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Calculus of Variations: Nature's Parsimonious Self-Computation

In addition to being intrinsically interesting, calculus of variations constitutes an area that has been extensively considered in both theoretic and applied areas, underlying a large number of structures and phenomena, including the stationary action principle in physics. Basically, given a functional expressing some measurement to be optimized (minimized or maximized), as well as respective boundary conditions, calculus of variations allows the determination of the respective optimal solution, be it a function, a curve, surface, as well as a large range of mathematical structures. The present work aims at developing an introduction to variational calculus which could be hopefully accessible to readers with some background in multivariate calculus. After defining the problem, and presenting some brief historic remarks, we proceed to present a motivational example of calculus of variations respective to a specific type of variation function, namely second-order polynomials adhering to the boundary conditions. In addition to illustrating several concepts related to calculus of variations, this approach also allowed the visualization of the aimed functional behavior as a function of the variation parameter. Next, the Euler-Lagrange equation for functions of one variable was informally derived, and then illustrates its application respectively to the minimum arc-length and soap surface minimization. The interesting possibility of numerical approaches to calculus of variations is also briefly described and illustrated respectively to Euler's direct method. Appendices providing a brief presentation of the chain rule, integration by parts, multivariate derivatives, as well as the multivariate, multiconstraint Lagrange multipliers method are also provided for quick reference. "... the universe not only computes itself, but it does so in a most parsimonious manner.

Introduction

One interesting manner of understanding the universe is as a self-computing entity whose each next configuration is obtained by computing the previous configuration by using some set of fundamental rules. Observe that this reasoning does not necessarily implies determinism, because reality could involve probabilistic aspects, as indicated by quantum mechanics. While the full identification of the fundamental physical principles underlying nature have not been completely unveiled yet, there is one principle that seems to work invariantly in nature, which has been called the least action principle.

In classical physics (more specifically, Lagrangian mechanics) the principle of least action typically refers to the The problem of finding the continuous curve with minimal arc-length that connects two points is a prototypical illustration of calculus of variations. Each possible solution has a "fitness" quantified in terms of a respective functional that is minimized. The effectiveness of calculus of variations stems from its impressive generality in the sense that no specific type of potential solutions is assumed, provided they are twice differentiable. concept of action, which corresponds to the integration, along time, of the difference between the kinetic and potential energy (e.g. [START_REF] Feynman | The Feynman lectures on physics[END_REF]). Then, the least action principle relates to the minimization of this action or, more precisely, the identification of stationary points of the functional, where the derivative is zero (implying an extreme). That is why this principle is also referred to as stationary action. It can be shown that Newton's equation of motion can be derived from the least action principle, which well illustrates the generality of this principle.

Quite interestingly, least action also governs physical phenomena at other scales, from the largest scales in cosmology to the limits of the small in quantum mechanics. It is in this sense that nature can be said to be parsimonious in its computations. Therefore, we would have that the universe not only computes itself, but it does so in a most parsimonious manner.

In the light of our brief discussion above, it should hardly come as a surprise to know that the principle of least action has been vast and amply applied in science and technology, to the point that it is difficult to find an area in the physical sciences where its is not employed. In the light of the generality and intrinsic relationship between calculus of variations and the physical world, it represents a particularly interesting resource for modeling (e.g. [START_REF] Da | Modeling: The human approach to science[END_REF]) a vast range of natural phenomena.

Mathematically, the least action principle is directly related to finding functions, as well as other mathematical structures, that optimize a given measurement, which constitutes the subject of the remarkable area known as Calculus of Variations, which corresponds to the main subject of the present work. As a matter of fact, this area provides the foundation that has been adopted in physics in order to approach the least action principle, which was developed mainly by Joseph-Louis Lagrange (1736-1813) and William R. Hamilton (1805-1865) in the area called Classical Mechanics.

Thus, in addition to underlying the least action principle, calculus of variations (e.g. [START_REF] Weinstock | Calculus of variations: with applications to physics and engineering[END_REF][START_REF] Dacorogna | Introduction to the Calculus of Variations[END_REF][START_REF] Sagan | Boundary and eigenvalue problems in mathematical Physics[END_REF][START_REF] Sagan | Introduction to the Calculus of Variations[END_REF][START_REF] Jost | Calculus of variations[END_REF][START_REF] Cassel | Variational methods with applications in science and engineering[END_REF][START_REF] Ekeland | Convex analysis and variational problems[END_REF][START_REF] Gelfand | Calculus of variations[END_REF][START_REF] Komzsik | Applied calculus of variations for engineers[END_REF][START_REF] Van Brunt | The Calculus of Variations[END_REF][START_REF] Taylor | The structure of singularities in soapbubble-like and soap-film-like minimal surfaces[END_REF][START_REF] Nitsche | Lectures on minimal surfaces[END_REF][START_REF] Osserman | A survey of minimal surfaces[END_REF][START_REF] Dierkes | Minimal surfaces[END_REF]) can be employed to finding functions and other mathematical structures that optimize (minimize or maximize) an infinite number of possible criteria, each expressed by a respective functional. Thus, it becomes possible to minimize length, time, area, volume, etc.

The specific problem of minimizing the arc-length between two points is illustrated in Figure 1. Given any two distinct points A and B in R 2 , we aim at finding the continuous path from A to B that has the minimum possible arc-length. Shown in the figure are some of the infinite possible candidate solutions, among which the straight line segment corresponds to the optimal solution.

The present work has as its main objective to present the basic idea underlying calculus of variations. After defining more precisely the problem, we provide a motivational example in which, by using a specific family of functions as variations, it becomes possible to visualize the behavior of the functional to be minimized in terms of the parameter ε controlling the variations. A relatively informal derivation of the Euler-Lagrange equation is then developed, which is followed by its application to the minimal arc-length path and the soap film surface minimization, with the brachistochrone problem being also briefly characterized. The interesting possibility to tackle calculus of variations numerically is also briefly discussed respective to Euler's direct method, which is illustrated respectively to the minimum arc-length problem. Appendices presenting a short review of methods from differential calculus -namely the chain rule, integration by substitution, integration by parts, and multivariate derivatives, as well as on multidimensional, multiconstraints Lagrange multipliers, have also been included to serve as quick references.

Though it is hoped that the presented topics will be accessible to many readers, a more effective and complete respective understanding requires a moderate level of familiarity with multivatiate calculus concepts and methods.

Defining the Problem

In variational calculus, one is typically aimed at finding functions, parametric curves, surfaces, fields, etc., that optimized (minimize or maximize) a given property, expressed as a functional. Recall that, mathematically, a functional takes a mathematical structure into a (typically real-valued) scalar. As such, functionals can be understood to implement the quantification of some property or measurement of particular interest, such as total length, total time, total energy (e.g. potential or kinetic), etc.

Thus, a considerably general type of mathematical structures can be considered by using the respective methodology, the central concept of which constitutes the Euler-Lagrange equation. At the same time, the approach assumes no specific form of the sought optimal structures. For instance, while looking for an optimal one-dimensional function, virtually any type of function, provided it is differentiable, are considered by the method, which is therefore also completely generic regarding the types of possible solutions. For instance, while finding the function that minimizes the arc-length distance between two point, every possible function will be inherently considered by the variational methodology. This can be understood as an almost "magical" property of variational calculus, endowing it with a truly ample universe of possible solutions.

Summarizing the above considerations about the inter-esting properties of calculus of variations, we have that: (i) it can be used to optimize most types of mathematical structure (e.g. function, curve, surface, etc.); (ii) it inherently takes into account any possible (differentiable) solution; and (iii) it can be applied in any dimension. In addition to that, it is also possible to incorporate additional constraints into the optimization. The present work, focuses on finding optimal functions of one variable, a problem that can be more comprehensively specified as follows:

• The sought function of one variable can be expressed as y(x), with the optimal solution being henceforth represented as h(x). It is assumed that there is just one function that satisfy the optimality criterion;

• A functional F () expressing some specific property to be optimized (e.g. total length, total energy, etc.). Without loss of generality, this functional is assumed to be a function of x, y(x), and ẏ(x), i.e.:

F () = F (x, y(x), ẏ(x)) (1) 
Actually, F () can be a function of any combinations of these arguments.

• Boundary conditions, specifying the values of the sough optimal function h(x) and the possible solutions y(x) at both of its extremities, i.e.:

y(x i ) = h(x i ) = y i = constant (2) y(x f ) = h(x i ) = y f = constant (3) 
with

x i = x f .
Thus, the specification of a variational problem in one dimension is as simple as described above. In order to get more familiarized with the approach, in Sections 6 and 7 we present specific examples regarding the minimization of arc-length and soap film surface. However, before proceeding, it is interesting to consider some historical context to the calculus of variations.

Brief Historic Remarks

Given its importance from both theoretical and applied perspectives, as well as for its intrinsic appeal, the history of the calculus of variations has been addressed in several interesting works including but not being limited to [START_REF] Fraser | The origins of euler's variational calculus[END_REF][START_REF] Goldstine | A History of the Calculus of Variations from the 17th through the 19th Century[END_REF][START_REF] Todhunter | A history of the progress of the calculus of variations during the nineteenth century[END_REF][START_REF] Ferguson | A brief survey of the history of the calculus of variations and its applications[END_REF][START_REF] Struwe | Variational methods[END_REF][START_REF] Cajori | A history of mathematics[END_REF][START_REF] Boyer | A history of mathematics[END_REF][START_REF] Van Brunt | The Calculus of Variations[END_REF][START_REF] Hildebrandt | The parsimonious universe: shape and form in the natural world[END_REF][START_REF] Woodhouse | A History of the Calculus of Variations in the Eighteenth Century[END_REF]. Here, we provide a brief summary including some of the main earlier developments, so as to complement the motivation and contextualization of calculus of variations.

The problem of finding mathematical structures that optimize a given property is probably as old as humankind. Indeed, this problem has always had special practical importance because it relates to exerting parsimonious use of resources. Though it is impossible to know when more systematic approaches were tried, it could be conjectured that one of the first intuitive approaches consisted of observing that a thread reaches its minimum length when stretched, which is analogous to extending a flexible surface flat on a frame so as to minimize material.

Probably the first documented approach to variational calculus corresponds to the suggestion by Hero of Alexandria (c. 60AD) that light undergoes the shortest possible path to the observer. The problem of finding a plane curve that encompasses the largest area, known as the isoperimetric problem, constitutes another of the earliest variational problems, studied by Euclid (c. 300BC) and Pappus of Alexandria (c. 340AD), who described the problem in his Mathematical Collection after being motivated by the bees hexagonal combs. The everlasting problem of light propagation was also approached by Pierre L. Maupertuis (1698-1759), who proposed that least action would correspond to a universal mechanical principle. Pierre de Fermat (c. 1600 -1665) studied light from the least action point of view, especially concerning propagation along different media (refraction).

It may come as no big surprise to know that the first completely formal mathematical approach to a variational problem was contributed by Isaac Newton (1643-1727), respectively to what shape of an revolution solid would imply the least resistance while moving in a viscous medium, which was described a decade before the also famous brachistochronous problem. Remarkably, the solution of this challenging geometrical problem was first published without proof in Newton's groundbreaking Principia (e.g. [START_REF] Smith | Newton's Philosophiae Naturalis Principia Mathematica[END_REF]), and only explained later along a series of talks. Interestingly, this problem seems to reflect Newton's markedly geometric approach to mathematics and physics.

Though previously studied by Galieo Galilei (1564-1642), the brachistochrone problem was posed in 1696 as a mathematical challenge in the german monthly journal Acta Eruditorum by by Johann Benoulli (1654-1705), given that no solution has been provided by Galileo. This problem required the identification of the trajectory of a particle, between two points, leading to the shortest time of motion, while under the action of gravity. The problem was solved by Gottfried W. Leibniz (1646-1716) and Isaac Newton, as well as by Guillaume F. A., Marquis de l'Hôpital (1661-1704), Ehrenfried W. von Tschirnhaus (1651-1708), and Jakob Bernoulli (1655-1705).

Leonhard Euler (1707-1783) not only established calculus of variations as an important area (1744), but also developed the idea underlying the Euler-Lagrange equation. Euler seems to have been particularly interested not only in unifying a broad range of problems into the area of calculus of variations, but also in investigating the effect of transformational invariance.

Following the repercussion of Euler's work, Joseph-Louis Lagrange (1736-1813) communicated an approach which relied on a subsidiary variation function, which could effectively substitute Euler's mostly geometric formulation. These developments led to the now amply known consolidation of the Euler-Lagrange equation. Lagrange was also mainly responsible for the development of another optimization method involving constraints, corresponding to the also markedly important method called Lagrange multipliers. These contributions were decisive for Lagrange's formulation of Classic Mechanics, which can be considered a continuation of Newton's developments. Further related advancements were made by Jean le Rond d'Alembert (1717-1783) and William R. Hamilton (1805-1865).

It is interesting to notice that controversy remains regarding the identification of the pioneering contributions in calculus of variations. (e.g. [START_REF] Hecht | Gottfried Wilhelm Leibniz and the origin of the principle of least action-a never ending story[END_REF]). At any extent, given the central importance of calculus of variations, a growing number of contributions have been continuously made by several scientists, including Carl G. J. Jacobi (1804-1851), Karl Weierstrass (1815-1897), and Georg F. B. Riemann (1826-1866), among many others, up to the present.

A Preliminary Example

In this section, we illustrate the task of finding a continuous one-dimensional function extending from x i to x f that optimizes some constraint described by a respective functional. For simplicity's sake, as well as for allowing respective visualization of some of the possible considered solution functions, we assume a specific type of function corresponding to second-order polynomials. As discussed previously, it should be kept in mind that the variational approach makes no hypothesis on the types of possible solutions, other than they are differentiable (and therefore continuous).

We shall start by considering Figure 2, which illustrates the problem we are about to discuss. Here, we have two distinct points A and B, and we look for any type of continuous function that can minimize the arc-length distance between those two points.

Two observations are relevant concerning this problem. First, we have that it seems to be somehow obvious that the distance between two points is minimized by a straight line. However, this is based in human intuition, and a formal mathematical answer actually involves calculus of variations. Second, the formulation in terms of one-variable functions is, in principle, not so general because it does not account for possible paths between those points that cannot be expressed as functions (e.g. curves having two or more ordinates for a same abscissa).

We shall assume that the possible solutions are second order polynomials defined as follows. We start with the parabola:

h(x) = (x -x m ) 2 (4) 
where:

x m = x i + x f 2 (5) 
Observe that this function is bilaterally symmetric around the point x m , achieving its maximum value (in the considered interval) given as:

h(x f ) = (x f -x m ) 2 = = x f - x i + x f 2 2 = 1 4 [x f -x i ] 2 (6) 
The candidate type of solutions can now be expressed as:

η(x) = -[h(x) -h(x f )] = h(x f ) -[x -x m ] 2 = = h(x f ) -x 2 -2 x x m + x 2 m =⇒ =⇒ g(x) = h(x f ) -x 2 + 2 x x m -x 2 m (7)
which is a second-order polynomial on the variable x. Figure 3 illustrates this type of function for x i = 0.5 and x f = 2, implying x m = 1.25. Now, we can define the set of all infinite possible solutions to the problem as corresponding to:

y(x) = h(x) + ε η(x) (8) 
where h(x) is the optimal solution, and ε is a parameter used in variational calculus to control the variations of the solution around its optimal function h(x).

In order to be able to obtain visualizations and better understand the optimization problem, we will consider take into account the optimal solution, which consists of the straight line segment extending from point A to point B, which can be expressed as the following function of x:

h(x) = a x + b (9) a = y f -y i x f -x i (10) b = y i -a x i (11) 
Now, we need to define a suitable functional expressing our aimed goal, which namely corresponds to finding the function that minimizes the arc-length from points A to B. The differential arc-length can be expressed as: The second order polynomial g(x), extending from x i = 0.5 to x f = 2.0, adopted in the present section. The variations of the minimal arc-length can then be described as y(x) = h(x) + ε g(x), where h(x) is the respective optimal solution.

S( ẏ) = d s dx = 1 + d y dx 2 = 1 + ẏ2 (12)
Thus we obtain the following functional to be minimized:

ˆxf xi S( ẏ) dx = ˆxf xi 1 + ẏ2 dx (13) 
However, because S( ẏ) ≥ 0, it is enough for the minimization to consider the alternative form:

F ( ẏ) = ẏ2 ( 14 
)
which leads to the respective functional:

I(ε) = ˆxf xi ẏ2 dx (15) 
Now, we need to determine ẏ(x), which we do easily from Equation 8 as follows:

d y(x) dx = d h(x) d x + ε d η(x) d x =⇒ =⇒ ẏ = ḣ + ε η (16)
as expected, ẏ is a function of the control parameter ε.

It follows from Equations 9 and 7 that:

ḣ = a (17) η = -2 x + 2 x m (18) 
Therefore, we can write:

ẏ = ḣ(x) + ε η = a + ε (2 x m -2 x) (19) 
By plugging this expression into Equation 15, we obtain:

I(ε) = ˆxf xi ẏ2 dx = = ˆxf xi [a + ε (2 x m -2 x)] 2 dx = = ˆxf xi A(x) dx
where:

A(x) = [a + ε (2 x m -2 x)] 2 = = [a + 2 ε x m -2 ε x] 2 = = a 2 + 2 a ε x m -2 a ε x+ + 2 a ε x m + 4 ε 2 x 2 m -4 ε 2 x m x- -2 a ε x -4 ε 2 x m x + 4 ε 2 x 2 = = a 2 + 4 a ε x m -4 εx -8ε 2 x m x + 4 ε 2 x 2 m + 4 ε 2 x 2
Therefore, the sought functional expressing the total arc-length in terms of the parameter ε can now be expressed as follows:

I(ε) = ˆxf xi A(x)dx = x f -x i + + (c x -2 a ε x 2 -4ε 2 x m x 2 + 4 3 ε 2 x 3 x f xi where: c = a 2 + 4 a ε x m + 4 ε 2 x 2 m
This functional allows us to visualize the values that the functional I(ε) takes for each of all the possible solutions defined by the parameter ε. An example of visualization is illustrated in Figure 2, respectively to the same situation as in Figure 2, i.e. A = (x i = 0.5, y i = 1) and B = (x i = 2, y i = 3).

The situation depicted in Figure 2 evidentiates that the optimal solution, corresponding to the minimal value of I(ε), is achieved when its derivative with respect to ε, namely d I(ε)/dt| ε=0 , becomes zero. This null derivative property also accounts for the same principle adopted in calculus of variations, except for the fact that the candidate solutions in that case are completely general, and not restricted to second-order polynomials as assumed in this section.

For that same reason, it becomes impossible to visualize how I(ε) changes in terms of ε in variational calculus. The visualization obtained here was only possible because we were able to restrict the universe of possible solution functions y(x) to the specific type of second-order polynomials adopted, which allowed us to derive an explicit form for I(ε).

Though the developments in this section had mostly a didactic purposed, it turned out that the correct solution was a particular case of the assumed second-order polynomials, which can be verified to be indeed the case with any other order of polynomials. However, it should be observed that this property does not generalize to other variational problems.

Deriving the Euler-Lagrange Equation

In this section we will develop an informal derivation of the Euler-Lagrange equation, which provides subsidies for its better understanding and respective application. The main objective is to minimize a functional (i.e. a scalar measurement) of a function y(x), which is typically a function of x, y(x) (itself), and ẏ (its derivative). Therefore, we can expressed this functional as

I(ε) = ˆxf xi F (x, y(x), ẏ(x))dx (20) 
Let us assume that the optimal solution exists and is represented as f (x). Then, as illustrated in Section 4, it becomes possible to incorporate generic variations of h(x) by introducing a parameter ε that controls the level of variation of y(x) in terms of a completely generic function η(x). More specifically, we have:

y(x) = h(x) + ε η(x) (21) 
Observe that, as expected, y(x) becomes the optimal solution when ε = 0.

We also have the following typical boundary conditions:

h(x i ) = y(x i ) = y i (22) h(x f ) = y(x f ) = y f (23) 
As discussed in Section 4, the optimal solution will take place when the derivative of the functional with respect to ε becomes zero, i.e.:

δI(ε) ε=0 = d dε ˆxf xi F (x, y(x), ẏ(x))dx = 0
It is interesting to notice that the integral is actually a function only of ε, given that the integrand is a function of the variable x upon which the definite integral is calculated. That is why we have an ordinary derivative, and not partial derivatives. For this same reason, we can now write:

δI(ε) ε=0 = ˆxf xi ∂ ∂ε F (x, y, ẏ)dx = 0 ( 24 
)
By applying the multivariate chain rule:

∂ ∂ε F (x, y(x), ẏ(x)) = ∂F ∂x dx dε + ∂F ∂y dy dε + ∂F ∂ ẏ d ẏ dε
Given that the variable x is not a function of ε, it follows that:

∂F ∂x dx dε = 0
Now, by introducing the abbreviations:

dy dε = η; d ẏ dε = η
we can rewrite Equation 24 as follows:

δI(ε) ε=0 = ˆxf xi ∂F ∂h η + ∂F ∂ ḣ η dx = 0
Observe that, given that the integral refers to the optimal solution, we have switched the partial derivatives to be respective to h rather than y.

By separating the terms in the above expression, we have:

δI(ε) ε=0 = ˆxf xi ∂F ∂h η dx + ˆxf xi ∂F ∂ ḣ η dx
Let us use integration the second term above by part in order to substitute the term η from the previous equation. More specifically, we make:

u = ∂F ∂ ḣ dv = η dx du = d dx ∂F ∂ ḣ dx v = ˆη dx = η
Observe the notation:

d dx ∂F ∂ ḣ = d ∂F ∂ ḣ dx
Then, we can now write:

δI(ε) ε=0 = ˆxf xi ∂F ∂h η dx + ∂F ∂ ḣ η x f xi - ˆxf xi η d dx ∂F ∂ ḣ dx = = ˆxf xi ∂F ∂h η dx - ˆxf xi η d dx ∂F ∂ ḣ dx = = ˆxf xi η ∂F ∂h - d dx ∂F ∂ ḣ dx = 0
where the uv term became zero because the variation of η(x) is necessarily zero at either x i or x f , as it is a fixed constant at those points. Now, because the above expression has to be verified irrespectively to η(x), which was assumed to be completely generic, we obtain:

∂F ∂h - d dx ∂F ∂ ḣ = 0 ( 25 
)
which corresponds to the Euler-Lagrange equation. As it can be readily realized, this equation translates an optimization problem into a differential equation, which can then be (possibly) solved by analytical or numerical manners.

In case the functional does not depend explicitly on x, informally meaning that this variable does not appear in the functional, the Euler-Lagrange equation can be simplified as:

F - ḣ ∂F ∂ ḣ = c ( 26 
)
where c is a constant. This equation is referred to as the Beltrami equation, after Eugenio Beltrami (1835-1900).

A First Case-Example: Minimum Length

Let us now address our first case-example, concerning the identification of the function leading to the minimal arclength path between two points A and B. We start by expressing the functional in terms of the arc length ds, which can be done as follows:

F (x, y, ẏ) = ds dx = 1 + ( ẏ) 2 = F ( ẏ) (27) 
For generality's sake, let us approach this problem in terms of the Euler-Lagrange equation:

∂F ∂h - d dx ∂F ∂ ḣ = 0 (28) 
Given that h does not appear in the functional, we can write:

∂F ∂h = 0 =⇒ ∂F ∂ ḣ = k ( 29 
)
where k is a constant. For the considered functional, it follows that:

dF d ḣ = ḣ 1 + ḣ2 = k (30) 
which can be rewritten as:

ḣ2 1 + ḣ = k 2 (31) 
We then have that:

ḣ2 = k 2 1 + ḣ =⇒ ḣ2 -k 2 ḣ -k 2 = 0 (32)
which has the following solution:

ḣ = k 2 ± √ k 4 + 4 k 2 2 = constant (33) 
Thus, it follows that:

ḣ = m = constant (34)
Implying that the optimal solution can now be expressed as:

h(x) = m x + c (35)
where c is a constant. Imposing the boundary conditions:

m = y f -y i x f -x i (36) c = m y i -x o (37)
Thus, we have mathematically demonstrated that the shortest distance between two points does correspond to a straight line segment interconnecting those points. Though this fact may appear trivial, its mathematical verification does require a formal approach as that developed above.

It is important to remember that the solution provided by the Euler-Lagrange methodology does not indicate whether the obtained solution corresponds to a minimum or maximum value, which has to be determined either by further mathematical analysis (second variation) or, as in the present case, considering the intrinsic nature of the problem: given that no constraint was imposed on the length, its maximum value would be infinite.

Soap Surfaces

Consider the situation depicted in Figure 4. Here, we have a soap film surface extending between two circular hoops, being contracted as a consequence of surface tension. Any gravitational effects will not be considered. The variational problem to be tackled corresponds to finding the surface leading to the smallest possible surface area under the above conditions and while satisfying the respective boundary conditions (e.g. [START_REF] Osserman | A survey of minimal surfaces[END_REF][START_REF] Taylor | The structure of singularities in soapbubble-like and soap-film-like minimal surfaces[END_REF][START_REF] Hildebrandt | The parsimonious universe: shape and form in the natural world[END_REF][START_REF] Dierkes | Minimal surfaces[END_REF][START_REF] Nitsche | Lectures on minimal surfaces[END_REF]). Otherwise, the cylinder would be minimal area surface (the respective variational solution is left as an exercise).

Thanks to the symmetry of this configuration, it is possible to approach it in terms of a single function y(x) on the variable x corresponding to the profile of the surface projected onto the y -z plane. The boundary conditions can then be expressed as:

y(x i = -x f ) = y i y(x f ) = y f
the perimeter of any circular section with abscissa x within the interval [x i , x f ] can be calculated as:

P (x) = 2 π y
We also have that the differential arc-length ds along the profile function is equal to: so that the functional quantifying the total area of the surface, which is the quantity to be minimized, as corresponding to:

ds = 1 + ẏ2
ˆxf xi (2 π y) 1 + ẏ2 dx = 2 π ˆxf xi y 1 + ẏ2 dx
However, the function y(x) = h(x) that optimizes this problem is the same that optimizes the following simplified functional:

I = ˆxf xi y 1 + ẏ2 dx which implies: F (y, ẏ) = y 1 + ẏ2
with the optimal solution being respective to:

F (h, ḣ) = h 1 + ḣ2
As F () does not depend explicitly on x, this time we will use Beltrami equation:

F - ḣ ∂F ∂ ḣ = c =⇒ h ḣ2 - ḣ ∂F ∂ ḣ = c
Now, we calculate:

∂F ∂ ḣ = h 2 1 + ḣ2 2 ḣ = h ḣ 1 + ḣ2
So, we can now rewrite the Beltrami equation for this problem as:

h 1 + ḣ2 - h ḣ2 1 + ḣ2 = h 1 + ḣ2 -h ḣ2 1 + ḣ2 = = h 1 + ḣ2 = c
which leads to:

h 1 + ḣ2 = c =⇒ h = c 1 + ḣ2 =⇒ =⇒ ḣ = dh dx = h c -1 =⇒ =⇒ dh h c 2 -1 = dx =⇒ =⇒ c dh h c 2 -c 2 = dx
which turns out to be a separable ordinary differential equation, which can be solved by considering: 

=⇒ c ˆ1 √ h 2 -c 2 dh = ˆdx ( 
c acosh h c + k = x + b
where k and b are constants. It now follows that:

acosh h c + k = 1 c (x + b) =⇒ =⇒ acosh h c + k = 1 c (x + b) =⇒ =⇒ acosh h c = 1 c (x + b) -k =⇒ =⇒ h c = cosh 1 c (x + b) -k =⇒ =⇒ h(x) = c cosh 1 c (x + b) -k =⇒ =⇒ h(x) = c cosh x + d c ( 39 
)
where c and d are constants that need to be determined numerically from the boundary conditions:

h(x i ) = c cosh x i + d c = y i h(x f ) = c cosh x f + d c = y f
We will address the particular case in which x i = -x f and y i = y f . Thus, we can write:

c cosh x i + d c = c cosh -x i + d c
Because cosh() is an even function, it follows that:

x i + d = -x i + d = -d + x i
which implies d = 0, so that the solution can be now rewritten as:

h(x) = c cosh x c
For simplicity's sake, let us make x i = 2 and y i = 4, hence:

h(1) = c cosh 1 c = 1
whose approximate solution, obtained numerically, is c 1 ≈ 0.94038 and c 2 ≈ 3.33934. Figure 5 illustrates the profiles obtained respectively to these two potential solutions, from which we conclude that the optimal surface is obtained for c 2 ≈ 3.33934. The solution of the soap surface developed in this section illustrates not only the impressive power of variational calculus for revealing important information about the natural world, in the sense of modeling the shape of soap films, but also illustrates that this type of analysis can imply substantial efforts. In fact, though the problem considered here involved only single variable functions and was characterized by marked symmetry, it was not particularly straightforward to find its solution and then to obtain the parameters implied by respective configurations (boundary conditions). Similar situations are typically found while solving several other problems in calculus of variations, especially concerning surfaces and other mathematical structures.

The Brachistochronous Problem

In this section we will get familiarized with and solve the famous brachistochronous problem. The situation to be addressed, illustrated in Figure 6, involves finding the constrained trajectory that leads to the shortest time taken by a point particle of mass m to move from point A to B under the influence of gravity. Observe that we have modified the coordinate system axis so that the potential energy can be measured along the y-axis. The generic trajectory is represented as y(x), with the optimal solution being expressed as f (x). The force mg implied by the gravitational acceleration can be decomposed into two components: one tangent to the curve (t) and another normal to the curve (n). The former component implies in respective acceleration of the particle, while the latter is responsible for changing its orientation (e.g. [START_REF] Da | Point motion in flat spaces: An ample starting point[END_REF][START_REF] Da | Single point particle motion: Mass, force, momenta, impulse[END_REF]).

The important element for the brachistochronous problem is the magnitude of the tangent velocity as it increases under the action of the gravitational force, so we shall focus on v(y).

Let us apply the principle conservation of energy, which states that the sum of the particle kinetic and potential energy remains constant. We shall express the potential energy variations relatively to the distance y from the particle to the x-axis, so that we can write:

1 2 m v(y) 2 = m g y =⇒ v(y) = 2gx (40) 
The differential arc-length along x can be written as:

ds = 1 + ẏ2 (41) 
since ds = v dt, it follows that the total time can be expressed in terms of the following functional:

I = ˆxf 0 1 + ẏ2 √ 2gx dx (42) 
The function F () for this problem can now be obtained as:

F (h, ḣ) = ˆxf 0 1 + ḣ2 √ 2gh dx (43) 
The analytical solution of this equation is not particularly straightforward, so we have from [START_REF] Weinstock | Calculus of variations: with applications to physics and engineering[END_REF] that the parametric solution can be expressed as: 

x(θ) = a(θ -sin θ) y(θ) = a(1 -cos θ)

Numeric Variational Calculus

Despite its impressive generality and effectiveness, the analytical solution of problems in calculus of variations can be often challenging. In these cases, it becomes interesting to resource to respective numerical methods (e.g. [START_REF] Cassel | Variational methods with applications in science and engineering[END_REF][START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF]). There are two main families of such methods: direct and indirect methods. The difference between these approaches consists in the fact that indirect methods transform the optimization into a respective boundary value problem, while direct methods provide the solution in a straightforward manner.

Here, we will only provide a brief illustration of the numerical solution of calculus of variations, which will be done respectively to the first direct method proposed by Euler, which uses Lagrange multipliers to obtain a system of linear equations that is then numerically solved.

Let us illustrate this method respectively to the specific problem of identifying the function with the minimal arclength between two points, which was already addressed by analytical means in Section 6.

We start by discretizing the possible solutions y(x) into N + 1 samples, which can be done as follows:

y k = y(k ∆x + x i ), k = 1, 2, . . . , N ∆x = x f -x i N -1
We also have that:

y i = h(x 1 = x i ) y f = h(x N = x f )
The first order finite difference scheme for ẏ(x) can be written as:

ẏ(x k ) ≈ ẏk = y k+1 -y k ∆x which, for k = 1, 2, . . . , N -1, yields: [ ẏ(x k )] 2 ≈ ẏ2 k = y 2 k+1 -2 y k y k+1 + y 2 k [∆x] 2
The respective simplified functional can then be approximated as as:

I = ˆxf xj ẏ2 dx =⇒ I ≈ 1 ∆ 2 x N -1 k=1 ẏ2 k ∆x
There are two constraints to be taken into account, namely:

g 1 (y 1 , y 2 , . . . , y N ) = y 1 = y i g 2 (y 1 , y 2 , . . . , y N ) = y N = y f
The functional to be optimized by the Lagrange multipliers approach, incorporating the boundary conditions, can then be expressed as:

L = 1 ∆ x N -1 k=1 ẏ2 k -λ 1 y 1 -λ N y N
For j = 1, 2, . . . , N -1, it follows that:

N -1 k=1 ẏ2 k = . . . + y 2 j -2 y j-1 y j + y 2 j-1 + + y 2 j+1 -2 y j y j+1 + y 2 j + . . .
from which we obtain:

∂ ∂y j N -1 k=1 ẏ2 k = [2 y j -2 y j-1 + 2 y j -2 y j+1 ] = = 2 [2 y j -y j-1 -y j+1 ]
In the particular case of j = 1, it follows that:

∂ ∂y 1 y 2 2 -2 y 1 y 2 + y 2 1 + . . . = 2 y 1 -2 y 2
while, for j = N , we reflect the derivative along the x-axis to obtain:

∂ ∂y N . . . + y 2 N -2 y N -1 y N + y 2 N -1 = 2 y N -2 y N -1
The solution of the above Lagrange functional can now be obtained by imposing:

∂ ∂y j L = 0
from which the following system of linear equations can be obtained:

             2 ∆x [y 1 -y 2 ] -λ 0 y 1 ; j = 1 2 ∆x [2 y j -y j-1 -y j+1 ] ; j = 2, 3, . . . , N -1 2 ∆x [y N -y N -1 ] -λ N y N ; j = N y 1 = y i y N = y f (44)
Figure 8(a) illustrates the solution of the minimum arclength problem already discussed in this work, now obtained by using the above numerical approach. A good agreement can be observed with the expected solution. It is also interesting to observe that the above formulation did not explicitly take into account the Euler-Lagrange equation, but proceeded directly from the aimed functional. Figure 8(b) depicts the same previous situation, but incorporating an additional constraint to take into account an intermediate point, namely (1.325, 1.2).

Concluding Remarks

The intrinsic compatibility between mathematics and the physical reality constitutes an enduring puzzle. Even though the former has been, to a good extent but not exclusively, developed as a means to model the real world, it is still somehow surprising that this has been able to be done with such impressive accuracy and effectiveness. Though Newton's integration of calculus and mechanics constitutes, deservingly, one of the prototypes of the inherent compatibility between mathematics and physics, the area of calculus of variations stands at least as an equally compelling related development. Indeed, this area has not only backed a large number of theoretical and applied results, but it is one of the best candidates to constitute one of the primordial principles about how nature works not only at the classical, macro and mesoscopic levels, but alsoextending to microscopic scales up to particles and quantum mechanics.

The present work aimed at providing a brief informal introduction to the main idea and basic methods in calculus of variations that could be potentially accessible to readers with moderate background in multivariate calculus who are interested in having a first contact with this important and fascinating area. It may also help researchers from other related areas that, having not studied these concepts, are interested to get familiarized with calculus of variations.

After posing the problem, and summarizing some of the many important historical developments in the field, we proceeded to present a complete motivational example which, though assuming a particular type of variations, could provided the visualization of the optimality of the solution arising from the null derivative of the respective functional. Next, the Euler-Lagrange equation for onedimensional functions was derived in a somehow informal, but hopefully accessible manner, which was subsequently illustrated respectively to the problem of minimum arclength, which was analytically solved. Another discussed example concerns the soap film surface as well as a brief discussion of the brachistochrone problem. In order to complement the presentation, the interesting possibility to perform variational calculus numerically was very brief and informally described in terms of what is possibly its earliest approach, namely the finite difference method described by Euler as a means to perform variational op-timization. Appendices briefly presenting the chain rule, integration by substitution, integration by parts, multidimensional derivatives, as well as the multiconstraint, multidimensional Lagrange multipliers have also been included for quick reference, while contributing to this work resulting more self-contained.

In spite of its impressive generality, power, and close relationship with the manner nature seems to work, calculus of variations does not seem to be so widely known as could be expected. That is probably a consequence of the relatively advanced concepts involved, even though the main overall idea and methodology are not particularly intricate. By trying to presenting and illustrating at an introductory level some of the main aspects of calculus of variations, it is expected that the current work may motivate the reader to probe further into this central area of mathematics, with its many theoretical and applied unfolding encompassing virtually every area in the physical sciences.

A The Chain Rule

The chain rule is probably one of the most important properties of differentiation. Let f (x) and g(x) be two functions. Their composition corresponds to:

(g • f )(x) = g(f (x))
It is important to keep in mind that, in general, the composition of functions is not commutative, so that the order of the composition matters.

In case f (x) and g(x) are differentiable, the chain rule for one-dimensional functions then states that:

d dx (g • f )(x) = ġ(f (x)) ḟ (x) = = dg(u) du du(x) dx = dg du du dx (45) 
where u = f (x). Interestingly, the proof of this property is not particularly straightforward (see, for instance, []).

As a simple example, let f (x) = cos(x) and g(x) = x 2 . We then have:

(g • f )(x) = g(f (x)) = [cos(x)] 2 = cos(x) 2 ; u(x) = f (x) = cos(x) =⇒ du dx = -sin(x); g(u) = u 2 =⇒ d g du = 2 u; (g • f ) (x) = d g du du dx = = 2 [cos(x)] [-sin(x)] = -2 cos(x) sin(x)
In case we exchange the order of the composition:

(f • g)(x) = f (g(x)) = cos(x 2 ); u(x) = g(x) = x 2 =⇒ du dx = 2 x; g(u) = cos(u) =⇒ d g du = -sin(u); (f • g) (x) = d g du du dx = = -sin(x 2 )[2 x] = -2 x sin(x 2 )
which illustrates that the chain rule, in general, is not commutative.

B Integration by Substitution

As implied by its own name, this method involves substituting a part of the integrand by a new variable u, also implying du/dx to be taken into account, as illustrated in the following.

Let us consider the following indefinite integral: ˆx sin(x 2 + 3) dx By making:

u = x 2 + 3 du = 2 x dx
we can rewrite the integral as:

ˆx sin(u) du 2 x = 1 2 ˆsin(u) du = - 1 2 cos(u)
The result can then be obtained as:

-1 2 cos(x 2 + 3)

C Integration by Parts

Let us consider a function f (x) as corresponding to the product of two other functions, i.e.:

f (x) = u(x) v(x)
By using the differentiation multiplication rule, it follows that: which provides the basis for the method of integration by parts.

As an example, let us calculate the following indefinite integral:

ˆx sin x dx

Here, we aim at choosing u and v so that u can be easily differentiated, while dv and v du can be more easily integrated. Thus: In case each of the components of φ is a function of another free variable t, i.e.: φ(x(t), y(t), z(t)), the chain rule becomes: ∂ φ(x(t), y(t), z(t))

∂ t = ∂ φ ∂ x ∂ x ∂ t + ∂ φ ∂ y ∂ y ∂ t + ∂ φ ∂ z ∂ z ∂ t (48) 
As an example, let us take the following scalar field into account: φ(x(t), y(t), z(t)) = 3 x(t) -2 x(t) y(t) + z(t) The calculation of the other two partial derivatives are left as an exercise.

E Lagrange Multipliers

The method known as Lagrange multipliers provides an effective resource for minimizing functions under respective constraints (e.g. [START_REF] Bertsekas | Constrained optimization and Lagrange multiplier methods[END_REF][START_REF] Rockafellar | Lagrange multipliers and optimality[END_REF][START_REF] Da | ←-Lagrange multipliers . Multiple applications-→[END_REF]).

In the following we briefly present the multivariate, multi-constraints Lagrange multiplier method. It should be kept in mind that this method only provides solutions respective to a extreme value, not indicating if the latter corresponds to minimum or maximum.

Let S be an N -dimensional space, and f (x 1 , x 2 , . . . , x N ) be a respective functional to be minimized/maximized under M constraints g k (x 1 , x 2 , . . . , x N ) = c k , k = 1, 2, . . . , M .

We start by defining the following multivariate function: It can be shown that this corresponds to solving the following possibly heterogeneous system of equations: 
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Figure 1 :

 1 Figure1: The problem of finding the continuous curve with minimal arc-length that connects two points is a prototypical illustration of calculus of variations. Each possible solution has a "fitness" quantified in terms of a respective functional that is minimized. The effectiveness of calculus of variations stems from its impressive generality in the sense that no specific type of potential solutions is assumed, provided they are twice differentiable.

Figure 2 :

 2 Figure 2: (a): Illustration of the variational problem of finding the function that minimizes the arc-length distance between any two distinct points A and B of R 2 .In addition to the optimal solution, shown in black, the figure also shows some of the infinitely many possible solutions. In the specific case of this examples, these potential solutions correspond to a subset of polynomials of order 2, extending from x i = 0.5 to x f =2.0. Each of the possible solutions, defined by the parameter ε, corresponds to a variation of the optimal solution. (b): The functional I(ε) to be minimized for the situation depicted in (a). Observe that the optimal solution I(ε) takes place at ε = 0. Therefore, at this specific value of ε, the derivative of the functional becomes necessarily zero, i.e. d I(ε)/dt| ε=0 = 0.

Figure 3 :

 3 Figure3: The second order polynomial g(x), extending from x i = 0.5 to x f = 2.0, adopted in the present section. The variations of the minimal arc-length can then be described as y(x) = h(x) + ε g(x), where h(x) is the respective optimal solution.

Figure 4 :

 4 Figure 4: The geometry of the minimal soap film surface problem addressed in this section is characterized by radial symmetry, which allows it to be expressed in terms of a one-variable function y(x).The problem consists of finding the profile, shown in magenta, that minimizes the area of the surface defined by the pair of circular hoops.
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 5 Figure 5: The profiles of the soap film surface obtained for c 1 ≈ 0.94038 and c 2 ≈ 3.33934, from which we can conclude that the minimal solution corresponds to the latter profile.

Figure 6 :

 6 Figure 6: The configuration to be considered in this section for solving the brachistochronous problem involves a point particle with mass m undergoing a continuous constrained trajectory between two distinct points A and B, while under gravity g. What trajectory leads to the shortest time for this motion?

Figure 7

 7 Figure 7 illustrates the solution of the brachistochronous problem for x f = 2

Figure 7 :

 7 Figure 7: A possible solution of the brachistochrone problem, in which the particle undergoes its trajectory between two points in the shortest time.

Figure 8 :

 8 Figure 8: (a): Numeric solution, by Euler's variational approach, of the minimum arc-length problem solved analytically in Section 6. A total of N = 11 samples were considered in this example, but the method scales for arbitrary N . (b): The previous configuration modified to incorporate and additional constraint, respective to the intermediary point.

  + v u =⇒ =⇒ (u v) = u v + v u =⇒ =⇒ ˆ(u v) dx = ˆv u dx + ˆu v dx =⇒ =⇒ ˆu v dx = ˆ(u v) dx -ˆv u dx =⇒ =⇒ ˆu v dx = uv -ˆv u dx =⇒ =⇒ ˆu d v = uv -ˆv d u(46)

  u(x) = x dv(x) = sin(x) dx du(x) = dx v(x) = -cos(x)Then, integrating by parts:ˆx sin x dx = u v -ˆv du = = -x cos(x) -ˆ[cos(x)] dx = = -x cos(x) -sin(x) + cD Multidimensional DerivativesLet φ(x, y, z) be a real-valued scalar field on R. Its partial derivatives can be expressed as:
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 3636 2y(t)] [2] + [-2x(t)] [2t + 1] + [2z(t)] [-sint] = = [3 -2(t 2 + t)][2] -2(2t)] [2t + 1] + 2(cos(t))[-sin t] = = 6 -4t 2 -4t -8t 2 -4t -2 cos(t) sin(t) = 12t 2 -8t -2 cos(t) sin(t)As a more general example, consider the following scalar field of three variables x, y, z which are functions of other three variables x, ỹ, z (this could correspond to a change of coordinates):φ(x(x, ỹ, z), y(x, ỹ, z), z(x, ỹ, z)) = 3 x -2xy + z 2 = x = 2x y = x ỹ2 z = -cos(z) Then, we have that: 2y] [2] + [-2x] [ỹ 2 ] + [2z] [0] = 4x ỹ2 + [-2(2x)]ỹ 2 = 6 -8xỹ 2

L(x 1

 1 , x 2 , . . . , x N ) = = f (x 1 , x 2 , . . . , x N ) -M k=1 λ k g k (x 1 , x 2 , . . . , x N ) (49)The sought solution is obtained by find point (x 1 , x 2 , . . . , x N ) that satisfies:∇L(x 1 , x 2 , . . . , x N ) = = ∇f (x 1 , x 2 , . . . , x N ) -∇ M k=1 λ k g k (x 1 , x 2 , . . . , x N ) = 0 (50)

∂

  x1,x2,...,x N ) L(x1,x2,...,x N ) ∂ x N = 0 g 1 (x 1 , x 2 , . . . , x N ) = c 1 g 2 (x 1 , x 2 , . . . , x N ) = c 2 . . . g M (x 1 , x 2 , . . . , x N ) = c M (51)

Acknowledgments Luciano da F. Costa thanks CNPq (grant no. 307085/2018-0) and FAPESP (grant 15/22308-2).

Observations

As all other preprints by the author, the present work contains preliminary work subject to further revision and validation. Respective modification, commercial use, or distribution of any of its parts are not possible, as this work has author copyright. Many of the preprints by the author are also available in Hal and/or arXiv. This work can also be cited by using the DOI number or article identification link. Thanks for reading.