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Introduction

Given an arbitrary dynamical system, the formulation of its higher variational equations as a linear (infinite) system (LVE ) has shown potential to make strong inroads in the study of integrability [START_REF] Simon | Linearised higher variational equations[END_REF][START_REF] Simon | Conditions and evidence for non-integrability in the Friedmann-Robertson-Walker Hamiltonian[END_REF]. The study, part of which we will explain more in detail in §1.1, is twofold:

(i) on one hand, the original set of equations (LVE) is amenable to the Ziglin-Morales-Ramis-Simó non-integrability framework whenever the system is Hamiltonian and the first integrals whose existence is obstructed are meromorphic ( [START_REF] Morales-Ruiz | Differential Galois theory and non-integrability of Hamiltonian systems[END_REF][START_REF] Morales-Ruiz | Galoisian obstructions to integrability of Hamiltonian systems. I[END_REF][START_REF] Morales-Ruiz | A note on the non-integrability of some Hamiltonian systems with a homogeneous potential[END_REF][START_REF] Morales-Ruiz | Integrability of Hamiltonian systems and differential Galois groups of higher variational equations[END_REF] and a long assorted array of references derived therefrom, including [START_REF] Simon | Linearised higher variational equations[END_REF][START_REF] Simon | Conditions and evidence for non-integrability in the Friedmann-Robertson-Walker Hamiltonian[END_REF]); there is further, as of yet unfinished study in the direction of situations where the system is not Hamiltonian ( [START_REF] Huang | Meromorphic non-integrability of several 3D dynamical systems[END_REF][START_REF] Li | Galoisian obstruction to the integrability of general dynamical systems[END_REF][START_REF] Li | Galoisian obstruction to the integrability of general dynamical systems[END_REF]).

(ii) on the other, the dual system (LVE) has jets of formal first integrals among its solutions ( [START_REF] Aparicio-Monforte | Formal first integrals along solutions of differential systems I[END_REF][START_REF] Simon | Linearised higher variational equations[END_REF]), which entails the possibility to furnish first integrals instead of finding obstructions to them; the advantage of this second approach is that the original system need not be Hamiltonian, and the formal first integrals, if convergent need not be meromorphic.

The only difficulties in this case are computational in nature, namely in the context of resummation techniques.

In the present work we will exploit the second item (ii), namely by describing a method to automatically produce Taylor terms of formal first integrals by way of an automatic, easily recursified sequence of quadratures. First we recount the minimal background exposition necessary, then we present the main results in §2 and finally we apply it to two simple examples to test its accuracy and usefulness as well as make novel statements about the integrability of the examples themselves.

1.1 The algebraic study of integrability

Basics

Let ψ (t, •) be the flow and φ (t) = ψ (t, x) a particular solution of a given autonomous system ż = X (z) , X :

C m → C m , (1) 
respectively. The variational system of (1) along φ has ∂ ∂z ψ (t, φ) as a fundamental matrix:

Ẏ = A 1 Y, A 1 (t) := ∂X ∂z z=φ(t) ∈ Mat n (K) , (VE φ ) K = C (φ)
being the smallest differential field [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF]Def. 1.1]) containing all entries of φ (t).

∂ k ∂z k ψ (t, φ) are multilinear k-forms appearing in the Taylor expansion of the flow along φ:

ψ (t, z) = ψ (t, φ) + ∞ k=1 1 k! ∂ k ψ (t, φ) ∂z k {z -φ} k ; (2) 
∂ k z ψ (t, φ) also satisfy an echeloned set of systems, depending on the previous k -1 partial derivatives and usually called order-k variational equations VE k φ ([30, p. 859-861], [START_REF] Simon | Linearised higher variational equations[END_REF]Corollary 3]). Thus we have, [START_REF]Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] given, a linear system VE φ =: VE 1 φ =: LVE 1 φ and a family of non-linear systems VE k φ k≥2 . [START_REF] Simon | Linearised higher variational equations[END_REF] presented an explicit linearized version LVE k φ , k ≥ 1, by means of symmetric products of finite and infinite matrices based on already-existing definitions by Bekbaev, e.g. [START_REF] Bekbaev | A matrix representation of composition of polynomial maps[END_REF]. This was done in preparation for the Ziglin-Morales-Ramis-Simó (ZMRS) theoretical framework based on monodromy and differential Galois groups [START_REF] Morales-Ruiz | Differential Galois theory and non-integrability of Hamiltonian systems[END_REF][START_REF] Van Der Put | Galois theory of linear differential equations[END_REF][START_REF] Ziglin | Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics[END_REF], but has other consequences as well. More specifically, our outcomes in [START_REF] Simon | Linearised higher variational equations[END_REF] have two applications for system (1), Hamiltonian or not:

• full structure of VE k φ and LVE k φ , i.e. recovering the flow, which underlies the ZMRS theoretical corpus in practicality, albeit as a tool rather than as a goal;

• a byproduct is the full structure of dual systems LVE k φ , i.e. recovering formal first integrals of (1) in ways which simplified earlier results in [START_REF] Aparicio-Monforte | Formal first integrals along solutions of differential systems I[END_REF] significantly.

As said in the introduction, results in the present paper are based on the second of these applications. For examples of the first application, see [34, §6] or the bulk of [START_REF] Simon | Conditions and evidence for non-integrability in the Friedmann-Robertson-Walker Hamiltonian[END_REF]. See also [START_REF] Martínez | Non-integrability of the degenerate cases of the swinging Atwood's machine using higher order variational equations[END_REF][START_REF] Martínez | Non-integrability of Hamiltonian systems through high order variational equations: summary of results and examples[END_REF] for examples where the non-linearized VE k were used.

Symmetric products, powers and exponentials

Notation 1.2.1. The conventions listed below were already introduced in [START_REF] Aparicio-Monforte | Formal first integrals along solutions of differential systems I[END_REF][START_REF] Simon | Linearised higher variational equations[END_REF][START_REF] Simon | Conditions and evidence for non-integrability in the Friedmann-Robertson-Walker Hamiltonian[END_REF]:

1. Multi-index modulus, arithmetic, order and lexicographic order : for i = (i 1 , . . . , i n ) ∈ Z n ≥0 , i = |i| := k i k ; addition and subtraction are defined entrywise as usual; i ≤ j means i k ≤ j k for every k ≥ 1; i < lex j if i 1 = j 1 , . . . , i k-1 = j k-1 and i k < j k for some k ≥ 1.

2. Whenever such derivation is possible, we define the lexicographically sifted differential of F (z 1 , . . . , z m ) of order m as the row vector

F (m) (z) := lex ∂ m F ∂z i 1 1 . . . ∂z in n (z) , (3) 
where |i| = m and entries are ordered as per < lex on multi-indices. For instance, for n = 2 the first two differentials would be

F (1) = ∂F ∂z 1 ∂F ∂z 2 ∂F ∂z 3 , F (2) = ∂ 2 F ∂z 2 1 ∂ 2 F ∂z 1 z 2 ∂ 2 F ∂z 1 z 3 ∂ 2 F ∂z 2 2 ∂ 2 F ∂z 2 z 3 ∂ 2 F ∂z 2 3 . 3. We define d n,k := n+k-1 n-1 , D n,k := k i=1 d n,i .
It is easy to check there are d n,k k-ples of integers in {1, . . . , n}, and just as many homogeneous monomials of degree n in k variables.

4.

Given integers k 1 , . . . , k n ≥ 0, we define the usual multinomial coefficient as

k 1 + • • • + k n k 1 , . . . , k n := k 1 + • • • + k n k := (k 1 + • • • + k n )! k 1 !k 2 ! • • • k n ! . For a multi-index k ∈ Z n ≥0 , define k! := k 1 ! • • • k n !.
For any two such k, j, we define

k p := k 1 !k 2 ! • • • k n ! p 1 !p 2 ! • • • p n ! (k 1 -p 1 )! (k 2 -p 2 )! • • • (k n -p n )! = k 1 p 1 k 2 p 2 • • • k n p n , (4) 
and the multi-index counterpart to the multinomial,

k 1 +•••+km k 1 ,...,km := (k 1 +•••+kn)! k 1 !k 2 !•••kn! .
The compact formulation called for by Notation 1.2.1 (3) was achieved in [START_REF] Simon | Linearised higher variational equations[END_REF] through an operation that had already been defined by Bekbaev (e.g. [START_REF] Bekbaev | A matrix representation of composition of polynomial maps[END_REF][START_REF] Bekbaev | Matrix representations for symmetric and antisymmetric multi-linear maps[END_REF]) and was systematized using basic categorical properties of the tensor product. Let K be a field and V a K-vector space. Let Sym r V be the symmetric power of V . We write w 1 w 2 for equivalence classes of tensor products of these vectors. Hence, product operates exactly like products of homogeneous polynomials in several variables. Notation 1.2.2. When dealing with matrix sets, we will use super-indices and subindices:

1. The space of (i, j)-matrices Mat i,j m,n (K) is defined equivalently as the set of d m,i × d n,j matrices with entries in K, or vector space Hom K Sym j K m ; Sym i K n .

2.

It is clear from the above that Mat 0,0 n (K) is the set of all scalars α ∈ K and Mat 0,k n (K) (resp. Mat k,0 n (K)) is made up of all row (resp. column) vectors whose entries are indexed by d n,k lexicographically ordered k-tuples.

3.

Reference to K may be dropped and notation may be abridged if dimensions are repeated or trivial, e.g. Mat i,j n := Mat i,j n,n , Mat i m,n := Mat i,i m,n , Mat n := Mat 1 n , etcetera.

4.

Mat n,m (K) denotes the set of block matrices A = (A i,j ) i,j≥0 with A i,j :

Sym i K m → Sym j K n , hence A i,j ∈ M d n,i ×d m,j (K) = Mat i,j n,m (K): A =                  . . . . . . . . . . . . • • • A 2,2 A 2,1 ← A 2,0
We write Mat := Mat n,n if n is unambiguous. Conversely, Mat i,j n,m is embedded in Mat n,m by identifying every matrix A i,j with an element of Mat n,m equal to 0 save for block A i,j . Definition 1.2.3 (Symmetric products of finite and infinite matrices). [START_REF] Bekbaev | A matrix representation of composition of polynomial maps[END_REF][START_REF] Simon | Linearised higher variational equations[END_REF] 

(i) Let A ∈ Mat i 1 ,j 1 m,n (K), B ∈ Mat i 2 ,j 2 m,n (K). Given any multi-index k = (k 1 , . . . , k n ) ∈ Z n ≥0 such that |k| = k 1 + • • • + k n = j 1 + j 2 , define C := A B ∈ Mat i 1 +i 2 ,j 1 +j 2 m,n by C e k1 1 • • • e kn n = 1 j1+j2 j1 p k p A e p1 1 • • • e pn n B e k1-p1 1 • • • e kn-pn n , (5) 
notation abused by removing to reduce space, binomials as in (4) and summation taking place for specific multi-indices p, namely those such that

|p| = j 1 and 0 ≤ p i ≤ k i , i = 1, . . . , n. (ii) For any A, B ∈ Mat n,m (K), define A B = C ∈ Mat n,m (K) by C = (C i,j ) i,j≥0 , C i,j = 0≤i 1 ≤i, 0≤j 1 ≤j j j 1 A i 1 ,j 1 B i-i 1 ,j-j 1 . (6) 
Same as always, k will stand for powers built with this product.

The following is a mere exercise in induction:

Lemma 1.2.4. Defining r i=1 A i recursively by r-1 i=1 A i A r with A i ∈ Mat k i ,j i m,n , (A 1 • • • A r ) e k = 1 j 1 +•••+jr j 1 ,j 2 ,...,jr p 1 ,...,pr k p 1 , . . . , p r r i=1 A i e p i , (7) 
if |k| = j 1 + • • • + j r , sums obviously taken for p 1 + • • • + p r = k and |p i | = j i , for every i = 1, . . . , r.
The following is straightforward and has already been seen e.g. in [START_REF] Bekbaev | A matrix representation of composition of polynomial maps[END_REF][START_REF] Bekbaev | Matrix representations for symmetric and antisymmetric multi-linear maps[END_REF][START_REF] Simon | Linearised higher variational equations[END_REF], or can be easily derived therefrom: Proposition 1.2.5. For any A, B, C, and whenever products make sense,

a) A B = B A. b) (A + B) C = A C + B C. c) (A B) C = A (B C). d) (αA) B = α (A B) for every α ∈ K. e) If A is square and invertible, then A -1 k = A k -1 . f ) A B = 0 if and only if A = 0 or B = 0. g) If A is a square (1, 1)-matrix, then Av 1 Av 2 • • • Av m = A m v 1 • • • v m . h) If v is a column vector, then (A B) v (p+q) = (Av p ) (Bv q ), p, q ∈ Z ≥0 . Lemma 1.2.6 ([34]). (i) Given square A, B ∈ Mat k,k n and matrices X i ∈ Mat k,j i n , i = 1, 2, (A B) (X 1 X 2 ) = 1 2 (AX 1 BX 2 + BX 1 AX 2 ) , (8) 
and in general for any square A 1 , . . . , A m ∈ Mat k,k n and any

X i ∈ Mat k,j i n , i = 1, . . . , m, m i=1 A i m i=1 X i = 1 m! σ∈S k m i=1 A σ(i) X i . (9) 
(ii) Given A ∈ Mat 1,j n and X 1 , . . . , X m such that

X i ∈ Mat 1,q i n , 1 ≤ j ≤ m, m j A Id m-j n m i=1 X i = 1≤i1<•••<ij ≤m A X i1 • • • X ij s =i1,...,ij X s . (10) 
(iii) Given a square matrix A ∈ Mat 1,1 n and X 1 , . . . , X m such that

X i ∈ Mat 1,j i n , A Id m-1 n m i=1 X i = 1 m m i=1 (AX i ) X 1 • • • X i • • • X m . (11) 
(iv) Given square matrix X ∈ Mat k-1,k-1 n and vector v ∈ K n , we have, for each i = 1, . . . , n,

X e T i v Id k-1 n = k -1 k X v Id k-2 n e T i + v i k X (12) 
Lemma 1.2.7. Let (K, ∂) be a differential field.

(i) For any given

X ∈ Mat k 1 ,j 1 n (K) and Y ∈ Mat k 2 ,j 2 n (K), ∂ (X Y ) = ∂ (X) Y + X ∂ (Y ) . (13) 
(ii) If Y is a square n × n matrix having entries in K and ∂Y = AY , then

∂ Sym k Y = k A Sym k-1 (Id n ) Sym k Y. ( 14 
) (iii) If X ∈ Mat 1,j 1 n and Y ∈ Mat 1,j 2 n satisfy systems ∂X = AX + B 1 and ∂Y = AY + B 2 with A ∈ Mat 1,1 n , B i ∈ Mat 1,j i n , then symmetric product X Y satisfies linear system ∂ (X Y ) = 2 A Id d n,k (X Y ) + (B 1 Y + B 2 X) . ( 15 
) (iv) If ∂X i = AX i + B i , i = 1, . . . , m, with X i , B i ∈ Mat 1,j i n , A ∈ Mat 1,1 n then ∂ m i=1 X i = m A Id m-1 d n,k m i=1 X i + m i=1 B i j =i X j . ( 16 
)
Definition 1.2.8. (See also [START_REF] Bekbaev | Matrix representations for symmetric and antisymmetric multi-linear maps[END_REF]) for every matrix A ∈ Mat n,m we define the formal power series

exp A := 1 + A 1 + 1 2 A 2 + • • • = ∞ i=0 1 i! A i .
Whenever A = 0 save for a finite distinguished submatrix A j,k , the abuse of notation exp A j,k = exp A will be customary. 

A ∈ Mat 1,1 n , exp A -1 = exp A -1 .
For examples and properties, see [34, §3.1].

Application to power series

Lemma 1.3.1 ([34, Lemma 3.7]). If F = F 1 × • • • × F m is a vector power series, adequate M 1,i F ∈ Mat 1,i m,n (K) render F (x) = M F exp X where M F := • • • M 1,2 F M 1,1 F M 1,0 F • • • 0 0 0 ∈ Mat m,n .
Following Definition 1.2.8, write F (x) = M F exp x if it poses no clarity issue.

Thus every formal power series F ∈ K [[x]], x = (x 1 , . . . , x n ) can be expressed in the form M F exp x, where

M F := • • • M 1,2 F M 1,1 F M 1,0 F • • • 0 0 0 ∈ Mat 1,n (K) , X := 0 x 0 0 . M F = J F + M 1,0 F := • • • M 1,2 F M 1,1 F 0 • • • 0 0 0 + 0 M 1,0 F 0 0 . (17) 
See [34, §3.2] for more details.

Higher-order variational equations

See [START_REF] Simon | Linearised higher variational equations[END_REF] for proofs and further elaboration on everything summarized below:

Notation 1.4.1. For every set of indices 1 ≤ i 1 ≤ • • • ≤ i r such that r j=1 i j = k, c k i 1 ,.
..,ir is defined as the amount of totally ordered partitions of a set of k elements among subsets of sizes i 1 , . . . , i r :

c i1,...,ij = c k i1,...,ij = k i1 i2 ••• ij n 1 ! • • • n m ! , (i 1 , . . . , i j ) = (k 1 n1 . . . k 1 , • • • , k m nm . . . k m ) , 1 ≤ k 1 < k 2 < • • • < k m . ( 18 
) Proposition 1.4.2. Let K = C (φ) and A k , Y k be ∂ k X (φ), ∂ k z ψ (t, φ) minus crossed terms; let A = J φ
X , Y = J φ be the derivative jets for X and ψ at φ, with A k , Y k as blocks. Then, if

c k i = # {ordered i 1 , . . . , i r -partitions of k elements}, Ẏk = k j=1 A j |i|=k c k i Y i 1 Y i 2 • • • Y i j , k ≥ 1. (VE k φ ) Lemma 1.4.3. Let Y ∈ Mat (K) equal to zero outside of block row 1,k , k ≥ 1: Y := • • • Y 3 Y 2 Y 1 0 0 0 0 0 0 , Y i ∈ Mat 1,i n . ( 19 
)
Let Z r,s , s, r ≥ 1, be the corresponding block in exp Y . Then, a) Row block r in exp Y is recursively obtained in terms of row blocks 1 and r -1:

Z r,s = 1 r s-r+1 j=1 s j Y j Z r-1,s-j . (20) 
In particular, Z r,r = Y r 1 and Z r,s = 0 dn,r,dn,s whenever r > s.

b) Using Notation 1.4.1 and (18), for every s ≥ r Z r,s = 

i 1 +•••+ir=s c s i 1 ,...,ir Y i 1 Y i 2 • • • Y ir . ( 21 
) Notation 1.4.4. K := C (φ), A i := X (i) (φ), Y i := lex ∂ i ∂z i ϕ(t, φ) and, per Lemma 1.4.3, Υ 1 = Y 1 , Υ k =      Z k,k Z k-1,k . . . Υ k-1 Z 1,k      , k ≥ 2, (22) 
Ẋ = A LVE φ X, A LVE φ := A exp Id n , (LVE φ )
has Υ := exp Y as a solution matrix. Hence, for every k ≥ 1,

a) the lower-triangular recursive D n,k × D n,k form for LVE k φ is Ẏ = A LVE k φ
Y , its system matrix being obtained from the first k row and column blocks of A LVE φ :

A LVE k φ =       k k-1 A 1 Id k-1 n k k-2 A 2 Id k-2 n . . . A LVE k-1 φ k 0 A k       , (23) 
b) and the principal fundamental matrix for

LVE k φ is Υ k from exp Y in Notation 1.4.4.
The construction of an infinite matrix Υ LVE φ = exp Y follows in such a way, that the first

d n,k := n+k-1 n-1
rows and columns are a principal fundamental matrix for LVE k φ . The definition is recursive and amenable to symbolic computation.

Example 1.4.6. For instance, for k = 5 we have

A LVE 5 φ =       5A 1 Id 4 n 10A 2 Id 3 n 4A 1 Id 3 n 10A 3 Id 2 n 6A 2 Id 2 n 3A 1 Id 2 n 5A 4 Id n 4A 3 Id n 3A 2 Id n 2A 1 Id n A 5 A 4 A 3 A 2 A 1      
, and the principal fundamental matrix Υ 5 is

      Y 5 1 10Y 3 1 Y 2 Y 4 1 10Y 2 1 Y 3 + 15Y 1 Y 2 2 6Y 2 1 Y 2 Y 3 1 10Y 2 Y 3 + 5Y 1 Y 4 4Y 1 Y 3 + 3Y 2 Y 2 3Y 1 Y 2 Y 2 1 Y 5 Y 4 Y 3 Y 2 Y 1       , (24) 
hence (VE k φ ) for k = 5 is the lowest row in A LVE 5 φ times the leftmost column in Υ 5 .

First integrals and higher-order variational equations

Let F : U ⊆ C n → C n be a holomorphic function and φ : I ⊂ C → U . Firstly, the flow ϕ (t, z) of X admits, at least formally, Taylor expansion (2) along φ which is expressible as

ϕ (t, φ + ξ) = φ + Y 1 ξ + 1 2 Y 2 ξ 2 + • • • = φ + J φ exp ξ, (25) 
where J φ is the jet for flow ϕ (t, •) along φ, displayed as Y in [START_REF] Li | Galoisian obstruction to the integrability of general dynamical systems[END_REF] and defined in Notation 1.4.4 -that is, the matrix whose -exponential Υ is a solution matrix for (LVE φ ). Secondly, the Taylor series of F along φ can be written, cfr. [3, Lemma 2] and Notation 1.2.1,

F (y + φ) = F (φ) + ∞ m=1 1 m! F (m) (φ) , Sym m y . (26) 
Lemma 1.3.1 and ( 17) trivially implies ( 26) can be expressed as F (y + φ) = M φ F exp y, where

M φ F = J φ F + F (0) (φ) :=   • • • 0 0 0 • • • F (2) (φ) F (1) (φ) F (0) (φ) • • • 0 0 0   ∈ Mat 1,n (K) ,
i.e. J φ F is the jet or horizontal strip of lex-sifted partial derivatives of F at φ.

Let Ẋ = A LVE φ X, A LVE φ := -A exp Id n T , (LVE φ )
be the adjoint or dual variational system of (1) along φ.

It is immediate, upon derivation of equation Υ k Υ -1 k = Id D n,k , that Lemma 1.5.1. Υ -1 k T is a principal fundamental matrix of LVE k φ , k ≥ 1, hence lim k Υ -1 k T , is a solution to (LVE φ ).
The following was proven in [START_REF] Morales-Ruiz | Integrability of Hamiltonian systems and differential Galois groups of higher variational equations[END_REF] and recounted in [3, Lemma 7], and was may now be expressed in a simple, compact fashion: Lemma 1.5.2. Let F and φ be a holomorphic first integral and a non-constant solution of (1) respectively. Let V := J T F be the transposed jet of F along φ. Then, V is a solution of (LVE φ ). Hence the issue, already considered in [START_REF] Aparicio-Monforte | Formal first integrals along solutions of differential systems I[END_REF], is whether some converse holds and a solution of the dual system LVE k φ is or can be the set of first k terms of the formal (or perhaps even convergent) series form of a first integral. This was addressed in the aforementioned reference and was put in compact, explicit linearized form in [START_REF] Simon | Linearised higher variational equations[END_REF], and will be recounted below.

Define

A :=   • • • 0 0 0 • • • A 2 A 1 A 0 • • • 0 0 0   , A i := X (i) (φ) ∈ Mat 1,i n (K) , A 0 := X (φ) = φ, ( 27 
)
and let

A LVE φ := A exp Id n = lim k A LVE k φ = lim k         k k X (0) (φ) Id k n k k-1 X (1) (φ) Id k-1 n A LVE k-1 φ k k-2 X (2) (φ) Id k-2 n . . . k 0 X (k) (φ) Id 0 n         ,
The following gave a compact form to [START_REF] Aparicio-Monforte | Formal first integrals along solutions of differential systems I[END_REF]Th. 12] in terms of and infinite matrices:

Proposition 1.5.3 ([34, Prop. 6]). Let F , φ, V = (• • • | V 3 | V 2 | V 1 ) as in Lemma 1.5.2. Then A T LVE φ V = 0. More specifically, A LVE k-1 φ (V k | • • • | V 2 | V 1 ) = 0 for every k ≥ 1, i.e. k-1 j=0 k -1 j A j Id k-1-j n T V k-j = 0, for every k ≥ 1. ( 28 
) Hence, blocks in V 1 , (V 2 , V 1 ) T , (V 3 , V 2 , V 1 ) T , .
. . having all entries in the base field K and satisfying both equations in Proposition 1.5.3 and 1.5.2 are jet blocks F (1) , F (2) , . . . of a formal series that will be a first integral if convergent. These blocks belonging to the intersection of ker A T LVE k-1 φ and the solution subspace Sol K LVE k φ were called admissible solutions of the order-k adjoint system in [START_REF] Aparicio-Monforte | Formal first integrals along solutions of differential systems I[END_REF]. We will call the sum constructed from an admissible solution a formal first integral.

For a short introduction on how changes of variables are reflected on this scheme, as well as the explicit form for the monodromy matrix [START_REF] Żo | The monodromy group[END_REF] of LVE k φ along any path γ, see of [34, §4 & 5].

2 Jet filtering methods

Preliminaries

Let f be a first integral of (1). The following are immediate:

Lemma 2.1.1. (i) For every i ≥ 1, (f g) (i) = i j=0 i j f (j) g (i-j) , (29) 
with the understanding that symmetric product by a scalar is identical to the usual product, hence

J {f g} = U U 2 T [J {f } J {g}] = U U 2 T exp J {f } exp J {g} = U U T exp J {f } U T exp J {g} where U = 0 1 0 0 (ii) For every k ≥ 1, f k (i) = k! k j=1 f j-1 (j -1)! i 1 +•••+i k-j+1 =i c i i 1 ,...,i k-j+1 k-j+1 u=1 f (iu) , ( 30 
)
hence defining

E 1 = e T 1 0 0 0 , U = 0 1 0 0 , we have J f k = k! U U k T exp J {f } = k! U U k T exp J {f } (31) = U U T exp J {f } k = U U T J {f } k (32) 
(iii) For every k ≥ 1,

f k 1/f k (i) = k i j=0 (k + j -1)! k! f -j (-1) j i 1 +•••+i j =i c i i 1 ,...,i j j u=1 f (iu) , (33) 
hence

J {1/f } = 1 f U                       . . . . . . 0 3! (-1/f ) 3 0 2! (-1/f ) 2 0 1! (-1/f ) 0 1        T exp (J {f } -f U )                (34) = U 1 f U T J {f } -1 = U ∞ i=0 (-1) i 1 f U T J {f } -1 i (35)

Progressive filtering

Let us describe a method to start with a jet of valuation one and then proceed to compute each jet term of that particular function immediately in terms of the previous ones.

Lemma 2.2.1. Define

F 1 := F i,1 := Id n - 1 X 0 i X 0 e T i . (36) 
The n -1 non-zero rows of F 1 Y -1 1 are linearly independent admissible solutions of degree one.

Proof.

Let F i,1 := Id n - 1 X i (φ(0)) X (φ (0)) e T i . We have A LVE 0 φ = A T 0 = X (φ) T . And Υ -1 1 T = Y -1 1
T , the fundamental matrix for VE 1 . Thus checking that (28) holds equates to

checking whether A T 0 Y -1 1 F T i,1 = 0 T n , i.e. that F i,1 Y -1
1 A 0 equals a column of zeros. This is easy to prove by noticing that the basic chain rule and (1) entails Ȧ0 = A 1 A 0 on one hand, and on the other Lemma 1.5.

1 for k = 1 implies d dt Y -1 = -Y -1 A 1 . Both of these facts put together imply d dt Y -1 1 A 0 = Ẏ -1 1 X + Y -1 Ẋ = -Y -1 A 1 X + Y -1 A 1 X = 0 and thus d dt F i,1 Y -1 1 A 0 = F i,1 d dt Y -1 1 A 0 = 0 as well, which means F i,1 Y -1
1 A 0 is a constant vector. Setting t = t 0 and using the fact that Y 1 is a principal fundamental matrix (i.e. Y 1 (t 0 ) = Id) means that for t = t 0 , abridging notation X 0 = X 0 1 , . . . , X 0 n = X (φ (t 0 )),

F i,1 Y 1 (t 0 ) -1 A 0 = F i,1 A 0 = X (φ (t 0 )) - 1 X i (φ (t 0 )) X (φ (t 0 )) e T i X (φ (t 0 )) =             X 0 1 X 0 2 . . . X 0 i . . . X 0 n-1 X 0 n             - 1 X 0 i             0 n×(i-1) X 0 1 0 n×(n-i) X 0 2 . . . X 0 i . . . X 0 n-1 X 0 n                         X 0 1 X 0 2 . . . X 0 i . . . X 0 n-1 X 0 n             = 0 n .
Still for k = 1, we need to check that the n -1 non-zero columns of F 1 Y -1 T are linearly independent. This is a consequence of the fact that

F T 1 =             Id i-1 0 . . . 0 -X 1 X i • • • -X i-1 X i 0 -X i+1 X i • • • -Xn X i 0 Id n-i . . . 0             thus in Y -1 T F T
1 column i equals 0 n and its remaining n -1 columns are the output of subtracting multiples of column i in Y -1 T from its remaining (already independent) n -1 columns.

Let φ (t) be a particular solution of (1) whose parametric expression can be represented with one differential equation involving one coordinate function z i (case in point: (51), (57) in §3).

Theorem 2.2.2. In the above hypotheses, let f 1 be one of the columns of

Y -1 1 F T 1 . Define X k := Y k 1 T
. Then each term generated by the following recursion

f k := -X -1 k X k    k j=2 k j A j Id k-j n T f k-j+1    dx, (37) 
is the degree-k term of the expansion of a formal first integral

f (z) = f 1 z + 1 2 f 2 z 2 + 1 3! f 3 z 3 + . . . ,
provided that each new integral in (2.2.2) is computed by taking independent variable x = z i (t), and the limits or constants of integration at each stage can be taken so as to ensure that

f k A 0 Id k-1 n + k -1 1 f k-1 A 1 Id k-2 n + • • • + k -1 k -2 f 2 (A k-2 Id n ) + f 1 A k-1 = 0. ( 38 
)
Proof. Most of the work has been done already by Proposition 1.5.3, Lemma 2.2.1 and the properties intrinsic to . Firstly,

X -1 k = Y -1 1 k T
. Secondly, condition ( 38) is nothing but a repetition of [START_REF] Morales-Ruiz | Galoisian obstructions to integrability of Hamiltonian systems. I[END_REF]. In order to check the consequences of defining [START_REF] Sprott | Elegant chaos. Algebraically simple chaotic flows[END_REF], all it takes is to realize that the first

d n,k × d n,k equations of (LVE φ ) read ˙ Y -1 1 k T = -A 1 Id k-1 n T Y -1 1 k T , which means Y k 1 T
is a principal fundamental matrix thereof; the homogeneous part of the equations satisfied by f k displays the same matrix, thus [START_REF] Sprott | Elegant chaos. Algebraically simple chaotic flows[END_REF] is just plain variation of constants applied to what is said in Lemma 1.5.2.

Filtering with a single infinite matrix product

The above result provides a recursive method to compute formal first integrals of arbitrary autonomous systems, thereby summing up the aims of the current paper. The question arises, however, as to whether a single infinite filter matrix Φ = exp F exists, amenable to recursive computation but expressible in compact form and computed without any further quadratures, which multiplied times the fundamental matrix of the dual systems (whose terms are also computable recursively, as seen above) yields an already-trimmed matrix comprised of linearly independent admissible solutions in a single swipe.

Building such an infinite quadrature-free filter matrix beyond k = 1 has a value that is more theoretical than practical in nature, since the computational inviability of ever-growing matrices and the effort of discarding the aforementioned cross-products g

(i 1 ) j 1 • • • g (im)
jm get in the way of approximating jets properly. So the question arises: why consider one such matrix? The answer resides in the recent trends in categorification of dynamical systems (e.g. [START_REF] Chen | Integrability from categorification[END_REF]) and the potential to transport the techniques known in reductions of flat meromorphic connections to arbitrary dynamical systems.

A considerable wealth of evidence shows one such quadrature-free matrix exists, at least for systems defined by analytical vector fields, but a deeper study would warrant techniques beyond the purview and goals of this article and will thus be left for future work: Conjecture 2.3.1. Let φ (t) be a non-trivial solution for (1) and t 0 such that X i (φ (t 0 )) = 0 for some i. Let Υ -1 k T be the principal fundamental matrix for LVE k φ equalling Id at t = t 0 . Use superscript 0 to denote values at t = t 0 and define F 1 := F i,1 as in [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF]. Then, for every k ≥ 1, the constant matrix Φ T k defined by the transpose lower left

D n,k -block of Φ = exp F , where F = (• • • | F 3 | F 2 | F 1 ) and F k = - 1 X 0 i   k-2 j=0 k -1 j F j+1 A k-j-1 Id j   U k , (39) 
where

U k =   k-1 j=0 k j + 1 (-1) j (Id -F 1 ) j Id k-1-j   e T i =   k-1 j=1 Id -ζ j k F 1   e T i ( 40 
)
and ζ k = exp (2πi/k) is the root of unity, is such that the last n -1 non-zero columns of Υ -1 k T (Φ k ) T are linearly independent admissible solutions g

(•) 1 , g (•) 2 , . . . , g (•) n-1 ∈ Sol LVE k φ ∩ ker A T LVE k-1 φ
and jets of functionally independent formal first integrals g 1 , . . . , g n-1 of valuation 1.

Remarks 2.3.2.

We already know all the columns of Υ

-1 k T (Φ k ) T belong to Sol LVE k φ , because d dt Υ -1 T = A LVE Υ -1 T
where Υ = exp Y , and the above finite-order products are nothing but truncations of the right-product of Υ -1 T by a constant matrix. Thus it only remains to show that these truncations are also annihilated by left-multiplication by A T LVE k-1 φ , and that the non-zero columns in Y -1 1 T F T 1 are linearly independent; independence of the full non-zero columns in higher orders will be a trivial consequence of the latter fact.

2.

In light of Remark 1., Lemma 2.2.1 basically entails that the entire conjecture holds true at level k = 1 and, as seen in §2.2, that was all we needed to compute independent jets of formal first integrals, regardless whether 2.3.1 loses its conjectural status:

Proposition 2.3.3. The conjecture is true at t 0 for every k ≥ 1.

Proof. All occurrences of A i from here onward will refer to constant matrices A 0 i = X (i) (φ (t 0 )). Case k = 1 has already been tackled paragraphs earlier; in general, we need to prove that

F k A 0 Id k-1 + k -1 1 F k-1 A 1 Id k-2 + • • • + k -1 k -2 F 2 (A k-2 Id) + F 1 (A k-1 ) = 0, ( 41 
)
for every k ≥ 1. First of all, bilinearity from Prop. 1.2.5 and a simple induction argument imply, for every

set of n × n matrices M 1 , . . . , M m , m i=1 (Id + M i ) = Id m n + m j=1 Id m-1 n M j + 1≤j 1 <j 2 ≤m Id m-2 n M j 1 M j 2 + • • • + M 1 • • • M m
and thus setting m = k -1 and M i = -ζ i k F 1 very basic properties of cyclotomic polynomials imply

U k = k-1 i=1 Id -ζ i k F i e T i =   k-1 j=0 Id j n F k-1-j 1   e T i (42) 
We claim that

U k A 0 Id k-1 n = X i Id k-1 n , for every k ≥ 1. (43) 
Indeed, we have, using [START_REF] Dynkin | Evaluation of the coefficients of the Campbell-Hausdorff formula[END_REF] and the rest of the properties of (all of which can be traced back to Lemma 1.2.4 or the universal property of , [34, §2.1]),

U k A 0 Id k-1 n =     k-1 j=0 Id j n F k-1-j 1   e T i   A 0 Id k-1 n = k -1 k   k-1 j=0 Id j n F k-1-j 1   A 0 Id k-2 n e T i + X i k   k-1 j=0 Id j n F k-j 1   = k -1 k k-2 j=0 k -1 -j k -1 F j 1 A 0 Id k-2-j n e T i + X i k   k-1 j=0 Id j n F k-j 1   = 1 k k-2 j=0 (k -1 -j) F j 1 A 0 Id k-2-j n e T i + X i k   k-1 j=0 Id j n F k-j 1   = X i Id k-1 n .
The rest follows from (43):

F k A 0 Id k-1 n = - 1 X i   k-2 j=0 k -1 j F j+1 A k-1-j Id j n   U k A 0 Id k-1 n = - 1 X i   k-2 j=0 k -1 j F j+1 A k-1-j Id j n   X i Id k-1 n = - k-2 j=0 k -1 j F j+1 A k-1-j Id j n
which proves (41) true.

The following corresponds to single-row blocks (i.e. one first integral at a time) and is a valid precursor to future studies on how to maintain the filtered admissible structure even after performing changes of variables, but this is not immediately necessary to our current aims: Conjecture 2.3.4. Let g be a first integral of (1) and g (k) i its k th lexicographic derivative, for every k ≥ 1. Let g k := g (k) (φ (t 0 )) be its value at the original point and define the matrix (constant, just like F k ):

M k =       g k 1 c 1,...,1,2 g k-1 1 g 2 . . . . . . . . . g 2 1 g k • • • g 2 g 1       ∈ Mat n,n 1,n be the first k × D n,k block of M := exp (• • • g k | g k-1 | • • • | g 2 | g 1 ). Then Υ -1 k T Φ T k M T k =       1 k! g k (k) • • • 1 2 g 2 (k) g (k) . . . . . . . . . 1 2 g 2 (2) g (2) g (1)      
In other words: Υ -1 T Φ T Γ T is an infinite matrix whose columns are the Taylor terms of the respective powers of g.

Example 2.3.5. In both cases (the quadrature-free one posed by Conjecture 2.3.1 and the proven, quadrature-derived method in Theorem 2.2.2) every new Taylor block of a given formal first integral can be obtained via a filter matrix; the only difference is whether the matrix has a simple explicit form or not. Let us show the first stages of any filter matrix (proven or not) does to the fundamental matrix. Let us assume, for instance, i = 1. Stage k = 1 is not even a conjecture in virtue of Lemma 2.2.1 and the first order filter matrix, namely F 1 in (36), transforms the transpose of the fundamental matrix of the dual system Υ -1

1 = Y -1 1 into a matrix of the form 0 G 1 :=         0 g (1) 1 g (1) 2 
. . .

g (1) n-1         =         0 0 • • • 0 0 g (1) 1,1 g (1) 1,2 • • • g (1) 1,n-1 g (1) 1,n g (1) 2,1 g (1) 2,2 • • • g (1) 2,n-1 g (1) 2,n . . . . . . . . . . . . g (1)
n-1,1 g

(1)

n-1,2 • • • g (1) n-1,n-1 g (1) n-1,n         ; ( 44 
)
each of these row vectors g

(1)

1 , . . . , g

n-1 is the potential gradient of a formal first integral and all n -1 of them are linearly independent. In other words, they are the outputs of Lemma 2.2.1. The next step would be to integrate the second variational system (from here onwards only quadratures are needed):

Y 2 (t) = Φ 1 t 0 Φ -1 1 (τ ) A 2 (τ ) Φ 2 1 (τ ) dτ invert the fundamental matrix for LVE 2 , Υ 2 = Y 2 1 0 Y 2 Y 1 , thus Ψ 2 := Φ -1 2 T
and multiply it by the second-order filter matrix

Φ 2 = F 2 1 0 F 2 F 1 ,
where F 2 is obtained from ( 39), (40) or from [START_REF] Sprott | Elegant chaos. Algebraically simple chaotic flows[END_REF], and the result we obtain is

Φ 2 (Ψ 2 ) T = Φ 2 Υ -1 2 = G 2 1 0 G 2 G 1 =              0n g (1) 1 . 
. .

g (1) n-1 2 0 d n,2 0 n g (2) 1 g (1) 1 . . . . . . g (2) n-1 g (1) n-1              (45) 
Take for instance the first non-zero row of the lower block (G 2 | G 1 ), i.e. the one highlighted in gray. Imagine we perform the computations for LVE 3 φ and multiply Υ -1 3 by the filter matrix Φ 3 ; we obtain a matrix having the one in (45) as a lower right D n,k × D n,k block:

Φ 3 Υ -1 3 =   F 3 1 0 0 3F 1 F 2 F 1 0 F 3 F 2 F 1   Υ -1 3 =   G 3 1 0 0 3G 1 G 2 G 1 0 G 3 G 2 G 1   (46) =                       0n g (1) 1 . . . g (1) n-1 3 3 0n g (1) 1 . . . g (1)
n-1

0 d n,2 g (2) 1 . . . g (2) n-1 0n g (1) 1 . 
. .

g (1) n-1 2 0 dn,3 0 dn,2 0 n g (3) 1 g (2) 1 g (1) 1 . . . . . . . . . g (n-1) n-1 g (2) n-1 g (1) n-1                      
thus we have an increasing row, highlighted in darker gray color

• • • | g (3) 1 | g (2) 1 | g (1) 
1 . These vectors are precisely the terms of a formal Taylor series of a first integral g 1 (z) of (1) along solution φ:

g 1 (z + φ) = g 1 (φ) + g (1) 1 z + 1 2 g (2) 1 (φ) z 2 + 1 6 g (3) 1 (φ) z 3 + . . . (47) 
for instance a principal fundamental matrix of (VE φ ) is

Υ 1 = Y 1 = (x-1)x (x 0 -1)x 0 0 0 (1 -x 0 ) 1 α -1 (1 -x) 1-1 α
and the first-order filter matrix is very simple in this case,

F 1 = Id 2 - 1 X 0 1 X 0 e T 1 = 0 0 -X 2 (x 0 ,y 0 ) X 1 (x 0 ,y 0 ) 1 = 0 0 0 1 ,
where x 0 = x (0) and y 0 = y (0); so are the higher-order matrices in Φ = exp F obtained from [START_REF] Żo | The monodromy group[END_REF], some of which are shown below:

F 2 = 0 0 0 0 1-α α(x 0 -1) 0 , F 3 = 0 0 0 0 0 (α-1)(2α-1) α 2 (x 0 -1) 2 0 0 , F 4 = 0 0 0 0 0 0 -(α-1)(2α-1)(3α-1) α 3 (x 0 -1) 3 0 -(α-1)(2x 0 +1) α(x 0 -1) 2 0 , . . .
Returning to k = 1, Lemma 2.2.1 ensures that the second column of the filtered matrix

Y -1 1 T F T 1 = 0 0 0 (1 -x 0 ) 1-1 α (1 -x) 1 α -1
, is an admissible solution of degree 1. We can normalize this to eliminate appearances of x 0 :

Φ -1 1 T F T 1 P T := 0 0 0 (1 -x 0 ) 1-1 α (1 -x) 1 α -1 1 0 0 (1 -x 0 ) 1 α -1 T = 0 0 0 (1 -x) 1 α -1
, the second of whose columns is still the gradient f (1) of a formal first integral (this is exactly what appears as a row g

(1)
1 in (44)). The higher order trimming (in which we discard redundant symmetric products f (i 1 ) • • • f (i k ) , i.e. derivatives of powers of f ) is clear once we write down the dual system of equations and filter out telescopically using either Lemma 2.1.1 and the general form of that each new term f (k) of our formal first integral f is expressible as the following (bear in mind that x = x (t) here):

f (k) (x) = d dx f (k-1) | g k (x) , where k-1 2 j=0 (-1) j+1 (α -1) k -1 -2j + k g k-2j (x) + (-1) j+1 α k -2j + k xg k-2j (x) +αg k (x) = 0,
which means g k (x) = 0 for every even k ≥ 2 and e.g.

f 1 = 0 (1 -x) 1 α -1 , f 2 = 0 (α-1)(1-x) 1 α -2 α 0 , f 3 = 0 1 α -2 1 α -1 (1 -x) 1 α -3 0 (1-x) 1 α -2 (2α+(α-2)x-1) α-2 , f 4 = d dx f 3 0 , f 5 = d dx f 4 -(1-x) 1 α -3 (-(α-2)x((α-2)(3α-4)x+α(39α-55)+14)+α(2(53-24α)α-73)+16) (α-2) 2 (3α-4)
,

This can be achieved via (37) in Theorem 2.2.2 (the easiest option even for low values of k) or the filter matrix described in §2.3 to compute each f k in terms of the preceding f k-1 , . . . , f 1 . We invite the reader to apply either method and realize that the above terms appear with only minor attention paid at each step. A tedious scrutiny of the general form of these vectors shows that they are precisely limit cases of the higher-order Taylor terms (along (x (t) , 0) ∈ Γ) of the following function:

f = x sin α 1-α (y) - α cos y α -1 2 F 1 1 2 , α 2(α -1) + 1; 3 2 ; cos 2 y 1 α -1
where 2 F 1 is the Gaussian hypergeometric function [START_REF]Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]. Removing the outer power yields a first integral of (50) as well, as can be easily checked:

f = x sin α 1-α (y) - α cos y α -1 2 F 1 1 2 , α 2(α -1)
+ 1; 3 2 ; cos 2 y .

Undoing the transformation (49) we obtain:

Theorem 3.1.1.
The following function

F = u α 1-α v 1 α-1 u 2 v 2 + 1 1 2(α-1) - αv 2 F 1 1 2 , α 2(α-1) +1; 3 2 ; v 2 u 2 +v 2 (α-1) √ u 2 +v 2
is a first integral of the original special CDK system.

The SIR model with vital dynamics

The SIR epidemiological model with vital dynamics [START_REF] Daley | Epidemic Modeling: An Introduction[END_REF][START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF] is given by

   Ṡ = µ(n -S) -βSI n , İ = βSI n -I(γ + µ), Ṙ = γI -µR. (53) 
The system was first introduced in [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF] strictly for the modelling of infectious diseases, but has since been applied to a number of situations allowing dynamic compartmentalization, e.g. marketing [START_REF] Rodrigues | Can information be spread as a virus? Viral marketing as epidemiological model[END_REF]. The study of its integrability has been the subject of several works already ( [START_REF] Chen | On the Integrability of the SIR Epidemic Model with Vital Dynamics[END_REF][START_REF] Harko | Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates[END_REF]) and the search for a first integral is still an open problem. We will address specific examples; the general case will be addressed in the future.

First, let us start with a very simple example whose solution we already know: β = γ and µ = 0 and change of variable

S = n (1 + xy) , I = -ny, R = γnz, (54) 
we obtain system of equations d dt (x, y, z) = γ -γ(x -1)xy, γxy 2 , -y , and applying Conjectures 2.3.1, 2. ). This is all in keeping with what is already known about the integrability of the system for µ = 0 (see e.g. [6, §1]). The reader can fill in the blanks for filter matrices or progressive filtering (Theorem 2.2.2) and formal Taylor terms here; we will add more detail about these in the less trivial case below.

To wit, the case in which γ = 0 and β, µ = 0. To the best of our knowledge, the integrability of this case is an open problem in earlier references. Change of variables (S, I, R) = y 2 x

-β µ + 1 + n, -x -β µ y 2 , y 2 z , (55) 
itself suggested by an earlier try at simplifying LVE 3 φ , provides us with new system ẋ = -

µx y 2 x -β µ + 1 + n n , ẏ = - 1 2 µy, ż = 0. ( 56 
)
This system admits an invariant plane y = z = 0 containing particular solution

φ (t) = ( x (t) , 0, 0) , where d dt x = -µ x. ( 57 
)
This leads to the variational system Ẏ = A exp Id n Y along φ where

A LVE φ = A exp Id n =        . . . • • • 4A 1 Id 3 n • • • 6A 2 Id 2 n 3A 1 Id 2 n • • • 4A 3 Id n 3A 2 Id n 2A 1 Id n • • • A 4 A 3 A 2 A 1       
, and A i defined per [START_REF] Morales-Ruiz | Differential Galois theory and non-integrability of Hamiltonian systems[END_REF] appear as follows:

A 0 =   -µ x(t) 0 0   A 1 =   -µ 0 0 0 -µ 2 0 0 0 0   A 2 =     0 0 0 2µ x(t) -x(t) - β µ -1 n 0 0 0 0 0 0 0 0 0 0 0 0 0 0     A 3 =     0 0 0 2 (β-µ) x(t) - β
µ -µ n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    A k =     0 0 0 2 (β-µ) x(t) - β µ -µ n 0 3×d 3,k-4 0 0 0 0 0 0 0 0     , k ≥ 4
Lower blocks of the quadrature-free filter matrix are built as proposed in §2.3, let us write the first few cases

F 1 =   0 0 0 0 1 0 0 0 1   , F 2 =   0 0 0 3×4 0 -1 2 x0 0 0   , F 3 =   0 0 0 3×8 0 3 4 x 2 0 0 0   , F 4 =      0 0 0 3×4 0 0 3×8 0 -15 8 x 3 0 3 x - β µ 0 +1 n x0 0 0 0      .
The filtered matrix, has two linearly independent admissible solutions as its nonzero rows:

F 1 Y -1 1 =    0 0 0 0 √ x 0 √ x(t) 0 0 0 1    ,
which (optionally) multiplied by

P 1 =   1 0 0 0 1 √ x 0 0 0 0 1   ( 58 
)
removes occurrences of the initial condition x 0 :

G 1 =    0 0 0 0 1 √ x(t) 0 0 0 1    =   0 0 0 f (1) g (1) 
  .

Let us write things down for k = 3: once we have solved the direct variational system LVE 3 Γ and obtained its fundamental matrix Υ 3 , the principal fundamental matrix of the dual system is nothing but the transpose of its inverse; we can either keep said transpose Υ -1

3

T and right-multiply it by proposed filter Φ T 3 (in which case first integral jets appear as columns) or left-multiply the original Υ -1 3 by Φ 3 in which case jets appear as rows in the bottom block:

Φ 3 Υ -1 3 =   F 3 1 0 0 3F 1 F 2 F 2 1 0 F 3 F 2 F 1     Y 3 1 0 0 3Y 1 Y 2 Y 2 1 0 Y 3 Y 2 Y 1 0 + 3(µ -β) √ x 0 ( x 0 -x(t)) x(t) β/µ -3µ √ x 0 x(t) (β -µ)n
The bottom two rows are already admissible jets (3) | (2) | (1) , but we can trim them further by multiplying this matrix by

Π 3 =   P 3 1 0 0 3P 1 P 2 P 2 1 0 P 3 P 2 P 1   T
where P 1 is as in (58) and P 2 , P 3 are successively chosen so as vanish x 0 from the matrix (in this case, all terms in P 2 , P 3 equal to zero except for (P 3 ) 2,7 =

3 µ -x - β µ 0 -1 +β n √ x 0 (β-µ)
). This equates to weeding out copies of successive symmetric products of f (i) , and/or g (j) and harks back to Lemma 2.1.1 and Conjecture 2.3.4. The resulting matrix retains its neat echeloned structure

Π 3 Φ 3 Υ -1 3 =   G 3 1 0 0 3G 1 G 2 G 2 1 0 G 3 G 2 G 1  
where lower block G 3 | G 2 | G 1 has independent formal first integral jets as its non-zero rows:

     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 x 5/2 0 0 0 0 3 -µ x - β µ +β-µ (β-µ)n √ x 0 0 0 0 -1 2 x 3/2 0 0 0 0 0 1 √ x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1      ( 
59) in other words, the following are degree-three asymptotic expressions of formal first integrals (z = (x, y, z) and φ = ( x, 0, 0) is the particular solution as usual):

f (z + φ) = f (1) (φ) z + 1 2 f (2) (φ) z 2 + 1 3! f (3) z 3 + O z 4 = y √ x - xy 2 x 3/2 + 1 6     3y 3 µ x 1-β µ µ-β + x n x 3/2 + 9x 2 y 4 x 5/2     + O z 4 , g (z + φ) = g (1) (φ) z + 1 2 g (2) (φ) z 2 + 1 3! g (3) z 3 + O z 4 = z + O z 4 .
Again, Theorem 2.2.2 does the exact same job faster and with the guarantee that it works, e.g.

f (2) = -Y -1 1 2 T x x 0 Y 2 1 T f (1) A 2 dx -0, 1 2 x 3/2 0 , 0, 0, 0, 0 , f (3) = -Y -1 1 3 T x x 0 Y 3 1 T 3f (2) (A 2 Id 3 ) + f (1) A 3 dx -0, - 3 
4 x 5/2 0
, 0, 0, 0, 0, 0, 0, 0, 0 , and the reader can check that the jet terms are exactly the same as those in (59). Either method may sound like a cumbersome process but it only requires special attention in its first stages if savvy simplifications are chosen, as was the case for Dixon's system. Later stages of the bottom row remain zero and accordingly g = z is easily checked to be a first integral (formal and convergent) for (56); for f , and much like in §3.1, pattern checks along with simple resummation yield a first integral for system (56),

f = ye y 2 2n e uy 2 n uy 2 n u Γ 1 -u, uy 2 n + x u 1 2u
, where u = β µ and Γ (•, •) is the incomplete Gamma function [START_REF]Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]; undoing transformation (55) we obtain something that is now immediate to prove on its own: 

(-n + S + I) β/µ Γ 1 -β µ , β(-n+S+I) µn µ 2β , G = R -n + S + I .
are two functionally independent first integrals of SIR with γ = 0 (53).

It is worth noting, however, that the only easy goal we can aspire to in most cases will be that of formal first integrals with a compact identifiable general term but without a straightforward convergent expression, and resummation and deep pattern recognition techniques will need to be adapted to each problem. This will also be the subject of future research in the short term but for the time being let us see a short example below.

The van der Pol oscillator

This well-known system is usually presented as an epitome of the proverbial "simple yet chaotic" dynamical system [START_REF] Sprott | Elegant chaos. Algebraically simple chaotic flows[END_REF] ü

= µ(1 -u 2 ) u -u (60) 
Value µ = 2 appears to have a significant, yet still unclarified role in potential qualitative simplifications in variable transformations. Thus let us fix this value for the present paper:

u = v, v = 2(1 -u 2 )v -u (61) 
Perform the change of variables

(u (t) , v (t)) = x (t) y (t) √ 2 , x (t) √ 2 - 1 √ 2 y (t) (62) 
that will simplify the corresponding jet, and our transformed system is ẋ

= -(x -1)x 3 y 2 -1, ẏ = (x -1)x 2 y 3 + y. (63) 
The dual infinite variational system (VE Γ ) along particular solution

Γ = {(x (t) , 0) : t ∈ C} , where ẋ (t) = -1, (64) 
has the following very simple matrices:

A 1 = 0 0 0 1 , A 2 = 0 0 -2(x(t) -1)x(t) 3 0 0 0 , A 3 = 0 0 2(3 -4x(t))x(t) 2 0 0 0 0 6(x(t) -1)x(t) 2 , A 4 = 0 0 12(1 -2x(t))x(t) 0 0 0 0 0 6x(t)(3x(t) -2) 0 , A 5 = 0 0 12 -48x(t) 0 0 0 0 0 0 36x(t) -12 0 0 , A 6 = 0 0 -48 0 0 0 0 0 0 0 36 0 0 0 ,

A k = 0 2×d 2,k , k ≥ 7.
The fact that the ODE in (64) is so trivial to solve (x (t) = -t + C) adds no simplicity to what follows below. The fundamental matrix of VE 1 and the first filter matrix are equally simple:

Y 1 = 1 0 0 e x(0)-x(t) , F 1 = 0 0 0 1 and the generic form of the admissible solutions after applying Theorem 2.2.2 is the following: 

f k = d dx f k-1 | g k (x)

Further comments

Ever since it first took form in [START_REF] Aparicio-Monforte | Formal first integrals along solutions of differential systems I[END_REF], the use of linearized higher variational equations to characterize, obstruct or redefine integrability is proving itself to be a welcome addition to the domain of dynamical systems. This contribution arrives at a time in which other attempts (e.g. [START_REF] Mitsopoulos | Higher order first integrals of autonomous dynamical systems[END_REF][START_REF] Mitsopoulos | Higher-Order First Integrals of Autonomous Non-Riemannian Dynamical Systems[END_REF]) at finding methods to integrate dynamical systems rather than proving them non-integrable are gradually gaining traction.

A number of facts are germane to further studies:

(i) the potential shown by higher variational equations in finding adequate changes of variables that will simplify the system into tractability and, potentially, integrability (this is most exemplified in the sample systems tackled in §3);

(ii) linked to the above, the possible application of a Baker-Campbell-Hausdorff [START_REF] Dynkin | Evaluation of the coefficients of the Campbell-Hausdorff formula[END_REF] sorts of formula upon variable transformations, using the decomposition of a transformed fundamental matrix into a product of matrices to our advantage;

(iii) the possible amenability of results in §2 above to machine learning [START_REF] Montavon | Explaining nonlinear classification decisions with deep Taylor decomposition[END_REF];

(iv) the applicability of this automatic quadrature-algebraic method to the application of generalized, multivariate Padé approximants [START_REF] Cuyt | A review of multivariate Padé approximation theory[END_REF][START_REF] Guillaume | Multivariate Padé approximation[END_REF] to first integrals, which will be tackled in an immediate future;

(v) the fact that the autonomous system (1) need not be Hamiltonian, thus allowing any arbitrary system to be considered and losing the serious constraint posed by symplectic transformations, since variable transformations can now be chosen freely;

(vi) also related to (v): the fact that this overrides the obstacles posed by the direct study of variational systems, which only has an implementation to Hamiltonian systems and requires first integrals to be meromorphic.

Lemma 1 . 2 . 9 .

 129 a) For every two A, B ∈ Mat n,m , exp (A + B) = exp A exp B. b) For every Y ∈ Mat n,m and any derivation ∂ : K → K, ∂ exp Y = (∂Y ) exp Y. c) ([4, Corollary 3]) Given square matrices A, B ∈ Mat 1,1 n , exp AB = exp A exp B. d) In particular, for every invertible square

Proposition 1 . 4 . 5 (

 145 formed by the first k block rows and columns in Υ = exp Y . Define A, Y ∈ Mat (K) as in Lemma 1.4.3 with the above A i , Y i as blocks. Denote the canonical basis on K n (meaning the set of columns of Id n ) by {e 1 , . . . , e n }. Explicit version of LVE k φ ). Still following Notation 1.4.4, the infinite system

  3.4 and (if the matrix is used) Lemma 2.1.1, the general terms of the jets telegraph a very identifiable structure: that of two first integrals for the transformed system, g = log(xy+1) γ + z, f = -xy + log(xy + 1) + y which transform back by (54) into g = n log( S n )+R γn , f = -S+I n + log S n + 1, thus taking us to the already-known first-integral S + I + R -n (thus, S + I + R) and the remaining one, n log( S n )+R γn (alternatively, S n e R n

Theorem 3 . 2 . 1 .

 321 The following two functions,

(- 1 )G 1 = 1 ,(ξ - 1 ) 3 e -4ξ ξ 5 dξ + 3 τ τ 0 (ξ - 1 )D

 1111301 where g k is a solution to-(k -1)k(x -1)x 3 g k-2 (x) -g k (x) + (k -2)(k -1)k(x -1)x 2 g k-2 (x) + kg k (x) = 0. (65)and moreover g k (x) = 0 if k is even, and g 1 (x) = e x . Equation (65) has a solution (which of course only merits being written if k is odd)g k (x) = e kx (k -1)k(ξ -1)ξ 2 e -kξ (k -2)g k-2 (ξ) -ξg k-2 (ξ) dξ.The formal first integral of (63) takes the form i e (2i+1)x y 2i+1 G 2i+1 ; the first terms of G are easy to discern, 2 e -2ξ ξ 2 (η -1) 2 e -2η η 2 dη dξ and the general termis i-1,m-1,j Φ ((i -m) C m,i-m-1,j + 1 m , 2 (i -m) C m,i-m-1,j + 1 m , 3 (i -m) C m,i-m-1,j + 1 m )where we define the following constant vectors: 1 n := (1, . . . , 1) ∈ Z n , and C , , are the columns of the symmetric productId k 1 T d k,l = C k,l,1 | C k,l,2 | • • • | C k,l,d k,l+1 ∈ Mat k,d k,l+1 (Z) ;(obviously C k,l,j = 0 for l < 0), Φ is defined recursively as follows: for every a, b, c ∈ Z m , Φ (a, b, c) :=x x 0 (τ -1) a 1 +1 e -(b 1 +1)τ τ c 1 dτ, m = 1, x x 0 (τ -1) a 1 +1 e -(b 1 +1)τ τ c 1 Φ ((a 2 , . . . , a m ) , (b 2 , . . . , b m ) , (c 2 , . . . , c m )) dτ, m > 1 and D n,m,j is the j th term in the vector D n,m obtained from discarding terms containing repeating factors from the reverse-order version of i T n m • • • i T n and i n is the reverse-order sequence of the first n odd integers > 1, e.g. D 3,2 = (3 • 5, 3 • 7, 5 • 7) = (D 3,2,j ) j=1,2,3,4 , D 4,3 = (3 • 5 • 7, 3 • 5 • 9, 3 • 7 • 9, 5 • 7 • 9)

where g

1 (φ), i.e. the implementation of (3) in 1.2.1 (2.) to z = φ. The same applies, mutatis mutandis, to the rest of rows of infinite block . . . G 3 | G 2 | G 1 , i.e. replacing g (i) [START_REF]Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] with g (i) j for some other j = 2, . . . , n -1. Needless to say the upper terms ... in (46) and higherorder counterparts contain all the cross-products arising from derivatives of products of the first integrals, e.g. g

3 would be a row in G 1 G 2 (it is easy to check which one by way of lexicographic ordering and we invite the reader to do this themselves, using the examples in §3).

Examples

Dixon's system

The following system,

where α, β > 0, arose in [START_REF] Cummings | Dynamical model of the magnetic field of neutron stars[END_REF] as a decoupled two-dimensional fragment of a three-dimensional dynamical model of the magnetic field of neutron stars. Several references (e.g. [START_REF] Alvarez-Ramirez | Espinosa-Paredes The origin of a continuous two-dimensional "chaotic" dynamics[END_REF][START_REF] Dixon | Continuous "chaotic" dynamics in two dimensions[END_REF][START_REF] Sprott | Elegant chaos. Algebraically simple chaotic flows[END_REF]) discussed the ostensible chaotic behavior of the dynamics of (48). [START_REF] Seiler | No chaos in Dixon's system[END_REF], on the other hand, purported the non-chaotic character of this system based on a version of the Poincaré-Bendixson Theorem that precludes the need for compact sets comprising finitely many sets of homoclinic/heteroclinic connections. Given the existing, seldom-discussed gap between the concepts non-chaotic and integrable (regardless of which ad-hoc definition of chaos is used), we can afford to eschew the polemic altogether and focus on finding a conserved quantity for (48) using higher variational equations.

We will focus on the case α = β > 0. The case α = β, as well as the original three-dimensional model ([11, eqs (3)-( 5)]), will be tackled in future work. α = 1 is immediate to solve and needs no further consideration. Let us focus on α = 1. Previous attempts at simplifying higher-order LVE k suggest change of variable

We will use particular solution

Along Γ, the higher variational complex and its dual (LVE φ ) feature the following blocks for k ≥ 0,