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Abstract
A fundamental way to study 3-manifolds is through the geometric lens, one of the most prominent
geometries being the hyperbolic one. We focus on the computation of a complete hyperbolic structure
on a connected orientable hyperbolic 3-manifold with torus boundaries. This family of 3-manifolds
includes the knot complements.

This computation of a hyperbolic structure requires the resolution of gluing equations on a
triangulation of the space, but not all triangulations admit a solution to the equations.

In this paper, we propose a new method to find a triangulation that admits a solution to the
gluing equations, using convex optimization and localized combinatorial modifications. It is based
on Casson and Rivin’s reformulation of the equations. We provide a novel approach to modify a
triangulation and update its geometry, along with experimental results to support the new method.
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1 Introduction

A main problem of knot theory is to tell whether two knots are equivalent or distinct.
Equivalence between knots is defined by the existence of an isotopy of the ambient space
that would turn one knot into the other, i.e., a continuous deformation of the space that
preserves the entanglement.

Isotopies are too difficult to compute in practice, and practitioners use invariants to
tackle the knot equivalence problem. A topological invariant is a quantity assigned to a
presentation of a knot, that is invariant by isotopy.

An important family of knots are the hyperbolic knots, which are the knots whose
complements admit a complete hyperbolic metric. They are the subjects of active mathematical
research, which motivates the introduction of efficient algorithmic tools to study their
geometric properties, and most notably their hyperbolic volume. The hyperbolic volume
of a hyperbolic knot is a topological invariant which is powerful at distinguishing between
non-equivalent knots, is non-trivial to compute, and is at the heart of several deep conjectures
in topology [11].

If it exists, the complete hyperbolic metric on a 3-manifold is unique[10], and may be
combinatorially represented by a complete hyperbolic structure (CHS). In order to compute
geometric properties (such as volume) of a hyperbolic knot, one triangulates the knot
complement, and try to assign hyperbolic shapes to its tetrahedra. If these shapes verify a
set of non-linear constraints called the gluing equations, they form a CHS and encode the
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Table 1 On all ∼ 9.7 millions prime knots with crossing numbers ranging from 12 to 17, alternating
and non-alternating, we indicate (% Failure on first try) the percentage of knot complements (after
triangulation and simplification) on which SnapPy fails to compute a CHS on first try. We also
indicate (Highest expected nb of retriang.) the highest, over all knots, expected number of random
re-triangulations necessary for SnapPy to succeed finding a CHS.

Alternating Non-Alternating
#crossings 12 13 14 15 16 17 12 13 14 15 16 17

% Failure on first try 0.9 1.6 2.4 3.3 4.4 5.7 0.8 0.7 1.2 1.7 2.4 3.3
Expected nb of retriang. 2.9 3.9 6.2 7.1 9.5 15.9 2.0 3.1 6.1 11.8 9.7 13.5

Figure 1 Distribution of the number of randomizations required to find a CHS for the complement
of the knot “17nh_2654001” of the census, for 10000 tries. The mean is 10.3 randomizations, and
the standard deviation is 8.7. The minimum number of re-triangulations is 1, and the maximum 92.

complete hyperbolic metric of the space. A major issue with this approach is that a solution
to the constraints may not exist on all triangulations of a manifold, even if, as topological
object, the manifold can carry a complete hyperbolic metric. Worst, it is not known whether
every hyperbolic 3-manifold admits a triangulation on which a solution as CHS exists.

In practice, given an input knot, software can construct a triangulation of the knot
complement, and simplify it to have a CHS. But if this fails, the only implemented practical
solution, proposed by SnapPy[3], is to randomly modify and simplify the triangulation before
trying again until a CHS is found.

Table 1 provides data on the search for a CHS with SnapPy, on the ∼ 9.7 millions prime
knots with crossing numbers up to 17. As observed, SnapPy has a high rate of success in
finding a CHS after a standard triangulation and simplification of the knot complement.
However, this standard construction of a triangulation fails to admit a CHS on more than
350 thousand knots in the census, and the percentage of problematic triangulations needing
re-triangulations tends to increase with the number of crossings. Additionally, we observe
that some knot complements may require in expectation a high number of random re-
triangulations (up to 15.9), and the number of re-triangulations may itself suffer a high
variance, as illustrated in Figure 1.
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Figure 2 Left: ideal triangulation of the complement of the 8-knot with two tetrahedra. The
ideal vertex is truncated, and the red surface gives the torus link of the ideal vertex after gluing of
the tetrahedra following the edge identifications. Middle: ideal tetrahedron in the upper half-space
model, the dihedral angles are denoted α, β and γ, the complex shape parameter z is associated to
the edge between 0 and ∞. Right: example of shearing singularity, each triangle corresponds to a
ideal tetrahedron seen from above (gray arrow).

Checking for the existence of a CHS requires the resolution of the non-linear gluing equa-
tions (with, e.g., Newton optimization method). Reducing the number of re-triangulations
is consequently critical for performance of computation in knot theory, most notably for
knots on which the state-of-the-art methods implemented in SnapPy require large numbers
of re-triangulations, and even more so when proceeding to very large scale experiments such
as the computation of the knot censuses [1] that are of great use to practitioners, where
“difficult” knots are many.

Contribution. This paper introduces a new heuristic based algorithm to improve on the
random approach for re-triangulating. The method is inspired by Casson and Rivin’s
reformulation of the gluing equations [15, 4]: the gluing equations are split into a linear part
and a non-linear part, and the resolution reduces to a convex optimization problem on a
polytope domain. If the triangulation does not admit a complete structure, the optimization
problem will converge on the boundary of the polytope and we exploit this information to
introduce new localized moves to modify combinatorially the triangulation while reusing the
partially computed geometry. We introduce necessary background on triangulations and
geometry in Section 2, and the computation of hyperbolic structures with optimization in
Section 3. We analyze precisely the behavior of the optimization phase on triangulations not
admitting a CHS in Section 4, and introduce a re-triangulation algorithm in Section 5 guided
by the partially computed geometry of the optimization phase. We illustrate experimentally
the interest of the approach in Section 6 and propose a hybrid method with SnapPy in
Section 6.2, that outperforms the state-of-the-art.

Note that, in this article we focus on complements of hyperbolic knots. However, the
techniques introduced extend to more general hyperbolic 3-manifolds with torus boundar-
ies [4].

2 Background

In this article, we focus on knot complements, i.e., non-compact 3-manifolds obtained by
removing a closed regular neighborhood of a knot K in the sphere S3.

ESA 2022
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Figure 3 Illustration of the Pachner moves 2-3 and 3-2.

2.1 Generalized and ideal triangulations
A generalized triangulation T is a collection of n abstract tetrahedra whose triangular facets
are identified (e.g. Figure 2 (left)), or glued, in pairs. Note that the facets of the same
tetrahedron may be glued together, and generalized triangulations are more general than
simplicial complexes. The link of a vertex in T is the frontier of a closed regular neighborhood,
and is itself a closed triangulated surface embedded in the triangulation. If the link of a
vertex v is a 2-sphere, we call v an internal vertex, otherwise (e.g., if the link if a torus), we
call v an ideal vertex.

A 1-vertex ideal triangulation is a triangulation with exactly 1 ideal vertex, and no
internal vertices. They represent non-compact 3-manifolds, that can be recovered from
the 1-vertex ideal triangulation by considering their realization where the vertex has been
removed. Every knot complement can be represented by a 1-vertex ideal triangulation, where
the link of the ideal vertex gives the frontier of a closed regular neighborhood of the knot.
Intuitively, this is a triangulation of the sphere S3 where the knot has been shrunk into
a single point, distorting its neighborhood. Such 1-vertex ideal triangulations of a knot
complement can be computed in polynomial time [6, 5] from a planar drawing of a knot.

Any two ideal triangulations of the same 3-manifold can be connected by a sequence of
Pachner moves [13]. For 1-vertex ideal triangulations, they consist of the moves 2-3 and 3-2,
inverse of each other, pictured in Figure 3.

2.2 Combinatorial description of hyperbolic geometry
Certain topological 3-manifolds can be equipped uniformly with a complete hyperbolic metric,
which is unique up to isometry. They are called hyperbolic manifolds. They include the vast
and important family of complements of hyperbolic knots.

We use the upper half-space model to represent the hyperbolic space H3. This represen-
tation corresponds to {(z, r)|z ∈ C, r ∈ R∗

+} with ∂H3 = C ∪ {∞} (from now on denoted
∂H3) consisting of the bottom plane C × {0}, together with the point at infinity, where
geodesics are arcs of circles orthogonal to ∂H3. This model is conformal, i.e., Euclidean
angles in the upper half space give the values of the angles in the hyperbolic space.

An ideal hyperbolic tetrahedron is the hyperbolic convex hull of four distinct points of
∂H3. These points are the (ideal) vertices of the tetrahedron.

A vertex on ∂H3 is a vertex at infinity, thus it is not part of the tetrahedron. An example
of ideal tetrahedron is shown in Figure 2 (middle). Up to isometry, the geometric shape of
an ideal tetrahedron can be represented by a single complex number:
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▶ Definition 1 (Shape parameter). Given an ideal hyperbolic tetrahedron, there exists an
isometry sending three of its vertices to 0, 1, and ∞, and ensuring that the fourth vertex has
positive imaginary part in the complex plane in ∂H3 = C ∪ {∞}. The coordinate z of this
fourth vertex is the shape parameter of the tetrahedron.

The shape parameter defines and illustrates the shape of an ideal tetrahedron. It depends
on which vertices are sent to 0, 1, and ∞. Other permutations of the vertices give other
equivalent shape parameters z′ = z−1

z and z′′ = 1
1−z but the underlying tetrahedron is the

same. The construction is well defined as isometries of H3 are determined by their action on
three vertices of ∂H3.

Another way of characterizing the shape of an ideal hyperbolic tetrahedron is to consider
its dihedral angles, i.e., the angle formed by two faces meeting on a common edge; see
Figure 2 (middle). In an ideal tetrahedron, opposite angles are equal, and the sum of the six
dihedral angles is 2π. We denote in the following the dihedral angles of a tetrahedron by a
triplet (α, β, γ) with (α + β + γ) = π.

3 Angle structures and hyperbolic volume

In this section, we introduce notions connected to the computation of complete hyperbolic
structures on triangulations, via optimization methods. The approach given in this section
is another formulation of Thurston’s gluing equations, which are non-linear in the complex
shape parameters mentioned above, we refer the reader to [4, 15] for more details.

3.1 Linear equations and angle structures
Let T be a 1-vertex ideal triangulation of a knot complement M with n tetrahedra. Since
opposite edges have the same dihedral angles, all possible shapes of the tetrahedra can be
represented by a vertex in R3n. We define an angle structure:

▶ Definition 2 (Angle structures). Given an ideal triangulation T , an angle structure is a
value assignment to the dihedral angles of the tetrahedra of T such that:
1. all the angles are strictly positive;
2. the three dihedral angles (α, β, γ) of a tetrahedron sum to π;
3. the dihedral angles around each edge of T sum to 2π.

The set of angle structures on T is denoted A(T ).

Conditions 1 and 2 ensure the angles are in (0, π) and that the tetrahedra have the
same orientation. Condition 3 is necessary for points on the interior of edges to have a
neighborhood isometric to a hyperbolic ball.

Constraints 1, 2, 3 are linear, hence the set A(T ) of angle structures of a triangulation
is the relative interior of a polytope in R3n. It is of dimension n + |∂M | where |∂M | is the
number of cusps of M ; in the case of knot complements, there is a single cusp. This polytope
satisfies:

▶ Theorem 3 (Casson; see [8]). Let T be an ideal triangulation of M , an orientable 3–manifold
with toric cusps. If A(T ) ̸= ∅, then M admits a complete hyperbolic metric.

Furthermore, [4] describes precisely a generating family for the tangent space of A(T )
that can be computed in polynomial time.

ESA 2022
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3.2 Maximizing the hyperbolic volume
The hyperbolic volume of an ideal hyperbolic tetrahedron with dihedral angles (α, β, γ) ∈
(0, π)3 is given by the function vol:

vol(α, β, γ) = L(α) + L(β) + L(γ)

where L is the Lobachevsky function L(x) = −
∫ x

0 log |2 sin t| dt. The volume functional
can be extended to the whole polytope A(T ) by summing the volumes of the hyperbolic
tetrahedra. The following result is due independently to Casson and Rivin.

▶ Theorem 4 (Casson, Rivin[14]). Let T be an ideal triangulation with n tetrahedra of M ,
an orientable 3–manifold with boundary consisting of tori. Then a point p ∈ A(T ) ⊂ R3n

corresponds to a complete hyperbolic metric on the interior of M if and only if p is a critical
point of the function vol.

Additionally, the volume functional is concave on A(T ) and the maximum can be computed
via convex optimization methods.

We can finally define CHS that represent combinatorially complete hyperbolic metrics:

▶ Definition 5 (Complete Hyperbolic Structure). A Complete Hyperbolic Structure (CHS) is
a triangulation T equipped with an angle structure corresponding to the maximum of vol over
A(T ).

▶ Remark 6. Angle structures are not CHS as they do not prevent shearing singularities, see
Figure 2 (right), and consequently may represent non-complete hyperbolic metrics.

4 Behavior of the optimization

Exploiting the formalism of the previous section, one can design an algorithm [4] to find and
compute a CHS by first finding a point in the polytope A(T ), then computing a basis of
the tangent space of A(T ), and then maximizing the (concave) hyperbolic volume functional
on this subspace. If A(T ) ̸= ∅ and the procedure finds the point maximizing the volume in
the inside of the polytope, then the triangulation admits a complete hyperbolic structure
represented by this point. Finally, if A(T ) ̸= ∅ but the maximum of the volume functional
is on the boundary, then one needs to re-triangulate the manifold in order to search for a
triangulation admitting a CHS.

In this section, we study the outcome of the hyperbolic volume maximization on the
space of angle structures. The result is given by the following lemma, which also appeared
independently in [12]:

▶ Lemma 7. Let T be an ideal triangulation of M , a non-compact orientable 3–manifold with
toric cusps. Let p be the point maximizing vol over A(T ) (the topological closure of A(T )),
then at p, if a tetrahedron has an angle equal to 0, then all other angles of the tetrahedron
are in {0, π}.

In other words, either the maximization succeeds on the interior of A(T ), or there is at least
one tetrahedron with angles (0, 0, π) in p. Such tetrahedron is called flat. It is not possible
to have a tetrahedron with angles (0, a, b), (a, b) ∈ (0, π) in p.

This lemma is proven by looking at the derivative of the volume around the boundary of
A(T ), see [9].

We introduce in the next section an algorithm that performs localized combinatorial
modifications on a triangulation equipped with an angle structure, in order to get rid of flat
tetrahedra.
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5 Localized combinatorial modifications of triangulations

According to Lemma 7, the volume maximization either leads to a solution to the gluing
equations, or to flat tetrahedra. In this section, we discuss a method to get rid of flat
tetrahedra by combinatorial modifications of the triangulation, while attempting to maintain
the value of the volume functional. This would lead to a triangulation admitting an angle
structure with larger volume than the previous one, allowing to resume the maximization. In
order to maintain the value of the volume functional, we introduce geometric Pachner moves.

5.1 Geometric Pachner moves
We perform Pachner moves on the triangulation that preserves the partial geometric data
computed. More precisely, we define:

▶ Definition 8 (Geometric Pachner move). A geometric Pachner move in a triangulation T

with angle structure is a Pachner move in T such that the resulting triangulation admits an
angle structure with identical dihedral angles for the tetrahedra not involved in the move.

To check if a geometric Pachner move can be done, it must be valid combinatorially, and
it should be possible to assign dihedral angles to the new tetrahedra without altering the rest
of the angle structure. The combinatorial conditions are simple [13]: for the 2-3 moves (resp.
3-2 move) in Figure 3, the tetrahedra sharing the common triangle BDC (resp. common
edge AE) must be distinct. The conditions on the angle structures are given by the following
lemma:

▶ Lemma 9. Given a triangulation with angle structure T , if the combinatorial conditions
given above are satisfied:

a 3-2 move is always geometric;
a 2-3 move is geometric if and only if the sum of the two dihedral angles around each
edge of the common face is smaller than π.

The idea to prove the lemma is to study the system of equations given by the assumption
that the angle structure is not altered outside the move. Furthermore there are formulas to
compute the new angles. The proofs of Lemma 9 and of this later claim are technical and
can be found in [9].
▶ Remark 10 (Non-conservation of the volume). In Lemma 9, several angle structures are
possible after the 2-3 move. Conversely, several angle structures lead to the same result for
the 3-2 move. This is because angle structures are blind to shearing singularities, see Figure 2
(right). If such a singularity exists, a 3-2 move can still be performed while maintaining the
whole angle structure, but it will decrease the hyperbolic volume of the structure. It is due
to the fact that the singularity, which maximized the volume, is fixed in the process.

5.2 Getting rid of flat tetrahedra
Let T be a triangulation with an angle structure admitting a flat tetrahedron t, and (e, e′)
the associated edges with dihedral angle π. By Lemma 9, it is not possible to get rid of a
tetrahedron with a geometric 2-3 move. Indeed, if an edge of t has a dihedral angle equal to
π, the second tetrahedron concerned by the 2-3 move must have a dihedral angle equal to 0,
and consequently a 2-3 move will produce a flat tetrahedron (see [9]).

In order to get rid of t, our strategy is to turn either e or e′ into an edge of degree three,
at the center of three tetrahedra on which a 3-2 move can be performed (central edge of
Figure 3, right). Note that edges of degree 2 prevent the existence of an angle structure

ESA 2022
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Figure 4 A sequence of moves getting rid of a flat tetrahedron. The bold vertical edge is contained
in 4 tetrahedra, three of which are represented behind the edge. The fourth tetrahedron is implicit,
situated at the front, and flat. First, create the red edge of the first drawing with a 2-3 move. Then
delete the red edge of the second drawing with a 3-2 move.

as they force the two tetrahedra sharing the edge to be flat. As a consequence, we assume
these configurations are removed, which can be done by SnapPy’s simplification for instance,
see Section 6. Consequently, all edges have degree at least 3, and our strategy focuses on
reducing the incidence degree of angle π edges.

To reduce the degree of an edge e, the strategy is to perform 2-3 moves on the tetrahedra
containing e, such that each move reduces the degree of the edge by one. Either for topological
(tetrahedron glued to itself) or geometrical reasons, these moves will not always be possible,
and the order in which they are done matters. This is described in Figure 4.
▶ Remark 11. Doing a 2-3 move does not always reduce the degree of the edge, e.g., when a
tetrahedron is represented several times around an edge. However, doing a move that does
not decrease the degree of the edge may delete the multiple occurrences of a tetrahedron
around the edge and allow to continue with the simplification.
▶ Remark 12. When a 2-3 move is performed around e, the value of the dihedral angle of the
new tetrahedron around e is equal to the sum of the previous two dihedral angles around e.
Since the sum of the dihedral angles of a tetrahedron is equal to π, this means successfully
reducing the degree of e may unlock previously forbidden moves.

Recursive moves. If no geometric Pachner move is possible on an edge e, we attempt to
reduce the degree of a nearby edge ef , i.e., an edge for which there exists a tetrahedron
containing e and ef ; see Figure 5 where ef is represented by the red dot, as it is seen from
above. More precisely, let f be a triangle containing e such that the associated 2-3 move is
forbidden for geometric reasons, then by Lemma 9 there is an edge ef of f for which the
associated dihedral angle is at least π.

In consequence, reducing the degree of ef to three without modifying the tetrahedra
containing f and then performing a 3-2 move at ef will reduce the degree of e by one; see
Figure 5.

Note that in case a geometric Pachner move is not possible on any pair of tetrahedra
containing ef either, we can call the procedure recursively in a neighborhood of ef , using
the argument above to pass from e to ef .
▶ Remark 13. The choice of ef in f is unique: it is not possible to have two dihedral angles
larger than π; selecting a move to reduce the degree of e boils down to selecting a triangle
containing e.
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Figure 5 Sequences of moves to reduce the degree of an edge when no 2-3 move is available, seen
from above (triangles represent sections of tetrahedra, edge section of triangles and dots section of
edges, see Figure 2 (Right)). In all drawings, the gray rectangle represents the flat tetrahedron, e

(light blue dot) is the edge of the flat tetrahedron of which we want to reduce the degree. Assuming
no 2-3 move is available, we pick another edge ef (red dot), if a 3-2 move can be performed on ef ,
we are in case (B) and the 3-2 move reduces the degree of e (case (C)). Otherwise, we are in case
(A) we need to create the red dashed tetrahedron by decreasing the degree of ef , this can be done
by calling recursively our procedure on ef .

Procedure summary. The procedure to get rid of a flat tetrahedron is a tree-like backtracking
search, each branch corresponding to a choice of 2-3 or 3-2 move to perform. The moves
used are geometric to preserve the volume maximization advancement. A flat tetrahedron
can only be deleted with a 3-2 move: the first step is to reduce the degree of one of its edges
to three. To reduce the degree of an edge, the solution is to perform 2-3 moves on two
tetrahedra containing this edge. If a 2-3 move is not possible for geometric reasons, we are
in the situation of Figure 5, and the procedure to reduce the degree can be called recursively
on a neighboring edge. Performing a 3-2 move on this latter edge resulting in a decrease of
the degree of the initial one. The procedure ends when the initial edge has degree three and
the flat tetrahedron can be removed or when no move can be applied.

5.3 Implementation details

The implementation faces several practical challenges.

Breaking infinite loops. As such, the algorithm may loop infinitely on some instance, as 2-3
and 3-2 moves may reverse themselves. To counteract this phenomenon and avoid redundant
modifications, a solution is to store at each modification the isomorphism signature of the
triangulation [2], characterizing uniquely the isomorphism type of the triangulation. This
allows us to recognize already processed triangulations and break branches of the backtracking
algorithms. Note however that this is costly compared to the Pachner moves, and it makes
the procedure no longer local.

Selecting the edge e. When attempting to remove a flat tetrahedron, one needs to choose
between the two π-angled edges e and e′ to reduce. In our implementation, we consider both
edges, and select the one that has the larger smallest angle in its link. This performs better
than a random choice in our experiments.

Pruning the backtrack search. Some triangulations may have edges of large degree (more
than 10), which produces wide search trees. Additionally, the recursive calls to the degree
reduction procedure may induce trees of large depth. Experimentally, the better strategy
consists of exploring exhaustively the first levels of the tree. We set the width of exploration
to 8 and explore the first 2 levels of the search tree.

ESA 2022
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Sequencing of Pachner moves. Different sequencings of Pachner moves lead to different
triangulations. In practice, we favor 2-3 moves over recursive ones, which performs best.
Additionally, among the 2-3 moves performed to get rid of a flat tetrahedron containing edge
e of angle π, we prioritize moves that eliminate tetrahedra for which e has a small dihedral
angle. Among the recursive ones, we used the same method as the one choosing between
e and e′, indeed choosing a recursive move boils down to choosing an edge to minimize its
degree.

6 Experiments

In this section, we study the experimental performance of our approach1 to find a triangulation
with a CHS, and compare its behavior with the software SnapPy [3]. SnapPy is the state-of-
the-art software to study the geometric properties of knots and 3-manifolds, and is widely
used in the low-dimensional topology community. Following this analysis, we propose and
study a hybrid method with practical interest.

SnapPy. SnapPy’s method is based on a random re-triangulation followed by a simplification.
The first step is constituted of 4n random 2-3 moves, where n is the number of tetrahedra in the
input triangulation. The simplification performs non-deterministic modifications to decrease
the number of tetrahedra in the triangulation. Notably it removes some configurations that
prevent angle structures from existing. The verification of the existence of a CHS is based
on a Newton’s method to solve the gluing equations [17].

Data set. We apply our algorithms to the census of prime hyperbolic knots with up to 19
crossings. This census has been constituted by the efforts of many researchers in the field,
and recently completed with the exhaustive enumeration of all knots with crossing number
smaller than 202 [1].

For each knot, given by a knot diagram, we compute a triangulation of the knot com-
plement using Regina [2], and simplify it with SnapPy. We then keep the triangulations
admitting an angle structure but not a CHS, and hence requiring re-triangulation. All the
others, without angle structure or admitting a CHS, were discarded. They constitute the
Failure on first try data of Table 1.

The knots are grouped by crossing numbers (from 14 to 19), and on whether they are
alternating or not. In Section 6.1, our experiments are run on the first 2500 knots of each
of the 12 groups having an angle structure but no CHS, and in Section 6.2 we use the first
10.000 knots of the same data sets.

6.1 Success rate and combinatorial performance
In terms of Pachner moves. Figure 6 (left) represents the rate of knots on which our
algorithm succeeds to find a triangulation with a CHS, for all the 12 groups of knots. It
represents the success rate as a function of the number of Pachner moves, the higher success
rate groups are the alternating knots.

While there is a significant difference between the efficiency on alternating and non-
alternating knots, all the curves have the same behavior: the first few Pachner moves are very
effective. An important point is that, compared to the number of moves done by SnapPy,

1 Our implementation uses the SLSQP [7] optimization method from SciPy [16].
2 The census is available at https://regina-normal.github.io/data.html

https://regina-normal.github.io/data.html
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Figure 6 Left: on the sample of triangulations, success rate in finding a CHS against the number
of Pachner moves for different crossing numbers and alternabilities. The limit rate of success
for alternating knots is 0.98, the limit rate for non-alternating knots is 0.87. Right: Number of
re-triangulations required by our method over the number of re-triangulations required by SnapPy
on the 12 groups of knots, gathered in bins (the color indicates the log of the number of points
inside). Since our method is deterministic, the points have discrete ordinates. The diagonal x = y

appears in red.

at least four times the number of tetrahedra and then roughly the same number for the
simplification times the number of re-triangulation, our method uses a much lower number
of Pachner moves on average (see Figure 6,left). This is of combinatorial interest, as doing a
small number of moves can mitigate the impact of the procedure on the properties of the
triangulation, such as keeping a small treewidth for instance.

After the first few steps, the growth of the success rate slows down drastically. An
interpretation of this phenomenon is that the tetrahedra created by the 2-3 moves tend to
to be more flat than the original ones. This leads to an increase in the number of required
re-triangulations and issues with floating point arithmetic.

In terms of re-triangulation. In order to compare the behaviors of our method and of the
state of the art: we want to know if the two methods struggle on the same triangulations.
Both methods using sequences of re-triangulations, we use the length of these sequences as
metrics.

We compare in Figure 6 (right) the average number of randomized re-triangulations
required by SnapPy to find a triangulation with a CHS, and the (deterministic) number of re-
triangulations of our method. The majority of the CHS are found within few re-triangulations
on average: both methods manage to find 78% of them within two steps.

However, it appears that for the manifolds requiring a large number of re-triangulations
with either method, the other one will perform well on it: the performance of the methods
are substantially orthogonal for the difficult cases. This phenomenon highlights the fact that
the methods are complementary.

Limitations. It is to be noted that our method suffers from several phenomena: there are
manifolds on which our method fails, the reasons to this being convergence problems because
of the floating point arithmetic, the creation of flatter tetrahedra or the volume modification
mentioned in Remark 10. Furthermore some triangulations have several very high degree
edges and looking for the correct sequence of geometric Pachner moves can be costly. In
terms of time performance, the constraint convex optimization is an important bottleneck,
as well as the computation and book-keeping of a large number of isomorphism signatures.
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However, in light of the previous results, we design a hybrid algorithm, mixing SnapPy’s
pipeline together with the heuristics based on localized geometric Pachner moves introduced
in this article, in order to outperform both methods in terms of experimental timings.

6.2 Hybrid algorithm and time performance
As is, SnapPy does not produce angle structures as defined in Section 3, as it constructs
negative tetrahedra, i.e., tetrahedra whose shape has a negative imaginary part. Our hybrid
method consists of calling SnapPy to randomize and simplify the triangulation, and, in case
the triangulation admits only few negative tetrahedra (less than four in our experiments), call
the resolution of flat tetrahedra with geometric Pachner moves on these negative tetrahedra,
as introduced in Section 5. Loop until a CHS is found.

Our implementation is done in C directly in SnapPy’s kernel and consists of a simplified
version of Section 5’s method. For each negative tetrahedron, we try to reduce the degree of
one of its edges down to 3 in turn using only geometric 2-3 moves, we try all the edges, and
we do not use recursive moves or heuristics to perform the geometric moves.

The results of this method are summarized in Figure 7, where the time to compute
the CHS are compared for the new hybrid method and the usual SnapPy pipeline, on the
first 10.000 triangulations of the datasets of Section 6. The hybrid method using localized
geometric Pachner moves shows, at worst, similar time performance compared to SnapPy, and
performs significantly better overall. On average, the hybrid method is 20% faster, however,
it is to be noted that, on most cases, few re-triangulations are required in which case the
hybrid method and SnapPy show naturally similar time performance. More interestingly,
on cases requiring many more re-triangulations in the SnapPy pipeline, the hybrid methods
performs much better than SnapPy, with running times up to 18 times faster.

As indicator of the global behavior of both algorithms, we indicate the linear regression
of the data points (purple dashed line, slope = 0.4) in Figure 7, to illustrate that the dense
region is not concentrated on the x = y diagonal.

Figure 7 Left: time comparison of the hybrid method and SnapPy in seconds for the 10.000 first
triangulations of each crossing number of the data set of the previous section, gathered in bins
(the color indicates the log of the number of points inside). Line x = y is plain and red, a linear
regression through the data set is dashed and black. For readability, four outlayers favoring the
hybrid method are omitted. Right: distribution, in logarithmic scale, of the time required by SnapPy
over the time required by the hybrid method.
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