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Abstract: This article presents an original approach for extracting atomic-resolution landscapes of continuous 

conformational variability of biomolecular complexes from cryo electron microscopy (cryo-EM) single particle 

images. This approach is based on a new 3D-to-2D flexible fitting method, which uses molecular dynamics 

(MD) simulation and is embedded in an iterative conformational-landscape refinement scheme. This new 

approach is referred to as MDSPACE, which stands for Molecular Dynamics simulation for Single Particle 

Analysis of Continuous Conformational hEterogeneity. The article describes the MDSPACE approach and 

shows its performance using synthetic and experimental datasets.  

 

Keywords: Cryo electron microscopy (cryo-EM); molecular dynamics simulation (MD simulation); continuous 

conformational variability; 3D-to-2D flexible fitting; conformational landscapes; principal component 

analysis; single particle analysis 
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1. Introduction 

Cryo electron microscopy (cryo-EM) single particle analysis allows obtaining information about 

conformational variability of purified biomolecular complexes embedded in random orientations and 

positions in a thin layer of vitreous ice. Sophisticated image processing algorithms and powerful 

computational hardware are required to disentangle multiple co-existing conformations of the complexes 

(particles) from parallel electron-beam projection images of the sample. The particles first need to be 

extracted in individual images from the imaged zones of the sample and, then, a complex problem of 

combined orientational, positional, and conformational heterogeneity needs to be solved. Biological samples 

are imaged at a low electron dose to limit irradiation damage, which results in a low signal-to-noise ratio 

(SNR) of the collected images that makes image processing tasks difficult.   

Continuous conformational variability is a term introduced about ten years ago and currently largely used in 

cryo-EM to refer to the concept according to which biomolecular complexes can be considered to follow 

continuous trajectories of conformational changes and the conformational states contained in the images 

are samples on these trajectories [1-5]. This concept has been the basis for the development of methods to 

obtain the conformational landscapes of the complexes in vitro, by single particle analysis [1, 2, 6-15]. Similar 

methods are currently also being developed for analyzing continuous conformational variability of the 

complexes in situ, by cryo electron tomography [16, 17].  

Methods for deciphering continuous conformational variability from cryo-EM single particle images do not 

make any assumption on the number of the different conformational states present in the sample, but rather 

consider that each particle image may come from a different particle conformation [1, 2, 6-15]. On the 

contrary, the currently still most used methods, based on maximum likelihood classification [18-20], limit the 

number of the output conformations as they in advance fix the number of classes (much smaller than the 

number of particle images) into which the particle images should be separated (separation by assigning each 

particle image to its most likely class), which is followed by further iterative refinement of the highest-

resolution classes (with most similar conformations) and discarding other classes. This allows fast high-

resolution 3D reconstructions of a few conformational averages, provided that the optimized biochemical 

procedures were used to maximize the homogeneity of the sample [21-28]. Such methods are often referred 

to as discrete classification methods [29-34]. 

In 2014, we introduced HEMNMA (Hybrid Electron Microscopy Normal Mode Analysis), one of the first 

methods for analyzing continuous conformational variability from cryo-EM images, which is based on a 

combined 3D-to-2D flexible and rigid-body fitting of an initial conformation of the particle (an atomic model 

or a cryo-EM map) against particle images [2]. The 3D-to-2D fitting in HEMNMA determines the 

conformations based on a linear combination of normal modes of the initial conformation and the amplitudes 

of the normal modes. Usually, a few low-frequency high-collectivity normal modes are enough to describe 
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global motion directions of the particle [35-39]. HEMNMA elastically deforms the initial conformation using 

tentative normal-mode amplitudes and rigid-body aligns the obtained conformations with the images to 

determine the best matching conformation for each particle image simultaneously with the particle 

orientation and position in the image. Very recently, we published a deep learning extension of HEMNMA, 

named DeepHEMNMA [7], which involves a deep neural network that can be trained to emulate the 

HEMNMA operations, achieving an impressive speed-up in determining the conformations, orientations, and 

positions of particles for large datasets, with respect to HEMNMA alone (e.g., at least 40 times faster in the 

experiments shown in [7]). Both HEMNMA and DeepHEMNMA are available in open-source ContinuousFlex 

plugin [40] for Scipion [41]. 

The methods with publicly available and user-friendly software that are additionally able to quasi-

simultaneously determine or refine the particle poses (orientations and positions) and the particle 

conformations in the particle images have advantages over other methods. HEMNMA was the first such 

method [2]. The majority of other continuous conformational variability methods [1, 6, 9-14] perform the 

conformational analysis using fixed orientations and positions of the particles, obtained with discrete 

classification methods [18-20]. CryoDRGN2 is a publicly available deep learning software that allows a 

refinement of the particle poses by alternating between a sequence of iterations of volume learning and a 

pose refinement iteration (by an exhaustive search of orientations and positions over a discretized 5D 

parameter space), but this scheme has been reported to suffer from vanishing gradients due to the change 

of the training objective during the course of the training [42].  

HEMNMA/DeepHEMNMA can directly produce an atomic model for any given particle image (when using an 

atomic model as the initial conformation), whereas other continuous conformational variability methods 

produce EM maps that are then used to derive atomic models. More precisely, the initial atomic 

conformation is obtained by X-ray crystallography or derived from an available EM map before using 

HEMNMA, but it is directly used to obtain a refined atomic model in terms of conformation for each particle 

image. Indeed, HEMNMA and DeepHEMNMA allow obtaining an atomic-scale conformational landscape 

when the initial conformation is given by an atomic structure and a “pseudoatomic”-scale conformational 

landscape when the initial conformation is given by an EM map. The pseudoatoms are 3D Gaussian functions 

that represent the EM map and replace atoms in the 3D-to-2D fitting based on normal modes [43]. 

Additionally, HEMNMA and DeepHEMNMA can produce EM map reconstructions in the conformational 

landscape, by assembling images with similar conformations in 3D reconstructions.   

The methods based on normal modes perform fast changes of the given conformation using a few variables 

(the amplitudes of a few normal modes) [35-39]. However, large amplitudes of motion along normal modes 

may induce distortions of the conformational model. Model distortions are usually avoided using Molecular 

Dynamics (MD) simulation approaches (deterministic) or Monte Carlo simulations approaches (stochastic), 

as in the case of 3D-to-3D flexible fitting of an atomic initial conformation against a cryo-EM map [44-50]. 
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These methods produce good quality structures using a large number of variables (degrees of freedom), 

determined by the number of atomic coordinates. However, they have a very high computational cost 

compared to the methods based on normal modes and, until very recently, they remained computationally 

prohibitive for characterizing continuous conformational variability in large and highly heterogeneous sets of 

single particle images. For instance, a stochastic approach called Natural Moves Monte Carlo, which refines 

an initial conformation using a 2D particle class average, was used with image datasets containing mixtures 

of only two conformational states or conformations very close to these two states (e.g., open and closed) 

[51]. The method refines the conformation by employing a coarse-grained model composed of rigid segments 

representing domains connected by flexible loops and by sampling the conformations using rigid-body 

degrees of freedom of the domains while analyzing a high-SNR 2D class average. The Natural Moves Monte 

Carlo method has a low robustness to noise and cannot be used with individual, low-SNR single particle 

images [51]. In a more recent study, a 1D conformational landscape was obtained by generating samples 

from a posterior distribution using a Monte Carlo approach to determine a 1D free energy profile from single 

particle images, based on a pre-determined path collective variable [5]. However, the method cannot be 

easily extended to map images onto conformational landscapes of higher dimensions (e.g., 2D or 3D) and its 

success depends on the choice of the path collective variable. The determination of the path collective 

variable requires the availability of at least two relevant atomic conformational models, which might be 

difficult to obtain for some systems.   

Recently, we combined the displacement based on normal modes and the displacement based on MD 

simulation within a 3D-to-3D flexible fitting method named NMMD (Normal Mode and Molecular Dynamics), 

which proved to speed up fitting of atomic initial conformations against cryo-EM maps while avoiding 

structural distortions induced by normal modes [52]. NMMD simultaneously integrates global atomic 

displacements (along normal modes) and local atomic displacements (based on MD simulation) [52]. The gain 

in speed obtained by NMMD opens doors for MD-based analysis of continuous conformational variability in 

large and highly heterogeneous sets of single particle images.  

To allow a fast MD-based analysis of individual single particle images, we developed a method for 3D-to-2D 

flexible fitting of an initial atomic conformation against a given particle image that is able to use a 

combination of the displacement based on normal modes and the displacement based on MD simulation. 

The normal-mode empowered MD-based 3D-to-2D flexible fitting method uses pre-determined particle 

orientations and positions (e.g., by projection matching of the image with the initial conformation), which 

are refined during the fitting. However, this 3D-to-2D flexible fitting method alone revealed to be suboptimal 

for accurate extraction of conformational landscapes due to a difficulty to individually fit some of the particle 

views. To tackle this issue, we developed an iterative approach that extracts the information about the 

principal motion directions from the ensemble of the fitted conformations (obtained for a set of particle 

images through individual 3D-to-2D flexible fitting of each image) and uses this information for the next 
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round of the individual 3D-to-2D flexible fitting by replacing normal modes by the principal motion directions 

obtained in the previous round. The iterative refinement of the principal motion directions extracted from 

the ensemble of the fitted conformations helps to iteratively refine the individual 3D-to-2D flexible fitting of 

the particle images, which in turn results in the refinement of the entire conformational landscape.  

In this article, this iterative approach is introduced and referred to as MDSPACE, which stands for Molecular 

Dynamics simulation for Single Particle Analysis of Continuous Conformational hEterogeneity. To the best of 

our knowledge, MDSPACE is the first method for analyzing conformational variability from cryo-EM single 

particle images that is based on classical mechanics MD simulation, meaning deterministic trajectories 

describing the evolution of the atomic model over time. MDSPACE can obtain the conformational landscapes 

from highly heterogeneous image datasets containing continuous conformational heterogeneity, by 

analyzing individual low-SNR single particle images. MDSPACE requires a single input atomic structure, which 

is used as the initial conformation for fitting each particle image. As shown in our experiments, MDSPACE 

can recover the conformational space even when the initial conformation is distant from the target 

conformations in the particle images. Furthermore, MDSPACE allows obtaining conformational landscapes 

of any dimension (1, 2, 3, etc.), which can be visualized using 1D histograms, 2D plots, or 3D plots. 

The MDSPACE method is described in Section 2. Section 3 shows the performance of the new method with 

synthetic data of the heterodimeric ABC exporter TmrAB [26] and with experimental cryo-EM data of yeast 

80S ribosome-tRNA complexes from EMPIAR-10016 dataset [21]. A general discussion and conclusion are 

provided in Section 4. 

2. Methods 

MDSPACE 

MDSPACE is an iterative approach (Figure 1) for analyzing continuous conformational variability in single 

particle images based on MD simulation. The MD simulation is guided by a 2D biasing potential. MDSPACE 

iteratively refines an initial conformation of the particle in each image. The initial conformation is the same 

for all particle images and determined by a given atomic structure. Also, MDSPACE iteratively refines an initial 

particle orientation and position in each image (the initial rigid-body alignment obtained by classical 

approaches based on classification and projection matching or by other continuous conformational variability 

approaches prior to using MDSPACE). In the first iteration, a provided atomic structure is flexibly fitted to 

each particle image, independently of other images, using an original 3D-to-2D flexible fitting approach based 

on normal-mode empowered MD simulation (indicated as “NMMD step” in Figure 1) and the given initial 

particle orientation and position in the image. The obtained ensemble of fitted atomic models is then rigid-

body aligned to the initial atomic structure and principal component analysis (PCA) is performed on the rigid-

body aligned models. The principal components obtained by PCA represent the dominant conformational 

changes extracted from the ensemble of fitted atomic models in one iteration of MDSPACE. In the next 
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iteration of MDSPACE, the previously extracted principal component vectors replace the normal mode 

vectors used in the “NMMD step”, to incorporate the ensemble information in the fitting of individual 

particles (principal-component empowered MD simulation indicated as “PCMD step” in Figure 1). Each new 

iteration of MDSPACE (involving a new round of 3D-to-2D flexible fitting) is based on principal-component 

empowered MD simulations that encourage the conformation to move along the principal component 

vectors representing the dominant motions, with the effect of refining the fitting. Rigid-body movements 

that occurred during the MD-based flexible fitting are measured at the end of each MDSPACE iteration and 

are then used to refine the parameters of the initial rigid-body alignment of the particle images for the next 

MDSPACE iteration. In each MDSPACE iteration, it is possible to visualize the PCA space (determined by the 

first few principal axes), individual atomic models, movies of atomic-model displacements along different 

directions in this space, or 3D reconstructions from the groups of images with similar particle conformations 

(close points in the PCA space) along these directions. These directions can be the principal axes or can be 

determined by a path traversing the densest regions in this space. The information obtained from the PCA 

space can be compared between different iterations.       

 

Figure 1 : Flowchart of the MDSPACE method (left) proposed for iterative continuous conformational analysis of single 
particle images, which is based on a 3D-to-2D flexible fitting approach (right) that can use normal-mode empowered 
MD simulation (indicated as “NMMD step” in this figure) or principal-component empowered MD simulation (indicated 
as “PCMD step” in this figure). The MD simulation is guided by a 2D biasing potential (right). The dotted lines represent 
the iterative process, which may be repeated several times to refine the conformational space. 

 

3D-to-2D flexible fitting using MD simulations 

In 3D-to-3D flexible fitting approaches based on MD simulation [44-48, 52], MD simulation drives an initial 

atomic conformation towards the target conformation defined by a cryo-EM map, thanks to the so-called 

biasing potential that is added to the classical MD force field potential and depends on the cryo-EM map. For 

instance, the biasing potential can be defined as the correlation coefficient (𝐶𝐶𝐶𝐶) between the cryo-EM map 

and a map simulated from the atomic model to guide the motion of the molecule following MD algorithm 

[45] or normal-mode empowered MD algorithm NMMD [52] so that the lowest potential value is achieved 
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for the highest 𝐶𝐶𝐶𝐶, i.e., when the atoms fit well the cryo-EM map. Then, the effective potential used for the 

fitting is as follows [45, 52]:  

𝑉𝑉 = 𝑉𝑉𝑓𝑓𝑓𝑓 +  𝑘𝑘(1 − 𝐶𝐶𝐶𝐶) ( 1 ) 

where 𝑉𝑉𝑓𝑓𝑓𝑓 in the potential from the classical MD-based force field, 𝐶𝐶𝐶𝐶 is the correlation coefficient between 

the cryo-EM map and the map simulated from the atomic model, and 𝑘𝑘 is the force constant that determines 

the weight given to the biasing potential with respect to the classical MD potential. The force constant is an 

important parameter as it allows the MD simulation to go through energy barriers and explore the 

conformational space. 

In the method proposed here for 3D-to-2D flexible fitting of an atomic model to a single particle image, we 

use the total potential (Eq. 1) where the biasing potential term is defined as the 𝐶𝐶𝐶𝐶 between the given 

particle image (𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒) and a 2D projection simulated using the atomic model (𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠). This 𝐶𝐶𝐶𝐶 is defined as 

follows: 

𝐶𝐶𝐶𝐶 =  
 ∑ 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖, 𝑗𝑗)𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖, 𝑗𝑗)𝑠𝑠,𝑗𝑗

�∑ 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒
2 (𝑖𝑖, 𝑗𝑗)𝑠𝑠,𝑗𝑗 ∑ 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠

2 (𝑖𝑖, 𝑗𝑗)𝑠𝑠,𝑗𝑗

, ( 2 ) 

where ∑ (·)𝑠𝑠,𝑗𝑗  is the sum over all pixel indexes (𝑖𝑖, 𝑗𝑗) in the image, and the simulated projection and the particle 

image have the same number of pixels in each dimension and the same pixel size.   

The force applied to move the atoms is obtained by deriving the potential energy with respect to the 

atomic coordinates, 𝑿𝑿𝑛𝑛 = (𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛, 𝑧𝑧𝑛𝑛), 𝑛𝑛 = 1, 𝑁𝑁, as: 

𝑭𝑭 = − 𝜕𝜕
𝜕𝜕𝑿𝑿𝑛𝑛(𝑙𝑙)

𝑉𝑉, 𝑙𝑙 = 1,3,      ( 3 ) 

where 𝑁𝑁 is the number of atoms, and 𝑿𝑿𝑛𝑛(1) = 𝑥𝑥𝑛𝑛, 𝑿𝑿𝑛𝑛(2) = 𝑦𝑦𝑛𝑛, 𝑿𝑿𝑛𝑛(3) = 𝑧𝑧𝑛𝑛, 𝑛𝑛 = 1, 𝑁𝑁. 

By combining Eq. 1 and Eq. 3, the total force 𝑭𝑭 can be written as follows: 

𝑭𝑭 =  𝑭𝑭𝑓𝑓𝑓𝑓 − 𝑘𝑘 𝜕𝜕
𝜕𝜕𝑿𝑿𝑛𝑛(𝑙𝑙)

𝐶𝐶𝐶𝐶,     ( 4 ) 

where  𝑭𝑭𝑓𝑓𝑓𝑓 is the force resulting from the classical MD-based force field.  

The derivatives of the 𝐶𝐶𝐶𝐶 are calculated using: 

                𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑿𝑿𝑛𝑛(𝑙𝑙) =

∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠,𝑗𝑗)𝜕𝜕𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠,𝑗𝑗)
𝜕𝜕𝑿𝑿𝑛𝑛(𝑙𝑙)𝑠𝑠,𝑗𝑗

�∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
2 (𝑠𝑠,𝑗𝑗)𝑠𝑠,𝑗𝑗 ∑ 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠

2 (𝑠𝑠,𝑗𝑗)𝑠𝑠,𝑗𝑗

−  
�∑ 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠,𝑗𝑗)𝜕𝜕𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠,𝑗𝑗)

𝜕𝜕𝑿𝑿𝑛𝑛(𝑙𝑙)𝑠𝑠,𝑗𝑗 ��∑ 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠,𝑗𝑗)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠,𝑗𝑗)𝑠𝑠,𝑗𝑗 �

�∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
2 (𝑠𝑠,𝑗𝑗)𝑠𝑠,𝑗𝑗 �∑ 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠

2 (𝑠𝑠,𝑗𝑗)𝑠𝑠,𝑗𝑗 �
3
2

. ( 5 )   

In the following, we show how the simulated 2D projection (𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠) and its derivatives ( 𝜕𝜕𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕𝑿𝑿𝑛𝑛(𝑙𝑙)

) are obtained.  

A continuous representation of an atomic model is commonly simulated by placing a 3D Gaussian function 

at each atomic position [45]. A 2D projection of such a Gaussian-based representation of an atomic model, 



Vuillemot et al                                                               J Mol Biol 2023 (in press, YJMBI_167951)  

9 
 

at an orientation determined by a rotation matrix R and a position determined by a translation vector T, is 

defined as follows (projection along the z-axis):   

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦) = 1
2𝜋𝜋𝜎𝜎2 ∑ 𝑒𝑒− 1

2𝜎𝜎2�(𝑒𝑒−𝑟𝑟𝑒𝑒
𝑛𝑛)2+�𝑦𝑦−𝑟𝑟𝑦𝑦

𝑛𝑛�
2�𝑁𝑁

𝑛𝑛=1 ,        ( 6 ) 

�
𝑟𝑟𝑒𝑒

𝑛𝑛

𝑟𝑟𝑦𝑦
𝑛𝑛

𝑟𝑟𝑧𝑧
𝑛𝑛

� = 𝑹𝑹−1  �
𝑥𝑥𝑛𝑛

𝑦𝑦𝑛𝑛

𝑧𝑧𝑛𝑛
� − 𝑻𝑻 = 𝑹𝑹−1  𝑿𝑿𝑛𝑛 − 𝑻𝑻,      𝑛𝑛 = 1, 𝑁𝑁,     

where 𝜎𝜎 is the standard deviation of the Gaussian functions,  𝑁𝑁 is the number of atoms in the model with 

the coordinates  𝑿𝑿𝑛𝑛 = (𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛, 𝑧𝑧𝑛𝑛), 𝑛𝑛 = 1, 𝑁𝑁, and 𝑟𝑟𝑒𝑒
𝑛𝑛 and 𝑟𝑟𝑦𝑦

𝑛𝑛 are the x and y coordinates of the 𝑛𝑛-th atom 

rotated and translated with a 3 × 3 rotation matrix 𝑹𝑹 and a 3 × 1 translation vector  𝑻𝑻. Note that the projection 

depends on the pose (𝑹𝑹, 𝑻𝑻) and on the provided atomic coordinates 𝑿𝑿𝑛𝑛. 

Let us write Eq. 6 as: 

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦) = ∑ 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛 (𝑥𝑥, 𝑦𝑦)𝑁𝑁

𝑛𝑛=1 ,     ( 7 ) 

where 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛 (𝑥𝑥, 𝑦𝑦) is the contribution of the n-th atom to the projection, given by: 

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛 (𝑥𝑥, 𝑦𝑦) = 1

2𝜋𝜋𝜎𝜎2 𝑒𝑒− 1
2𝜎𝜎2�(𝑒𝑒−𝑟𝑟𝑒𝑒

𝑛𝑛)2+�𝑦𝑦−𝑟𝑟𝑦𝑦
𝑛𝑛�

2�.   ( 8 ) 

Using the expression in Eq. 7, the derivative of the simulated projection with respect to the atomic 

coordinates 𝑿𝑿𝑛𝑛(𝑙𝑙), 𝑙𝑙 = 1,3 (𝑿𝑿𝑛𝑛(1) = 𝑥𝑥𝑛𝑛, 𝑿𝑿𝑛𝑛(2) = 𝑦𝑦𝑛𝑛, and 𝑿𝑿𝑛𝑛(3) = 𝑧𝑧𝑛𝑛) can be written, after the 

discretization on a regular image pixel grid (pixel coordinates(𝑖𝑖, 𝑗𝑗)), in the following form: 

𝜕𝜕𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠,𝑗𝑗)
𝜕𝜕𝑿𝑿𝑛𝑛(𝑙𝑙)

= 1
𝜎𝜎2 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛 (𝑖𝑖, 𝑗𝑗)𝑸𝑸𝑠𝑠,𝑗𝑗(𝑙𝑙),     𝑙𝑙 = 1,3,   ( 9 )  

where 𝑸𝑸𝑖𝑖,𝑗𝑗(𝑙𝑙) is the 𝑙𝑙-th element (𝑙𝑙 = 1,3) of the vector 𝑸𝑸𝑖𝑖,𝑗𝑗:  

𝑸𝑸𝑠𝑠,𝑗𝑗 = 𝑹𝑹 �
𝑖𝑖 − 𝑟𝑟𝑒𝑒

𝑛𝑛

𝑗𝑗 − 𝑟𝑟𝑦𝑦
𝑛𝑛

0
�.     ( 10 ) 

 

3D-to-2D flexible fitting using normal-mode empowered MD simulations 

In the NMMD method [52], which performs 3D-to-3D flexible fitting, a set of normal modes, describing the 

most collective motions of the structure, is incorporated in MD simulation through a simultaneous 

integration of the conformational parameters related to normal modes (normal-mode amplitudes) and the 

conformational parameters related to MD simulation (Cartesian atomic coordinates) [52]. The NMMD 

method uses the force vector on MD-induced atomic coordinate displacement (𝑭𝑭𝑓𝑓𝑓𝑓) to implement the force 

vector on normal-mode amplitudes (𝑭𝑭𝑞𝑞), according to the following linear relationship between them [52]: 

𝑭𝑭𝑞𝑞 = 𝑨𝑨 𝑭𝑭𝑓𝑓𝑓𝑓 ,      ( 11 ) 

where 𝑨𝑨 is the matrix of normal mode vectors. 
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The NMMD algorithm encourages the simulation to move along the normal modes to faster perform global 

dynamics while increasing the computational efficiency of MD-based local dynamics.  

In the first iteration of MDSPACE, 3D-to-2D flexible fitting is performed using the NMMD algorithm 

(simultaneous integration of the global displacement along normal modes and the MD-based local 

displacement), which accelerates flexible fitting of a given initial atomic conformation to target 

conformations in cryo-EM single particle images (the refinement of the atomic conformation against each 

particle image). In the next iterations of MDSPACE, the normal modes in NMMD are replaced by the principal 

component vectors that are extracted from the conformational ensemble obtained at the previous MDSPACE 

iteration, which iteratively refines the conformation and rigid-body alignment parameters of the particle in 

each image, as described in the subsection “PCA-based refinement of MD simulations”.   

 

Initial orientation and position of the particles by rigid-body pre-alignment 

The MDSPACE method presented in this article assumes that a set of rotations 𝑹𝑹1 and translations 

𝑻𝑻1, corresponding to 𝑹𝑹 and 𝑻𝑻 in Eq. 6, have been obtained by pre-alignment of the initial conformation with 

the particle images (regardless of the method used for this pre-alignment). Indeed, although rigid-body 

motions are allowed in MD simulations, it is preferable for the initial conformation to be pre-aligned with the 

particle images in order to prevent the simulation to get trapped into local minima.  

The accuracy of the pre-alignment depends on a multitude of factors. For instance, as in the case considered 

in this article, where large continuous conformational heterogeneity is present in the particle images and 

rigid-body alignment methods are used for the pre-alignment (e.g., based on projection matching between 

the initial conformation and the particle images), the pre-alignment errors will be larger. In this article, we 

show that MDSPACE can refine the initial rigid-body alignment. We show that a coarse rigid-body pre-

alignment is sufficient to guide the MD simulation in the right direction, as rigid-body alignments are further 

performed during the MD-based 3D-to-2D flexible fitting (fine rigid-body movements of the atomic model 

during MD simulation to finely match the particle in the image), as explained in the next subsection. 

 

Refinement of the initial orientation and position of the particles  

At each MDSPACE iteration and for each particle image, two sets of values of the rotation and translation 

parameters can be distinguished: initial and final. The initial values at an MDSPACE iteration are used to 

determine the pose of the projection image (Eq. 6), which remains unchanged until the end of that MDSPACE 

iteration. For the first MDSPACE iteration, the initial rotation and translation parameter values (𝑹𝑹1 and 𝑻𝑻1, 

respectively) are obtained by rigid-body pre-alignment (as explained in the previous subsection). During each 

MDSPACE iteration, the atomic structure undergoes rigid body transformations, driven by the MD-biasing 

potential towards the target particle conformation and position in the image. The final rotation and 

translation parameter values at an MDSPACE iteration are obtained by combining the initial values (𝑹𝑹1 and 
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𝑻𝑻1) and the values (𝑹𝑹2 and 𝑻𝑻2) estimated through a rigid-body alignment between the initial conformation 

and the finally fitted conformation (by minimizing the RMSD between the two conformations). The final 

rotation and translation parameter values obtained at one MDSPACE iteration (𝑹𝑹3 and  𝑻𝑻3, respectively) are 

used as the initial values (new 𝑹𝑹1 and 𝑻𝑻1) for the next MDSPACE iteration.  

At each MDSPACE iteration, the rotation 𝑹𝑹2 and the translation 𝑻𝑻2 are obtained by estimating rigid-body 

motion between the initial conformation (atomic coordinates 𝒓𝒓𝑠𝑠
𝑛𝑛, 𝑛𝑛 = 1, 𝑁𝑁) and the finally fitted 

conformation (atomic coordinates 𝒓𝒓𝑓𝑓
𝑛𝑛, 𝑛𝑛 = 1, 𝑁𝑁), by the following minimization of the RMSD between these 

two conformations:  

min
𝑹𝑹2,𝑻𝑻2 

�1
𝑁𝑁

∑ ∥ 𝒓𝒓𝑓𝑓
𝑛𝑛 − (𝑹𝑹2 ∙ 𝒓𝒓𝑠𝑠

𝑛𝑛 + 𝑻𝑻2)  ∥2𝑁𝑁
𝑛𝑛=1 ,   ( 12 ) 

where 𝑁𝑁 is the number of atoms. The RMSD minimization is performed using an optimization algorithm based 

on singular value decomposition that is  available in BioPython [53].  

At each MDSPACE iteration, the final rotation and translation parameter values (𝑹𝑹3 and  𝑻𝑻3, respectively) are 

obtained by combining the initial parameter values (𝑹𝑹1 and 𝑻𝑻1) with the parameter values extracted from 

the MD simulation (𝑹𝑹2 and 𝑻𝑻2), as follows:  

𝑹𝑹3 = 𝑹𝑹2 ⋅ 𝑹𝑹1,        𝑻𝑻3 = 𝑹𝑹2 ⋅ 𝑻𝑻1 + 𝑻𝑻2,    ( 13 ) 

The 𝑹𝑹3 and  𝑻𝑻3 parameter values are then used as the refined values of the initial rotation and translation 

parameters for the next MDSPACE iteration (in place of 𝑹𝑹1 and 𝑻𝑻1, respectively).  

 

PCA-based refinement of MD simulations 

The 3D-to-2D flexible fitting accurately fits most particle images. However, some images are more difficult to 

fit, especially the images associated with specific particle views for which the conformational change is less 

detectable or ambiguous in the projection plane (e.g., a motion mainly along the projection axis will affect 

the 2D projection but the conformational change will be less detectable in the projection). In such cases, the 

fitting will most likely induce no displacement from the initial atomic positions (the initial conformation) or 

perform small-scale, local rearrangements. Most likely, it will not find the correct conformation in images 

with such views. This is a direct consequence of fitting each particle image individually (independently of 

other images) in the presence of high level of noise in the images.  

To make the approach more robust to particle views and noise, MDSPACE involves an iterative approach that 

refines the MD-based 3D-to-2D flexible fitting of individual particle images by incorporating the ensemble 

conformational information into MD simulation, which encourages MD simulations of the particle images 

with “bad” views to follow the principal motion directions learned from the images with “good” views at the 

previous iteration. In this approach, the information about the principal motions learned at one iteration is 
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used as a prior to reanalyze the dataset at the next iteration, which boosts the MD-based fitting of individual 

particle images making it robust to difficult views and noise. For this reason, at the end of each MDSPACE 

iteration, the conformations obtained by individually fitting different particle images are rigid-body aligned 

with respect to the initial conformation and then analyzed using PCA. The PCA results in principal component 

vectors that represent global motions seen in data at that MDSPACE iteration, which are then incorporated in 

a new round of the fitting at the next MDSPACE iteration. More precisely, the PCA-space conformational 

information is incorporated into normal-mode empowered MD-based flexible fitting by replacing normal-

mode vectors by principal component vectors of the PCA space, which we refer to as PCA-empowered MD-

based flexible fitting. This encourages the simulation to move along the principal component vectors found 

in the previous MDSPACE iteration. The PCA-empowered MD-based flexible fitting yields a new set of atomic 

structures, whose principal components can be obtained by PCA and then incorporated in a new round of 

the fitting. MDSPACE, which alternates the fitting with the PCA analysis, refines the PCA space over the 

iterations, making it closer to the target conformational landscape, as illustrated in Figure 1. 

It is worth noting that the PCA-empowered MD-based flexible fitting in MDSPACE not only refines the flexible 

fitting (the finally fitted conformations) but also refines the initial rigid-body alignment of the particle images. 

More precisely, at the end of each iteration of MDSPACE, the rigid-body parameters that initiated this 

iteration are combined with the alignment parameters extracted from the MD simulation performed at the 

same iteration (following Eq. 13) and the obtained refined rigid-body parameters are used to start the new 

MDSPACE iteration.     

 

General recommendation for running MDSPACE iteratively 

To increase speed and accuracy of analyzing large datasets of single particle images, we generally recommend 

using normal-mode empowered MD simulations for the first MDSPACE iteration and using principal-

component empowered MD simulations (PCA-based refinement) for all other iterations. Adding normal 

modes to MD simulation accelerates the fitting. Adding principal component vectors from the previous 

MDSPACE iteration to MD simulation in the next MDSPACE iteration improves robustness to difficult views 

and noise. Regarding the number of principal component vectors to use for the PCA-based refinement, 3 

principal component vectors may generally be enough, but possibly more will be required for some systems. 

The number of principal component vectors can be selected based on the observed decrease in the singular 

values of the PCA components. The computational cost of adding more principal component vectors is 

negligible.  

A coarse-to-fine data processing scheme can be used to additionally speed up MDSPACE processing (e.g., in 

the case of large data sets of large complexes such as ribosomes). More precisely, at the first MDSPACE 

iteration (normal-mode empowered MD simulations), the principal components of the conformational 
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variability can be learned by processing a small data subset, which will result in a coarsely estimated low-

dimensional conformational landscape. At the next MDSPACE iteration (principal-component empowered 

MD simulation), the conformational landscape can be refined using a larger number of images and the 

principal components obtained at the previous MDSPACE iteration.  

 

Software implementation  

MD simulation, Normal Mode Analysis, and PCA methods and software: The iterative MDSPACE method 

requires a large number of computationally costly MD simulations, as MD-based fitting is applied several 

times for each particle (M times per particle, for M iterations of MDSPACE). To reduce the computational 

cost, we choose a coarse-grained approach for MD simulations using off-lattice Cα Gō model as described by 

Clementi and collaborators [54]. The Cα Gō model can be extended to Phosphorus atoms, as done in this 

article for the experiments with 80S ribosome-tRNA cryo-EM dataset [21]. Off-lattice Gō models can 

successfully capture native dynamics and conformational transitions of diverse systems [55] using much 

smaller computational resources than all-atom simulations. However, the non-local interaction in Gō-like 

models are determined from a “native state” corresponding to the experimental structure, which tends to 

bias the dynamics towards the experimental structure [56]. In the case of smaller systems (e.g., much smaller 

than the ribosome studied in this article), one could replace the Cα Gō model by all-atom simulation as it 

would avoid such bias. Gō models were obtained by SMOG2 software [57]. As shown in this article, short 30-

picosecond MD simulations (used with both synthetic and experimental datasets) are sufficient for 3D-to-2D 

flexible fitting with MDSPACE. In all experiments in this article, MD simulations were conducted using the MD 

simulation software GENESIS [58], which is also available as part of ContinuousFlex [40] (a plugin for the 

image processing software package Scipion [41]) that now also includes MDSPACE software. The software 

for calculating normal modes here is ElNemo [59], which is also available in ContinuousFlex. ElNemo 

accelerates normal mode analysis using the rotation-translation block approach [60]. Both GENESIS and 

ElNemo were used in our previous work on NMMD [52].  PCA is obtained by probabilistic principal component 

analysis implementation in Scikit-Learn [61, 62]. 

 

PCA space clustering and 3D reconstructions: To interpret continuous conformational variability from a low-

dimensional space such as a PCA space, we performed clustering of close points in the PCA space and 

grouping of the corresponding particle images into 3D reconstructions to visualize conformational variability 

in terms of EM maps. A new clustering tool was developed to allow a manual or automated drawing of a 

trajectory of points in the PCA space and performing an automatic clustering of each particle image to the 

closest point on the trajectory. An automatically generated trajectory consists of a set of points regularly 

spaced on a line that can be drawn along a PCA axis or any other direction in the PCA space. The trajectory 

points can be manually dragged to adjust to data distribution. The resulting clusters of particle images in the 
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PCA space can be manually refined (by adding or removing data, including removal of outliers). The 3D 

reconstruction of the EM maps from the clusters is obtained by direct Fourier interpolation using Xmipp [63, 

64].  

 

MDSPACE software: MDSPACE is implemented as part of the ContinuousFlex plugin [40] for Scipion [41], 

which also offers NMMD and HEMNMA/DeepHEMNMA software. As NMMD, MDSPACE uses GENESIS for 

MD simulations and ElNemo for calculating normal modes. The 3D-to2D flexible fitting is implemented in 

GENESIS by modifying the 3D-to-3D flexible fitting algorithm [45] to use 3D-to-2D projection and 2D biasing 

potential. The Scipion frontend of MDSPACE allows highly parallelized calculations (MPI protocol, CPU 

processing) and running the software on high performance computers. Additionally, it provides an intuitive 

and user-friendly graphical interface for running MDSPACE, which also simplifies the reproducibility of the 

analyses. 

 

3. Results 

3.1 Experiment with synthetic cryo-EM data 

In this subsection, we show the performance of MDSPACE using synthetic data of the heterodimeric ABC 

exporter TmrAB [26]. 

 

Synthetic dataset of TmrAB 

To assess the performances of MDSPACE in a controlled environment (with a known ground-truth solution), 

we synthesized a dataset by simulating experimental cryo-EM conditions as much as possible. The system 

studied is a heterodimeric ABC exporter, TmrAB, composed of two ABC proteins, TmrA and TmrB, in complex 

with a nanobody, Nb9F10 (Figure 2a). Multiple atomic models of the complex in different conformations, 

derived from cryo-EM maps, are available in the Protein Data Bank (PDB) [26] including an outward-facing 

conformation (PDB-6RAH, designated here as TmrABOF) and an inward facing conformation (PDB-6RAF, 

designated here as TmrABIF). TmrABIF has a closed extracellular gate and an open intracellular gate (Figure 

2a), whereas TmrABOF has an open extracellular gate and a closed intracellular gate (Figure 2b, left). 

 

In this experiment, TmrABOF was used as the initial conformation for 3D-to-2D flexible fitting against synthetic 

images, whereas the TmrABIF was used with its normal modes 7 and 8 to generate multiple synthetic 

conformations from which images were generated, by randomly sampling a continuous trajectory of the 

conformational transition defined by these two normal modes. We note here that normal modes are ordered 

according to their frequency and that the first 6 lowest-frequency normal modes (modes 1-6) are never used, 

as representing rigid-body displacements. The TmrABIF
’s mode 7 describes opening and closing of the 
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intracellular gate and mode 8 describes a rotation of the intracellular part of TmrB together with the 

nanobody, as shown in Figure 2b. To synthesize multiple conformations of the complex, we performed 

random atomic displacements of TmrABIF along modes 7 and 8, using the same normal-mode amplitude for 

both normal modes, where this normal-mode amplitude was sampled from a random uniform distribution 

in the range [-100,100]. This procedure was used to generate 500 different conformations along the 

trajectory. Figure 2c shows the ground-truth synthetic continuous conformational variability that is projected 

onto the first two principal component axes (ground-truth two-dimensional PCA space), together with the 

projections of TmrABIF and TmrABOF on the same PCA space. By observing the relative distances between the 

points in the ground-truth PCA space (Figure 2c), one can notice that the initial conformation for 3D-to-2D 

fitting against the synthetic images (TmrABOF) is significantly far from the target conformations (ground-truth 

trajectory). More precisely, the average root mean square deviation (RMSD) between TmrABOF and the 

synthetic conformations generated from TmrABIF is 8.1 Å.  

 

The synthetic conformations were converted into high-resolution density maps using a method based on 

scattering factors [65] and projected (1 projection per conformation) using ray casting in real space to obtain 

a set of 2D particle images of 128 × 128 pixels and a pixel size of 2 Å × 2 Å. The projection orientations followed 

a uniform random angular distribution around a 3D sphere and the particles in the images were shifted 

following a uniform random distribution in the [-5,5] pixel range (i.e., [-10,10] Å). We simulated the effect of 

the electron microscope by applying a contrast transfer function (CTF) with noise added before and after the 

CTF, using the image formation model described elsewhere [66]. We synthesized realistically looking images 

using a simulated 200 kV microscope with a spherical aberration of 2 mm, a defocus of -0.5 µm, and Gaussian 

noise distributed during the image formation so as to simulate a SNR of 0.1 in the images.  

Both the low SNR of the synthetic images and the large RMSD between the initial and target conformations 

(average RMSD of 8.1 Å) are challenges for MDSPACE. For each synthetic image, the 3D-to-2D flexible fitting 

of TmrABOF should close the extracellular gate and precisely fit the opening of the intracellular gate and the 

rotation of the nanobody, in the presence of high noise in the images and using 2D biasing potential.   

Rigid-body pre-alignment and MDSPACE iterations 

To rigid-body pre-align the initial conformation with the particle images, we performed 4 iterations of 

projection matching between the images and the density map from the initial conformation, in Xmipp [63, 

64], using the angular sampling rate of 7°, 5°, 3°, and 2° over the 4 iterations as well as no limit on the angular 

search in the first iteration and a limit on the angular search range of 10°, 6°, and 4° in the other three 

iterations. As the initial conformation is very different from the target conformations in the images, the 

projection matching gives only a rough alignment. In this article, we demonstrate that MDSPACE is able to 



Vuillemot et al                                                               J Mol Biol 2023 (in press, YJMBI_167951)  

16 
 

refine such rough initial rigid-body alignment while also iteratively refining deciphering of the conformational 

variability.  

We run 4 iterations of MDSPACE using 30-picosecond MD simulations and the force constant of 2000 

kcal/mol on the dataset of 500 synthetic particle images. Although our general recommendation is to run the 

first iteration of MDSPACE using normal-mode empowered MD-based fitting and all other iterations using 

principal-component empowered MD-based fitting (as described in the Methods section), the fitting here 

was performed without normal modes to avoid bias as the images were synthesized using normal modes. 

More precisely, flexible fitting using only MD simulations was used in the first iteration and PCA-based 

refinement in the other 3 iterations of MDSPACE. Starting from the second iteration, the PCA-based 

refinement at each iteration was performed using the first 3 principal components (3 most dominant 

motions) obtained at the previous iteration. As shown below, this protocol refines both the initial rigid-body 

alignment (pre-alignment) and the conformational variability retrieval (fitted conformations).  

Performance regarding recovery of the ground-truth rigid-body parameters  

The MDSPACE analysis of the synthetic dataset shows that the rotation and translation parameters obtained 

at the pre-alignment step get refined over the iterations (the first two plots of Figure 2d, from left to right). 

Figure 2d shows the angular and shift error distributions over the iterations, i.e., per-iteration statistics on 

the errors between the ground-truth and estimated angles (the first plot from the left) and shifts (the second 

plot from the left). Recall here that the estimates of the angles and shifts at each iteration are obtained by 

combining the initial angles and shifts at that iteration and the angles and shifts extracted from the MD 

simulation at the same iteration (Eq. 13). 0. 

The median angular error of the pre-alignment is 11.3 degrees and the median shift error is 3.6 Å, meaning 

that the projection matching resulted in a relatively poor rigid-body pre-alignment. Even with such a poor 

pre-alignment, the recovery of the ground-truth angles and shifts at the 4th iteration of MDSPACE is 

satisfactory (the median angular and shift errors dropped to 3.3 degrees and 0.25 Å, respectively). 

Performance regarding recovery of the ground-truth continuous conformational transition  

The MDSPACE analysis of the synthetic dataset shows that the conformational space gets refined over the 

iterations (Figure 2e). Figure 2e shows the evolution of the conformational space estimation over four 

MDSPACE iterations, together with the ground-truth conformations (the samples of a line-form trajectory in 

the normal mode space in this experiment) and the initial conformation used for the 3D-to-2D flexible fitting. 

For simplicity of the comparison over the iterations, we here show the conformational space reduced to two 

dimensions (2D PCA space), whereas the first three principal components were used for the PCA-based 

refinement (from the second MDSPACE iteration on).  Also, it should be recalled that the PCA is recalculated 

at each MDSPACE iteration (PCA components change over the iterations) and that the PCA components 

calculated at one iteration are used to empower the MD-based flexible fitting at the next iteration. However, 
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for the purpose of a visual comparison between the fitted and target (ground-truth) conformations, Figure 

2e shows the fitted conformations in the same space as the ground-truth conformations. The principal 

components actually used to empower the MD-based flexible fitting (in the PCA-based refinement) differ 

from those shown in Figure 2e as they do not comprise the ground-truth information.  

At the first MDSPACE iteration, we observe that a part of the fitted conformations is close to the ground-

truth conformations, but many are far (approximatively 50 % are close to the initial conformation used for 

the 3D-to-2D flexible fitting and they correspond to the images with the projection direction with poor 

conformational variability information) (Figure 2e). After the second MDSPACE iteration (first PCA 

refinement), we observe a clear improvement of the conformational space as the fitted conformations get 

closer to the target conformations (ground-truth trajectory). This tendency continues over the iterations and, 

at the last iteration, most fitted conformations are close to the target conformations and only a few remain 

close to the initial conformation.  

The analysis of the CCs between the particle images and the projections of the fitted conformations and the 

analysis of the RMSDs between the fitted and target (ground-truth) conformations, shown in the last two 

plots of Figure 2d (from left to right), confirm that the conformations get refined over the iterations. The CC 

distribution shows a significant CC increase from the initial pre-alignment iteration to the first iteration (the 

median CC value increased from 0.33 to 0.42), then the CC increases slowly over the following iterations (the 

median CC values of 0.42, 0.43 and 0.44 for iterations 2, 3 and 4). The RMSD distribution shows that the 

RMSD decreases significantly up to the third iteration (the median RMSD values of 8.4 Å and 2.6 Å at 

iterations 1 and 3) and then changes slowly.  

Recovery of the ground-truth continuous conformational transition in terms of animations and 

3D reconstructions from the conformational space 

We analyzed the conformational distribution in the PCA space obtained at the 4th iteration of MDSPACE in 

terms of 3D reconstructions from clusters of close points in this space, i.e., from the corresponding synthetic 

particle images, in order to check whether 3D reconstructions along the point distribution in the PCA space 

follow the ground-truth conformational transition trajectory. 

The 3D reconstructions were performed from clusters determined in the PCA space as described in the 

Methods section (Figure 3a). First, we interactively defined a 5-point linear trajectory that approximatively 

fits the point distribution in the PCA space. Then, we performed an automated clustering based on the closest 

points to each of the 5 points and interactively removed the outlier points. Finally, we performed a 3D 

reconstruction from each of the 5 clusters without outliers, using the rigid-body parameters obtained after 

the 4th iteration of MDSPACE, which resulted in five reconstructed EM maps.  

Figure 3b shows two atomic conformations corresponding to two extremums of the ground-truth synthetic 

trajectory (designated as IF1 and IF2) and Figure 3c shows the EM maps obtained from the first and last 
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clusters along the 5-point linear trajectory (Figure 3a). By comparing these two 3D reconstructed maps 

(Figure 3c) with the corresponding ground-truth synthetic atomic conformations (Figure 3b), we observe that 

the method was able to capture the ground-truth synthetic conformational change. 

Supplementary Movies S1 and S2 show animations of the fitted atomic conformations and the reconstructed 

EM maps from clusters along the 5-point linear trajectory in the PCA space, respectively.  

 

Figure 2 : MDSPACE analysis of the synthetic dataset of TmrAB. (a) Structure of TmrAB in inward-facing conformation 
(TmrABIF). (b) Diagram of TmrAB in outward-facing conformation (TmrABOF, the initial conformation for fitting) and the 
synthetic continuous conformational change simulated from TmrABIF using modes 7 and 8. IF1 corresponds to the 
conformation with negative mode amplitudes and IF2 with positive mode amplitudes. (c) Two-dimensional PCA space 
of the ground-truth synthetic conformations (black line: synthetic conformational transition trajectory), the initial 
conformation for the fitting (orange point), and the conformation used to generate the conformational variability (green 
point). (d) Accuracy of MDSPACE analysis of 500 particles measured at each MDSPACE iteration shown as box plots 
(black) and median (green). From left to right: errors between the ground-truth and estimated angles; errors between 
the ground-truth and estimated shifts; correlation coefficients between the images and the projections of the estimated 
(fitted) conformations; and RMSDs between the ground-truth and estimated (fitted) conformations. (e) Evolution of the 
principal component space over the iterations (from left to right: iteration 1 to 4); blue points represent 500 fitted 
conformations, each of which was obtained by fitting the initial conformation (orange color) to one of the images 
synthesized from 500 ground-truth conformations (black color). 
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Figure 3 : Recovery of the ground-truth synthetic conformational transition trajectory of TmrAB based on PCA space 
clustering and 3D reconstructions from the clusters. (a) Five PCA space clusters obtained automatically along an 
interactively defined trajectory (red points) and colored from yellow to blue. (b) Two synthetic atomic conformations of 
TmrAB in inward-facing conformations (TmrABIF) corresponding to the two extremums of the ground-truth synthetic 
trajectory, denoted as IF1 and IF2. (c) 3D reconstructed EM maps from the yellow and blue clusters shown in (a). The 
conformational transition is visible on the superposed yellow and blue atomic structures (b) and EM maps (c). The color 
code is the same for the clusters in the PCA space (a), the atomic structures (b), and EM maps (c). See also 
Supplementary Movies S1 and S2. 

 

3.2 Experiment with cryo-EM data from EMPIAR 

In this subsection, we show the performance of MDSPACE using experimental cryo-EM data of yeast 80S 

ribosome-tRNA complexes available in EMPIAR database under the code EMPIAR-10016 [21]. 

 

EMPIAR-10016 dataset (yeast 80S ribosome-tRNA complexes) 

During protein synthesis, tRNAs are translocated from the A (aminoacyl) to P (peptidyl) to E (exit) sites of the 

ribosome. During this process, two tRNAs adopt hybrid A/P and P/E states while progressing from the A-A 

and P-P states to the P-P and E-E states, which also involves a rotation between the two subunits of the 

ribosome [67-69].  

 

In the original study of yeast 80S ribosome-tRNA complexes, resulting in the EMPIAR-10016 dataset 

publication [21], two cryo-EM maps were obtained using the FREALIGN likelihood-based image classification 
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[20, 70] into 5 classes from an initial set of 86,866 particle images, and deposited in the EMDB (accession 

codes: EMD-5976 and EMD-5977). The EMPIAR-10016 dataset contains a stack of particle images (image size: 

360 × 360 pixels; pixel size: 1.05 Å × 1.05 Å) and 5 metadata files containing the orientation and translation 

parameters for 5 image classes. Two of the metadata files contain the parameters of 23,726 and 22,369 

images, which correspond to the classes that yielded the two reconstructed cryo-EM maps (EMD-5976 at the 

resolution of 6.2 Å and EMD-5977 at the resolution of 6.3 Å, respectively). The EMD-5976 map corresponds 

to the rotated conformation (the ribosome inter-subunit rotation of around 9°) with one tRNA in a hybrid 

P/E state (designated as 80S-tRNA). The EMD-5977 map corresponds to the nonrotated conformation with 

two tRNA in the classical P-P and E-E states (designated as 80S-2tRNA). Two atomic models were derived 

from these cryo-EM maps (Figure 4) and deposited in the PDB (accession codes: PDB-3J77 and PDB-3J78) 

[21]. 

 

MDSPACE analysis of EMPIAR-10016 dataset  

For the conformational variability analysis with MDSPACE, we used the particle images that yielded the EMD-

5976 and EMD-5977 maps (all available 46,095 particle images), and we used their available orientation and 

translation parameters (determined by FREALIGN) as rigid-body pre-alignment parameters. We down-

sampled the original particle images by a factor of two in each of the two dimensions, yielding images of size 

180 × 180 pixels with a pixel size of 2.1 Å × 2.1 Å. The other 3 classes identified in the original publication [21] 

in the EMPIAR-10016 dataset appear less clean and less populated, and were therefore not used in our 

analysis with MDSPACE. 

 

We performed 2 iterations of MDSPACE using 30-picosecond MD simulations, a force constant value of 

10,000 kcal/mol, and the coarse-to-fine data processing scheme described in the Methods section. As the 

initial conformation, we used the atomic model of the 80S-tRNA conformation (the rotated conformation 

with one tRNA in a hybrid P/E state) (Figure 4b). In the first iteration, we analyzed 10,000 particles using 

normal-mode empowered MD-based flexible fitting (10 lowest-frequency normal modes were added to MD 

simulations as in NMMD). In the second iteration, we analyzed the entire set of 46,095 particles using 

principal-component empowered MD-based flexible fitting (PCA refinement) and the first 3 principal 

components (3 most dominant motions) obtained at the previous iteration.  

 

The CC distribution shown in Figure 5c follows the same behavior as in the experiment with synthetic data. 

We observe a strong increase of the CC from the rigid-body pre-alignment to the first iteration (the median 

CC increases from 0.121 to 0.149), which is followed by a light increase at the next iteration (the median CC 

increases from 0.149 to 0.161 between the first and second iterations). This indicates that the conformations 

obtained at the first iteration get refined at the second iteration of MDSPACE. 
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Figure 4 : Atomic models of yeast 80S ribosome-tRNA complexes derived from cryo-EM maps obtained with FREALIGN 
likelihood-based image classification of EMPIAR-10016 set of single particle images [21]. (a) Nonrotated conformation 
with two tRNAs in the classical E/E and P/P states (80S-2tRNA). (b) Rotated conformation with one tRNA in a hybrid P/E 
state (80S-tRNA). The 40S and 60S subunits are represented as light blue and light-yellow surfaces, whereas tRNAs are 
displayed as ribbons. The boxes at the right in (a) and (b) show close-up top views of the tRNAs.  

MDSPACE recovers 80S-tRNA and 80S-2tRNA conformational states 

The analysis of the conformational space obtained with MDSPACE shows a continuum of conformational 

states (Figure 5a). The singular values of the principal components (Figure 5b) decrease by 20% between the 

first and third components. To observe the extracted conformational variability in 3D, we performed 

clustering of the conformations in the PCA space, using 5 clusters linearly distributed along the first principal 

component (Figure 5a). Figure 5d shows the 3D reconstructions from the first and last clusters along the first 

principal component. These two clusters contain a relatively low number of particles (approximatively 3,000 

particles per cluster) as they correspond to the extremums of the trajectory along the principal axis, which 

may explain a low resolution of the two reconstructed maps. Additionally, the maps in Figure 5d were low-

pass filtered for the sake of reducing noise for visualization (low-pass cutoff frequency: 10 Å). We identified 

the first and last clusters (cluster 1 and 5) to correspond to the 80S-tRNA and 80S-2tRNA states, respectively, 

based on the presence of a single tRNA in a hybrid P/E state in the 3D reconstruction from cluster 1, two 

tRNA in the E/E and P/P states in the 3D reconstruction from cluster 5, and the inter-subunit rotation in the 

3D reconstruction from cluster 1 (pre-translocation state) with respect to the 3D reconstruction from cluster 

5 (post-translocation state). The remaining clusters (clusters 2 to 4) correspond to intermediate states of the 

inter-subunit rotation (Supplementary Movie S3). 

MDSPACE reveals multiple conformational changes of the 80S ribosome 

Additional conformational changes were observed by clustering along the second and third principal 

components (in 5 clusters by repeating the clustering procedure that was used for the first principal 

component). The conformational change along the second principal component shows a displacement of 

ribosomal protein P0 (Figure 5e), which with other P-stalk ribosome proteins plays a role in the interaction 

with translation initiation factors and promotion of translation initiation [71]. The conformational change 

along the third principal component shows a rotation of the head of the small subunit (Figure 5f), playing a 

role in facilitating the translocation process [72]. Other, but finer, conformational changes have been 

observed, as described in the next subsection.  
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MDSPACE reveals gradual transitions with many intermediate states at atomic scale  

MDSPACE yielded the conformational space at atomic scale. In this subsection, we analyze this space in terms 

of atomic models along the first principal component. We selected a 9-point linear trajectory along this 

principal component (Figure 6a) and performed an inverse PCA for these points, which allowed us to visualize 

the atomic coordinate displacements along this 9-point trajectory (Supplementary Movie S4). The 9 obtained 

atomic models were compared with the 80S-tRNA and 80S-2tRNA models, which indicated a continuum of 

conformational states and agreement with the expected conformational changes (Figure 6c-e). Figure 6c 

shows the conformational change of the L1 stalk (25S rRNA single loop) which is known to interact with the 

E-site tRNA [21, 73, 74]. Figure 6d shows the conformational change of ribosomal protein uS12, located on 

the head of the small subunit, emphasizing the inter-subunit rotation.  Figure 6e shows the conformational 

change of the section of 18S rRNA at the P-site of the small subunit. We can note that MDSPACE resolves the 

80S-tRNA and 80S-2tRNA models, which approximately correspond to the 4th and 9th points of the trajectory, 

respectively (Figure 6c-e). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: MDSPACE analysis of 80S ribosome-tRNA complexes from EMPIAR-10016 cryo-EM dataset [21]. (a) 
Conformational space obtained by MDSPACE, described by the first two PCA axes. Five PCA-space clusters colored from 
blue to yellow were automatically obtained along an interactively defined trajectory along the first PCA axis (red points).  
(b) Singular values of the PCA components. (c) Distribution of the correlation coefficient over the MDSPACE iterations. 
(d) 3D reconstructed EM maps from cluster 1 (blue points in (a)) and cluster 5 (yellow points in (a)). At the bottom, the 
first two panels from left to right show close-up top views of the E and P sites on the 3D reconstructed EM maps from 
cluster 1 and cluster 5 overlapped with the tRNAs (ribbon representation) of the 80S-tRNA model (rotated) and the 80S-
2tRNA model (non-rotated), respectively. The remaining panel at the bottom shows a close-up top view of the 
overlapped EM maps from clusters 1 and 5. The red arrow shows the rotation of the 40S subunit. (e) 3D reconstructed 
EM maps from clusters 1 and 5 along the second PCA axis. (f) 3D reconstructed EM maps from clusters 1 and 5 along 
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the third PCA axis. The red arrows in (e) and (f) indicate the conformational changes. The clustering procedure used for 
the first PCA axis was repeated for the second (e) and third (f) PCA axes. See also Supplementary Movie S3. 

 

 

 

 

 

 

 

 

 

 

Figure 6 : Continuous conformational trajectory at atomic scale identified in the PCA space. (a) Conformational space 
obtained with MDSPACE (also shown in Figure 5a). The red points correspond to a 9-point linear atomic-coordinate 
trajectory along the first PCA axis, selected interactively in the PCA space. (b) Approximate locations of the 9 atomic 
models shown in (c)-(e) corresponding to the 9 red points in (a). (c) Motion of 25S rRNA single loop of the large-subunit 
L1 stalk (white) along the 9-point trajectory shown in (a). (d) Motion of ribosomal protein S12 (white), part of the head 
of the small subunit, along the 9-point trajectory shown in (a). (d) Motion of the section of the small-subunit 18S rRNA 
at the P-site (white) along the 9-point trajectory shown in (a). The models in (c)-(e) are superposed with the 80-tRNA 
and 80S-2tRNA models (green and red, respectively). See also Supplementary Movie S4. 

4. Discussion and Conclusion 

In this article, we presented a new approach for analyzing continuous conformational variability in cryo-EM 

single particle images, MDSPACE. MDSPACE uses, to the best of our knowledge, the first 3D-to-2D MD-based 

flexible fitting method and estimates the conformational landscape of the cryo-EM data at atomic scale, using 

a single input atomic model. The conformational landscape allows obtaining single atomic-scale 

conformational models, atomic-model animations, and 3D reconstructions. MDSPACE is a reference-based 

method, which implies that it relies on the structural composition of the reference to extract the 

conformational features from the images. For this reason, MDSPACE is generally not suitable for analyzing 

datasets with compositional heterogeneities, such as those caused by disassembly or cofactor binding of 

molecular complexes. However, in the 80S ribosome case studied in this article, we could capture binding of 

the second tRNA because it is associated with a conformational change of the 80S ribosome (inter-subunit 

rotation). In some cases of datasets, MDSPACE could help to identify a disassembly of large subunits of the 

complexes because the images containing single subunits may look like outliers in the resulting low-

dimensional conformational space (under the condition that the entire complex is used as the reference and 
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that the fraction of the entire complexes is much larger than the fraction of the single subunits). However, if 

such strong compositional heterogeneity is suspected, we instead recommend using classical discrete-

classification methods before using MDSPACE in order to filter out the compositional heterogeneity.     

 

MDSPACE obtains an atomic-scale conformational model per particle 

Methods development for conformational variability analysis based on mapping each cryo-EM single particle 

image onto a low-dimensional conformational space (an estimated essential conformational landscape) is 

currently an active field of research. Such methods belong to the class of continuous conformational 

variability methods. They cluster particle images with similar conformations in the low-dimensional 

conformational space determined beforehand, contrary to the methods that use discrete classification of the 

particle images into a number of classes decided prior to image analysis. 

 

Most of the existing continuous conformational variability methods result in 3D reconstructions from the 

estimated low-dimensional conformational space [1, 11, 14]. Atomic models can then be derived from these 

3D reconstructions.  In contrast to these methods, our previously developed method HEMNMA additionally 

obtains the particle conformation in each particle image in terms of the model coordinates flexibly displaced 

along its normal modes so as to fit the particle image [2, 75]. These coordinates can be all-atom, coarse-grain, 

or artificial (the centers of 3D Gaussian functions that approximate a given EM map that is used as the initial 

conformation). Therefore, HEMNMA not only allows obtaining 3D reconstructions from clusters of particles 

in the low-dimensional conformational space, but also allows obtaining models of single atomic 

conformations (when a given atomic structure is used as the initial conformation) and molecular movies in 

this space based on these conformations. Conformational modeling using normal modes is fast (a fast 

displacement of the structure along its modes) but can suffer from the structural distortions for large 

amplitudes of conformational changes. Additionally, for speed reasons, the conformational modeling using 

normal modes is in practice limited to global motions, described by lowest-frequency normal modes. 

 

In this article, we presented MDSPACE method for continuous conformational variability analysis that obtains 

one atomic conformation per particle image by flexibly fitting a given atomic model to images based on MD 

simulations, yielding good quality atomic models refined against images. MDSPACE refines the given atomic 

model against each image using normal-mode empowered MD simulations in the first iteration and principal-

component empowered MD simulations in the remaining iterations. The normal modes speed up the MD-

based fitting of the initial conformation to the target conformation in the particle image. The principal-

components extracted from the ensemble conformational information at the end of each MDSPACE iteration 

refine the flexible fitting at the next MDSPACE iteration, especially for the images with difficult particle views 

and low SNR.  
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Additionally, MDSPACE allows obtaining atomic-resolution molecular movies and 3D reconstructions in the 

conformational space along its principal axes or along other directions (“trajectories”) identified through the 

densest regions of this space, which may correspond to the most probable conformational transitions. 

MDSPACE strategy to reduce the computation time 

Each iteration of MDSPACE requires running one MD simulation per particle image. The MDSPACE code is 

MPI parallelized to process one particle image per CPU thread. MD simulations can be computationally 

expensive and their computational costs depends on multiple factors, such as simulation length, 

biomolecular size, and model type (all-atom or coarse-grained). Therefore, the large size of cryo-EM single 

particle datasets is a challenge for MDSPACE. 

In this article, we tackle the speed issue of MD-based 3D-to-2D flexible fitting by using short-length 

simulations with coarse-grained models, within an original strategy combining (1) an integrated MD and 

normal mode simulation (previously used in the 3D-to-3D flexible fitting method called NMMD [52]); (2) an 

iterative refinement of the conformational space estimation via an iterative improvement of learning the 

principal axes of the conformational variability; and (3) coarse-to-fine data processing strategy (processing a 

small subset of images in the first iteration, followed by processing of an entire dataset in the next iteration).  

With coarse-grained models, MDSPACE was able to retrieve the expected conformational changes while 

reducing the computational cost by several orders of magnitude, in both synthetic and experimental data 

cases. The computational cost reduction was especially important in the case of large experimental set of 

ribosome complexes. We have chosen Cα Gō model for our simulation to reduce the computational cost 

maximally. However, MDSPACE could be used with other coarse-grained force fields such as Gō-MARTINI 

[76]. Gō-MARTINI combines Go-like models with the MARTINI model and allows modeling more realistic 

environments and simulating larger amplitudes of structural dynamics (potentially  unachievable with the Cα 

Gō model) while being less computationally expensive than all-atom simulations. For the moment, the only 

coarse-grained force field available in MDSPACE is the Cα Gō model. The use of MARTINI-like models will be 

implemented in the future. Nevertheless, when studying smaller systems than ribosomes, one could use all-

atom simulations as they may results in more accurate conformational landscapes.  

The computing time of MDSPACE could additionally be reduced by determining the adequate values of the  

MD simulation parameters that ensure the fastest convergence to the correct conformation, which may be 

challenging. The two most important parameters are the length of simulation and the force constant, whose 

values depend on other factors such as the molecular system or the chosen force field. A high value of the 

force constant speeds up the fitting as it helps the simulation to go faster through energy barriers, but the 

value of the force constant must be tuned with caution as too high values result in structural distortions. 

Concerning the length of the simulation, if the simulation is too short, the fitting gets closer but do not have 

enough time to converge. On the contrary, if the simulation is too long, the computational cost increases 
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without improving the results. Currently, there is no satisfying measure for assessing automatically the 

convergence. In the experiments described in this article, the force constant and the simulation length were 

determined based on preliminary experiments on a small number of images (around ten images). First, the 

optimal force constant was determined by running long simulations (up to 1 ns) with different values of the 

force constant and selecting the value that induces the fastest conformational changes (the fastest increase 

in the CC) without inducing structural distortions. Then, the optimal simulation length for the obtained 

optimal value of the force constant was determined as the time after which the CC does not increase anymore 

in all the simulations. 

Even with a short simulation and a coarse-grained model, one simulation of 80S ribosome-tRNA complex 

takes one hour of CPU time on one core of Intel Xeon 6248 processor, meaning that one iteration of MDSPACE 

with the whole dataset (46,095 particles) would require about 46,000 CPU hours on one core of Intel Xeon 

6248. Note here that the wall-clock time of the data processing presented in this article was much shorter as 

the processing was distributed over multiple CPU cores in parallel. The set of 46,095 particles was processed 

using 16 nodes with two Intel Xeon 6248 processors per node (20 CPU cores per processor), leading to 

approximatively 3 days of computation on 640 CPU cores used without multithreading (i.e., 1 thread was 

used on each core). To further reduce the computing time in the large experimental data case, we used only 

about one fourth (10,000 particles) of the entire dataset in the first iteration of MDSPACE. This subset of 

images (“training” set) was sufficient to estimate the global aspect of the conformational space, which was 

then refined in the next iteration using the entire dataset. This approach will be more investigated in the 

future, by further reducing the “training” data subset, as it may further increase the computational efficiency 

of MDSPACE. 

Initial conformation and conformational space refinement  

The conformational space depends on the chosen initial conformation. Different initial conformations will 

result in different conformational spaces in the sense that the same conformational state will be visible in 

different regions of the different conformational spaces. However, the principal motions that can be 

extracted from these different conformational spaces will be similar, unless the initial conformations are 

totally unrelated to the particles in the given dataset. If several potential initial conformations are available 

and all of them are coherent with the dataset, any of them can be used as the initial conformation. In case 

of doubts, the conformation that is the closest to the global average conformation (reconstructed from all 

the images) should be chosen as the initial conformation.   

If the initial conformation is chosen correctly (it is coherent with the dataset, as explained in the previous 

paragraph) and the dataset analyzed with NMMD is large enough, only a fraction of the images will result in 

wrongly fitted conformations (those with more difficult views). The remaining set of images (with correctly 
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fitted conformations) is expected to be large enough to determine the initial conformational space (the 

principal axes) correctly enough, in order to drive the conformational space refinement in the next iteration.   
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