Adriana Ferreira 
email: adriana.bentescorreia@toulouse-inp.fr
  
Micheline Abbas 
email: micheline.abbas@toulouse-inp.fr
  
Philippe Carvin 
email: philippe.carvin@solvay.com
  
Patrice Bacchin 
email: patrice.bacchin@univ-tlse3.fr
  
Colloid dynamics near phase transition: A

published or not. The documents may come   L'archive ouverte pluridisciplinaire

Introduction

The accumulation and relaxation of a concentrated colloidal phase is of interest in many applications, like drying and filtration, where out-ofequilibrium transport processes are encountered. A significant amount of experimental and theoretical works has focused on the accumulation of colloidal particles near an interface (a free surface and a solid membrane in the drying [1,2], filtration [3] and pervaporation [4] configurations, respectively). However, there is evidence that concentration profiles, after the filtration is ceased, differ from those measured directly during filtration [5]. The dynamics and the mechanisms controlling the colloid relaxation (when colloidal compression is released) are far from being fully understood.

Colloidal particles can remain stable in a dispersed state for long durations, often due to repulsive electrostatic interactions or to the presence of certain stabilizing agents. When particle concentration increases in time, for instance, due to settling, drying or filtration, particles are compressed, which leads to the increase in osmotic pressure. The suspension can display non-equilibrium transition. The volume fraction at which phase transition occurs depends on the interactions between particles. When the concentration increases, particles are forced close to each other and attractive interaction forces become predominant. It is widely known that strongly attractive particles form gels at relatively low critical concentrations [6] (resulting from the formation of fractal clusters [7]), whereas weakly attractive particles form glass at high critical concentrations (permanent trapping of particles within cages formed by nearest neighbor particles) [8]. Nevertheless, colloidal dispersions with long-range electrostatic interactions can exhibit disorder-to-order transition, even at volume fractions as low as φ = O(0.1) [9,10]. Once the concentration is sufficiently strong, networks of large numbers of particles are consolidated, leading the colloidal suspension to take the properties of a solid [11].

The equation of state of colloidal suspensions can exhibit sudden change near the phase transition [9,12], leading to the dramatic slowing of the relaxation time-scales which manifests as a divergence in the local viscosity [13,14] as hallmarks of liquid-solid transition [15]. These concentrated suspensions will be called gels hereafter. The properties of gels and their ability to relax is strongly related to inter-particle interaction (physico-chemical properties) and to the temperature [16,17,18]. The experiments show that the relaxation of the gel occurs mainly by isotropic diffusion of the particles [19]. The objective of this work is to undertake a step forward toward the description of the relaxation process of a concentrated suspension, where the motion of particles is hindered by collective interactions close to phase transition. The description will be tackled with the aid of simple and realistic numerical simulations.

Numerical modeling allows studying the effect of physico-chemical colloidal interactions on the suspension dynamics, with the possibility to uncouple different effects when relevant [20]. This is typically the case for nanometric particles (like macromolecules or small particles) which exhibit gelation phenomena. The characteristic time and length scales corresponding to jelly material relaxation can be very large, compared to the scales corresponding to the diffusive motion of individual colloids, in a way that depends on physico-chemical properties [13]. Hence, the development of Eulerian numerical tools that enable the capture of these phenomena at macroscopic scale (by solving deterministic Partial Differential Equations to determine concentration field), including first order transitions (as it has been attempted for the gelation of colloids near a membrane [21]), are relevant for practical applications.

In order to study the gel layer relaxation at large length and time scales (compared to the colloid size and the associated diffusion time scale), we developed a tool that achieves a continuum description of the suspension concentration and motion. It is based on concepts from statistical mechanics (the Suspension Balance Model) [22]. In addition, the transport equations rely on the modeling of the colloidal properties that account for surface interactions: the cohesion of the matter that impacts the relaxation is related to inter-particle interactions. The osmotic pressure is a good way to account for local multi-body interactions between particles [23]. The advantage of using this property is two-fold. First, it can be easily accounted for in the frame of the continuous description, that enables the capture of the effect of local interactions at larger scales. Second, its dependence on the concentration (that represents the Equation Of State in the phase diagram) is experimentally accessible from the measurement of the suspension concentration at equilibrium in dialysis bags, or more recently, in microfluidic devices [24]. Osmotic pressure-based simulations have already proved that this approach allows to detect how concentration polarisation can lead to gel or deposit formation during filtration [25] or to the formation of a skin layer during drying [26]. In that context a critical osmotic pressure was introduced, without the description of the equation of state during phase transition.

In this work, we develop an osmotic pressure model containing the essential ingredients to continuously describe the impact of inter-particle interactions on dispersion phase transition. The corresponding diffusion coefficient, deduced from the Stokes-Einstein generalized law, exhibits low values close to the irreversibility point. The diffusion model is used to perform simulations of concentrated colloids dynamics near phase separation i.e. for temperature, T , slightly above the critical temperature, T c for phase separation ( Tc T < 1) in order to prevent phase separation from taking place. Simulations show that these properties can explain different relaxation kinetics of the accumulated layers according to the ratio Tc T that reflects the proximity to the instability zone and thus the irreversibility degree of the phase transition. In the following, section 2 describes the equation for colloid transport used for colloid accumulation and relaxation, while section 3 explains the background of the osmotic pressure model. The results displayed in section 4 demonstrate that such model of phase transition by osmotic pressure can describe the kinetics of relaxation of gel layers with a rapid gel expansion followed by a slow relaxation, this kinetics being controlled by the Tc T parameter.

Model based on hydrodynamic and thermodynamic concepts

The equation for colloid transport is first introduced, relying on a collective colloidal diffusion coefficient that depends on particle concentration D(φ). The relation between the diffusion coefficient and the osmotic pressure Π(φ) is thus introduced in the frame of the Stokes-Einstein generalized law. Second, a model of the osmotic pressure Π(φ), continuous over the entire volume fraction range, is proposed to account for reversible phase transition. Stars are used to refer to dimensionless quantities.

Colloid diffusion down a concentration gradient

The concentration of the colloidal particle phase will be described by the volume fraction φ that varies in space x and in time t. The transport of colloids in the solvent is based on the continuous description:

∂φ ∂t = -∇ • J (1) 
where J denotes the colloid flux. In a suspension at rest, the colloid flux J from higher to lower concentration regions originates from a thermodynamic force associated with the spatial gradient of chemical potential, and is counterbalanced by a solvent flux in the opposite direction, i.e. J = -D(φ)∇(φ).

The diffusion of colloidal particles down a concentration-gradient, called collective diffusion, accounting for hydrodynamic and colloidal interactions can be expressed in the frame of the generalized Stokes-Einstein relation, to which thermodynamic and mechanical view points converge [27,28]:

D(φ) = K(φ) 6πηa φ 1 -φ ∂µ ∂φ P,T (2) 
K(φ) is the mobility function of a particle hindered by the presence of neighbor particles. The inverse of this mobility, i.e. the resistance function, valid across a wide volume fraction range is from Happel [29],
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3 -6φ 2 . The thermodynamic force responsible for collective diffusion is due to the gradient of the chemical potential per colloidal particle µ. The chemical potential variation with the concentration leads to a change in the osmotic pressure. This relationship can be written while neglecting the mixture compressibility:

∂µ ∂φ P,T = V p 1 -φ φ ∂Π ∂φ µ,T (3) 
where Π denotes the osmotic pressure and V p refers to the particle volume. Using eq. 3 in 2 and scaling the collective diffusion coefficient by the particle diffusion coefficient in the dilute limit D 0 = kT 6πηa (where k and T correspond respectively to the Boltzmann constant and temperature), leads to:

D * (φ) = D(φ) D 0 = 1 H(φ) ∂Π * ∂φ µ,T (4) 
where D * and Π * = Vp kT Π denote the dimensionless diffusion coefficient and osmotic pressure, respectively.

In a more general situation, the flux J can be written as the sum of a contribution induced by the mixture motion of the form φu m and the contribution resulting from collective diffusion. Eq. 1 therefore takes the form:

∂φ ∂t = -∇ • [φu m -D(φ)∇φ] (5) 
In a general configuration, the mixture velocity field u m can vary in space x and time t, and should obey continuity and momentum conservation equations. In one-dimensional simulation, the mass conservation leads to constant mixture velocity u m [30]. In a general framework, the transport equation (eq. 5) can be written in a dimensionless form, using the Péclet number that compares the transport by convection and diffusion, i.e. P e = U δ/D 0 , where U is a characteristic mixture velocity and δ is a characteristic length scale for the concentration gradient. Since unidirectional mass transfer considered in this work lacks an imposed geometrical length scale (as explained later in section 4), the equations are maintained in their dimensional form. We draw the reader's attention to the fact that in the frame of the suspension balance model, the equation of particle transport can be written in another form, that evidences particle migration under the effect of mechanical forces arising from local variation in the osmotic pressure. Indeed, in the absence of external forces, the suspension balance model reflects the fact that spatial variation of osmotic pressure is counter-balanced by a drag force, i.e. φF drag = V p dΠ dφ ∇φ, that leads to particle slip with respect to the local mixture. This can be formulated by:

∂φ ∂t = -∇ • φu m - K(φ) 6πηa φF drag (6) 
The dual representation of the diffusive colloidal flux in eqs. 5 and 6 is very helpful to interpret dynamics of concentrated dispersed systems, whether colloidal or not [31,32,33]. This approach will allow us to further discuss the connection between the particle slip, with respect to the local mixture, and the diffusion strength.

Osmotic pressure near phase transition

Our main idea is to develop a model of the osmotic pressure Π(φ) property that include the effect of multibody colloidal interaction and of eventual phase transition. First we shall briefly discuss the osmotic pressure and its dependence on the volume fraction. The equation of state of a colloidal system can be expressed in terms of osmotic pressure, which is defined, from the thermodynamic viewpoint, as the negative derivative of Helmholtz free energy with respect to volume at a constant temperature. In dilute systems, the main contribution to the osmotic pressure arises from the thermal fluctuation of colloids. As the concentration increases, inter-particle interactions (of interfacial and hydrodynamic origin) induce mechanical forces and consequently suspension mechanical pressure increases. The dependence of osmotic pressure on concentration is similar to that of water activity: the larger the colloid concentration, the higher is the energy required to extract additional water from the concentrated suspension. Available osmotic pressureconcentration isotherms accessible through direct or indirect methods (based on scattering), exhibit disorder-to-order phase transition signatures, as it has been shown in several experiments [9,34,12]. In order to obtain continuous solutions of practical mass transfer problems (by Eulerian simulation tools) in the frame of Stokes-Einstein generalized law, we construct a continuous and differentiable relationship for Π(φ) in a wide range of volume fractions including the transition range φ 1 < φ < φ 2 , .

We consider here that the phase transition occurs within a concentration range φ ∈ [φ 1 , φ 2 ]. By construction, the "critical volume fraction" is the arithmetic average of φ 1 and φ 2 , i.e. φ c = φ 1 +φ 2 2 . The osmotic pressure is defined as the sum of two contributions defined in equations 8, 9 and 10, as following:

Π * = Π * + Π * tr (7) 
Below the phase transition φ ≤ φ c : the osmotic pressure is described with classical virial expansion :

Π * | φ≤φc = φ + C 2 φ 2 + C 3 φ 3 (8) 
The first term of the relationship represents the Van't Hoff law for ideal colloids (without specific interactions) and the other terms are Virial coefficients relative to the non-ideality induced by colloidal interactions. The second virial coefficient, C 3 , can describe the contribution of attractive interactions and, thus, a potential phase separation. However, this contribution is not sufficient to describe the colloid behavior over the complete range of volume fraction.

Above the phase transition φ > φ c : the osmotic pressure is defined by a relationship that diverges near the close packing volume fraction φ cp :

Π * | φ>φc = Π * (φ c ) + κ dΠ * dφ φc (φ cp -φ c ) φ cp -φ c φ cp -φ 1 κ -1 (9) 
The derivative of the main osmotic pressure contribution evaluated at the critical volume fraction is noted as dΠ * dφ φc

= 1 + 2C 2 φ c + 3C 3 φ 2 c .
The expressions of the main osmotic pressure contribution Π ensure its continuity and that of its first derivative at the critical volume fraction φ c . The parameter κ in this equation represents the isothermal inverse compressibility of the condensed phase: high compressibility leads to a weak increase in osmotic pressure when increasing the volume fraction. Note that attributing some compressibility to dense layers of particles to account for established networks of connected particles can be commonly found in modeling of flocculated suspensions dewatering, although this is usually done through compressive yield stress [35,36].

Close to the phase transition φ 1 < φ < φ 2 : an additional contribution to the osmotic pressure Π tr originates from a double-well free energy, this approach being commonly adopted within the context of the phenomenological Cahn Hilliard equation [37] which takes into account the effect of attraction inducing the separation of the phases. The additional osmotic pressure can be written as :

Π * tr = 16 T c T dΠ * dφ φc (φ -φ 1 ) 2 (φ -φ 2 ) 2 (φ c -φ) (φ 2 -φ 1 ) 4 ( 10 
)
This expression is built to satisfy the continuity of the equation of state and its first derivative along the entire range of accessible volume fractions. The transition does not change the value of the osmotic pressure, neither at φ 1 nor at φ 2 , in order to satisfy the Maxwell equal area rule (equilibrium between the different phase as seen in Fig. 1). The main parameter of this model is Tc T that compares the temperature to the critical one at phase transition. This parameter allows the depth of the well energy to be scaled. We stress here that the temperature should be understood as a concept that describes the system proximity to phase transition, and that eases the analogy with the first order gas-liquid phase transition. This will be explained further in section 3. Nevertheless, we note here that our model is inspired by the universal character of gel transition and its analogy with the vapor-liquid transition, as suggested by Tanaka [START_REF] Tanaka | Phase Transitions of Gels[END_REF] and modeled by Manning [START_REF] Manning | [END_REF]. At high temperatures (T T c ), Tc T tends to zero and the contribution of Π tr to the global osmotic pressure is negligible. Said differently, there is no irreversibility in the system when the temperature is far from the spinodal phase separation. If T = T c , the equation of state passes through the critical point and is tangent to the instability zone. At this point the osmotic pressure derivative is zero, leading to a negligible diffusion coefficient, i.e. irreversible transition. At low temperatures (T < T c ), the system loses its time reversal symmetry. An instability takes place, leading to phase separation of the suspension into highly concentrated regions (with aggregated or ordered particles) and regions depleted of particles. This situation corresponds to a negative derivative of the osmotic pressure, and thus gives rise to an apparent negative diffusion coefficient, as a hallmark of spinodal decomposition leading to demixing. Fig. 1 illustrates how the model (Eq. 7-10) can represent the equation of state with a typical variation near and inside the phase separation domain, based on different Tc T ratios. In this paper, we investigate the effect of an abrupt decrease of the diffusion coefficient on the suspension relaxation when the system is close to phase transition without being subject to spinodal phase separation, i.e. only in the region where Tc T < 1 in Fig. 1. In practice, this corresponds to situations where particles become ordered due to interactions with their neighbors, without being subject to irreversible aggregation, so that the mass transport equation (eq. 1) can be solved appropriately with a positive diffusion coefficient. Otherwise, if phase separation takes place, other classes of transport equations should be used, accounting for separated particle-rich and particlepoor regions.

Case study : Experiment-based osmotic pressure

Fig. 2 shows the evolution of the osmotic pressure as a function of the concentration of particles of diameter 10.2 nm, as obtained from the experimental work of Chang et al. [9]. The model explained in section 2 is applied here to describe the osmotic pressure of this experimental data, with the T to illustrate the description of the transition zone between φ 1 and φ 2 . We pause here to explain the meaning of this parameter. The osmotic pressure measurements are realized at a given temperature and ionic strength (salt concentration). As the particle concentration is increased, the particles get closer to each other, leading to an increase in average potential energy. Below φ 1 , the average inter-particle distance remains greater than the repulsive barrier. However, above φ 1 , the distance can become less than this barrier. When the concentration falls to the transition range, the suspension undergoes metastable states, resulting in a change of the variation of the potential energy per particle with concentration [40]. This change in the potential energy depends on the value of the temperature compared to the critical temperature, which cannot be unambiguously measured from macroscopic measurements, as those realized by Chang et al. [9]. Therefore, Tc T is left as the parameter that represents the reversibility degree of the concentrated layers.

The collective diffusion coefficient obtained from eq. 4, which is based on the derivative of the osmotic pressure (Fig. 2), is displayed in Fig. 3 as a func- 

tion of the volume fraction, for different values of Tc

T being always lower than 1 in order to avoid entering the unstable zone. The diffusion coefficient is independent of T c /T for φ > φ 2 and φ < φ 1 . Between φ 1 and φ 2 , a minimum of diffusion appears when the dispersion approaches the phase transition, this minimum being deeper and closer to zero when T is close to T c . A very low diffusion coefficient (related to a plateau in osmotic pressure with volume fraction) is a hallmark of nearly arrested dynamics, where phase transition is approached: this has been demonstrated experimentally and theoretically [40,41]. This behavior means that the mobility between concentrated and diluted phases close to the transition zone is negligible, i.e. the relative velocity of the phases associated with the drag force in Eq. 6 is zero, thus leading to slow dynamics [18,42]. The low diffusion coefficient can be considered as a way to describe the dynamical arrest, which is a characteristic feature of colloidal gels or glasses [8]. Note that this minimum value of the diffusion coefficient occurs with two peaks below and above the critical volume fraction. This variation is the consequence of the osmotic pressure associated with a double-well energy function (Eq. 10) from which the diffusion coefficient is derived (through Eq. 4). 

Simulation of colloid relaxation

Simulations have been realized with the model presented in the previous section, by solving Eqs. 4, 5 and 7, in order to determine the relaxation of concentrated colloidal layers. Transient relaxation of colloidal suspensions displaying non-equilibrium phase transition are obtained from two initial conditions (Fig. 4). The first idealized situation corresponds to a colloidal film of uniform volume fraction φ 2 (Fig. 4a). This enables the discussion of the time required by a compacted suspensions to relax near phase transition, as a function of the system reversibility characterized by the parameter T c /T . The second situation corresponds to a film accumulated near a membrane-like wall in order to mimic practical situations like gel formation during filtration or drying processes (Fig. 4b).

Equations 5, 4, and 7 are solved numerically using the open source software OpenFOAM (Open Field Operation and Manipulation) Foundation 7. In the present paper, the transport of colloids is restricted to one spatial direction (the y direction), assuming symmetry in other directions. The colloids are concentrated on one side (at low y → 0), while the suspension is dilute at y → ∞ . Zero flux is imposed at the boundaries, i.e. ∂φ ∂y = 0 at y = 0 and y → ∞. The discretization of the divergence operator is performed using the "Gauss" discretization approach, and "Gauss linear" for the interpolation of the gradients. The Crank-Nicolson transient scheme is used for the discretization in time of the diffusion term. A fixed one-dimensional spatial grid with two regions is used. The first region (0 < y < 1) where the relaxation occurs contains 3200 cells with an expansion ratio of 100. Here l.u. denotes a numerical length unit in the simulation box. The second region (1 < y < 20 l.u.), used to mimic semi-infinite conditions, has 2000 cells with an expansion ratio of 20. The time step required to respect the Fourier stability criteria should be less than ∆y 2 min /(2D 0 ), where the smallest mesh size is denoted as ∆y min (in our simulations the time step is 1 × 10 -5 ).

We draw the reader's attention that in the following sub-sections, the star ( * ) is used to indicate dimensionless time. The characteristic time scale is inherently dependent on the configuration, i.e. accumulation or relaxation. For this reason, it will be mentioned explicitly in the figure captions. We consider the relaxation of a uniform layer of initial concentration φ 0 and thickness δ 0 . Outside this layer, the bulk concentration is set to a small value φ bulk (here we assume φ bulk = 0 without loss of generality). The colloid transfer from the layer to the bulk is thus set by (φ 0 -φ bulk ). In this case, the macroscopic length and time scales characterizing the relaxation of this layer are δ 0 and δ 2 0 /D 0 , where D 0 is the particle diffusion coefficient in the dilute limit. As an example, if we consider the relaxation of a concentrated layer of thickness 100µm containing particles of diameter equal to 10nm in water at room temperature, the corresponding time scale is ≈ 500s. To study the colloid flow from the concentrated layer into the dilute bulk region, we have set φ 0 = φ 2 . This is especially useful to describe the system relaxation when close to phase transition. In the absence of phase transition, the colloid diffusion down the concentration gradient progresses smoothly, like in a classic diffusion problem. Hence we focus on the dynamics close to the critical point. The evolution in time of the wall-normal concentration profiles is shown in figure 5, for T c /T = 0.95. At short times, this figure clearly identifies two different concentration gradients: a smooth gradient inside the suspension layer for φ < φ 2 , and a steep gradient close to φ c , where the particle release from the concentrated layer is reduced as the collective diffusion coefficient approaches small values. This extends the lifetime of the quasi-uniform layer near the wall. The flux of particles leaving the layer toward the dilute region leads to a reduction of the layer thickness. For larger times, once the layer concentration becomes less than the critical concentration, the evolution of the concentration profiles follows classic diffusion in a semi-infinite medium.

We stress here that, the closer the suspension to phase transition, i.e. T c /T → 1, the steeper the concentration variation at the layer front. A rigorous numerical solution of the problem would have required the use of an adaptative mesh, to finely resolve the transient steep-gradient region while the colloid layer shrinks. As our numerical scheme does not follow this procedure, and to avoid situations where numerical diffusion prevails over the physical diffusion, our study has been limited to systems where the minimum diffusion coefficient at φ c is small, compared to D(φ 2 ), without approaching zero.

From the concentration profiles, we extracted a quantity that is of interest to applications, i.e. the amount of material that can potentially form a gel or glass (such that φ > φ c ). The thickness of the gel layer is called δ g . In one dimension, this thickness is defined as δ g = φ>φc dy. The corresponding mass of particles per unit area being m g = ρ p φ>φc φdy. In order to characterize mass transfer of colloids from the dense layer toward the bulk, the decrease of δ g over time was examined and is displayed in figure 6, where the film thickness is scaled by δ 0 and time by δ 2 0 /D 0 .

During the early stages of film relaxation, the film thickness decreases like √ t and the curves collapse, for any irreversibility parameter. This decrease corresponds to the particle diffusion from a layer where the diffusion coefficient is almost constant (D(φ 2 )) to a semi-infinite medium, initially at a constant concentration (equal to 0 in this case). After a short time, as the concentration varies across the film and the diffusion coefficient gradually decreases with y, it is not straightforward to theoretically predict the rate at which δ g decreases. From the simulations, the decrease of film thickness δ g over time seems to follow a power law t n , with a power n > 1 that depends on the irreversibility parameter. It is remarkable that the power tends to 1 when T c /T approaches 1, or equivalently that the flux of particles leaving the dense layer is constant over time. Indeed, this is expected to be a consequence of the concentration jump at the interface between the dense layer and the bulk. The concentration jump is particularly steeper when the parameter T c /T is close to 1. The particle flux at the so-called interface y c can be obtained from D(y c ) dφ dy | yc . As T c /T → 1, while the diffusion coefficient D(y c ) is small and the concentration gradient dφ dy | yc is large, the resulting product seems to remain finite and constant during this second relaxation stage.

From the plot of the gel thickness δ g over time, we defined the film relaxation time scale t r as the time it takes for the maximum concentration in the layer to become less than φ c . Said differently, this corresponds to the instance at which δ g is canceled. Figure 7 shows t r as a function of the irreversibility parameter T c /T (here again, the time is scaled by δ 2 0 /D 0 ). It can be clearly noticed that the relaxation time increases with the irreversibility parameter. When T c /T approaches 1, we expect to observe the divergence of this time scale, since particle release from the concentrated layer will be significantly hindered by the motion arrest near φ c (at the layer front). Indeed, from eqs. 4 and 10 it can be inferred that the diffusion coefficient D(φ c ) ∝ 1 -Tc T dΠ dφ | φc , drops to small values especially when the suspension approaches the critical point. As the relaxation time of the particle layer by diffusive mass transfer is inversely proportional to the diffusion coefficient at the front of the layer, we expect the relaxation time to diverge like a power of 1 1-Tc T . 

Relaxation of an accumulated film

To simulate colloid accumulation near an interface (hereafter referred to as "wall") corresponding to evaporation or filtration processes, transport equation 5 has been solved with a constant (negative) wall-normal mixture velocity u m (first step in Fig. 4b). Far from the wall, the suspension is assumed to be sufficiently diluted, with a concentration φ bulk < φ c . During the accumulation stage, the pure fluid phase is allowed to evacuate through the wall located at y = 0 but not the particles. The zero particle flux J is ensured at the wall by setting the concentration gradient dφ dy | y=0 = um D(φw) φ w , where φ w denotes the particle concentration at the wall. Note that the concentration gradient at the wall is negative as the mixture velocity u m is negative, and that in this accumulation region, the particle velocity (of increasing concentration) is less than the fluid phase velocity, but the mixture velocity remains constant along the y direction satisfying the mass balance. This behavior is consistent in the frame of the suspension balance formulation.

The particle accumulation near the wall is an infinitely transient process, where the thickness of colloidal layer grows continuously in time. Typical concentration profiles displayed in figure 8 result from the competition between particle accumulation by convection and opposite diffusion down the concentration gradient. D 0 /|u m | and D 0 /u 2 m are the unique length and time scales during the accumulation: they will be called L a and τ a , respectively. L a represents the characteristic thickness of the interface between the concentrated layer and the dilute suspension and τ a characterizes the speed at which this front moves forward along the y direction. If we consider the filtration of particles of diameter 10nm, at a typical filtration speed of 10 -5 m/s, L a = O(1)µm and τ a = O(0.1)s. Our model with the diffusion coefficient based on the osmotic pressure assumes that the time required for the colloids to reach thermodynamic equilibrium at a given concentration is less than the accumulation time scale τ a . For a given irreversibility parameter, a unique representation of the concentration profiles during the accumulation stage takes the form φ φ 0 y La , t τa .

During the colloid accumulation at the wall the concentration progressively increases as y → 0. The exact shape of the concentration profile depends on the irreversibility parameter. Figure 8 displays the concentration profiles for three accumulation times, in the case where the suspension is close to phase transition, i.e. T c /T = 0.95. As the diffusion coefficient drops significantly near phase transition at φ c , a barrier is established near this concentration. The closer the system to the critical point (large T c /T ), the steeper the concentration jump. The jump in the concentration profile near the transition region is associated with a weak slip that the particles experience in this region. Indeed, the weak slip between the particle phase and the local mixture results from the small diffusion coefficient as φ approaches φ c (as shown in eqs. 5 and6). Once the particles cross this barrier, they fall in the dense region where the diffusion coefficient increases continuously with the concentration. When the concentration at the wall φ w exceeds the transition range, the concentration profiles become self-similar. They exhibit a sharp variation in the transition region, and smoother variations in the concentrated and dilute regions. However, the concentration gradient is larger in the concentrated region, where the diffusion coefficient is greater than in the dilute region (to give the reader a better idea, D(φ 2 )/D(φ 1 ) ≈ 2.5 for the particles considered in figure 3).

Next we examine the relaxation of the layers accumulated near the wall (second step in Fig. 4b). At a given instant, the wall-normal velocity u m is switched off, and the colloids are allowed to relax through the diffusion process. In this case, the characteristic length scale in the system is set by the thickness of the accumulated layer. While the shape and thickness of the film depend on the irreversibility parameter, we define a characteristic film thickness δ c where the concentration is equal to the critical concentration φ c . A sharp concentration gradient is observed near δ c as T c /T → 1 (as observed in figure 8), while this jump is absent as T c /T → 0. At the onset of the relaxation, the position of the film where φ = φ c will be called δ c0 .

We consider for instance the relaxation of the green profile (in figure 8), where φ w /φ 0 ≈ 40, obtained at t/τ a = 10 for T c /T = 0.95. At the onset of particle relaxation (resetting the initial time to t = 0) the film resulting from accumulation is geometrically separated in two phases. At y > δ c0 , the suspension behaves like a fluid phase where particles diffuse smoothly toward y → ∞. However in the region falling near y ≈ δ c0 , the colloids are arrested as they exhibit very low diffusion coefficient in that region. The evolution of the concentration profiles in time is displayed in figure 9. The corresponding film thickness δ g as a function of time is displayed in figure 10. As in figure 6, δ g represents the thickness of the particle layer where the concentration exceeds φ c . δ g versus time is displayed for different irreversibility parameters T c /T . Note that the initial state corresponding to all these curves is obtained separately, from the simulation of particle accumulation with different T c /T parameters.

From figures 9 and 10, it can be observed that upon canceling the wallnormal (filtration or evaporation) velocity, the film relaxation exhibits two main stages, both of them being faster when the suspension is fully reversible, i.e. T c /T = 0, as there is no real barrier against particle diffusion from the concentrated to the dilute region. During the first stage, in case the suspension is close to phase transition, the region of high concentration near the wall, subtended by the sharp front, quickly expands under the effect of high colloid diffusion or osmotic pressure. During this stage, the concentration gradient of the layer between the wall and the sharp front decreases significantly, without vanishing however (thus the decrease of film thickness as √ t is not observed at the end of this stage). During a second stage, the colloid release from the near-wall layer is relatively slower, the kinetics being controlled by the irreversibility parameter. In the case T c /T → 1, the dynamics during this stage is similar to that observed in the previous section, corresponding to the relaxation of a uniform particle layer (with φ = φ 2 at t 0 ). Indeed, the characteristic relaxation time scales are similar, and δ g (t) tends to become linear as T c /T → 1.

Furthermore, the time t r necessary to complete the relaxation of the accumulated layers is displayed in figure 11 as a function of the irreversibility parameter T c /T . Here t r corresponds to the time at which δ g and m g tend to 0. As the gel first expands before relaxing, the appropriate scaling for the time during the gel relaxation will be δ 2 c,max /D 0 , where δ c,max corresponds to the characteristic film thickness of the gel at the end of the expansion stage (the maximum in figure 10b). This approximately allows the rationalization of the curve of the relaxation time as a function of the irreversibility parameter, when relaxation is considered starting from different accumulation profiles: the blue and orange symbols in figure 11 correspond to the relaxation of the green and red curves in figure 8, respectively. Indeed, the non-dimensional time for relaxation, starting from different accumulation conditions, are very close to each other confirming a good scaling law for the relaxation time. By comparing figures 11 and 7, a similar trend for the evolution of the relaxation time required as a function of the irreversibility parameter can be observed. The fact that colloidal particles are arrested near phase transition retards the relaxation of a dense colloidal layer near a wall, and the relaxation time tends to diverge as the critical point is approached.

Notes on the results: We end this section by three remarks. First, we only considered in this work situations where the diffusion of colloidal particles is significantly reduced near the critical point, without allowing the suspension to undergo irreversible spinodal decomposition. Otherwise, this would require solving the interfacial dynamics between separated phases. Second, the osmotic pressure law assumes thermodynamic equilibrium. It is important to study whether this law holds true, when the colloidal suspensions is fully out of equilibrium, as is the case in this work. Third, the relaxation time scale computed in this work is qualitative. Indeed, the spatial grid was maintained fixed during particle accumulation and relaxation. Nevertheless, as the concentration jump near the singularity associated with colloidal arrest near φ c is very steep, quantitative validation should be tested against advanced CFD tools that allow considering adaptative spatial discretization near the region where the singularity is located. These issues are open for future investigation.

Conclusion

This paper explores a model that can be used to study the dynamics of colloidal suspensions near phase transition. The model for colloid transport relies on the relationship between the colloid diffusion and osmotic pressure in the frame of the generalized Stokes-Einstein relationship, and can be implemented in the frame of any Eulerian CFD simulation tool. The osmotic pressure model accounts for first order transition near the critical point; the associated particle diffusion coefficient becomes very small when this parameter approaches 1. The model was applied to study the relaxation of a dense colloidal layer accumulated near an interface, subsequent to normal filtration or evaporation process. The suspension proximity to the critical point has been the main parameter of study, by means of a parameter T c /T that describes the irreversibility degree of the phase transition. The simulations have shown that the film relaxation first undergoes an expansion stage where the concentration in the layer decreases to the value φ 2 corresponding to the upper boundary of phase transition. The kinetics of particle relaxation is not dependent on the irreversibility parameter in this stage. During a second stage, a concentration jump subsists at the interface between the dense and dilute regions, especially when the local suspension state approaches the critical point. In this case, the particle release from the film is slowed down by the particle arrest near the critical point, leading to longer relaxation time scales.

The numerical simulations have shown that the relaxation time of a colloidal layer depends on both the irreversibility degree (associated with physico-chemical properties of transition) and the accumulated mass near an interface. In practice, based on our results, one can estimate the relaxation time from the gel mass as the following. After the gel expansion, the concentration is relatively equal to φ 2 , and the corresponding thickness of the gel phase δ c,max can be estimated as the ratio m g,0 /φ 2 , where m g,0 corresponds to the mass of the gel per unit area, accumulated near an interface, at the onset of relaxation. The relaxation time, in seconds, is then obtained from the dimensionless time displayed in figure 11 as [t * r ×δ 2 c,max /D 0 ]. To conclude, the model and simulations shown herein constitute a first step toward the analysis of the variety of gel time relaxation data obtained with different experimental conditions as discussed in the introduction of this paper, and to characterize the relaxation dynamics with the T c /T parameter.

Figure 1 :

 1 Figure 1: Equation of state -osmotic pressure -volume fraction isotherms for different Tc T ratios of 0.6, 0.8, 0.95, 1, 1.2, 1.5, 2, 3, and 5 corresponding to the blue, orange, green, red, purple, brown, pink, grey, and yellow lines, respectively. Spinodal decomposition (dashed line) occurs when the derivative of EOS is negative. C 2 = 1, C 3 = 0, φ 1 = 0.3, φ 2 = 0.5, κ = 0.5. Here φ 1 and φ 2 are assumed constant for simplicity.

  following set of parameters to fit the data: C 2 = 4 × 10 4 , C 3 = 15 × 10 5 , κ = 0.5, φ 1 = 0.03 and φ 2 = 0.09. The different curves are obtained for different values of Tc

Figure 2 :

 2 Figure 2: Modeling of osmotic pressure experimental data (blue and green symbols below and above the transition respectively) for silica [9]. The full line represent the fitting with the model for different Tc T ratios of 0, 0.4, 0.8, 0.95, 1 and 1.5 corresponding to the blue, orange, green, red, purple, and brown lines, respectively. The dashed line represents the limit of the Van't Hoff equation and the close packed volume fraction for dilute and concentrated dispersions respectively.

Figure 3 :

 3 Figure 3: Variation of the diffusion coefficient as a function of the volume fraction for different Tcr T of 0, 0.4, 0.8, 0.95, 1 and 1.5 corresponding to the blue, orange, green, red, purple, and brown lines, respectively. The minimum of the diffusion coefficient approaches zero when the temperature becomes close to the critical temperature. Vertical dotted, dotdashed and dashed lines indicate the diffusion at φ 1 , φ c and φ 2 , respectively.

Figure 4 :

 4 Figure 4: Illustration of the simulation procedures, with the plot of typical concentration profiles versus the wall-normal position y. Boundary conditions are given at y = 0 and y → ∞. Two different situations are considered: a) Relaxation of an initially uniform film at φ 0 = φ 2 -b1) Colloid accumulation near a wall driven by a negative mixture velocity u m (the different concentration profiles corresponding to different times), and b2) Relaxation of an accumulated film in a quiescent fluid. In the figures corresponding to the relaxation of colloidal layers, the starting concentration profiles are shown with red solid lines, while the transient 1D simulations are shown with dashed lines. The flux J of colloids leaving the concentrated layers is also sketched with red arrows.
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 1 Relaxation of an initially uniform film φ 0 ≈ φ 2

Figure 5 :

 5 Figure 5: Relaxation of a uniform colloidal layer: wall-normal concentration profiles in time for T c /T = 0.95. The profiles with the red line, blue squares, orange triangles, green crosses, purple plus, brown diamonds, pink left triangles, and grey pentagons are obtained at dimensionless relaxation times (scaled by δ 2 0 /D 0 ) equal to 0, 0.01, 0.02, 0.05, 0.1, 0.14, 0.2, and 1 respectively. Horizontal dotted, dot-dashed and dashed lines indicate φ 1 , φ c and φ 2 , respectively.

Figure 6 :

 6 Figure6: Evolution in time of the gel thickness δ g , starting from a layer of thickness δ 0 of uniform concentration φ 0 = φ 2 . The blue crosses, orange circles, green squares, red triangles, purple plus, brown diamonds, pink pentagons, grey hexagons, and yellow thin diamonds correspond to T c /T = 0, 0.4, 0.6, 0.8, 0.9, 0.95, 0.96 and 0.97, respectively. The gel thickness is scaled by the initial film thickness δ 0 and the time by δ 2 0 /D 0 .

Figure 7 :

 7 Figure 7: Relaxation time t * r (scaled by δ 2 0 /D 0 ) of a uniform particle layer versus T c /T .

Figure 8 :

 8 Figure 8: Concentration profiles obtained during particle accumulation at a wall, for different accumulation times (scaled by 1/τ a ) of 1, 6, 10, and 15 corresponding to the blue, orange, green, and red lines, respectively. The concentration φ is scaled by the bulk concentration φ 0 , while the position with respect to the wall is scaled by the characteristic accumulation length scale L a = D 0 /|u m |. The irreversibility parameter is T c /T = 0.95. Horizontal dotted, dot-dashed and dashed lines indicate φ 1 , φ c and φ 2 , respectively.

Figure 9 :

 9 Figure 9: Relaxation of the accumulated colloidal film: wall-normal concentration profile in time for a T c /T = 0.95 at different relaxation times t * = 0, 4.2 × 10 -4 , 2.1 × 10 -3 , 4.2 × 10 -3 , 2.1 × 10 -2 , 4.2 × 10 -2 , 8.5 × 10 -2 , and 4.2 × 10 -1 , corresponding to the blue, orange, green, red, purple, brown, pink, and grey lines respectively. The time is scaled by δ 2 c,max /D 0 . Horizontal dotted, dot-dashed and dashed lines indicate φ 1 , φ c and φ 2 , respectively.

Figure 10 :

 10 Figure 10: Evolution of (a) the mass of particles per unit area (scaled by the accumulated mass m 0 at the onset of relaxation) and (b) the gel thickness, during the relaxation stage for different irreversibility parameters T c /T = 0, 0.4, 0.6, 0.8, 0.85, 0.9, 0.95, 0.96, and 0.97 corresponding to the blue, orange, green, red, purple, brown, pink, grey, and yellow lines, respectively. The time is scaled by δ 2 c,max /D 0 . The concentration profile at the onset of the relaxation stage is taken after an accumulation time (scaled by t/τ a ) 10.

Figure 11 :

 11 Figure 11: Relaxation time t * r as a function of the irreversibility parameter T c /T of the non-uniform layers. The relaxation time is scaled by δ 2 c,max /D 0 , where δ c,max corresponds to the maximum gel thickness at the end of the gel expansion stage. The blue crosses and orange circles are obtained from the relaxation of concentrated layers obtained at accumulation times (scaled by 1/τ a ) of 10 and 15, respectively.
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