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ABSTRACT
The tremendous amount of biological sequence data available, combined with the
recent methodological breakthrough in deep learning in domains such as computer
vision or natural language processing, is leading today to the transformation of
bioinformatics through the emergence of deep genomics, the application of deep
learning to genomic sequences. We review here the new applications that the use
of deep learning enables in the field, focusing on three aspects: the functional
annotation of genomes, the sequence determinants of the genome functions and the
possibility to write synthetic genomic sequences.

Subjects Bioinformatics, Genomics, Synthetic Biology, Medical Genetics, Computational Science
Keywords Deep learning, Genomics, Genetics, Epigenomics, Bioinformatics, Review, Neural
networks, Personalized medecine, Synthetic genomes, Metagenomics

INTRODUCTION
Genomics is the field in life science focusing on genomic sequences (Fig. 1A) and
attempting to link the DNA sequence of a living organism with its physical and molecular
characteristics. High-throughput sequencing techniques provide huge amounts of data
to reconstruct this link. These techniques can now provide both the linear genome
sequence and a lot of other information such as the genome 3D structure in cells (Hi-C),
the nucleosome and other proteins bindings sites found along the molecule (MNase-seq,
ChIP-seq), the local accessibility of the DNA sequence (DNase-seq), the epigenetic
marks found on nucleosomes (ChIP-seq) and the activity of genes (RNA-seq, CAGE).
Machine learning has long played an important role in the processing of these huge
amounts of data (Libbrecht & Noble, 2015) and deep learning has recently emerged as a
promising methodology to renew these machine learning approaches. This trend is shared
by all bio-medical fields (Fig. 1A) for which the number of publications regarding the
application of deep learning is exploding (Holder, Haque & Skinner, 2017; Ho et al., 2019;
Zitnik et al., 2019; Zemouri, Zerhouni & Racoceanu, 2019).

Schematically, machine or deep learning has been applied to genomics for two main
tasks (Fig. 1B). First, it has been used to predict second order (i.e. functional) annotation
using the first order annotation (i.e. the experimental measures such as ChIP-seq,
RNA-seq…). This process consists in labeling each DNA segment along the genome with a
function (e.g. promoter, protein binding site, enhancer…). We will call here this general
task genome annotation, going beyond the mere annotation of genes. Second, machine
learning can also be used to annotate (first and/or second order) the genome directly from
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the DNA sequence. This review focuses on the application of deep learning for this second
learning for this second task (Figs. 1A and 1B, red dotted line boxes).

Other reviews focus on the application of deep learning to genomics and proteomics
(Zou et al., 2019; Eraslan et al., 2019; Zhang et al., 2019c; Yue &Wang, 2018), often with an
introduction to technical aspects and a rather broad domain focus. They present the
different neural network architectures used in various types of applications as well as the
potential pitfalls (Koumakis, 2020). Our goal here is to provide a complementary view,
focusing on the practical benefits of the application of deep learning to the task of
genome annotation from the DNA sequence. This review is intended to biologists and
bioinformaticians who are curious to know what new questions can be efficiently tackled
using deep learning, how deep learning may help them in their own studies and maybe
change their perspectives on their field.

Amongst the first and most emblematic methodologies that were proposed,
DeepSEA (Zhou & Troyanskaya, 2015) DeepBind (Alipanahi et al., 2015) and Basset
(Kelley, Snoek & Rinn, 2016), are similar in both technical set up and goals. They all use
a Convolutional Neural Network (CNN) architecture, which was originally used in
computer vision (Fukushima, 1980; LeCun et al., 1989) to predict whether an input
sequence is accessible (i.e. harbors a DNAse peak), contains transcription factors binding
sites (TFBS), or specific histone modifications (as assessed by ChIP-seq). Since these
pioneering approaches were developed, the number of different methodologies used in the
field has rapidly grown and the diversity in both domain of application and technical
methods has exploded (see Table 1).

We divide the application of deep learning to genome annotation into three different
goals (Fig. 2): (1) transferring a known annotation for a given species or a given cell type to

Figure 1 Positioning of this review within the field of deep learning for biological/biomedical application. (A) We adapted the segmentation of
the field proposed by Zemouri, Zerhouni & Racoceanu (2019) to position this review. (B) Zoom into the genomics field. This review focus on the
application of deep learning to annotate the genome directly from the DNA sequence (red dashed line boxes).

Full-size DOI: 10.7717/peerj.13613/fig-1
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Table 1 Overview of studies applying deep learning in genomics, segmented by their usage.

Annotation Usage Preprocessing Data Species Architecture Reference

TFBS Transfer one-hot-encoding DNA + gene expression +
DNaseI cleavage

human CNN + RNN Quang & Xie (2019)

DNA sequence human + mouse CNN Cochran et al. (2021)

Bio. mechanism one-hot-encoding DNA sequence human CNN Wang et al. (2018b)

human + mouse
+ drosophilia

CNN Wang et al. (2018a)

RNA sequence human CNN Koo et al. (2018)

Syn. genomics one-hot-encoding DNA sequence human RNN +
Attention

Gupta & Kundaje (2019)

CNN Lanchantin et al. (2016)

TFBS + histone +
chromatin
accessibility

Transfer one-hot-encoding DNA sequence human + mouse CNN Kelley (2020)

Bio. mechanism one-hot-encoding DNA sequence human CNN Kelley et al. (2018)

CNN Alipanahi et al. (2015)

Zhou et al. (2019)

Hoffman et al. (2019)

Zhou & Troyanskaya
(2015)

Richter et al. (2020)

Syn. genomics one-hot-encoding DNA sequence human CNN Schreiber, Lu & Noble
(2020)

TFBS (circRNA) Bio. mechanism one-hot-encoding RNA sequence human CNN Wang, Lei & Wu, 2019

chromatin Transfer + Bio.
mechanism

one-hot-encoding DNA + gene expression human CNN Nair et al. (2019)

accessibility Bio. mechanism one-hot-encoding +
embedding

DNA sequence human CNN Liu et al. (2018)

gene expression Transfer + Bio.
mechanism

one-hot-encoding DNA + TF expression level yeast CNN Liu et al. (2019)

Bio. mechanism one-hot-encoding RNA sequence 7 species CNN Zrimec et al. (2020)

Syn. genomics yeast CNN Cuperus et al. (2017)

DNA sequence Random
promoters
(yeast)

CNN +
Attention +
RNN

Vaishnav et al. (2021)

Bio. mechanism one-hot-encoding DNA + mRNA half-life +
CG content + ORF length

human CNN Agarwal & Shendure
(2020)

DNA + promoter-
enhancer interaction

human CNN Zeng, Wang & Jiang,
2020

DNA sequence human CNN Movva et al. (2019)

gene expression +
RNA splicing

Syn. genomics one-hot-encoding DNA sequence human CNN Linder et al. (2020)

Note:
CNN, convolutional neural network; RNN, recurrent neural network. After the pioneering use of CNN in genomics in 2015, the methodologies have diversified according
to four different aspects: the modelinputs (that may include other annotations on top of the sole DNA sequence), the sequence encoding (mainly one-hot-encoding or
k-mer embedding), theneural network architecture (CNN, RNN, Attention mechanism) and the output format, which can be either binary or continuous.
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another species or a different cell type, practically enabling the automatic annotation of
genomes from the DNA sequence; (2) getting a deeper understanding of sequence
determinants of the genome function by predicting the effect of non-coding mutations and
determining sequence motifs that are recognized by the cell machinery; (3) designing
synthetic DNA sequences with a tailored annotations (Fig. 2). Two related applications for
which classification methodologies from machine learning are inherently useful are the
tasks of species attribution for a given, usually short, sequence and the task of assessing
sequencing errors are covered in the insert “Sequence classification”.

For the sake of completeness and for those who are interested in more technical aspects,
we also compiled a short description of the publications that focus on methodological
advances (Table 2).

SURVEY METHODOLOGY
Deep learning for genomics is a rapidly evolving field. We did our best to gather many of
the studies published so far focusing on the use of deep neural networks that take as
input genomic sequences. To ensure an unbiased analysis of literature, a comprehensive
analysis of published articles was carried using the following online databases: Medline
(PubMed), Science Direct (http://sciencedirect.com) database, and Google Scholar
database. We used the following keywords: deep learning, neural networks, genomics,
DNA sequence and then gathered articles together with articles that were cited within the
recovered articles.

Figure 2 Different possible uses of deep learning in genomics. Deep learning models trained with
genome annotations together with the underlying genomic sequence (in light blue) can be used for thre
different applications (in light green) (1) to automatically annotate the genome of a given species and for
a given cell type, (2) to determine the sequence determinants of the genome functions by identifying
sequence motifs (such as position weight matrix, PWM) and the effect of sequence variants, or (3) to
design artificial sequences. Full-size DOI: 10.7717/peerj.13613/fig-2
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Table 2 Overview of studies developing deep learning methodologies in genomics.

Annotation Usage Preprocessing Data Species Architecture Reference

epigenetic mark Bio. mechanism one-hot-encoding DNA + chromatin
accessibility

human CNN Yin et al. (2019)

DNA + CpG
neighborhood of
cells

human CNN + RNN Angermueller et al.
(2017)

DNA sequence human CNN Zeng & Gifford (2017)

RNA sequence human + mouse +
zebrafish

CNN + RNN Zhang & Hamada
(2018)

polyadenylation Bio. mechanism one-hot-encoding DNA sequence Arabidopsis
thaliana

CNN Gao et al. (2018)

human CNN Leung, Delong & Frey
(2018)

Syn. genomics one-hot-encoding DNA sequence human CNN Bogard et al. (2019)

polyadenylation +
translation initiation site

transfer one-hot-encoding DNA sequence human + mouse +
bovine +
drosophilia

CNN Kalkatawi et al. (2019)

splicing Bio. mechanism one-hot-encoding DNA sequence human CNN Cheng et al. (2019)

Cheng et al. (2021)

Du et al. (2018)

RNA sequence human CNN Jaganathan et al. (2019)

CNN Wang & Wang (2019)

D architecture Bio. mechanism one-hot-encoding DNA sequence human CNN Zhou (2021)

CNN Fudenberg, Kelley &
Pollard, 2020

CNN + RNN Singh et al. (2019)

human + mouse CNN Schwessinger et al.
(2020)

nucleosome Bio. mechanism one-hot-encoding DNA sequence yeast CNN Routhier et al. (2021)

nucleosome + TFBS Bio. mechanism one-hot-encoding DNA sequence yeast + human CNN Cakiroglu et al. (2021)

enhancer transfer embedding DNA sequence 6 species CNN Chen, Fish & Capra
(2018)

Bio. mechanism
+ Syn.
genomics

one-hot-encoding DNA sequence 6 pecies CNN + RNN Minnoye et al. (2020)

Bio. mechanism one-hot-encoding DNA sequence human CNN Min et al. (2017b))

promoter transfer one-hot-encoding DNA sequence 5 species CNN Khodabandelou,
Routhier &
Mozziconacci (2020)

promoter + enhancer +
TFBS + chromatin
accessibility

Bio. mechanism one-hot-encoding DNA sequence human CNN Wesolowska-Andersen
et al. (2020)

translation initiation site Bio. mechanism one-hot-encoding DNA sequence human CNN + RNN Zhang et al. (2017)

sgRNA Syn. genomics one-hot-encoding DNA + TFBS +
epigenetic +
accessibility

human CNN Chuai et al. (2018)

binding site DNA sequence human + mouse CNN Xue et al. (2018)

(Continued)
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Table 2 (continued)

Annotation Usage Preprocessing Data Species Architecture Reference

Virus integration Bio. mechanism one-hot-encoding DNA sequence human CNN +
Attention

Tian et al. (2021)

Overview of studies applying deep learning in genomics, segmented by their usage.

Annotation Preprocessing Data Species Architecture Reference

TFBS benchmark DNA sequence human benchmark Trabelsi, Chaabane & Ben-Hur,
2019

embedding DNA sequence human CNN + RNN Zhang, Shen & Huang (2019a)

one-hot-encoding DNA + distance to various
annotations

human CNN Avsec et al. (2018)

DNA + histone marks +
accessibility

human CNN Jing et al. (2019)

DNA + shape human CNN Zhang, Shen & Huang (2019b)

DNA sequence human CNN Brown & Lunter (2019)

CNN + RNN Zhang et al. (2020)

CNN Shrikumar, Greenside &
Kundaje (2017b)

CNN Luo et al. (2020)

CNN Zeng et al. (2016)

CNN Chen, Jacob & Mairal, 2019

TFBS + histone marks +
accessibility

one-hot-encoding DNA sequence human CNN Cao & Zhang (2019)

Kelley, Snoek & Rinn, 2016

Tayara & Chong (2019)

CNN + RNN Quang & Xie (2016)

CNN +
Attention

Avsec et al. (2021a)

CNN Gupta & Rush (2017)

chromatin accessibility embedding DNA sequence human CNN + RNN Min et al. (2017a)

epigenetic marks embedding RNA sequence human CNN Mostavi, Salekin & Huang,
2018

polyadenylation embedding DNA sequence 4 species CNN +
Attention

Guo et al. (2021)

one-hot-encoding RNA + secondary structure human CNN + RNN Arefeen, Xiao & Jiang, 2019

3D architecture one-hot-encoding DNA + DNAseI signal human CNN Schreiber et al. (2017)

nucleosome one-hot-encoding DNA sequence yeast CNN Zhang, Peng & Wang, 2018

CNN + RNN Di Gangi, Bosco & Rizzo (2018)

enhancer one-hot-encoding DNA sequence human CNN Yang et al. (2017)

Min et al. (2016)

promoter embedding DNA sequence human CNN Xu, Zhu & Huang, 2019

one-hot-encoding DNA sequence human CNN Umarov & Solovyev (2017)

Umarov et al. (2019)

human + Oryza
sativa

CNN Pachganov et al. (2019)
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Annotation transfer
Annotation transfer relies on what the machine learning field calls “out-of-distribution
generalization”. The general idea behind is that when a neural network learns the link
between a given annotation and a sequence, it may be able to generalize, that is to infer the
annotation for another, albeit related sequence. While neural networks have been
found to generalize well in this way (for a contemporary review, see Shen et al. (2021)), it is
worth noting that it is always possible to design specific examples for which this
generalization will fail (Wiyatno et al., 2019). For this reason, it is always a plus to have in
hand some experimental data of the annotation you seek to predict. Even if the data has a
low coverage, it can be used to validate or even fine tune the model using this new data
(Iman, Rasheed & Arabnia, 2022).

The use of deep learning methodologies to annotate genomes from the sequence by
transferring annotations learnt in a different context has been reported so far for three
different applications. The first is the transfer from a species on which the network was
trained to another species on which the predictions are made. The second one is the
transfer of annotations from one cell type (or environmental condition) on which the
network was trained to another cell type (or another environmental condition). This
application relies on the use of secondary annotation that has to be used on top the DNA
sequence to train the model.

Annotation transfer across species

The potential of using deep learning to transfer annotations is especially relevant for
different species since experimentally annotating all the sequenced genomes is today
impossible. Here again, deep learning methodologies may help to close the gap by
automatically annotating new genomes after being trained on reference, well annotated
genomes. Initial studies provide a proof of principle of this possibility and highlight some
of the limitations. Khodabandelou, Routhier & Mozziconacci (2020) demonstrate that a
model trained on a given species can be used to annotate another species. They developed
a model trained on the human genome to detect transcription start sites (TSS) and
faithfully predict TSS on the mouse and on the chicken genomes with this model.
Nevertheless, their model failed to generalise to other species such as the zebrafish.
This study highlights some limitations of cross species prediction as this possibility relies
on the conservation of molecular mechanisms through evolution. The conservation of

Table 2 (continued)

Annotation Preprocessing Data Species Architecture Reference

gene one-hot-encoding DNA sequence metagenomics CNN Al-Ajlan & El Allali (2019)

pathogenicity one-hot-encoding DNA sequence bacterias CNN + RNN Bartoszewicz et al. (2020)

species embedding DNA sequence metagenomics RNN +
Attention

Liang et al. (2020)

one-hot-encoding DNA sequence 13,838 species CNN Busia et al. (2019)

viruses CNN Ren et al. (2020)

Tampuu et al. (2019)
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annotation logic has been further illustrated in Minnoye et al. (2020) and Chen, Fish &
Capra (2018) in the context of enhancer prediction.Minnoye et al. (2020) studied the gene
expression level associated to enhancers in melanoma for six different species. They
demonstrated that the melanoma chromatin accessibility landscape is conserved for
homologous enhancers and that the associated TF motifs are also conserved between
the six species. More practically, Chen, Fish & Capra (2018) demonstrated that an
enhancer predictor trained on one species among human, macaque, mouse, dog, cow and
opossum performs correctly on all the other species. A model trained on species A and
applied to species B has an AUROC score equal to 96% of the AUROC score of a model
trained on B and applied to B (this figure is 85% for AUPRC). Taken together, these studies
show the potential of training a model for a specific task on a given context and applying it
to another, a process known as generalization. A promising idea in the field would be
increasing the number of species on which the model is trained to increase its cross-species
generalization. Kelley (2020) showed that deep learning models can be improved when
trained on both the human and the mouse genome, especially in the context of predicting
the effect of non-coding variant. This study shows that the diversity in the training set
provided by training on two species helps the model generalise in the context of predicting
the effect of mutations. Pushing the idea further, Cochran et al. (2021) showed the benefits
of training on multiple genomes to increase the cross species generalization of models
in the context of TFBS predictions. They also improved their predictions by developing a
model which penalises the learning of species specific features during the training.

We expect cross species learning and prediction to play a major role in the near future
in automatic annotation of ill-annotated genomes. In order to be successful these
approaches will need to overcome two potential pitfalls. The first is that the further away
species are on the tree of life, the less conserved are molecular mechanisms. The second
being the potential over-fitting of a species specific logic. Overfitting is a modeling
error in statistics that occurs when a prediction is closely aligned to the training set of
data but fails to predict other unseen data. To avoid these pitfalls, testing the predictions
with experimental cues is needed to confirm or not the computational predictions.
The computational predictions are just one line of evidence about the true annotation.
The strength of that evidence depends on how well the model has predicted out-of-
distribution instances in the past and how different the distribution of interest is to the
training distribution and to other tested distributions. The best solution in an unknown
case would be to get a small dataset of experimental annotations to be used to validate
and/or fine tune the models.

Annotation transfer across cell type
In bio-medical research, a few cell types are considered as reference models due to
their availability or their potential to be grown in culture. These cell types are extensively
studied while for the overwhelming majority of cells types in the human body there is a
blatant lack of data. Developing methods that could extrapolate the annotation of the
reference cell types to the others can help address this lack. With this goal in mind, specific
neural network approaches are developed to annotate the genome in a cellular context that
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differs from the training context. Knowing that the DNA sequence is conserved between
cell types, these methodologies use the DNA sequence and some complementary cell type
specific annotation as input.

Nair et al. (2019) developed a CNN based model to predict the chromatin accessibility
across human cellular context. The model uses the DNA sequence and the gene expression
as input and predicts the local DNA accessibility. They evaluate the model genome
wide on 10 cell types which were not used in the training set (113 cell types). The model
achieves an average area under the precision recall curve (AUPRC) of 0.76 and an area
under the receiver operating characteristic curve (AUROC) of 0.954 across five folds.
Quang & Xie (2019) investigated the possibility of cross species prediction in the context of
TFBS prediction. They developed a model to predict cell type-specific transcription factor
binding from the DNA sequence, the gene expression, the DNaseI cleavage profile and
the mappability. The model was also evaluated on cell types that differ from the ones
used for training. On 51 TF/cell pairs on which the model was evaluated, it typically
achieves an AUROC above 0.97 for most of the TF/cell pairs with a more contrasted figure
regarding the AUPRC (between 0.21 and 0.87 depending on the pair). These two studies
show promising results for the task of extrapolating annotations from reference cell
types to other cell types.

A related problem is the prediction of the annotation of a genome in a different
environmental context. Liu et al. (2019) showed that deep learning methods can be used to
predict the gene expression in yeast from the DNA sequence and from 472 TF and signal
molecules binding contexts for different stress conditions. Their evaluation was done
on the same stress condition as their training as it is not possible to predict gene expression
across different conditions. Their model was nevertheless able to perform in-silico TF
knock-out experiments that were validated by micro-array experimental results.

Unveiling sequence determinants of genomic annotations
We have seen above that when trained appropriately on large datasets, neural networks are
capable of predicting annotations in new contexts. These neural networks in some ways
mimic the machinery of DNA binding: metaphorically, they both “read” the DNA
sequence and “annotate” it, with computationally predicted biochemical labels or
molecules. Such a neural network can be treated as an emulation of the DNA binding
machinery and used for in silico experiments to generate hypotheses and theories, like
any other model. The real benefit comes from the ease to perform new “experiments”
with this neural network and from the possibility to reveal how the model makes its
predictions. In other words, the advantage of studying a biological mechanism with a
neural network is twofold. First, by studying how the model makes its prediction, one
can discover the motifs associated with the biological mechanism in the form of a PWM.
Going further, a successful dissection of the model can give access to the grammar of
motifs, i.e. understanding how motifs interact between themselves, forming motifs of
motifs. Methods used to deal with these two tasks are described in the insert “Opening the
black box”. Second, a model can be use to predict the effect of non-coding mutations, also
called variants, on the annotation. Variants are changes in the genomic sequence relative to

Routhier and Mozziconacci (2022), PeerJ, DOI 10.7717/peerj.13613 9/29

http://dx.doi.org/10.7717/peerj.13613
https://peerj.com/


the reference sequence. They arise from the natural variability of individual DNA
sequences and can be either single nucleotide variations (also called SNPs for
Single Nucleotide Polymorphisms), or insertions or deletions of small sequences.
The interpretation of the effect of variants within coding sequences is another topic that
relates to genetics rather than genomics. In genetics, that covers protein functions and how
they are affected by mutations, deep learning is also a game changer but this whole
field will not be discussed here. Interested readers may refer to this recent work and
reference therein for gene function predictions (Brandes et al., 2022) and to this
comparative study for protein physical and chemical properties predictions (Xu et al.,
2020). Non-coding variants can statistically be associated with phenotypic traits or diseases
but their mechanistic role cannot be immediately inferred. The statistical approach,
also know as Genome Wide Association Study (GWAS), reveals variants that are
significantly over-represented in people with a certain trait. This analysis has an important
drawback: many variants are linked, i.e. their co-occurrence is significantly more frequent,
but within these linked variants, some have no role in creating the phenotype. In other
words, GWAS is prone to false positives. Here again, deep learning can be used to prioritize
variants, i.e. trying to find the variants responsible for the trait. In order to uncover
how the DNA sequence drives the local assembly of various chromatin context we review
below the different experimental datasets that have been studied using a deep learning
based approach.

Epigenomics: transcription factor binding site, histone modification and
chromatin accessibility
The DeepSEA model (Zhou & Troyanskaya, 2015) was specifically developed to study the
effect of non-coding SNPs on a huge set of epigenomic data (from 690 TF ChIP-seq, 125
DNase-seq and 104 histone marker ChIP-seq experiments). Despite the fact that the
network was trained using a unique human reference genome, it is able to predict the
decrease in DNase-seq sensitivity for 57,407 experimentally identified SNPs and these
changes were confirmed by experiments. As a paradigmatic example, the network is
able to predict the deleterious effect of SNP rs4784227 for FoxA1 protein binding, a
mechanism associated with breast cancer. These encouraging results led the authors to use
DeepSEA in a general way to discriminate variants associated with functional modification
from innocuous variants. The network obtained at the time the best results on this task.
Other teams have, since then, improved the quality of predictions on the same
experimental dataset and same testset (Tayara & Chong, 2019; Quang & Xie, 2016).

The Basenji network (Kelley et al., 2018) was also used to predict the effect of variants.
This network predicts the outcome of 2,307 ChIP-seq experiments on histone marks, 949
DNase-seq experiments, and 973 CAGE experiments in human. The predictions of the
model in the presence of variants known to alter gene expression were compared to
predictions obtained with non-variant sequence. Again, this network, although trained
on a unique reference genome, is able to predict a change of the chromatin context at these
loci. The model is for instance able to predict the effect of a variant (rs78461372) on the
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two surrounding genes, one of which is located 13 kbp away. Again, predictions were
confirmed experimentally.

Liu et al. (2018) demonstrated that a neural network could be used to identify
mechanistically disease-associated SNPs from SNPs that co-occur with them. They
developed a model to predict the chromatin accessibility given the DNA sequence. A test
set was created consisting of 29 SNPs known to be related to breast cancer and 1,057
harmless SNPs that co-occur with them. A score quantifying the variations in network
predictions were found to be significantly higher on disease-associated SNPs than on
co-occurring SNPs (one-sided Mann-Whitney U test, p_value = 1.63 × 10−3). The network
training protocol can improve predictions associated with SNPs. Hoffman et al. (2019)
used a CNN to predict the signals associated with one DNase-seq experiment and three
ChIP-seq experiments on histone marks from the DNA sequence. They used the
genomes of the individuals on which the experiments were performed as a source
of sequences and not the reference genome. They defined a score to evaluate the
consequences of 438 million variants. They showed that SNPs with a link to a disease or
modifying the expression level of a gene are often attributed with a higher score.
Wesolowska-Andersen et al. (2020) emphasize the importance of training the network on
data obtained on a cell type which is relevant to the studied disease. In order to study
the effect of variants associated with type II diabetes, they targeted islet cells of the
pancreas. They developed a CNN predicting epigenomic data from the DNA sequence and
show consistency between the network prediction-based method and traditional methods
for refining the detection of diabetes-associated variants. A part (roughly 10%) of the
initial set of variants can be labeled as important by looking at the model predictions.
The authors show that those variants are indeed significantly more likely to be
evolutionary conserved than the original set (one sided Wilcoxon rank sum test,
p_value = 7.3 × 10−4). Using this methodology, they were able to find 80% of expression
quantitative loci (eQTL, loci associated with a quantitative trait) present in the variant set.

A number of biomedical studies have demonstrated practical application of deep
learning for variant analyis and SNP interpretation. Illustrating this every day increasing
number, a large study of congenital heart disease was recently performed (Richter et al.,
2020). Another practical application of variant analysis using neural networks is provided
by Zhou et al. (2019) to study variants related to autism. The study uses 7,097 genomes,
1,790 of which are from siblings, and overall covering 127,140 SNPs. These siblings’
groups are formed by one member diagnosed with autism while the other is not.
On average, the alleles of individuals with autism have a higher effect on transcription than
the alleles of their siblings. The effect is larger when SNPs are close to genes and in
particular close to loss-of-function intolerant genes Finally, 34 SNPs considered
particularly important were experimentally tested. For 32 of them, a significant
modification of the expression of associated genes was observed and among these genes
many are active during brain development.
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RNA binding
Deep learning methodologies have also provided new insight into RNA binding processes.
For example, by interpreting the first-layer filters (see insert “Opening the black box”) of a
CNN designed to predict RNA binding sites on the genome,Wang et al. (2018a) were able
to identify new patterns of triple bond formation (between the two DNA strands and
RNA). The authors also validated their finding with experiments. Koo et al. (2018)
developed a CNN model to predict the binding sites of RNA-binding proteins. Analysis of
their network by in silico mutagenesis (see insert “Opening the black box”) showed that it
was sensitive not only to consensus sites but also to their number and spacing. This
analysis also revealed that the network learned to take into account the RNA secondary
structure.

DNA and RNA methylation
Angermueller et al. (2017) developed a neural network capable of predicting methylation
sites from the DNA sequence. An analysis of the filters in the first layer associated with
the observation of the predictions finds that GC-rich motifs tend to decrease the
methylation of nearby CpG islands in contrast to AT-rich motifs. The motifs associated
with the filters (see insert “opening the black box”) were then compared with many TF
consensus motifs. This analysis showed that 17 filters out of 128 correspond to TFs
involved in methylation while 13 others are close to motifs of enzymes involved in
methylation.

The miCLIP-seq protocol can be used to measure N6-methyladenosine (m6A)
methylation on RNA. Zhang & Hamada (2018) used these data to train a network to detect
methylation positions on mRNA sequences. By analyzing the filters in the first layer,
they were able to find patterns associated with known m6A readers. Interestingly, they
were also able to detect a reader of these methylations, FMR1, which was discovered via
traditional methods in a paper published the previous year (Edupuganti et al., 2017).

Gene expression

Vaishnav et al. (2021) trained a deep transformer network to predict the gene expression
level associated with 20 million randomly sampled 80-bp long DNA sequences introduced
in a Saccharomyces cervisiae promoter region. They assessed the effect of all single
mutations in promoter regions and discovered four evolvability archetypes: robust
promoters on which mutations have little effect, plastic promoters on which every
mutations have a small effect and minimal or maximal promoters on which only some
mutations can dramatically decrease or increase the associated expression level. Using this
framework and analysing the promoter sequences in 1,001 yeast strains, the authors were
able to demonstrate that evolution tends to select robust promoters. Earlier, Liu et al.
(2019) trained a network to predict the expression level of yeast genes under different
stresses. Analysis of the first convolution layer filters revealed that the network primarily
searched for well-documented stress regulatory sites. Transcription factor silencing
experiments in silico achieved results similar to real microarray experiments. Zrimec et al.
(2020) also used a CNN to predict mRNA abundance directly from mRNA sequence in
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S. cerevisiae. They demonstrated that the entire sequence is useful for determining the level
of gene expression. Four elements (promoter, 5’UTR, 3’UTR and termination sequence)
are used by the model to make the prediction. By interpreting the model with in silico
mutagenesis, the authors recovered typical motifs of the four regions: TF binding motifs
for the promoter or 5’UTR, the so-called Kozak sequence (Kozak, 1989) in the 5’UTR,
poly-A and T-rich sites for the 3’UTR, and termination sites. More importantly, they
demonstrated that mRNA abundance cannot be predicted by the presence or absence of
the motifs alone, but can be predicted by the combination of motifs.

Movva et al. (2019) trained a network to predict the expression level of genes subjected
to artificial regulatory sequences in humans. Interpretation of the network with DeepLIFT
(see insert “Opening the black box”) reveals that the sequences used by the network to
make the prediction correspond to transcription factor binding sites. Agarwal & Shendure
(2020) predicted gene activity from 10 kbp DNA sequences surrounding the TSS.
The authors could not find motifs used by the network but an analysis of the
over-represented k-mers in the promoters of highly active genes (according to the
network) reveals the importance of CpG islands in predicting gene activity.

Splicing, translation and polyadenylation of RNA
Cheng et al. (2019, 2021) developed a neural network to predict gene splice sites from the
RNA sequence. Analysis of the effect of variants using this network shows its utility in
understanding the genomic causes of autism. They used the dataset provided by Zhou et al.
(2019) that we presented earlier and targeted 3,884 mutations that are near exons. They
demonstrated that the disruption score of mutations as provided by their model is
significantly higher in the affected group than in their unaffected siblings (Wilcoxom rank
sum test, p_value = 0.0035). Once again the effect is larger in brain tissues. Jaganathan
et al. (2019) confirmed the relevance of the use of neural networks for the study of gene
splicing in the context of intellectual disability and autism. They used data coming from
4,293 individuals with intellectual disabilities, 3,953 individuals with autism spectrum
disorder and 2,073 unaffected siblings. De novo mutations that are predicted to disrupt
splicing are enriched 1.51-fold in intellectual disability and 1.30-fold in autism spectrum
disorder compared to healthy controls.

Translation initiation of mRNAs does not always occur at the canonical AUG codon, as
shown by the recent QTI-seq method which precisely maps translation initiation sites
(Gao et al., 2015). These data have paved the way for the use of deep learning to predict
these initiation sites. Zhang et al. (2017) developed a network capable of predicting
initiation sites from mRNA sequences. By interpreting their network using input
optimization methods, they highlighted the importance of Kozak sequences around AUG
codons, confirming the previously established role of these sequences (Kozak, 1989).

Understanding the mechanisms controlling polyadenylation sites within mRNA
sequences is another area that benefited from the contribution of deep learning methods.
By interpreting their network, which is able to predict the probability of polyadenylation
site usage in human mRNAs, Leung, Delong & Frey (2018) showed that poly(A) sites,
the cutting factor UGUA, and GU-rich sequences tend to increase the probability of being
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a polyadenylation site, whereas the presence of CA-rich sequences decreases this
probability. Gao et al. (2018) also demonstrated the importance of poly(A) sites in the
polyadenylation code in the plant Arabidopsis thaliana using a gradient-based method to
interpret their network (see insert “Opening the black box”).

3D genome structure

Fudenberg, Kelley & Pollard (2020) extended the Basenji method to predict the 3D
structure of the genome directly from the DNA sequence. Targeted analysis of different
areas of the human genome by in silico mutagenesis reveals that the CCCTC-binding
factor (CTCF) binding sites are the most important elements for structure establishment.
By testing the other TFs, the authors reveal that these have no influence apart from
their possible interactions with CTCF. By performing CTCF site inversion experiments
in silico, the authors show that the network is able to learn the role of CTCF motif direction
in the 3D structure establishment. Finally, the attribution maps (see insert “Opening the
black box”) reveal the importance of cohesin ChIP-seq peak and, to a lesser extent, of
promoters and enhancers.

Nucleosome positioning
Routhier et al. (2021) used a CNN to predict nucleosome positioning in S.cerevisiae directly
from the DNA sequence and evaluated the effect of every single mutation on the genome
by in silico mutagenesis. They demonstrated the core role of the nucleosome depleted
region (NDR) in nucleosome positioning and identified nucleosome repulsive motifs
that were previously described in the literature. On the other hand, they did not find any
motifs that would position nucleosomes by attracting them, suggesting that nucleosome
repulsion is the main positioning mechanism. Cakiroglu et al. (2021) predicted nucleosome
positioning as well as TFBS from the DNA sequence based on results obtained with
Micrococcal Nuclease digestion treatment (MNase-seq, Cakiroglu et al. (2021)).
The model was able to reproduce the competition between nucleosomes and TFs for
binding on the DNA. The analysis of the first layer of the CNN shows that the model
identifies TF consensus motifs as important for the prediction and, by removing the filters
corresponding to these motifs, the authors also demonstrated that TFs tend to exclude
nucleosomes.

Deep learning assisted genome writing
Anticipation of experimental results and sequence fine tuning
Many cell or developmental biology experiments require the introduction of an artificial
DNA fragment into the genome or modifying in some other ways the genome sequence.
Having a neural network able to anticipate the consequences of these modifications on
many genomic annotations allows to fine tune the experimental protocols not only by
refining the sequence to introduce but also its position within the genome. The Kipoi
repository gathers many independently developed networks. Its objective is to standardize
and simplify the use of trained networks in concrete situations such as experiment
support. For example, this repository makes available the DeepMEL network (Minnoye
et al., 2020) developed to predict the accessibility of enhancers in melanoma in several
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different vertebrate species. The effectiveness of this model to anticipate the expression of
enhancer-associated genes has been demonstrated using the CAGI5 challenge data.
DeepMEL can be used to predict the activity of artificially introduced enhancers and to
optimize their sequence. In a related work in yeast, Zrimec et al. (2020) used their model to
anticipate the genes expression level for various gene constructs, especially changing the
terminator (5’UTR + termination sequence) with the promoters left intact. Their
predictions were experimentally validated for six different genes and show great promise
for the experimental control of gene expression by the sequence of surrounding regulatory
elements.

The development of synthetic genomics is today largely due to the combination of
the CRISPR-Cas9 protocol (Jinek et al., 2012), which allows to introduce tailored
modifications in the DNA sequence in many organisms, with the industrialization of DNA
synthesis (Ostrov et al., 2019). The CRISPR-Cas9 protocol uses small RNAs (sgRNA,
single guide RNA) to guide the Cas9 protein to its target by sequence complementarity.
However, sgRNAs usually target both the desired site and other sites on the DNA.
Methodologies have been proposed to anticipate the binding strength between sgRNAs,
the desired position and the spurious positions from their sequences (Chuai et al.,
2018; Xue et al., 2018). These networks can be used to design sgRNA sequences that
maximize interaction with the desired target and minimize interaction with spurious
targets. In order to address the challenges of security and intellectual property raised by the
development of synthetic genomics, Nielsen and Voigt have developed a deep learning
model to predict the laboratory of origin of artificial plasmids from their DNA sequences
(Nielsen & Voigt, 2018). For this specific question, however, deep learning methods do not
necessarily deliver the best results (Wang et al., 2021).

Synthetic sequence design
Possibly the most exciting prospective of the application of deep genomics is the computer
assisted writing of genomes. Indeed, the use of neural networks to predict genomic
functions from the sequence opens the possibility of optimizing sequences to control their
function. This new research field has seen its first promising results in the recent years.

The study of transcription factor binding sites plays a key role in the application of deep
learning to genomics, both for the development of architectures and interpretation
methods. This problem has therefore naturally been approached from the perspective of
sequence design. Lanchantin et al. (2016) optimized the input sequence to maximize the
network predictions for specific TF binding. Schreiber, Lu & Noble (2020) developed
Ledidi, a methodology to minimally modify the input sequence of the network in order to
modify its predictions. Using this methodology, the authors are able to induce or destroy
sites of CTCF binding or suppress JUND protein binding. Gupta & Kundaje (2019) used a
method inspired by variational autoencoders to induce SPI1 protein binding sites.

On a different topic, Bogard et al. (2019) developed a sequence optimization
methodology to design RNA sequences with controlled polyadenylation sites (Bogard
et al., 2019). Linder et al. (2020) improved this technique to use it for various problems
such as controlling the level of gene transcription, RNA splicing, or RNA 3’ cleavage. More
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recently, Linder et al. (2021) used masks on the sequence to both determine whether
each part of the input sequence was sufficient to explain the network predictions and use
this information to generate new sequences with similar properties. Other applications
include Cuperus et al. (2017) who used their trained CNN to predict the translation level of
mRNAs from their 5’ untranslated sequence. This network was used to design 5’
untranslated regions that induce maximal translation level.

Vaishnav et al. (2021) designed promoter regions that induced unusually low or high
level of gene expression in yeast S.cerevisiae. They used a genetic algorithm to write an
80-bp long sequences that produce the desired output. The predictions were made with a
deep transformer network trained to predict the gene expression level associated to
20 million randomly sampled promoters. Experimental validation on 500 sequences
demonstrated that the sequences actually led to unusual level of expression. On average,
designed sequences led to an expression level higher (or lower) than 99% of natural
sequences. About 20% of the designed sequences led to a higher (or lower) expression level
than any natural sequences.

CONCLUSION
We highlighted in this review the high potential that deep learning holds to transform
classical bioinformatics and open the deep genomics era. We started our tour by listing the
first applications in the transfer of genomic annotations between species or between
cell types. Due to the tremendous number of genomes that are sequenced everyday, we
posit that deep learning will be a game changer for the task of genome annotation.
We have also reviewed demonstrations of the potential of these techniques to uncover the
complex regulatory grammar of motifs, which go beyond simple motifs represented by
PWM that are of common use in the field of functional genomics. We finally presented
perhaps the most transformative application of deep learning: the generation of new
sequences using sequence optimisation based on predictions or using deep generative
models.

Having reviewed these new potential avenues at the intersection between deep learning
and genomics, we wish also to mention the risks that comes with using such techniques, as
the output of an algorithm should always be taken with caution, especially in cases for
which human health is at stake. In clinical medicine, initial enthusiasm for deep learning
driven by over-stated results has given way to broad cynicism as the rubber has hit the
road. See Wynants et al. (2020), Roberts et al. (2021) for critical reviews of machine
learning models for COVID-19 diagnosis.

A typical reason why predictions made by deep learning models may fail is out of
distribution sampling. For instance, if the sequences on which a network is trained have
an average GC content that is peaked around one value, there is no guarantee that
predictions made on sequences harboring a different GC content will turn out to be
correct. With that in mind, predictions that lead to annotation transfer, mechanisms
discovery or sequence generation should be framed as a hypothesis generation tool to
speed up research by suggesting targeted experiments.
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We hope that our work will help colleagues in better understanding the profound
impact that deep learning will have in the field of bioinformatics. We, as a community,
now stand at the beginning of an exciting time: the deep genomics era.

Sequence classification
Species classification
Bioinformatics tools used to determine a short sequence’s species of origin, such as BLAST,
align and compare this sequence with sequences from different reference species. These
tools are therefore increasingly slow as the number of reference species increases. Deep
learning approaches do not suffer from the same problem. Indeed, once a network is
trained to attribute a species to a DNA sequence, the prediction will always take the same
amount of time. This advantage also comes at a cost: adding a new reference species to the
database would require retraining the network. That retraining process is much more
complicated, error-prone and demanding in terms of computational resources than adding
a new sequence for BLAST. Networks have nevertheless already been developed for
this specific application. The use of k-mer preprocessing allows the prediction of the
species with a simple dense network (Vervier, Mahé & Vert, 2018). The results get even
better when improving the sequence embedding strategy or increasing the length k of the
k-mers (Menegaux & Vert, 2019, 2020). Other methodologies use CNNs to predict the
species of short ribosomal DNA fragments (Busia et al., 2019) or to identify viruses and
microbes from metagenomic data (Liang et al., 2020; Ren et al., 2020). Another application
that today shows great promise is the identification of viral DNA within metagenomic
samples (Tampuu et al., 2019).

Classifying and correcting sequencing errors
The variations of DNA sequences obtained from sequencers can be due either to the
intrinsic diversity of the DNA sequence in the sample or to sequencing errors. In order to
obtain the precise pool of sequences in a sample, it is necessary to differentiate the “true”
variations from the sequencing errors. Several deep learning based methods have
emerged for this purpose (Poplin et al., 2018; Ravasio et al., 2018). Zhang, Shen & Huang
(2019a) proposed an improved method that leverages the internal states of a RNN to
model the distributions of biased and unbiased RNA-seq reads. Luo et al. (2018) developed
similar strategies for long read sequencing and Torracinta et al. (2016) developed a
methodology that allows the correction of sequence errors for RNA-seq.

Opening the black box
Neural networks are often referred to as “black boxes”, which are trained to give the best
answer but from which it is not possible to extract comprehensive rules. In the context of
genomics, these rules would allows to understand which sequence motifs are associated
with a given annotation. This chapter is intended at reviewing the methods used to
“open the black box” in genomics studies and access the DNA motifs and their
combination that are the most important for the prediction. Its content is more technical
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than the rest of the review and it can be skipped by the readers who do not wish to get into
these details.

We separate the different methods for interpreting deep networks into two categories.
First-order methods allow to determine which DNA motifs play an important role in
the network decision. Second-order methods allow to understand the grammar of motifs,
i.e. a set of rules that is used to interpret motifs.

First order−Motif discovery
Convolutional networks include filters (corresponding to short DNA motifs) that are
optimized as they are trained. Within the first convolution layer, the network scans the
sequence for the occurrence of motifs corresponding to the filters. Studying the motifs
corresponding to the filters in the first layer is thus a way to see the DNA patterns deemed
important by the network to make its predictions. Kelley, Snoek & Rinn (2016) and
Alipanahi et al. (2015) introduced this method to study the Basset and DeepBind networks
that they developed. Computing the motif associated with a filter requires three steps.
First, all sequences in the test set are scanned using the filter. Second, for all sequences, at
each position where the sequence matches the filter, a subsequence of the filter length is
extracted. Matching here means that the norm of the elementwise multiplication
between the subsequence and the filter exceeds a threshold. Third, the frequency of the
nucleotides A, C, G, T within the extracted subsequences is computed to give a position
weight matrix (PWM) of the motif searched by the filter. This method has a major
disadvantage: there is no guarantee that the network searches for biologically important
patterns with its first layer. This information can be dispersed within all layers.
To overcome this limitation, constraints can be applied on the first layer of the network to
make its weights directly interpretable in terms of a frequency matrix (Ploenzke &
Irizarry, 2018). The network architecture can also be adapted to force information to be
contained in the first layer (Koo & Eddy, 2019; Koo & Ploenzke, 2020a). An alternative
option is to adjust the networks’ training procedure to penalize the use of patterns that are
too small and therefore not likely to be of biological interest (Tseng, Shrikumar & Kundaje,
2020). These methods work well for CNNs but cannot be used directly for RNNs.
However, recurrent networks make intermediate predictions during their reading of the
DNA sequence. Studying the positions that make these intermediate predictions vary the
most can point at the nucleotides that are important in the establishment of the final
prediction (Lanchantin et al., 2017).

A second class of method assigns to each nucleotide of a sequence a score reflecting its
importance in the prediction made by the network. If the network predicts several classes,
a score will be calculated for each class. There are two ways to compute this score.
The first method was introduced for the study of DeepBind and DeepSEA. For each
nucleotide, the difference between the predictions obtained with the natural sequence and
with a mutated sequence is computed. By summing up the contributions of the three
possible mutations a mutation score is obtained (Alipanahi et al., 2015; Nair, Shrikumar &
Kundaje, 2020). This method is called in silico mutagenesis. The second method is
based on the estimation of the change in the prediction Pc(X0), obtained for the class c, that
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is obtained when the input, one-hot encoded, sequence X0 is change to another sequence
X. When X close to X0 the Taylor expansion to first order gives:

PcðXÞ � PcðX0Þ � @Pc
@X

�
�
�
�
X0

ðX � X0Þ (1)

The quantity @Pc
@X jX0

allows to estimate in which proportion the change of an input
element will affect the prediction. As a bonus, this quantity can be easily and cheaply
computed with the same methods used during network training. Multiplying this quantity
term by term with the input X0 produces an importance score for each nucleotide of the
input sequence (Lanchantin et al., 2017). Based on similar principles, the DeepLIFT
(Shrikumar, Greenside & Kundaje, 2017a; Ancona et al., 2017) and DeepSHAP (Lundberg
& Lee, 2017) methods also use back-propagation to compute how much a change in the
input changes the prediction. Both are inspired from methods used in the image
recognition field. Some of their potential limitations have been put forward in this field
(Sturmfels, Lundberg & Lee, 2020) and it remains to be seen how these limitations will
impact the interpretation of deep learning models in the context of genomics.

The importance scores assigned to nucleotides can be used to determine important
motifs. Avsec et al. (2021b) developed a methodology, called TF-Modisco, to determine
globally important motifs from the assignment scores. This methodology works in three
steps. In the first step, an importance score is associated to all positions of the test set
sequences with the DeepLIFT model. In a second step, all sub-sequences with high scores
are extracted. In order to define these high scores, the scores of the real sequences are
compared to the scores obtained for random sequences having the same di-nucleotide
distribution. Finally, the sub-sequences are grouped into motifs using hierarchical
clustering. Peaks in the importance scores can also be interpreted as peak of ChIP-seq data
and standard bioinformatic tools such as MEME (Bailey et al., 2015; Bailey et al., 2009) can
be used to extract important motifs (Routhier et al., 2021).

Second order−Grammar of motifs
The methods used to explore the grammar of motifs can also be divided in two categories:
methodologies that exploit the model architecture to compute the interactions between
motifs and methodologies that take benefit of the attribution map to visualize the effect of
varying the motifs organisation.

CNNs typically have multiple convolution layers. The filters of the second layer can be
analyzed in the same way as the filters of the first layer and provide interactions between
filters (i.e. motifs) of the first layer. Networks using an attention mechanism to exploit
the patterns in the sequence are directly interpretable. The first convolution layer
transforms the one-hot encoded sequence in which letters are replace by vectors of ones
and zeros into a 2D matrix, one dimension representing the 1D sequence and the second
dimension representing the different filters of the first layer. The attention mechanism
assigns a weight to each point of the sequence, a weight learned during training.
The “encoded” sequence is then averaged along the spatial axis, weighted by the attention
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weights. Thus, spatial interactions between filters are readable in the weights assigned by
the mechanism (Hu et al., 2019).

Another approach to decipher the grammar of motif is to perform in silico experiments
consisting in introducing, moving or destroying motifs and assessing the impact on the
predictions. Greenside et al. (2018) propose to study the evolution of a motif importance
score upon mutation of another motif to discover possible interactions between them.
Koo & Ploenzke (2020b) developed a methodology to quantify the global importance of any
motif in a general context by evaluating the difference between the average of the
predictions obtained for sequences randomly drawn from the natural distribution and
the average of the predictions obtained for these same sequences in which the motif has
been artificially included. This method can be used to analyze the interactions between
motifs by adding two motifs within the random sequences. Avsec et al. (2021b) also
performed in silico experiments to understand the grammar of motifs by changing the
genomic distance between the motifs and assessing the evolution of the prediction.
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