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ABSTRACT
Despite the progress seen in classification methods, current ap-
proaches for handling videos with distribution shifts in source and
target domains remain source-dependent as they require access
to the source data during the adaptation stage. In this paper, we
present a self-training based source-free video domain adaptation
approach (without bells and whistles) to address this challenge by
bridging the gap between the source and the target domains. We
use the source pre-trained model to generate pseudo-labels for the
target domain samples, which are inevitably noisy. We treat the
problem of source-free video domain adaptation as learning from
noisy labels and argue that the samples with correct pseudo-labels
can help in the adaptation stage. To this end, we leverage the cross-
entropy loss as an indicator of the correctness of pseudo-labels,
and use the resulting small-loss samples from the target domain for
fine-tuning the model. Extensive experimental evaluations show
that our method termed as CleanAdapt achieves ∼ 7% gain over the
source-only model and outperforms the state-of-the-art approaches
on various open datasets.

CCS CONCEPTS
• Computing methodologies → Unsupervised learning; Neu-
ral networks; Computer vision representations.
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1 INTRODUCTION
Action recognition models [2, 28, 34, 40] often encounter new do-
mains with distribution-shift [37] when deployed in the real world.
Such shifts can occur in videos for several reasons: relative differ-
ences in the speed and duration of the action, camera movement,
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Figure 1: Existing approaches [3, 5, 16, 27, 32, 35] have a
source-dependent adaptation stage achieving marginal per-
formance gain over the source-pretrained models. On the
other hand, our proposed method CleanAdapt achieves sig-
nificant performance improvement over the source-only
model while being source-free (i.e., the adaptation stage does
not require videos from the source domain). (Best viewed in
color.)

viewpoints, etc. Thus, the resulting difference in data distributions
of the training (source domain) and the test (target domain) data
produces a degraded performance. Furthermore, the source domain
data usually comes with fully labeled videos, whereas the target
domain data is typically unlabeled to reduce the annotation cost.
The primary goal for unsupervised domain adaptation (UDA) is to
reduce this performance gap by adapting the model to the label-
scarce target domain by transferring the knowledge learned from
the label-rich source domain dat [11, 24, 33, 39, 45]. Source-free
UDA [13, 19, 23, 46] takes this approach one step further by as-
suming the unavailability of the source domain data for adaptation.
This is a more practical setup than traditional source-dependent
UDA mainly due to privacy issues, computation cost, and storage
complexity [13, 19, 23, 46].

There has been a surge of interest in domain adaptation for
videos recently [3–6, 14, 16, 27, 29, 35]. These approaches either
propose to directly extend the adversarial learning framework [14]
from image-based methods [11] or couple it with some temporal
attention weights [3, 5] and self-supervised pretext tasks [5, 27] to
align the segment-level features between the domains. However,
these strategies produce only a modest ∼ 2% gain over the source-
only model (see Figure 1). Recently, there has been a paradigm shift
from adversarial to contrastive learning framework [16, 32, 35] for
video domain adaptation which proved to be beneficial. As shown
in Figure 1, the most recent method [32] achieves 6.4% and 5.1%
gain over the source-only model on UCF → HMDB and HMDB →
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UCF datasets, respectively. However, all of these existing methods
are inherently complex and use source domain videos during the
adaptation stage, which is untenable in several scenarios [13, 23, 46],
as discussed earlier.

In this work, we present an effective approach that leverages
the self-training framework [52] for source-free video UDA where
we do not have access to the source-domain videos during the
adaptation stage. We generate pseudo-labels for the unlabeled target
domain videos using a source pre-trained model. These pseudo-
labels are indeed noisy due to the existing domain gap. Finetuning
the source pre-trainedmodel with these noisy pseudo-labels is a sub-
optimal solution as the presence of incorrect pseudo-labels hinders
the adaptation stage as discussed in Sec. 4.4. However, we observe
that these pseudo-labeled target domain videos are not completely
unusable, and in fact, there is a substantial number of target domain
videoswith correct pseudo-labels. For example, in the case of HMDB
→ UCF, the HMDB pre-trained model produces pseudo-labels with
∼ 90% accuracy on the UCF dataset, and we experimentally show
that this amount of data is sufficient for adaptation. Throughout
this paper, we term these samples with correct pseudo-labels as
clean, whereas the samples with incorrect pseudo-labels are termed
as noisy. We observe that the network learns clean samples first
before memorizing the noisy samples, and this acts as the core idea
behind the adaptation stage in our proposed method (Figure 2). We
discuss this further in Sec. 3.3.

To our knowledge, we are the first to address the video domain
adaptation problem in a source-free setup. We treat this problem
as learning from noisy labels and propose a self-training based
approach that selects the clean samples from the noisy pseudo-
labeled target domain samples to re-train the model for gradually
adapting to the target domain in an iterative manner. Thus, we
name our approach as CleanAdapt. In contrast to the previous
methods [3–6, 14, 16, 27, 29, 35], CleanAdapt is inherently source-
free as it only requires target domain videos and their corresponding
pseudo-labels. Our proposed method surpasses all other source-
dependent state-of-the-art methods by a large margin on UCF↔
HMDB and EPIC-Kitchens datasets, despite being source-free.

2 RELATEDWORK
Supervised Action Recognition. Convolutional neural net-

works (CNNs) are now the de-facto solution for action recognition
tasks. Various efforts have been made in this context to capture
spatio-temporal information in videos, starting from two-stream
networks with 2D [34, 40, 51] to 3D CNNs [2, 9, 38]. Recent ad-
vances in action recognition focus on capturing long-term context
from videos [8, 41, 44]. Despite their success, these methods suf-
fer from a common limitation: a subtle difference in testing data
distribution from training data limits their ability to generalize in
the new domain. Thus, these methods require a large number of
labeled data in the new domain for fine-tuning, which is often time-
consuming and expensive. In contrast, we focus on unsupervised
video domain adaptation to eliminate the need for labeled data from
the target domain.

DomainAdaptation forActionRecognition. Earlyworks [3,
5, 14, 27, 29] on video UDA are inspired by image-based UDA’s ad-
versarial framework [11]. Jamal et al. [14] propose to align the

source and the target domains using a subspace alignment tech-
nique and outperform all previous shallow methods. Chen et al. [3]
show the efficacy of attending to the temporal dynamics of video
for domain adaptation. TCoN [29] used cross-domain co-attention
module for matching the source and the target domain features
with appearance and motion streams. Munro et al. [27] were among
of the first to show the effectiveness of learning multi-modal cor-
respondence for video domain adaptation. SAVA [5] proposed an
attention-augmented model with a clip order prediction task to
re-validate the effectiveness of self-supervised learning for video
domain adaptation, as shown in [27]. However, the adversarial
methods are complex and sensitive to the choice of hyperparame-
ters [32].

There has been a recent shift from adversarial to contrastive
learning-based methods for the video UDA task. Song et al. [35]
propose to bridge the domain gap using a self-supervised con-
trastive framework named cross-modal alignment. In a similar di-
rection, Kim et al. [16] use a cross-modal feature alignment loss
for learning domain adaptive feature representation. CoMix [32]
represents videos as graphs and uses temporal-contrastive learning
over graph representations for transferable feature learning. Ad-
ditionally, these methods [16, 32, 35] generate pseudo-labels from
the source pre-trained model for the target domain videos and use
only the target domain samples with high-confident pseudo-labels
in their contrastive loss in each iteration. However, the source-only
model often makes wrong predictions with high confidence due to
the distribution shift for target domain videos which can hinder the
adaptation. To address this, we treat target pseudo-labels as noisy
and formulate the domain adaptation problem as learning from
noisy labels. Moreover, the adaptation stage in these methods [3–
5, 14, 16, 27, 29, 32, 35] is source-dependent. This is an impractical
assumption as the source data transfer during the deployment phase
of the model is often infeasible. In contrast, we propose a source-free
video domain adaptation approach that achieves state-of-the-art
results with only target domain data.

Source-freeDomainAdaptation for Images. There has been
a significant effort for adaptation to the target domain without the
source-domain data for images [13, 21, 46]. These approaches con-
sider a closed-set setting where the label set does not change across
domains. Recently, Kundu et al. [19] proposed a universal source-
free setup where unknown classes can appear in the target domain.
We follow [13, 21, 46] and assume a closed-set setup in our work
for simplicity.

Learning fromNoisy-labels. Self-training basedmethodswith
careful design choices may still produce over-confident incorrect
predictions. To alleviate this issue, we resort to learning from label-
noise literature. One of the popular approaches to reducing the
effect of noisy-labels is to design noise-robust losses [10, 25, 42].
However, these methods fail to handle real-world noises [50]. Ac-
cording to [1], deep neural networks produce small loss values
for the samples with correct pseudo-labels. Thus, a popular direc-
tion for handling label-noise is to use the cross-entropy loss as
an indicator of label correctness [12, 48] and use these small-loss
samples for re-training the networks. In this work, we demonstrate
that the small-loss samples are the potential clean samples and are
enough to help our model adapt to the target domain. Therefore,
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(a) (b)

Figure 2: Average cross-entropy loss per epoch of training with pseudo-labeled target domain videos for clean vs. noisy sam-
ples with (a) RGB and (b) Flow modalities. We refer to the target domain samples with correct pseudo-labels as clean samples
and those with incorrect pseudo-labels as noisy samples. Note that the groundtruth labels are only used to identify the clean
vs. noisy samples for visualization purposes and not for training the model. The networks learn the clean samples first be-
fore memorizing the noisy samples according to the deep memorization effect presented in [1]. In our proposed approach
CleanAdapt, we exploit this connection to select the clean samples for fine-tuning the model to adapt to the target domain.

our proposed approach is more straightforward and requires only
pseudo-labeled target domain samples.

3 APPROACH
3.1 Problem Definition
In this paper, we consider the source-free UDA task for videos.
Here, we are given a labeled source domain dataset of videos 𝐷𝑠 =

{(𝑥𝑠 , 𝑦𝑠 ) : 𝑥𝑠 ∼ 𝑝}, where 𝑝 is the source data distribution and 𝑦𝑠
is the corresponding label of 𝑥𝑠 . We are also given an unlabeled
target domain dataset 𝐷𝑡 = {𝑥𝑡 : 𝑥𝑡 ∼ 𝑞}, where 𝑞 is the target
distribution that is different from the source distribution 𝑝 . We
assume that the source and the target domains share the same
label-set 𝐶 i.e. closed-set domain setup.

For a video clip 𝑥 from any domain, we consider two modalities,
𝑥 = {𝑥𝑎, 𝑥𝑚}, where 𝑥𝑎 is the appearance (RGB) stream and 𝑥𝑚 is
the motion (optical flow) stream. We use two 3D CNN backbones
𝑓𝑎 and 𝑓𝑚 , one for each modality that classify a video into one of
the |𝐶 | classes. We aim to adapt the 3D CNNs (𝑓𝑎 and 𝑓𝑚) to the
target domain. We also note that, the source domain videos are only
available during the pre-training stage. However, we do not use the
source dataset D𝑠 during the adaptation stage as we are interested
in the more realistic source-free setup. We show an overview of the
proposed method in Figure 3.

3.2 Self-training based Domain Adaptation
Contrary to the adversarial learning based approaches [3, 5, 27],
we take the path of self-training [22, 26, 52] primarily due to its
simplicity in the adaptation stage. First, we pre-train the 3D CNN
models using the labeled source videos from 𝐷𝑠 . Second, we gen-
erate labels for the unlabeled target dataset 𝐷𝑡 using the source
pre-trained model referred to as pseudo-labels. Third, we retrain
the networks 𝑓𝑎 and 𝑓𝑚 using the pseudo-labeled target domain
videos from 𝐷𝑡 for adaptation. One of the possibilities is to use

all the samples with their corresponding pseudo-labels to retrain
the networks. However, the pseudo-labels contain noise due to the
existing domain gap between the source domain 𝐷𝑠 and the target
domain 𝐷𝑡 . Retraining the 𝑓𝑎 and 𝑓𝑚 with all these pseudo-labels
lead to a sub-optimal result, as discussed in Section 4. We aim to
answer the following question in this paper: what kind of 𝐷𝑡 can
help us in adaptation?

3.3 Clean Samples are All You Need
The pseudo-labels contain several samples with correct pseudo-
labels (clean samples). For example, there are ∼90% samples with
correct pseudo-labels in UCF dataset when generated using the
HMDB pre-trained networks. Thus, if we can filter out the noisy
samples and keep only the clean samples, we can easily finetune
our networks (𝑓𝑎 and 𝑓𝑚) using these clean samples and their cor-
responding correct pseudo-labels. Thus, we argue that these clean
samples are the ones, which can help in domain adaptation. Now,
the important question is how to sample the clean samples from
the noisy ones?

To this end, we cast the problem of video domain adaptation as
learning from noisy labels due to noisy pseudo-labels. In Figure 2,
we observe that deep neural networks learn the clean samples
easily and have difficulty learning from the noisy samples due to
the memorization effect [1]. Thus, samples with low loss values are
the potential clean samples. In this work, we design an approach
without bells and whistles, CleanAdapt, aiming to select the clean
samples based on the loss generated by the model against their
corresponding pseudo-labels for adaptation. In each epoch of the
adaptation stage, we select these clean samples from the target
domain and use them to re-train the source-only models 𝑓𝑎 and 𝑓𝑚 .

There are three key advantages to this: (1) we do not need to
modify the overall training regime (e.g. contrastive learning for
domain alignment [16, 32, 35]) during adaptation, (2) we do not
need to make any domain adaptation-specific design choices (e.g.,
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Figure 3: Overview of our CleanAdapt framework for source-free video domain adaptation, which has three stages. (a) The
model (𝑓𝑎) is first pre-trained on the labeled source domain videos fromD𝑠 . For brevity, only the single-streammodel is shown
here. (b) This source pre-trained model is then used to generate pseudo-labels 𝑦 for the unlabeled target domain videos from
D𝑡 . Inevitably, these pseudo-labels are noisy due to the domain shift between the source and the target domains. (c) A clean
sample selection module is used to select a set D𝑐𝑙 of small-loss samples as potential clean samples. The source pre-trained
model is finetuned on these clean samples from D𝑐𝑙 using their corresponding pseudo-labels 𝑦. We repeat this step multiple
times. See text in Sec. 4 for implementation details. (Best viewed in color.)

background mixing [32]), and (3) we implicitly design an adaptation
method that does not need any source dataset during the adaptation
stage. The overall training pipeline of our CleanAdapt framework
is shown in Figure 3.

3.4 Source Pre-training
In the source pre-training stage, we train the 3D CNNs 𝑓𝑎 and 𝑓𝑚
using the labeled source-domain dataset 𝐷𝑠 and we term these as a
source only model. For a sample (𝑥,𝑦) ∈ 𝐷𝑠 , we average the logits
obtained from 𝑓𝑎 (𝑥) and 𝑓𝑚 (𝑥) to compute the final score 𝑝 (𝑥) as
follows -

𝑝 (𝑥) = 𝜎 (𝑓𝑎 (𝑥) + 𝑓𝑚 (𝑥)) . (1)
We use the conventional cross-entropy loss between the predicted
class probabilities 𝑝 (𝑥) and the one-hot encoded ground-truth label
𝑦 as the loss function for training -

L𝑐𝑒 (𝑥) = −
|𝐶 |∑
𝑐=1

𝑦𝑐 log(𝑝𝑐 (𝑥)), (2)

where𝑦𝑐 and 𝑝𝑐 represent the 𝑐𝑡ℎ element of𝑦 and 𝑝 (𝑥) respectively
for class 𝑐 . The main goal for this pre-training step is to equip our
model with the initial knowledge of the classes present in the source
dataset 𝐷𝑠 . Figure 3(a) depicts this step.

3.5 Pseudo-label Generation
As illustrated in Figure 3(b) the next step is to generate the pseudo-
labels for the unlabeled target domain samples. Once the model
is pre-trained on the source domain videos, we use the learned
notion of the class semantics of the model to generate labels for

the target domain data. Note that these generated labels are not
the actual labels for the target domain videos. Thus, we term these
source-only model-generated labels as pseudo-labels 𝑦. Formally,

𝑦 (𝑥) = argmax
𝑐

𝑝𝑐 (𝑥), (3)

where 𝑥 ∈ 𝐷𝑡 . Due to the domain shift between the source and
the target, these pseudo-labels 𝑦 are noisy.

3.6 Adaptation
Once the pseudo-labels are obtained from the source pre-trained
model for the target domain videos, we use these pseudo-labeled
target videos for adaptation, as shown in Figure 3(c). As discussed
earlier, the pseudo-labels are noisy, and we would like to extract
the samples with correct pseudo-labels (clean samples) for adapta-
tion. Each epoch of the adaptation stage has two key steps in our
CleanAdapt framework: (a) clean sample selection, and (b) fine-tune
the models 𝑓𝑎 and 𝑓𝑚 using these clean samples.

Clean sample selection. To filter out the target domain videos
with noisy pseudo-labels, we exploit the connection between the
small-loss and the clean samples. The videos are first grouped into
|𝐶 | classes based on their pseudo-labels and sorted in ascending
order of their cross-entropy loss values computed using the predic-
tion made by the model and their corresponding pseudo-labels. If
the pseudo-labels are correct, the model will likely produce a small
loss.

Inspired by [12, 43], we define a hyper-parameter named keep-
rate 𝜏 . For each groups, we select 𝜏 proportion of the total number
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Figure 4: The clean sample selection module. The pseudo-
labeled target domain videos fromD𝑡 are grouped according
to their pseudo-labels 𝑦 and sorted in ascending order of the
loss generated by themodel against their pseudo-labels. The
keep-rate 𝜏 (𝜏 = 0.6 in this example) determines the number
of samples to be selected for adaptation, with small-loss val-
ues for each class. We have used only four classes here for
simplicity. We enclose the videos with the correct pseudo-
labels in a green box, and the ones with incorrect pseudo-
labels in a red box for visualization purposes. (Best viewed
in color.)

of samples with small losses. We call this updated dataset of small-
loss samples as 𝐷𝑐𝑙 ⊂ 𝐷𝑡 and discard the rest of the samples. This
step is illustrated in Figure 4.

Fine-tuning. In this step, the networks 𝑓𝑎 and 𝑓𝑚 are re-trained
using the samples 𝑥 and their corresponding pseudo-labels 𝑦 from
𝐷𝑐𝑙 using the cross-entropy loss as shown in Eq. 4.

L𝑐𝑒 (𝑥) = −
|𝐶 |∑
𝑐=1

𝑦𝑐 log(𝑝𝑐 (𝑥)), (4)

where (𝑥,𝑦) ∈ 𝐷𝑐𝑙 . We repeat these two steps in an iterative
manner until the networks reach convergence.

4 EXPERIMENTS
4.1 Datasets and Metrics
We consider both first-person and third-person videos for bench-
marking our proposed approach. Following [3, 5, 16, 27, 32, 35],
we use publicly available UCF101 [36] and HMDB51 [18] for third-
person videos and EPIC-Kitchens [7] for first-person videos. We
show experimentally that our approach adapts well for first-person
as well as for third-person videos.

UCF ↔ HMDB. We use the official split released by Chen et
al. [3] for UCF↔ HMDB to evaluate our CleanAdapt on video do-
main adaptation. In total, this dataset has 3209 third-person videos
with 12 action classes. Specifically, all videos are a subset of the

Table 1: Performance comparisons with state-of-the-art
video domain adaptation methods on UCF101↔ HMDB51.
Result for MM-SADA [27] is taken from Kim et al. [16]. The
results for our methods are highlighted in gray color.

Method Two-stream? Source-free? Datasets
UCF→ HMDB HMDB → UCF

Source only [3] 80.6 88.8
TA3N [3] ✗ ✗ 81.4 90.5
Target supervised [3] 93.1 97.0
Source only [5] 80.3 88.8
SAVA [5] ✗ ✗ 82.2 91.2
Target supervised [5] 95.0 96.8
Source only [35] 82.8 89.8
STCDA [35] ✓ ✗ 83.1 92.1
Target supervised [35] 95.8 97.7
Source only [16] 82.8 90.7
MM-SADA [27] ✓ ✗ 84.2 91.1
Kim et al. [16] ✓ ✗ 84.7 92.8
Target supervised [16] 98.8 95.0
Source only [32] 80.3 88.8
CoMix [32] ✗ ✗ 86.7 93.9
Target supervised [32] 95.0 96.8
Costa et al. [6] ✗ ✗ 87.8 95.8
Source only 80.6 89.3
CleanAdapt ✗ ✓ 86.1 ▲+5.5 96.1 ▲+6.8
Target supervised 93.6 98.4
Source only 82.5 91.4
CleanAdapt ✓ ✓ 89.8 ▲+7.3 99.2 ▲+7.8
Target supervised 95.3 99.3

original UCF101 [36] and HMDB51 [18] datasets with 12 classes
common between them. Following [3], we use two settings: UCF101
→ HMDB51, and HMDB51→ UCF101.

EPIC-Kitchens. This is the largest video domain adaptation
dataset which contains egocentric videos of fine-grained actions
recorded in different kitchens. We follow the official split provided
by [27]. This dataset contains videos from the three largest kitchens
i.e. D1, D2, and D3, with 8 action categories. EPIC-Kitchens has
more class-imbalance than UCF ↔ HMDB making it more chal-
lenging [27].

Metrics.We follow the standard protocol defined by [3, 27] to
compare our approach with state-of-the-art unsupervised domain
adaptation methods [3, 5, 16, 21, 24, 27, 32, 33, 35] in terms of
top-1 accuracy. We perform cross-domain retrieval experiments to
evaluate the feature space learned by our model before and after
adaptation. We report retrieval performance in terms of Recall at 𝑘
(R@k), implying, if 𝑘 closest nearest neighbours contain one video
of the same class semantics, a correct retrieval is counted.

4.2 Implementation Details
We use the Inception I3D [2] network as the backbone for both RGB
and Flow modalities. Following the prior video domain adaptation
works [5, 16, 27, 35], we use the Kinetics [15] pre-trained weights
to initialize the I3D network. We randomly sample 16 consecutive
frames and perform the same data augmentation used in [5, 16, 27]
for all our steps. We set the batch size to 48 for both UCF↔ HMDB
and EPIC-Kitchens datasets. We pre-compute optical flow using
the TV-L1 algorithm [49].

Source pretraining stage. We train the model on the source
dataset for 40 and 100 epochs with learning rates 1𝑒 − 2 and 2𝑒 − 2
for UCF ↔ HMDB and EPIC-Kitchens dataset, respectively. We
reduce the learning rate by a factor of 10 after 10, 20 epochs for
UCF↔ HMDB. For EPIC-Kitchens, we decrease the learning rate
by 10 after 50 epochs. We follow [5] for other hyperparameters.
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Table 2: Performance comparisons with state-of-the-art video domain adaptationmethods on EPIC-Kitchens dataset. All mod-
els reported are two-stream networks. The results for our methods are highlighted in gray color.

Method Source-free? D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3 Mean
Source only 42.5 44.3 42.0 56.3 41.2 46.5 45.5
AdaBN [21] ✗ 44.6 47.8 47.0 54.7 40.3 48.8 47.2
MMD [24] ✗ 43.1 48.3 46.6 55.2 39.2 48.5 46.8
MCD [33] ✗ 42.1 47.9 46.5 52.7 43.5 51.0 47.3

MMSADA [27] ✗ 48.2 50.9 49.5 56.1 44.1 52.7 50.3
STCDA [35] ✗ 49.0 52.6 52.0 55.6 45.5 52.5 51.2
Kim et al. [16] ✗ 49.5 51.5 50.3 56.3 46.3 52.0 51.0

Target Supervised 62.8 62.8 71.7 71.7 74.0 74.0 69.5
Source only 41.8 40.0 46.0 45.6 38.9 44.4 42.8
CleanAdapt ✓ 46.2 ▲+4.4 47.8 ▲+7.8 52.7 ▲+6.7 54.4 ▲+8.8 47.0 ▲+8.1 52.7 ▲+8.3 50.3 ▲+7.5

Target Supervised 62.1 62.1 72.8 72.8 72.3 72.3 69.1

Adaptation stage.We use the source pre-trained weights dur-
ing the adaptation stage to initialize I3D [2]. This network is trained
for 60 epochs with learning rates 1𝑒−2 and 2𝑒−3 for UCF↔HMDB
and EPIC-Kitchens respectively. The learning rate is reduced by 10
after 20, 40 epochs for UCF↔ HMDB. In the case of EPIC-Kitchens,
we reduce the learning rate by 10 after 10, 20 epochs.

Our entire framework is implemented in PyTorch [30] and uses
4 NVIDIA 2080Ti GPUs. On average, training takes around 1 hour
for UCF↔ HMDB and about 5 hours for EPIC-Kitchens datasets.

4.3 Comparisons to the State-of-the-art
Methods

UCF ↔ HMDB. We present the quantitative results of our ap-
proach for UCF ↔ HMDB dataset in Table 1 and compare our
results with the state-of-the-art unsupervised video domain adap-
tation approaches. For each paper in Table 1, we also report source
only and target supervised results for fair comparisons. The source-
only method refers to the 𝑓𝑎 and 𝑓𝑚 models trained only on the
train split of the source dataset as described in Section 3.4 and
tested directly on the validation split of the target dataset,
which serves as a lower bound of the adaptation performance. The
target supervised model is trained and tested on the train and
validation split of the target dataset, respectively that serves
as an upper bound to the adaptation performance.

TA3N [3], SAVA [5], CoMix [32], and Costa et al. [6] use only ap-
pearance stream in theirmethods, whereas approaches like STCDA [35],
MM-SADA [27], and Kim et al. [16] leverage both appearance and
motion streams. We show the results for both single-stream and
two-stream versions of our model.

Our single-stream model (i.e., RGB only) achieves 86.1% and
96.1% top-1 accuracy with a gain of 5.5% and 6.8% over the source-
only model for UCF→ HMDB and HMDB→ UCF datasets, respec-
tively. In comparison, the best performing recent existing model
CoMix [32] gives 6.4% and 5.1% gains for these two datasets, re-
spectively. Note that all of these methods use the source data along
with the target data during adaptation, whereas we use only target
data in our approach and attain similar gains.

Similarly, our two-stream model achieves state-of-the-art per-
formance on both UCF→ HMDB and HMDB→ UCF datasets in
terms of top-1 accuracy with the values of 89.8% and 99.2%, respec-
tively. This is a significant gain of 7.3% for UCF→HMDB and 7.8%
for HMDB→ UCF over the source-only model without using any

source-domain data, which is much higher than the other source-
dependent adaptation models [3, 5, 16, 27, 32, 35]. This validates
the effectiveness of using the small-loss target domain samples in
the adaptation stage for source-free unsupervised video domain
adaptation.

What happens if we use only high-loss samples for adap-
tation? We trained our two-stream network with the high-loss
samples instead of the proposed low-loss samples. For UCF →
HMDB, we obtained 84.7% of accuracy after adaptation with the
high-loss samples which is 5.1% less when adapted with the low-
loss samples. We observe a similar drop for HMDB → UCF. This
difference is even more significant when the noisy pseudo-labels
are dominant (e.g., more than 12% on Epic-Kitchens).

Does the overconfident pseudo-labels trigger error accu-
mulation?Although error accumulation is possible, we have found
error accumulation to be negligible in practice. For example, the
UCF pre-trained model selects low loss samples with ∼98% accuracy
in each epoch of the adaptation stage from HMDB.

Comparisons with self-training based methods. In Table 1,
we compare our approachwith the other self-training approaches [16,
32, 35]. Our method re-purposed the LNL based pseudo-label selec-
tion method performs better than all these.

Comparisons with image-based source-free methods. In
Table 3, we compare our approachwith state-of-the-art image-based
source-free methods [17, 20, 23, 31, 46, 47]. For [17, 20, 31, 47], we
report the values with TRN [51] as their backbone network. Our
model CleanAdapt achieves higher gain over their corresponding
source-only model than all these image-based source-free methods.
We have also adopted the frameworks proposed by [23, 46] with
our 3D backbone network. Liang et al. [23] perform marginally
better than the source-only model. Yang et al. [46] performance is
comparable to ours on UCF→ HMDB, but significantly worse on
HMDB→UCF.

EPIC-Kitchens. In Table 2, we compare the results of our ap-
proach with state-of-the art image-based [21, 24, 33] as well as
video-based domain adaptation [16, 27, 35] methods. All these meth-
ods reported in Table 2 use the two-stream I3D network, including
our methods for fair comparisons. We quote the numbers in Table 2
for the previous works from Kim et al. [16] and Song et al. [35]. We
implement our model from scratch to replicate the source only and
target supervised performance, as reported in [16]. Note that there
is a minor difference (∼2.7%) in the performance of the source-only
model reported in MM-SADA [27] and ours. A similar difference
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Table 3: Comparison with state-of-the-art image-based
source-free domain adaptation techniques.

Method Backbone UCF → HMDB HMDB→ UCF
Source only TRN 72.7 72.2
Kim et al. [17] TRN 69.9 74.9
Li et al. [20] TRN 74.4 67.3
Yang et al. [47] TRN 75.3 76.3
Qiu et al. [31] TRN 75.8 68.2
Source only I3D 80.6 89.3
Yang et al. [46] I3D 86.6 91.4
Liang et al. [23] I3D 82.5 91.9
CleanAdapt I3D 86.1 96.1

Figure 5: Class activationmaps (CAM) on the target videos of
the UCF ↔ HMDB dataset. The actions in green are correct
predictions, whereas the ones in red are incorrect. Note that
the adapted model (bottom row) focuses more on the action
part instead of the scene context part as CleanAdapt learns
domain-invariant action-relevant features as opposed to the
source-only model. (Best viewed in color.)

with [27] can be seen in [32] due to the reimplementation. However,
such a minor difference in source-only accuracy is not a concern for
evaluating domain adaptation performance. The most important
metric here is the gain achieved after adaptation over the source-
only model.

MM-SADA [27] is the first to report domain adaptation results on
the EPIC-Kitchens dataset achieving an average of 4.8% gain on top
of their source-only model followed by Song et al. [35] reporting an
average gain of 5.7%. Kim et al. [16] show an improvement of 5.5%
averaged over 6 datasets. However, all of these methods use the
source dataset for adaptation. In contrast to these prior approaches,
our simple yet powerful source-free approach CleanAdapt, achieves
an average of 7.5% gain over the source-only model. The perfor-
mance comparisons with the state-of-the-art video domain adapta-
tion approaches for the single-stream model are in supplementary.

Visualization. In Figure 5, we show the Class Activation MAP
(CAM) visualizations of our adapted model and compare them with
the source-onlymodel. The visualization shows that the source-only
model attends to the irrelevant part of the scene andmakes incorrect
predictions, while the adapted model focuses on the important part
of the scene to make correct predictions.

4.4 Hyperparameter Search
The only hyperparameter our model introduces is the keep-rate 𝜏 .
It controls the number of target domain samples chosen from each
class with low loss values in the adaptation stage. Figure 6 shows
the ablation results of varying 𝜏 in terms of validation accuracy for
the target domain.

Figure 6: Hyperparameter search for keep-rate 𝜏 on
UCF101↔ HMDB51 and EPIC-Kitchens datasets. The keep-
rate 𝜏 controls the number of samples to be selected as clean
having low-loss values computed against the pseudo-labels
generated by the source-only model. All results reported
here are for a two-stream network. (Best viewed in color.)

Empirically, we verify that the choice of proper keep-rate 𝜏 is
particularly important. As mentioned earlier, the samples from
the target domain train set pseudo-labeled by the source-only
model have inherently noisy labels. The choice of keep-rate 𝜏 = 1 is
equivalent to choosing all the samples for retraining the model on
the target domain. However, the noisy pseudo-labels lead to a sub-
optimal adaptation performance for all the datasets. For example,
the adapted model gives top-1 accuracy of 86.1% on UCF→ HMDB
and 95.2% on HMDB → UCF respectively for the value of 𝜏 = 1.
However, the value of keep-rate 𝜏 = 0.6 gives top-1 accuracy of
89.8% and 99.2% on UCF→HMDB and HMDB→ UCF, respectively.

4.5 Cross-domain Video Retrievals
We explore the feature space learnt by our adapted CleanAdapt
model to better understand of the predictions made by the model.
We evaluate the cross-domain video retrieval performance of the
adapted model to better understand the feature space learnt by
it. Given a query video of a particular class from the target do-
main, our goal here is to retrieve videos from the source domain
with the same semantic category. We show the results for the two-
stream networks here. We first compute the similarity scores for
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Figure 7: Nearest neighbour retrieval results for the UCF → HMDB and the HMDB → UCF datasets. The left column shows
the query videos from the target domain. The middle column shows the retrieved source videos using the source-only model,
and the right column shows the source videos retrieved using our proposed model. (Best viewed in color.)

the individual modalities and average them for final retrieval. We
evaluate both the source only and the proposed method CleanAdapt
quantitatively as well as qualitatively.

Table 4: Cross-domain video retrieval results on UCF ↔
HMDB dataset. Given queries from the target domain, we
evaluate retrieved videos from the source domain in terms
of R@k, where 𝑘 ∈ {1, 5, 10}. Note that, all models reported
here are two-stream networks and we average the similarity
score from each modality to retrieve the source videos.

Method UCF→ HMDB HMDB→ UCF

R@1 R@5 R@10 R@1 R@5 R@10

Source Only 0.82 0.87 0.90 0.88 0.94 0.95
CleanAdapt 0.92 0.97 0.99 0.91 0.97 0.98

In Table 4, we show the quantitative results for the cross-domain
video retrieval task for the UCF ↔ HMDB dataset. Our model
retrieves better source videos from the target queries with R@1 of
0.92 and 0.91 compared to the source-only model, which achieves
only 0.82 and 0.88 on UCF→ HMDB and HMDB→ UCF datasets,
respectively. In Figure 7, we show some qualitative retrieval results
for the UCF→ HMDB. Our model can correctly retrieve the source

videos of the same semantic categories as the target query videos.
See supplementary for more qualitative and quantitative results.

5 CONCLUSION
In this work, we address the unexplored problem of source-free
video domain adaptation and propose a simple yet effective ap-
proach CleanAdapt. Our framework is based on self-training in
which we generate noisy pseudo-labels for the target domain data
using the source pre-trained model. We argue that the presence of
noise in the pseudo-labels hinders the adaptation performance and
exploit the deep memorization effect to select the clean samples
in order to increase the quality of the pseudo-labels. Our method
CleanAdapt consistently outperforms the state-of-the-art image-
based and video-based UDA methods without any source domain
videos. We hope this perspective for video domain adaptation will
help approach other domain adaptation settings for videos.
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