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Despite the progress seen in classification methods, current approaches for handling videos with distribution shifts in source and target domains remain source-dependent as they require access to the source data during the adaptation stage. In this paper, we present a self-training based source-free video domain adaptation approach (without bells and whistles) to address this challenge by bridging the gap between the source and the target domains. We use the source pre-trained model to generate pseudo-labels for the target domain samples, which are inevitably noisy. We treat the problem of source-free video domain adaptation as learning from noisy labels and argue that the samples with correct pseudo-labels can help in the adaptation stage. To this end, we leverage the crossentropy loss as an indicator of the correctness of pseudo-labels, and use the resulting small-loss samples from the target domain for fine-tuning the model. Extensive experimental evaluations show that our method termed as CleanAdapt achieves ∼ 7% gain over the source-only model and outperforms the state-of-the-art approaches on various open datasets.

Figure 1: Existing approaches [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF][START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF][START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF][START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF][START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF][START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF] have a source-dependent adaptation stage achieving marginal performance gain over the source-pretrained models. On the other hand, our proposed method CleanAdapt achieves significant performance improvement over the source-only model while being source-free (i.e., the adaptation stage does not require videos from the source domain). (Best viewed in color.) viewpoints, etc. Thus, the resulting difference in data distributions of the training (source domain) and the test (target domain) data produces a degraded performance. Furthermore, the source domain data usually comes with fully labeled videos, whereas the target domain data is typically unlabeled to reduce the annotation cost. The primary goal for unsupervised domain adaptation (UDA) is to reduce this performance gap by adapting the model to the labelscarce target domain by transferring the knowledge learned from the label-rich source domain dat [START_REF] Ganin | Unsupervised domain adaptation by backpropagation[END_REF][START_REF] Long | Learning transferable features with deep adaptation networks[END_REF][START_REF] Saito | Maximum classifier discrepancy for unsupervised domain adaptation[END_REF][START_REF] Wang | Classes matter: A fine-grained adversarial approach to cross-domain semantic segmentation[END_REF][START_REF] Yang | ST3D: Self-training for unsupervised domain adaptation on 3d object detection[END_REF]. Source-free UDA [START_REF] Huang | Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data[END_REF][START_REF] Nath Kundu | Universal source-free domain adaptation[END_REF][START_REF] Liang | Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation[END_REF][START_REF] Yang | Exploiting the Intrinsic Neighborhood Structure for Sourcefree Domain Adaptation[END_REF] takes this approach one step further by assuming the unavailability of the source domain data for adaptation. This is a more practical setup than traditional source-dependent UDA mainly due to privacy issues, computation cost, and storage complexity [START_REF] Huang | Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data[END_REF][START_REF] Nath Kundu | Universal source-free domain adaptation[END_REF][START_REF] Liang | Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation[END_REF][START_REF] Yang | Exploiting the Intrinsic Neighborhood Structure for Sourcefree Domain Adaptation[END_REF].

There has been a surge of interest in domain adaptation for videos recently [3-6, 14, 16, 27, 29, 35]. These approaches either propose to directly extend the adversarial learning framework [START_REF] Jamal | Deep Domain Adaptation in Action Space[END_REF] from image-based methods [START_REF] Ganin | Unsupervised domain adaptation by backpropagation[END_REF] or couple it with some temporal attention weights [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF][START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF] and self-supervised pretext tasks [START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF][START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF] to align the segment-level features between the domains. However, these strategies produce only a modest ∼ 2% gain over the sourceonly model (see Figure 1). Recently, there has been a paradigm shift from adversarial to contrastive learning framework [START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF][START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF][START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF] for video domain adaptation which proved to be beneficial. As shown in Figure 1, the most recent method [START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF] achieves 6.4% and 5.1% gain over the source-only model on UCF → HMDB and HMDB → UCF datasets, respectively. However, all of these existing methods are inherently complex and use source domain videos during the adaptation stage, which is untenable in several scenarios [START_REF] Huang | Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data[END_REF][START_REF] Liang | Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation[END_REF][START_REF] Yang | Exploiting the Intrinsic Neighborhood Structure for Sourcefree Domain Adaptation[END_REF], as discussed earlier.

In this work, we present an effective approach that leverages the self-training framework [START_REF] Xiaojin | Semi-supervised learning literature survey[END_REF] for source-free video UDA where we do not have access to the source-domain videos during the adaptation stage. We generate pseudo-labels for the unlabeled target domain videos using a source pre-trained model. These pseudolabels are indeed noisy due to the existing domain gap. Finetuning the source pre-trained model with these noisy pseudo-labels is a suboptimal solution as the presence of incorrect pseudo-labels hinders the adaptation stage as discussed in Sec. 4.4. However, we observe that these pseudo-labeled target domain videos are not completely unusable, and in fact, there is a substantial number of target domain videos with correct pseudo-labels. For example, in the case of HMDB → UCF, the HMDB pre-trained model produces pseudo-labels with ∼ 90% accuracy on the UCF dataset, and we experimentally show that this amount of data is sufficient for adaptation. Throughout this paper, we term these samples with correct pseudo-labels as clean, whereas the samples with incorrect pseudo-labels are termed as noisy. We observe that the network learns clean samples first before memorizing the noisy samples, and this acts as the core idea behind the adaptation stage in our proposed method (Figure 2). We discuss this further in Sec. 3.3.

To our knowledge, we are the first to address the video domain adaptation problem in a source-free setup. We treat this problem as learning from noisy labels and propose a self-training based approach that selects the clean samples from the noisy pseudolabeled target domain samples to re-train the model for gradually adapting to the target domain in an iterative manner. Thus, we name our approach as CleanAdapt. In contrast to the previous methods [3-6, 14, 16, 27, 29, 35], CleanAdapt is inherently sourcefree as it only requires target domain videos and their corresponding pseudo-labels. Our proposed method surpasses all other sourcedependent state-of-the-art methods by a large margin on UCF ↔ HMDB and EPIC-Kitchens datasets, despite being source-free.

RELATED WORK

Supervised Action Recognition. Convolutional neural networks (CNNs) are now the de-facto solution for action recognition tasks. Various efforts have been made in this context to capture spatio-temporal information in videos, starting from two-stream networks with 2D [START_REF] Simonyan | Two-stream convolutional networks for action recognition in videos[END_REF][START_REF] Wang | Temporal segment networks: Towards good practices for deep action recognition[END_REF][START_REF] Zhou | Temporal Relational Reasoning in Videos[END_REF] to 3D CNNs [START_REF] Carreira | Quo vadis, action recognition? a new model and the kinetics dataset[END_REF][START_REF] Feichtenhofer | Convolutional two-stream network fusion for video action recognition[END_REF][START_REF] Tran | Learning spatiotemporal features with 3d convolutional networks[END_REF]. Recent advances in action recognition focus on capturing long-term context from videos [START_REF] Feichtenhofer | Slow-Fast Networks for Video Recognition[END_REF][START_REF] Wang | Non-local neural networks[END_REF][START_REF] Chao-Yuan | Long-Term Feature Banks for Detailed Video Understanding[END_REF]. Despite their success, these methods suffer from a common limitation: a subtle difference in testing data distribution from training data limits their ability to generalize in the new domain. Thus, these methods require a large number of labeled data in the new domain for fine-tuning, which is often timeconsuming and expensive. In contrast, we focus on unsupervised video domain adaptation to eliminate the need for labeled data from the target domain.

Domain Adaptation for Action Recognition.

Early works [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF][START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF][START_REF] Jamal | Deep Domain Adaptation in Action Space[END_REF][START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF][START_REF] Boxiao Pan | Adversarial cross-domain action recognition with co-attention[END_REF] on video UDA are inspired by image-based UDA's adversarial framework [START_REF] Ganin | Unsupervised domain adaptation by backpropagation[END_REF]. Jamal et al. [START_REF] Jamal | Deep Domain Adaptation in Action Space[END_REF] propose to align the source and the target domains using a subspace alignment technique and outperform all previous shallow methods. Chen et al. [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF] show the efficacy of attending to the temporal dynamics of video for domain adaptation. TCoN [START_REF] Boxiao Pan | Adversarial cross-domain action recognition with co-attention[END_REF] used cross-domain co-attention module for matching the source and the target domain features with appearance and motion streams. Munro et al. [START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF] were among of the first to show the effectiveness of learning multi-modal correspondence for video domain adaptation. SAVA [START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF] proposed an attention-augmented model with a clip order prediction task to re-validate the effectiveness of self-supervised learning for video domain adaptation, as shown in [START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF]. However, the adversarial methods are complex and sensitive to the choice of hyperparameters [START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF].

There has been a recent shift from adversarial to contrastive learning-based methods for the video UDA task. Song et al. [START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF] propose to bridge the domain gap using a self-supervised contrastive framework named cross-modal alignment. In a similar direction, Kim et al. [START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF] use a cross-modal feature alignment loss for learning domain adaptive feature representation. CoMix [START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF] represents videos as graphs and uses temporal-contrastive learning over graph representations for transferable feature learning. Additionally, these methods [START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF][START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF][START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF] generate pseudo-labels from the source pre-trained model for the target domain videos and use only the target domain samples with high-confident pseudo-labels in their contrastive loss in each iteration. However, the source-only model often makes wrong predictions with high confidence due to the distribution shift for target domain videos which can hinder the adaptation. To address this, we treat target pseudo-labels as noisy and formulate the domain adaptation problem as learning from noisy labels. Moreover, the adaptation stage in these methods [3-5, 14, 16, 27, 29, 32, 35] is source-dependent. This is an impractical assumption as the source data transfer during the deployment phase of the model is often infeasible. In contrast, we propose a source-free video domain adaptation approach that achieves state-of-the-art results with only target domain data.

Source-free Domain Adaptation for Images. There has been a significant effort for adaptation to the target domain without the source-domain data for images [START_REF] Huang | Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data[END_REF][START_REF] Li | Adaptive batch normalization for practical domain adaptation[END_REF][START_REF] Yang | Exploiting the Intrinsic Neighborhood Structure for Sourcefree Domain Adaptation[END_REF]. These approaches consider a closed-set setting where the label set does not change across domains. Recently, Kundu et al. [START_REF] Nath Kundu | Universal source-free domain adaptation[END_REF] proposed a universal sourcefree setup where unknown classes can appear in the target domain. We follow [START_REF] Huang | Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data[END_REF][START_REF] Li | Adaptive batch normalization for practical domain adaptation[END_REF][START_REF] Yang | Exploiting the Intrinsic Neighborhood Structure for Sourcefree Domain Adaptation[END_REF] and assume a closed-set setup in our work for simplicity.

Learning from Noisy-labels. Self-training based methods with careful design choices may still produce over-confident incorrect predictions. To alleviate this issue, we resort to learning from labelnoise literature. One of the popular approaches to reducing the effect of noisy-labels is to design noise-robust losses [START_REF] Feng | Can cross entropy loss be robust to label noise?[END_REF][START_REF] Ma | Normalized loss functions for deep learning with noisy labels[END_REF][START_REF] Wang | Symmetric cross entropy for robust learning with noisy labels[END_REF]. However, these methods fail to handle real-world noises [START_REF] Zhang | Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation[END_REF]. According to [START_REF] Arpit | A closer look at memorization in deep networks[END_REF], deep neural networks produce small loss values for the samples with correct pseudo-labels. Thus, a popular direction for handling label-noise is to use the cross-entropy loss as an indicator of label correctness [START_REF] Han | Co-teaching: Robust training of deep neural networks with extremely noisy labels[END_REF][START_REF] Yu | How does disagreement help generalization against label corruption?[END_REF] and use these small-loss samples for re-training the networks. In this work, we demonstrate that the small-loss samples are the potential clean samples and are enough to help our model adapt to the target domain. Therefore, We refer to the target domain samples with correct pseudo-labels as clean samples and those with incorrect pseudo-labels as noisy samples. Note that the groundtruth labels are only used to identify the clean vs. noisy samples for visualization purposes and not for training the model. The networks learn the clean samples first before memorizing the noisy samples according to the deep memorization effect presented in [START_REF] Arpit | A closer look at memorization in deep networks[END_REF]. In our proposed approach CleanAdapt, we exploit this connection to select the clean samples for fine-tuning the model to adapt to the target domain.

our proposed approach is more straightforward and requires only pseudo-labeled target domain samples.

APPROACH 3.1 Problem Definition

In this paper, we consider the source-free UDA task for videos.

Here, we are given a labeled source domain dataset of videos 𝐷 𝑠 = {(𝑥 𝑠 , 𝑦 𝑠 ) : 𝑥 𝑠 ∼ 𝑝}, where 𝑝 is the source data distribution and 𝑦 𝑠 is the corresponding label of 𝑥 𝑠 . We are also given an unlabeled target domain dataset 𝐷 𝑡 = {𝑥 𝑡 : 𝑥 𝑡 ∼ 𝑞}, where 𝑞 is the target distribution that is different from the source distribution 𝑝. We assume that the source and the target domains share the same label-set 𝐶 i.e. closed-set domain setup. For a video clip 𝑥 from any domain, we consider two modalities, 𝑥 = {𝑥 𝑎 , 𝑥 𝑚 }, where 𝑥 𝑎 is the appearance (RGB) stream and 𝑥 𝑚 is the motion (optical flow) stream. We use two 3D CNN backbones 𝑓 𝑎 and 𝑓 𝑚 , one for each modality that classify a video into one of the |𝐶 | classes. We aim to adapt the 3D CNNs (𝑓 𝑎 and 𝑓 𝑚 ) to the target domain. We also note that, the source domain videos are only available during the pre-training stage. However, we do not use the source dataset D 𝑠 during the adaptation stage as we are interested in the more realistic source-free setup. We show an overview of the proposed method in Figure 3.

Self-training based Domain Adaptation

Contrary to the adversarial learning based approaches [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF][START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF][START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF], we take the path of self-training [START_REF] Li | Bidirectional learning for domain adaptation of semantic segmentation[END_REF][START_REF] Morerio | Generative pseudo-label refinement for unsupervised domain adaptation[END_REF][START_REF] Xiaojin | Semi-supervised learning literature survey[END_REF] primarily due to its simplicity in the adaptation stage. First, we pre-train the 3D CNN models using the labeled source videos from 𝐷 𝑠 . Second, we generate labels for the unlabeled target dataset 𝐷 𝑡 using the source pre-trained model referred to as pseudo-labels. Third, we retrain the networks 𝑓 𝑎 and 𝑓 𝑚 using the pseudo-labeled target domain videos from 𝐷 𝑡 for adaptation. One of the possibilities is to use all the samples with their corresponding pseudo-labels to retrain the networks. However, the pseudo-labels contain noise due to the existing domain gap between the source domain 𝐷 𝑠 and the target domain 𝐷 𝑡 . Retraining the 𝑓 𝑎 and 𝑓 𝑚 with all these pseudo-labels lead to a sub-optimal result, as discussed in Section 4. We aim to answer the following question in this paper: what kind of 𝐷 𝑡 can help us in adaptation?

Clean Samples are All You Need

The pseudo-labels contain several samples with correct pseudolabels (clean samples). For example, there are ∼90% samples with correct pseudo-labels in UCF dataset when generated using the HMDB pre-trained networks. Thus, if we can filter out the noisy samples and keep only the clean samples, we can easily finetune our networks (𝑓 𝑎 and 𝑓 𝑚 ) using these clean samples and their corresponding correct pseudo-labels. Thus, we argue that these clean samples are the ones, which can help in domain adaptation. Now, the important question is how to sample the clean samples from the noisy ones? To this end, we cast the problem of video domain adaptation as learning from noisy labels due to noisy pseudo-labels. In Figure 2, we observe that deep neural networks learn the clean samples easily and have difficulty learning from the noisy samples due to the memorization effect [START_REF] Arpit | A closer look at memorization in deep networks[END_REF]. Thus, samples with low loss values are the potential clean samples. In this work, we design an approach without bells and whistles, CleanAdapt, aiming to select the clean samples based on the loss generated by the model against their corresponding pseudo-labels for adaptation. In each epoch of the adaptation stage, we select these clean samples from the target domain and use them to re-train the source-only models 𝑓 𝑎 and 𝑓 𝑚 .

There are three key advantages to this: (1) we do not need to modify the overall training regime (e.g. contrastive learning for domain alignment [START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF][START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF][START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF]) during adaptation, (2) we do not need to make any domain adaptation-specific design choices (e.g., background mixing [START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF]), and (3) we implicitly design an adaptation method that does not need any source dataset during the adaptation stage. The overall training pipeline of our CleanAdapt framework is shown in Figure 3.

Source Pre-training

In the source pre-training stage, we train the 3D CNNs 𝑓 𝑎 and 𝑓 𝑚 using the labeled source-domain dataset 𝐷 and we term these as a source only model. For a sample (𝑥, 𝑦) ∈ 𝐷 𝑠 , we average the logits obtained from 𝑓 𝑎 (𝑥) and 𝑓 𝑚 (𝑥) to compute the final score 𝑝 (𝑥) as follows -𝑝 (𝑥) = 𝜎 (𝑓 𝑎 (𝑥) + 𝑓 𝑚 (𝑥)).

(1) We use the conventional cross-entropy loss between the predicted class probabilities 𝑝 (𝑥) and the one-hot encoded ground-truth label 𝑦 as the loss function for training -

L 𝑐𝑒 (𝑥) = - |𝐶 | 𝑐=1 𝑦 𝑐 log(𝑝 𝑐 (𝑥)), (2) 
where 𝑦 𝑐 and 𝑝 𝑐 represent the 𝑐 𝑡ℎ element of 𝑦 and 𝑝 (𝑥) respectively for class 𝑐. The main goal for this pre-training step is to equip our model with the initial knowledge of the classes present in the source dataset 𝐷 𝑠 . Figure 3(a) depicts this step.

Pseudo-label Generation

As illustrated in Figure 3(b) the next step is to generate the pseudolabels for the unlabeled target domain samples. Once the model is pre-trained on the source domain videos, we use the learned notion of the class semantics of the model to generate labels for the target domain data. Note that these generated labels are not the actual labels for the target domain videos. Thus, we term these source-only model-generated labels as pseudo-labels ŷ. Formally,

ŷ (𝑥) = arg max 𝑐 𝑝 𝑐 (𝑥), (3) 
where 𝑥 ∈ 𝐷 𝑡 . Due to the domain shift between the source and the target, these pseudo-labels ŷ are noisy.

Adaptation

Once the pseudo-labels are obtained from the source pre-trained model for the target domain videos, we use these pseudo-labeled target videos for adaptation, as shown in Figure 3(c). As discussed earlier, the pseudo-labels are noisy, and we would like to extract the samples with correct pseudo-labels (clean samples) for adaptation. Each epoch of the adaptation stage has two key steps in our CleanAdapt framework: (a) clean sample selection, and (b) fine-tune the models 𝑓 𝑎 and 𝑓 𝑚 using these clean samples.

Clean sample selection. To filter out the target domain videos with noisy pseudo-labels, we exploit the connection between the small-loss and the clean samples. The videos are first grouped into |𝐶 | classes based on their pseudo-labels and sorted in ascending order of their cross-entropy loss values computed using the prediction made by the model and their corresponding pseudo-labels. If the pseudo-labels are correct, the model will likely produce a small loss.

Inspired by [START_REF] Han | Co-teaching: Robust training of deep neural networks with extremely noisy labels[END_REF][START_REF] Wei | Combating noisy labels by agreement: A joint training method with co-regularization[END_REF], we define a hyper-parameter named keeprate 𝜏. For each groups, we select 𝜏 proportion of the total number to their pseudo-labels ŷ and sorted in ascending order of the loss generated by the model against their pseudo-labels. The keep-rate 𝜏 (𝜏 = 0.6 in this example) determines the number of samples to be selected for adaptation, with small-loss values for each class. We have used only four classes here for simplicity. We enclose the videos with the correct pseudolabels in a green box, and the ones with incorrect pseudolabels in a red box for visualization purposes. (Best viewed in color.) of samples with small losses. We call this updated dataset of smallloss samples as 𝐷 𝑐𝑙 ⊂ 𝐷 𝑡 and discard the rest of the samples. This step is illustrated in Figure 4.

Fine-tuning. In this step, the networks 𝑓 𝑎 and 𝑓 𝑚 are re-trained using the samples 𝑥 and their corresponding pseudo-labels ŷ from 𝐷 𝑐𝑙 using the cross-entropy loss as shown in Eq. 4.

L 𝑐𝑒 (𝑥) = - |𝐶 | 𝑐=1 ŷ𝑐 log(𝑝 𝑐 (𝑥)), (4) 
where (𝑥, ŷ) ∈ 𝐷 𝑐𝑙 . We repeat these two steps in an iterative manner until the networks reach convergence.

EXPERIMENTS 4.1 Datasets and Metrics

We consider both first-person and third-person videos for benchmarking our proposed approach. Following [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF][START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF][START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF][START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF][START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF][START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF], we use publicly available UCF101 [START_REF] Soomro | UCF101: A dataset of 101 human actions classes from videos in the wild[END_REF] and HMDB51 [START_REF] Kuehne | HMDB: a large video database for human motion recognition[END_REF] for thirdperson videos and EPIC-Kitchens [START_REF] Damen | Scaling Egocentric Vision: The EPIC-KITCHENS Dataset[END_REF] for first-person videos. We show experimentally that our approach adapts well for first-person as well as for third-person videos.

UCF ↔ HMDB. We use the official split released by Chen et al. [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF] for UCF ↔ HMDB to evaluate our CleanAdapt on video domain adaptation. In total, this dataset has 3209 third-person videos with 12 action classes. Specifically, all videos are a subset of the Table 1: Performance comparisons with state-of-the-art video domain adaptation methods on UCF101↔ HMDB51. Result for MM-SADA [START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF] is taken from Kim et al. [START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF]. The results for our methods are highlighted in gray color.

Method

Two-stream? Source-free? Datasets UCF → HMDB HMDB → UCF Source only [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF] 80.6 88.8 TA3N [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF] ✗ ✗ 81.4 90.5 Target supervised [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF] 93.1 97.0 Source only [START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF] 80.3 88.8 SAVA [START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF] ✗ ✗ 82.2 91.2 Target supervised [START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF] 95.0 96.8 Source only [START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF] 82.8 89.8 STCDA [START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF] ✓ ✗ 83.1 92.1 Target supervised [START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF] 95.8 97.7 Source only [START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF] 82 original UCF101 [START_REF] Soomro | UCF101: A dataset of 101 human actions classes from videos in the wild[END_REF] and HMDB51 [START_REF] Kuehne | HMDB: a large video database for human motion recognition[END_REF] datasets with 12 classes common between them. Following [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF], we use two settings: UCF101 → HMDB51, and HMDB51 → UCF101. EPIC-Kitchens. This is the largest video domain adaptation dataset which contains egocentric videos of fine-grained actions recorded in different kitchens. We follow the official split provided by [START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF]. This dataset contains videos from the three largest kitchens i.e. D1, D2, and D3, with 8 action categories. EPIC-Kitchens has more class-imbalance than UCF ↔ HMDB making it more challenging [START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF].

Metrics. We follow the standard protocol defined by [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF][START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF] to compare our approach with state-of-the-art unsupervised domain adaptation methods [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF][START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF][START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF][START_REF] Li | Adaptive batch normalization for practical domain adaptation[END_REF][START_REF] Long | Learning transferable features with deep adaptation networks[END_REF][START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF][START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF][START_REF] Saito | Maximum classifier discrepancy for unsupervised domain adaptation[END_REF][START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF] in terms of top-1 accuracy. We perform cross-domain retrieval experiments to evaluate the feature space learned by our model before and after adaptation. We report retrieval performance in terms of Recall at 𝑘 (R@k), implying, if 𝑘 closest nearest neighbours contain one video of the same class semantics, a correct retrieval is counted.

Implementation Details

We use the Inception I3D [START_REF] Carreira | Quo vadis, action recognition? a new model and the kinetics dataset[END_REF] network as the backbone for both RGB and Flow modalities. Following the prior video domain adaptation works [START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF][START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF][START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF][START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF], we use the Kinetics [START_REF] Kay | The kinetics human action video dataset[END_REF] pre-trained weights to initialize the I3D network. We randomly sample 16 consecutive frames and perform the same data augmentation used in [START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF][START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF][START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF] for all our steps. We set the batch size to 48 for both UCF ↔ HMDB and EPIC-Kitchens datasets. We pre-compute optical flow using the TV-L1 algorithm [START_REF] Zach | A duality based approach for realtime tv-l 1 optical flow[END_REF].

Source pretraining stage. We train the model on the source dataset for 40 and 100 epochs with learning rates 1𝑒 -2 and 2𝑒 -2 for UCF ↔ HMDB and EPIC-Kitchens dataset, respectively. We reduce the learning rate by a factor of 10 after 10, 20 epochs for UCF ↔ HMDB. For EPIC-Kitchens, we decrease the learning rate by 10 after 50 epochs. We follow [START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF] for other hyperparameters. Adaptation stage. We use the source pre-trained weights during the adaptation stage to initialize I3D [START_REF] Carreira | Quo vadis, action recognition? a new model and the kinetics dataset[END_REF]. This network is trained for 60 epochs with learning rates 1𝑒 -2 and 2𝑒 -3 for UCF ↔ HMDB and EPIC-Kitchens respectively. The learning rate is reduced by 10 after 20, 40 epochs for UCF ↔ HMDB. In the case of EPIC-Kitchens, we reduce the learning rate by 10 after 10, 20 epochs.

Our entire framework is implemented in PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] and uses 4 NVIDIA 2080Ti GPUs. On average, training takes around 1 hour for UCF ↔ HMDB and about 5 hours for EPIC-Kitchens datasets.

Comparisons to the State-of-the-art Methods

UCF ↔ HMDB. We present the quantitative results of our approach for UCF ↔ HMDB dataset in Table 1 and compare our results with the state-of-the-art unsupervised video domain adaptation approaches. For each paper in Table 1, we also report source only and target supervised results for fair comparisons. The sourceonly method refers to the 𝑓 𝑎 and 𝑓 𝑚 models trained only on the train split of the source dataset as described in Section 3.4 and tested directly on the validation split of the target dataset, which serves as a lower bound of the adaptation performance. The target supervised model is trained and tested on the train and validation split of the target dataset, respectively that serves as an upper bound to the adaptation performance. TA3N [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF], SAVA [START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF], CoMix [START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF], and Costa et al. [START_REF] Victor | Dual-Head Contrastive Domain Adaptation for Video Action Recognition[END_REF] use only appearance stream in their methods, whereas approaches like STCDA [START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF], MM-SADA [START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF], and Kim et al. [START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF] leverage both appearance and motion streams. We show the results for both single-stream and two-stream versions of our model.

Our single-stream model (i.e., RGB only) achieves 86.1% and 96.1% top-1 accuracy with a gain of 5.5% and 6.8% over the sourceonly model for UCF → HMDB and HMDB → UCF datasets, respectively. In comparison, the best performing recent existing model CoMix [START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF] gives 6.4% and 5.1% gains for these two datasets, respectively. Note that all of these methods use the source data along with the target data during adaptation, whereas we use only target data in our approach and attain similar gains.

Similarly, our two-stream model achieves state-of-the-art performance on both UCF → HMDB and HMDB → UCF datasets in terms of top-1 accuracy with the values of 89.8% and 99.2%, respectively. This is a significant gain of 7.3% for UCF → HMDB and 7.8% for HMDB → UCF over the source-only model without using any source-domain data, which is much higher than the other sourcedependent adaptation models [START_REF] Chen | Temporal attentive alignment for large-scale video domain adaptation[END_REF][START_REF] Choi | Shuffle and attend: Video domain adaptation[END_REF][START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF][START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF][START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF][START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF]. This validates the effectiveness of using the small-loss target domain samples in the adaptation stage for source-free unsupervised video domain adaptation.

What happens if we use only high-loss samples for adaptation? We trained our two-stream network with the high-loss samples instead of the proposed low-loss samples. For UCF → HMDB, we obtained 84.7% of accuracy after adaptation with the high-loss samples which is 5.1% less when adapted with the lowloss samples. We observe a similar drop for HMDB → UCF. This difference is even more significant when the noisy pseudo-labels are dominant (e.g., more than 12% on Epic-Kitchens).

Does the overconfident pseudo-labels trigger error accumulation? Although error accumulation is possible, we have found error accumulation to be negligible in practice. For example, the UCF pre-trained model selects low loss samples with ∼98% accuracy in each epoch of the adaptation stage from HMDB.

Comparisons with self-training based methods. In Table 1, we compare our approach with the other self-training approaches [START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF][START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF][START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF]. Our method re-purposed the LNL based pseudo-label selection method performs better than all these.

Comparisons with image-based source-free methods. In Table 3, we compare our approach with state-of-the-art image-based source-free methods [START_REF] Kim | Domain adaptation without source data[END_REF][START_REF] Li | Model adaptation: Unsupervised domain adaptation without source data[END_REF][START_REF] Liang | Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation[END_REF][START_REF] Qiu | Source-free domain adaptation via avatar prototype generation and adaptation[END_REF][START_REF] Yang | Exploiting the Intrinsic Neighborhood Structure for Sourcefree Domain Adaptation[END_REF][START_REF] Yang | Unsupervised domain adaptation without source data by casting a bait[END_REF]. For [START_REF] Kim | Domain adaptation without source data[END_REF][START_REF] Li | Model adaptation: Unsupervised domain adaptation without source data[END_REF][START_REF] Qiu | Source-free domain adaptation via avatar prototype generation and adaptation[END_REF][START_REF] Yang | Unsupervised domain adaptation without source data by casting a bait[END_REF], we report the values with TRN [START_REF] Zhou | Temporal Relational Reasoning in Videos[END_REF] as their backbone network. Our model CleanAdapt achieves higher gain over their corresponding source-only model than all these image-based source-free methods. We have also adopted the frameworks proposed by [START_REF] Liang | Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation[END_REF][START_REF] Yang | Exploiting the Intrinsic Neighborhood Structure for Sourcefree Domain Adaptation[END_REF] with our 3D backbone network. Liang et al. [START_REF] Liang | Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation[END_REF] perform marginally better than the source-only model. Yang et al. [START_REF] Yang | Exploiting the Intrinsic Neighborhood Structure for Sourcefree Domain Adaptation[END_REF] performance is comparable to ours on UCF → HMDB, but significantly worse on HMDB→UCF.

EPIC-Kitchens. In Table 2, we compare the results of our approach with state-of-the art image-based [START_REF] Li | Adaptive batch normalization for practical domain adaptation[END_REF][START_REF] Long | Learning transferable features with deep adaptation networks[END_REF][START_REF] Saito | Maximum classifier discrepancy for unsupervised domain adaptation[END_REF] as well as video-based domain adaptation [START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF][START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF][START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF] methods. All these methods reported in Table 2 use the two-stream I3D network, including our methods for fair comparisons. We quote the numbers in Table 2 for the previous works from Kim et al. [START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF] and Song et al. [START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF]. We implement our model from scratch to replicate the source only and target supervised performance, as reported in [START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF]. Note that there is a minor difference (∼2.7%) in the performance of the source-only model reported in MM-SADA [START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF] and ours. A similar difference with [START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF] can be seen in [START_REF] Sahoo | Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing[END_REF] due to the reimplementation. However, such a minor difference in source-only accuracy is not a concern for evaluating domain adaptation performance. The most important metric here is the gain achieved after adaptation over the sourceonly model. MM-SADA [START_REF] Munro | Multi-modal domain adaptation for fine-grained action recognition[END_REF] is the first to report domain adaptation results on the EPIC-Kitchens dataset achieving an average of 4.8% gain on top of their source-only model followed by Song et al. [START_REF] Song | Spatio-temporal Contrastive Domain Adaptation for Action Recognition[END_REF] reporting an average gain of 5.7%. Kim et al. [START_REF] Kim | Learning Cross-modal Contrastive Features for Video Domain Adaptation[END_REF] show an improvement of 5.5% averaged over 6 datasets. However, all of these methods use the source dataset for adaptation. In contrast to these prior approaches, our simple yet powerful source-free approach CleanAdapt, achieves an average of 7.5% gain over the source-only model. The performance comparisons with the state-of-the-art video domain adaptation approaches for the single-stream model are in supplementary.

Visualization. In Figure 5, we show the Class Activation MAP (CAM) visualizations of our adapted model and compare them with the source-only model. The visualization shows that the source-only model attends to the irrelevant part of the scene and makes incorrect predictions, while the adapted model focuses on the important part of the scene to make correct predictions.

Hyperparameter Search

The only hyperparameter our model introduces is the keep-rate 𝜏. It controls the number of target domain samples chosen from each class with low loss values in the adaptation stage. Figure 6 shows the ablation results of varying 𝜏 in terms of validation accuracy for the target domain. Empirically, we verify that the choice of proper keep-rate 𝜏 is particularly important. As mentioned earlier, the samples from the target domain train set pseudo-labeled by the source-only model have inherently noisy labels. The choice of keep-rate 𝜏 = 1 is equivalent to choosing all the samples for retraining the model on the target domain. However, the noisy pseudo-labels lead to a suboptimal adaptation performance for all the datasets. For example, the adapted model gives top-1 accuracy of 86.1% on UCF → HMDB and 95.2% on HMDB → UCF respectively for the value of 𝜏 = 1. However, the value of keep-rate 𝜏 = 0.6 gives top-1 accuracy of 89.8% and 99.2% on UCF → HMDB and HMDB → UCF, respectively.

Cross-domain Video Retrievals

We explore the feature space learnt by our adapted CleanAdapt model to better understand of the predictions made by the model. We evaluate the cross-domain video retrieval performance of the adapted model to better understand the feature space learnt by it. Given a query video of a particular class from the target domain, our goal here is to retrieve videos from the source domain with the same semantic category. We show the results for the twostream networks here. We first compute the similarity scores for the individual modalities and average them for final retrieval. We evaluate both the source only and the proposed method CleanAdapt quantitatively as well as qualitatively.

Table 4: Cross-domain video retrieval results on UCF ↔ HMDB dataset. Given queries from the target domain, we evaluate retrieved videos from the source domain in terms of R@k, where 𝑘 ∈ {1, 5, 10}. Note that, all models reported here are two-stream networks and we average the similarity score from each modality to retrieve the source videos. Method UCF → HMDB HMDB → UCF R@1 R@5 R@10 R@1 R@5 R@10 Source Only 0.82 0.87 0.90 0.88 0.94 0.95 CleanAdapt 0.92 0.97 0.99 0.91 0.97 0.98

In Table 4, we show the quantitative results for the cross-domain video retrieval task for the UCF ↔ HMDB dataset. Our model retrieves better source videos from the target queries with R@1 of 0.92 and 0.91 compared to the source-only model, which achieves only 0.82 and 0.88 on UCF → HMDB and HMDB → UCF datasets, respectively. In Figure 7, we show some qualitative retrieval results for the UCF → HMDB. Our model can correctly retrieve the source videos of the same semantic categories as the target query videos. See supplementary for more qualitative and quantitative results.

CONCLUSION

In this work, we address the unexplored problem of source-free video domain adaptation and propose a simple yet effective approach CleanAdapt. Our framework is based on self-training in which we generate noisy pseudo-labels for the target domain data using the source pre-trained model. We argue that the presence of noise in the pseudo-labels hinders the adaptation performance and exploit the deep memorization effect to select the clean samples in order to increase the quality of the pseudo-labels. Our method CleanAdapt consistently outperforms the state-of-the-art imagebased and video-based UDA methods without any source domain videos. We hope this perspective for video domain adaptation will help approach other domain adaptation settings for videos.

Figure 2 :

 2 Figure 2: Average cross-entropy loss per epoch of training with pseudo-labeled target domain videos for clean vs. noisy samples with (a) RGB and (b) Flow modalities.We refer to the target domain samples with correct pseudo-labels as clean samples and those with incorrect pseudo-labels as noisy samples. Note that the groundtruth labels are only used to identify the clean vs. noisy samples for visualization purposes and not for training the model. The networks learn the clean samples first before memorizing the noisy samples according to the deep memorization effect presented in[START_REF] Arpit | A closer look at memorization in deep networks[END_REF]. In our proposed approach CleanAdapt, we exploit this connection to select the clean samples for fine-tuning the model to adapt to the target domain.

Figure 3 :

 3 Figure 3: Overview of our CleanAdapt framework for source-free video domain adaptation, which has three stages. (a) The model (𝑓 𝑎 ) is first pre-trained on the labeled source domain videos from D 𝑠 . For brevity, only the single-stream model is shown here. (b) This source pre-trained model is then used to generate pseudo-labels ŷ for the unlabeled target domain videos from D 𝑡 . Inevitably, these pseudo-labels are noisy due to the domain shift between the source and the target domains. (c) A clean sample selection module is used to select a set D 𝑐𝑙 of small-loss samples as potential clean samples. The source pre-trained model is finetuned on these clean samples from D 𝑐𝑙 using their corresponding pseudo-labels ŷ. We repeat this step multiple times. See text in Sec. 4 for implementation details. (Best viewed in color.)

Figure 4 :

 4 Figure 4: The clean sample selection module. The pseudolabeled target domain videos from D 𝑡 are grouped accordingto their pseudo-labels ŷ and sorted in ascending order of the loss generated by the model against their pseudo-labels. The keep-rate 𝜏 (𝜏 = 0.6 in this example) determines the number of samples to be selected for adaptation, with small-loss values for each class. We have used only four classes here for simplicity. We enclose the videos with the correct pseudolabels in a green box, and the ones with incorrect pseudolabels in a red box for visualization purposes. (Best viewed in color.)

Figure 5 :

 5 Figure 5: Class activation maps (CAM) on the target videos of the UCF ↔ HMDB dataset. The actions in green are correct predictions, whereas the ones in red are incorrect. Note that the adapted model (bottom row) focuses more on the action part instead of the scene context part as CleanAdapt learns domain-invariant action-relevant features as opposed to the source-only model. (Best viewed in color.)
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 6 Figure 6: Hyperparameter search for keep-rate 𝜏 on UCF101↔ HMDB51 and EPIC-Kitchens datasets. The keeprate 𝜏 controls the number of samples to be selected as clean having low-loss values computed against the pseudo-labels generated by the source-only model. All results reported here are for a two-stream network. (Best viewed in color.)Empirically, we verify that the choice of proper keep-rate 𝜏 is particularly important. As mentioned earlier, the samples from the target domain train set pseudo-labeled by the source-only model have inherently noisy labels. The choice of keep-rate 𝜏 = 1 is equivalent to choosing all the samples for retraining the model on the target domain. However, the noisy pseudo-labels lead to a suboptimal adaptation performance for all the datasets. For example, the adapted model gives top-1 accuracy of 86.1% on UCF → HMDB and 95.2% on HMDB → UCF respectively for the value of 𝜏 = 1. However, the value of keep-rate 𝜏 = 0.6 gives top-1 accuracy of 89.8% and 99.2% on UCF → HMDB and HMDB → UCF, respectively.

Figure 7 :

 7 Figure 7: Nearest neighbour retrieval results for the UCF → HMDB and the HMDB → UCF datasets. The left column shows the query videos from the target domain. The middle column shows the retrieved source videos using the source-only model, and the right column shows the source videos retrieved using our proposed model. (Best viewed in color.)

Table 2 :

 2 Performance comparisons with state-of-the-art video domain adaptation methods on EPIC-Kitchens dataset. All models reported are two-stream networks. The results for our methods are highlighted in gray color.

	Method	Source-free? D2→D1	D3→D1	D1→D2	D3→D2	D1→D3	D2→D3	Mean
	Source only		42.5	44.3	42.0	56.3	41.2	46.5	45.5
	AdaBN [21]	✗	44.6	47.8	47.0	54.7	40.3	48.8	47.2
	MMD [24]	✗	43.1	48.3	46.6	55.2	39.2	48.5	46.8
	MCD [33]	✗	42.1	47.9	46.5	52.7	43.5	51.0	47.3
	MMSADA [27]	✗	48.2	50.9	49.5	56.1	44.1	52.7	50.3
	STCDA [35]	✗	49.0	52.6	52.0	55.6	45.5	52.5	51.2
	Kim et al. [16]	✗	49.5	51.5	50.3	56.3	46.3	52.0	51.0
	Target Supervised		62.8	62.8	71.7	71.7	74.0	74.0	69.5
	Source only		41.8	40.0	46.0	45.6	38.9	44.4	42.8
	CleanAdapt	✓	46.2 ▲+4.4 47.8 ▲+7.8 52.7 ▲+6.7 54.4 ▲+8.8 47.0 ▲+8.1 52.7 ▲+8.3 50.3 ▲+7.5
	Target Supervised		62.1	62.1	72.8	72.8	72.3	72.3	69.1

Table 3 :

 3 Comparison with state-of-the-art image-based source-free domain adaptation techniques.

	Method	Backbone	UCF → HMDB	HMDB → UCF
	Source only	TRN	72.7	72.2
	Kim et al. [17]	TRN	69.9	74.9
	Li et al. [20]	TRN	74.4	67.3
	Yang et al. [47]	TRN	75.3	76.3
	Qiu et al. [31]	TRN	75.8	68.2
	Source only	I3D	80.6	89.3
	Yang et al. [46]	I3D	86.6	91.4
	Liang et al. [23]	I3D	82.5	91.9
	CleanAdapt	I3D	86.1	96.1

ACKNOWLEDGMENTS

We thank Vinod K Kurmi, Aditya Arun, Aniket Singh, Minesh Mathew, Siddhant Bansal, Trupthi Ann John, Deepayan Das, and Subham Dokania for their feedback. Avijit Dasgupta is supported by a Google Ph.D. India Fellowship. Karteek Alahari is supported in part by the ANR grant AVENUE (ANR-18-CE23-0011).