fig. 7 Violin plots for concentrations in Legionella pneumophila (log10
GC/L)

3.4 Scenario evaluation

Scenarios to determine how failures or very high initial contam-
ination would affect the final risk were evaluated by computing
the updated annual probabilities of infection with a new day of
10 simulated data as established by observed variable in the wa-
ter contamination step of the model. In every scenario all pop-
ulations were tested as well as another toy population exposed
100% of the time of irrigation to the pathogen which could relate
to children playing outside all irrigation days for instance. Results
of all scenarios are presented in Figure 12.

3.4.1 Scenario 1: Treatment pilot failure

For this scenario, the log10(CWW,i) (i = 1, ...,10) data were simu-
lated from a N (15,1) as a classical contamination as established
by expert knowledge and literature data (see Table 1), log10(CT P,i)

(i = 1, ...,10) data were obtained with a decay around 8 log of
log10(CWW,i) as the WWTP standard treatment is supposed to be
effective (see Table 1, kT P ∼ N (8,1) as established by expert
knowledge and literature data when WWTP standard treatment is
effective) and finally log10(CA,i) (i = 1, ...,10) were obtained with
around no log decay (kA ∼ N (0,1)) because in this scenario a
failure of the experimental failure pilot A is supposed. Annual
probability of infection increased by 0.8 log which gave a median
of −4.89 log and an interdecile range of 1.33 log at 100m for the
toy population. For all distances and all population studied the
9th decile never exceeded the US EPA threshold of −4 log annual
probability of infection.

3.4.2 Scenario 2: High contamination of the source

This scenario differs from the last one in the fact that the
log10(CWW,i) (i = 1, ...,10) data were simulated from a N (20,1)
to simulate high contamination of source and that the pilot treat-
ment is supposed to be effective (see Table 1, kA ∼ N (4,1) as
established by expert knowledge and literature data when WWTP
standard treatment is effective). This resulted in an increase of
0.9 log of the annual probability of infection which is comparable
to the previous scenario. Once more, the 9th decile never exceeds
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Fig. 8 Log10 of concentrations in Legionella pneumophila in the air due
to the irrigation process for groundwater (GT), and after treatments A
and B at 100m and 1000m from the source.
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Fig. 9 Log10 annual infection risks for L. pneumophila for the farmers
due to sprinkler exposure at downwind distances ranging from 100 to
5000 meters from the source. The median (solid line) and interdeciles
confidence interval (dashed lines) are shown. Infection (Inf) or clinical
severity infection (CSI) dose response model endpoints.

the US EPA threshold for annual probability of infection but gets
even closer with a value of −4.2 log at 100m for the toy popula-
tion.

3.4.3 Scenario 3: High contamination of the source, and
failure of treatment pilot

In this last scenario, the simultaneity of a pilot A failure and high
contamination was considered to illustrate the attainable risk in
this event at risk. This was the only scenario which resulted in an
annual probability of infection exceeding the US EPA threshold of
−4 log. This threshold was exceeded by the median for the toy
population for 100m with a value of −3.79 and by the 9th decile
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Fig. 10 Log10 annual infection risks for L. pneumophila for the residents
due to sprinkler exposure at downwind distances ranging from 100 to
5000 meters from the source. The median (solid line) and interdeciles
confidence interval (dashed lines) are shown. Infection (Inf) or clinical
severity infection (CSI) dose response model endpoints.
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Fig. 11 Log10 annual infection risks for L. pneumophila for the passersby
due to sprinkler exposure at downwind distances ranging from 100 to
5000 meters from the source. The median (solid line) and interdeciles
confidence interval (dashed lines) are shown. Infection (Inf) or clinical
severity infection (CSI) dose response model endpoints.

at 300m with a value of −3.20. The risk for the other populations
did not exceed this thershold with a maximum value of −4.88
attained for farmers at 100m from the source.

4 Discussion
A general Bayesian network methodology was applied to a QMRA
problematic to monitor the risk of Legionella infection in the vicin-
ity of agricultural plots irrigated with two experimental water
treatment pilots. General Bayesian networks approach allows for
simple accounting for variability and uncertainty in a context of
complex modelling such as QMRA models. In the developed ap-
proach a modified Gaussian plume dispersion model was used to
compute health risks according different scenarios, using knowl-
edge of meteorological conditions over long periods (> 20 years

here) and distinguishing three categories of persons at risk, two
dose-response endpoints and different downwind distances from
the sprinkler.

The general Bayesian network methodology used is a very pow-
erful approach without any discretization to quantify complex
phenomenon in presence of prior knowledge and scarce data. In-
deed, the approach allows to take account of expert knowledge
and literature data in the prior distributions of the random vari-
ables and to consider simultaneously collected data all over the
phenomenon. The uncertainty and variability of each variable is
evaluated through the strength of its prior knowledge combined
with the strength of the data information provided by the size of
data sets, which is not the case in simulated networks, just us-
ing Monte Carlo simulations, where the data are fitted marginally
to establish the prior distributions, and then their provided un-
certainty spread poorly in the whole network. Also, by contrast
with non-parametric Bayesian network, in the highly parametric
approach used in this paper, the knowledge of the functional re-
lationships between the random variables is maximized to permit
the estimation of quantities of interest in context of scarce data.

Both for annual infection and clinical severity infection, no ma-
jor difference was observed between risk induced by irrigation
using water treated by treatment A (ultra fine filtration, after
standard treatment plant), treatment B (UV, after standard treat-
ment plant) or groundwater. This comforts the prior belief that
treatments A and B give water quality at least comparable to the
quality of the groundwater. Risks were observed to decrease with
distance from the source, which was expected according to the
atmospheric dispersion modelling. Approximately 1 log differ-
ence was observed between each of the studied categories of peo-
ple (farmers, residents and passersby), with passersby being the
population least at risk and farmers the population most at risk
according to the model (logical order according to the exposure
time).

High values of Legionella in GC/L were found in the different
analyzed compartments even after the two studied treatments.
Impact of the storage time in large reservoirs after the two pilots
can in part explain some high observed levels. The cleaning of
these tank covers appears as an important point to check for op-
erational applications. A such observation reveals the interest of
working in the first steps with GC for an operational monitoring
of the water quality, GC are uncensored data and PCR analysis
are less time consuming and can be done routinely. The values
reported in GC were first introduced in the model until the risk
characterization, then converted in CFU applying a significant de-
crease of 10e3 between GC and UFC, as quantified from the lab-
oratory analytical results and as often observed in bibliography.
Let us mention that if one applies this decrease factor ( fCFU ) on
the contamination after the tertiary treatment A and B, i.e. on CA

and CB, the two treatments are class A reclaimed water because
only 0.1% are above the new European limit (<1000 CFU/L).

Note that the US EPA criterion of annual probability of infec-
tion was used throughout the study instead of disability adjusted
life years (DALY) recommended by the WHO. Indeed, the current
method of estimation of the DALY for Legionella pneumophila is
still controversial to our knowledge. DALY can be computed as
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Fig. 12 Log10 annual infection risks for L. pneumophila resulting from scenarios 1, 2 and 3. The red doted line represents the US EPA threshold of
−4 log annual probability of infection. Toy population and farmers are represented from left to right on the first line and residents and passerby on
the second line.

0.97 times annual probability of infection with low precision71

and a recent study72 taking heterogeneity of responses to con-
tamination into account could be used to derive a better estima-
tion of DALY.

It is notable that the upper bound of the interdeciles credibility
intervals of the posterior never exceeded the target risk values for
infection (10−4 annual probability of infection for the US EPA cri-
terion and 10−6 disability adjusted life year per person per year,
i.e. DALY pppy for the WHO criterion). Although, a slow de-
crease of risk is observed with the distance to the source which
is the consequence of the meteorological conditions in the vicin-
ity of the agricultural plots. This observation is consistent with
previous studies that have predicted long-range transport of Le-
gionella.19,22,73 In the local climatic context of Tarbes where the
decrease is slow it seems essential that the concentration have to
be already low (below 104) at 100m from the sprinklers.

The developed tool is ready to be updated especially by air
measured concentrations on the plots by the irrigations with re-
claimed water that will take place starting in Summer 2021. This
tool will then be used to monitor the potential risks in the vicinity

of the experimental plots and thus meet the public health de-
mands of population protection.

In a more general QMRA context, the proposed model gives an
operational tool, and theoretically stable methodology to main-
tain a continuous monitoring of the risks induced by the irriga-
tion practices on the agricultural plots under study. This method-
ology can adapt to new sets of data and easily update the model
if given new information. This model can easily be adapted to
other well known pathogen through the enlightened adaptation
of a few priors such as the ones on the decay parameter λ , or the
dose-response parameter r, . . .

A challenge would lie in the usage of the model to answer si-
multaneous multipathogen risk analysis. Also, one of the next
main interest lies in the addition of a modelisation of the im-
pact of the irrigation with reclaimed wastewater on the quality
of the groundwater to simultaneously quantify the inhalation in-
duced risk and the groundwater table contamination by reclaimed
wastewater transport in soil. Furthermore, it could be very in-
teresting to link the final probability of infection over the year
to epidemiological data over the region as done by Albert, et al.
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(2008)36 linking an epidemiological study of campylobacteriosis
cases to the probability of suffering from campylobacteriosis over
one year in France due to broiler meat. In the same spirit, the link
would necessitate here to introduce a random variable for the wa-
ter reuse attributable fraction of Legionella infection to take other
routes of contaminations into account. Also it would necessitate
to consider only a fraction of the cases that could be due to this
irrigation zone. But for the moment, the epidemiological data at
disposal are only available at a large geographical scale (surface
of Occitanie region is approximately 70,000km2 compared to the
surface of the study zone which is approximately 6km2) and it
does not seem reasonable to link this data to the very local mod-
eling proposed.

5 Conclusions
• A general Bayesian network as an operational tool to main-

tain a monitoring of the risks induced by a water reuse irri-
gation practice.

• First developed general Bayesian networks approach in
QMRA for wastewater surveillance. The main asset is that
risks are quantified with their uncertainties at each desired
time taking into account new and past data.

• The QMRA model describes the exposure pathway of the wa-
ter contamination from the entrance of the WWTP to the in-
fection risk using pathogen decay models in the WWTP, a
Gaussian plume model for the air contamination, an inhala-
tion model for the population exposure and finally a dose-
response model for risk characterization.

• The uncertainty of the probabilistic QMRA model is reduced
by the introduction of observed data (pathogens concentra-
tions and regional meteorological data) along the modelisa-
tion to obtain the distribution of the number of pathogens
before and after treatment in WWTP, of the number of
aerosolised pathogens, of the concentration of pathogens in
the air at different distances, and finally the exposure and
illness distributions for three different categories of popula-
tion at risk and two illness endpoints.

• Legionella annual subclinical infection risk and annual clin-
ical severity infection risk linked to the agricultural irriga-
tion using the groundwater table or two experimental water
treatment pilots are inferred below 10−4 tolerable limit de-
fined by the US EPA for farmers, passersby and residents at
distances between 100m and 1000m away from sprinklers.

• Such dynamic approach can be applied to various pathogens
in the context of wastewater reuse
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54 Palusińska-Szysz M, Cendrowska-Pinkosz M. Pathogenicity of
the family Legionellaceae. Archivum immunologiae et thera-
piae experimentalis. 2009;57(4):279-90.

55 Cianciotto NP. Pathogenicity of Legionella pneu-
mophila. International Journal of Medical Microbiology.
2001;291(5):331-43.

56 Seinfeld JH, Pandis SN. Atmospheric chemistry and physics:
from air pollution to climate change. John Wiley & Sons;
2016.

57 US EPA. Exposure Handbook. US Environmental Protection
Agency. 2011.

58 Armstrong TW, Haas CN. A Quantitative Microbial Risk As-
sessment Model for Legionnaires’ Disease: Animal Model
Selection and Dose-Response Modeling. Risk Analysis.
2007;27(6):1581-96. Available from: https : / /
onlinelibrary . wiley . com / doi / abs / 10 . 1111 / j .
1539-6924.2007.00990.x.

59 Molle B, Huet L, Tomas S, Granier JM, Dimaiolo P, Rosa C.
Caractérisation du risque de dérive et d’évaporation d’une
gamme d’asperseurs d’irrigation. Application à la définition
des limites d’utilisation de l’aspersion en réutilisation d’eaux
usées traitées [Ph.D. thesis]. Irstea; 2009.

60 Paez-Rubio T, Ramarui A, Sommer J, Xin H, Anderson J, Pec-
cia J. Emission rates and characterization of aerosols pro-
duced during the spreading of dewatered class B biosolids.
Environmental science & technology. 2007;41(10):3537-44.

61 Hambleton P, Broster M, Dennis P, Henstridge R, Fitzgeorge
R, Conlan J. Survival of virulent Legionella pneumophila in
aerosols. Epidemiology & Infection. 1983;90(3):451-60.

62 Dennis P, Lee J. Differences in aerosol survival between
pathogenic and non-pathogenic strains of Legionella pneu-
mophila serogroup 1. Journal of Applied Bacteriology.
1988;65(2):135-41.

63 Stellacci P, Liberti L, Notarnicola M, Haas CN. Hygienic sus-
tainability of site location of wastewater treatment plants: A
case study. I. Estimating odour emission impact. Desalination.
2010;253(1-3):51-6.

64 Brooks JP, McLaughlin MR, Gerba CP, Pepper IL. Land ap-
plication of manure and class B biosolids: An occupational
and public quantitative microbial risk assessment. Journal of
Environmental Quality. 2012;41(6):2009-23.

65 Muller D, Edwards ML, Smith DW. Changes in iron
and transferrin levels and body temperature in experimen-
tal airborne legionellosis. Journal of Infectious Diseases.
1983;147(2):302-7.

66 Fitzgeorge R, Baskerville A, Broster M, Hambleton P, Dennis P.
Aerosol infection of animals with strains of Legionella pneu-
mophila of different virulence: comparison with intraperi-
toneal and intranasal routes of infection. Epidemiology &
Infection. 1983;90(1):81-9.

67 R Core Team. R: A Language and Environment for Statistical
Computing. Vienna, Austria; 2020. Available from: https :
//www.R-project.org/.

68 Plummer M. rjags: Bayesian Graphical Models using MCMC;

16 | 1–17Journal Name, [year], [vol.],

https://www.sciencedirect.com/science/article/pii/S0048969715308469
https://www.sciencedirect.com/science/article/pii/S0048969715308469
https://www.sciencedirect.com/science/article/pii/S0048969715308469
https://www.sciencedirect.com/science/article/pii/S0160412015000719
https://www.sciencedirect.com/science/article/pii/S0160412015000719
https://www.sciencedirect.com/science/article/pii/S0160412015000719
https://www.sciencedirect.com/science/article/pii/S1364815217300919
https://www.sciencedirect.com/science/article/pii/S1364815217300919
https://www.sciencedirect.com/science/article/pii/S0048969721015308
https://www.sciencedirect.com/science/article/pii/S0048969721015308
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1539-6924.2007.00990.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1539-6924.2007.00990.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1539-6924.2007.00990.x
https://www.R-project.org/
https://www.R-project.org/


2019. R package version 4-10. Available from: https : / /
CRAN.R-project.org/package=rjags.

69 Plummer M. JAGS: A program for analysis of Bayesian graph-
ical models using Gibbs sampling. In: Proceedings of the 3rd
international workshop on distributed statistical computing.
vol. 124. Vienna, Austria.; 2003. p. 1-10.

70 EPA U. Potable reuse compendium. EPA 810-R-17–002 2017.
Office of Ground Water and Drinking Water: Washington . . . ;
2017.

71 Hamilton KA, Hamilton MT, Johnson W, Jjemba P, Bukhari
Z, LeChevallier M, et al. Risk-Based Critical Concentrations

of Legionella pneumophila for Indoor Residential Water Uses.
Environmental Science & Technology. 2019 Apr;53(8):4528-
41. Publisher: American Chemical Society. Available from:
https://doi.org/10.1021/acs.est.8b03000.

72 Weir MH, Mraz AL, Mitchell J. An Advanced Risk Model-
ing Method to Estimate Legionellosis Risks Within a Diverse
Population. Water. 2020;12(1). Available from: https :
//www.mdpi.com/2073-4441/12/1/43.

73 Borgen K, Aaberge I, Werner-Johansen Ø, Gjøsund K, Størsrud
B, Haugsten S, et al. A cluster of Legionnaires’ disease linked
to an industrial plant in southeast Norway, June-July 2008.
Eurosurveillance. 2008;13(38):18985.

Journal Name, [year], [vol.],1–17 | 17

https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=rjags
https://doi.org/10.1021/acs.est.8b03000
https://www.mdpi.com/2073-4441/12/1/43
https://www.mdpi.com/2073-4441/12/1/43

	Introduction
	Material and methods
	Study site and data
	The QMRA model
	Water quality model
	Spray irrigation
	Atmospheric dispersion model for spray irrigation
	Exposure model
	Risk characterization

	Coupling the datasets

	Results
	Water contamination
	Air contamination
	Illness
	Scenario evaluation
	Scenario 1: Treatment pilot failure
	Scenario 2: High contamination of the source
	Scenario 3: High contamination of the source, and failure of treatment pilot


	Discussion
	Conclusions

