LDViz: a tool to assist the multidimensional exploration of SPARQL endpoints - Archive ouverte HAL
Chapitre D'ouvrage Année : 2023

LDViz: a tool to assist the multidimensional exploration of SPARQL endpoints

Résumé

Over recent years, we witnessed an astonishing growth in production and consumption of Linked Data (LD), which contains valuable information to support decision-making processes in various application domains. In this context, data visualization plays a decisive role in making sense of the large volumes of data created every day and in effectively communicating structures, processes, and trends in data in an accessible way. In this paper, we present LDViz, a visualization tool designed to support the exploration of knowledge graphs via multiple perspectives: (i) RDF graph/vocabulary inspection, (ii) RDF summarization, and (iii) exploratory search. We demonstrate the usage and feasibility of our approach through a set of use case scenarios showing how users can perform searches through SPARQL queries and explore multiple perspectives of the resulting data through multiple complementary visualization techniques. We also demonstrate the reach and generic aspects of our tool through an evaluation that tests the support of 419 different SPARQL endpoints.
Fichier principal
Vignette du fichier
manuscript.pdf (30.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-03929913 , version 1 (09-01-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Aline Menin, Pierre Maillot, Catherine Faron, Olivier Corby, Carla Maria Dal Sasso Freitas, et al.. LDViz: a tool to assist the multidimensional exploration of SPARQL endpoints. Web Information Systems and Technologies : 16th International Conference, WEBIST 2020, November 3–5, 2020, and 17th International Conference, WEBIST 2021, October 26–28, 2021, Virtual Events, Revised Selected Papers, LNBIP - 469, Springer, pp.149-173, 2023, LNBIP - Lecture Notes in Business Information Processing, 978-3-031-24196-3. ⟨10.1007/978-3-031-24197-0⟩. ⟨hal-03929913⟩
185 Consultations
62 Téléchargements

Altmetric

Partager

More