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Experimenting	with	triangles	
Valeria	Giardino	(CNRS,	Institut	Jean	Nicod)	

Word	count:	9575	

1.	Introduction	

1.1	The	problem	and	the	strategy	to	tackle	it	

What	are	thought-experiments?	Do	they	differ	from	real	experiments?	And	can	we	
consider	them	as	good	evidence	or	as	reliable	arguments	for	some	claim?		

These	and	other	similar	questions	have	been	recently	explored	in	the	literature,	in	
an	on-going	debate	about	the	role	of	thought-experiments	(henceforth	TEs)	in	
natural	science	and	partly	in	philosophy	(for	a	survey,	see	Stuart	et	al.	(eds),	2018).	
Several	TEs	and	some	of	their	features	have	been	investigated	so	far	and,	to	make	a	
long	story	short,	the	replies	have	clustered	around	two	poles.	On	the	one	hand,	
following	the	Platonist	Brown,	the	nature	of	TEs	would	be	imagistic:	in	TEs,	
scientists	use	their	intuition	to	reason	“visually”	(Brown,	1991);	on	the	other	hand,	
the	empiricist	Norton	suggests	instead	that	the	nature	of	TEs	is	linguistic:	TEs	would	
correspond	to	“arguments”	allowing	for	new	inferences	(Norton,	1996).		

It	is	interesting	to	note	that	the	case	of	mathematics	and	mathematical	TEs	has	
attracted	less	attention1.	One	exception	is	Anapolitanos	(1991),	who	considered	TEs	
in	mathematics	as	related	to	“extra”	logic	considerations	constituting	the	creative	
part	of	mathematics,	and	proposed	to	divide	them	in	six	groups	based	on	the	
different	theoretical	context2.	An	important	point	is	that	TEs	have	to	respect	certain	
boundaries	that	he	defines	as	“conceivability	conditions	or	constraints	in	mathematics”	
(henceforth	CCC).	CCC	do	not	correspond	to	the	rules	of	logic,	which	are	
independent	from	the	scientific	discipline,	and	can	be	arranged	in	the	following	
“more	or	less	open-ended”	list:	(a)	simplicity	conditions	or	constraints,	(b)	
familiarity	constraints,	(c)	plausibility	conditions	or	constraints,	(d)	efficiency	
constraints,	(e)	conditions	or	constraints	related	to	the	success	of	a	proposed	
reconceptualization,	(f)	conditions	or	constraints	induced	by	specific	philosophical	
ideas	and	positions.		

More	recently,	some	new	ideas	have	been	put	forward.	Starikova	&	Giaquinto	
(2018)	for	example	highlight	the	importance	of	TEs	in	mathematics	as	“visual”	
heuristics,	thus	aligning	with	one	of	the	two	poles	described	above	for	empirical	
science.	Buzzoni	(2021)	compare	mathematical	TEs	with	TEs	in	the	natural	science	
																																																								
1	This	is	not	new	for	mathematics	from	the	point	of	view	of	philosophy	of	science,	which	rarely	
addresses	the	specificities	of	this	discipline	compared	to	other	scientific	practices.		
2	Here	are	the	groups	of	TEs	as	defined	by	Anapolitanos	(1991):	TEs	(i)	“usually	performed	in	a	
conceptual	framework	which	has	not	been	yet	theoretically	solidified”;	(2)	“performed	in	a	
conceptual	framework	provided	by	a	fixed	mathematical	theory;	(3)	“performed	fervently	during	and	
immediately	after	a	foundational	crisis”;	(4)	“spurred	by	the	intrinsic	possibility	of	proving	or	
disproving	a	postulate	or	a	sentence,	which	mathematicians	under	certain	circumstances	come	to	
think	as	basic,	from	the	axioms	of	a	more	or	less	given	mathematical	theory”;	(5)	“triggered	and	
influenced	–	among	other	things	–	by	philosophical	considerations	of	a	quite	revolutionary	nature”;	
(6)	“induced	by	the	need	to	specify	a	new	conceptual	framework	easier	to	work	with	in	a	specific	
area”.	
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and	distinguishes	between	TEs	in	applied	and	pure	mathematics;	his	conclusion	is	
that	in	pure	mathematics	there	is	no	distinction	in	principle	between	real	
experiments	(henceforth	REs)	and	TEs;	for	this	reason,	and	differently	from	what	he	
suggested	in	previous	views	(see	Buzzoni	2011),	even	if	visualization	may	play	an	
important	role,	mathematical	TEs	end	up	being	more	similar	to	proofs	(henceforth	
Ps)	than	to	TEs	in	the	natural	sciences.	Another	possibility	is	to	assume	a	framework	
based	on	the	practice	of	mathematics	–	including	the	results	obtained	now	with	
computers	–and	define	TEs	as	a	subset	of	other	kinds	of	mathematical	experiments	
(Jean-Paul	van	Bendegem,	forthcoming).3	

To	sum	up,	several	proposals	are	available	but	most	importantly	they	disagree	on	
the	very	meanings	of	the	terms	at	play:	TEs	are	intended	in	turn	as	visual	images,	as	
quasi-proofs,	or	as	a	particular	kind	of	experiment.	The	aim	of	the	present	article	
will	not	be	to	present	these	views	in	details;	my	strategy	will	rather	be	to	start	from	
scratch.	Without	comparing	TEs	in	empirical	science	and	philosophy	to	TEs	in	
mathematics,	I	will	ask	the	question	directly:	What	–	if	anything	–	are	TEs	in	
mathematics?	Such	a	question,	however,	needs	to	be	specified	more,	by	breaking	it	
down	into	two	related	questions:	Is	there	anything	like	REs	in	mathematics?	And	if	
this	is	the	case,	should	all/some/none	of	them	be	considered	TEs?		

Let	me	point	out	that	when	I	speak	in	this	context	of	mathematics,	I	mean	“pure”	
mathematics.	There	are	several	reasons	to	focus	on	pure	mathematics	only,	despite	
the	fact	that	this	distinction	may	be	too	strict	and	artificial.	First,	talking	of	pure	
mathematics	allows	considering	TEs	for	and	from	within	mathematics,	and	not	as	
performed	to	the	aim	of	learning	something	–	mathematically	–	about	reality.	Second,	
pure	mathematics	clearly	does	not	have	an	empirical	counterpart,	at	least	not	in	the	
sense	of	the	natural	sciences,	and	therefore	it	sounds	counterintuitive	to	think	that	
its	practice	might	include	experiments:	can	there	really	be	something	authentically	
“experimental”	in	pure	mathematics?	Moreover,	if	pure	mathematics	does	not	deal	
with	the	empirical	reality,	every	move	in	it	could	be	considered	–	to	some	extent	–	
precisely	a	TE.	

Before	going	further	into	these	questions,	in	the	next	section	I	will	present	in	turn	
three	assumptions	that	will	be	in	the	background	of	my	treatment	of	TEs	in	
mathematics.		

1.2	Three	background	assumptions	

My	first	assumption	is	that	I	will	consider	mathematics	as	an	activity	including	
experiments	and	a	technology,	that	is,	some	form	of	–	public	–	representations.	By	
making	this	assumption,	of	course	I	answer	in	part	to	some	of	the	questions	above:	
yes,	mathematics	–	even	pure	mathematics	–	can	be	–	under	some	particular	
circumstances	to	specify	–	an	“experimental”	activity.		

To	better	clarify	my	point,	I	will	focus	on	Rav	(2005)’s	suggestion,	who	argues	that	
mathematics	as	well	as	empirical	science	live	in	the	constant	interaction	among	
three	poles	supporting	one	another,	in	a	continuous	flux	that	is	typical	of	scientific	

																																																								
3	A	different	question	is	how	experimental	methods	coming	from	the	social	sciences	can	be	used	to	
study	the	practice	of	mathematics,	analogously	to	what	happens	in	so-called	“experimental	
philosophy”.	On	this	point,	see	Löwe	&	van	Kerkhove	(2019).	
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research:	Theory,	Experiment	and	Technology	(henceforth,	T-E-TC).	However,	the	
case	of	mathematics	is	peculiar,	since	in	mathematics	these	poles	happen	to	be	one	
and	the	same,	that	is,	they	“coalesce	to	a	single	point”	(Rav,	2005,	p.	50).	In	fact,	in	
their	creative	role,	mathematicians	are	at	once	theoreticians,	experimenters	and	
toolmakers	inventing	useful	instruments.	As	Rav	sums	up,	they	are	problem-solvers.	

The	picture	proposed	by	Rav	gives	a	non-standard	image	of	mathematics,	if	we	
consider	as	“standard”	the	“received	view”	as	based	on	the	work	on	the	foundations	
of	mathematics	at	the	beginning	of	the	20th	century,	at	least	for	two	reasons:	first,	in	
Rav’s	view,	mathematics	is	a	research	activity	that	is	analogous	to	other	sciences,	
because	it	proceeds	by	formulating	hypotheses	that	then	are	put	to	the	test4;	second,	
Rav	argues	that	since	mathematics	makes	use	of	different	technologies	and	formats,	
the	choice	of	one	particular	technology	or	format	to	display	information	makes	a	
difference	in	the	way	the	information	is	treated:	for	this	reason,	the	definition	of	
new	problems	and	the	use	and	creation	of	tools	to	solve	them	are	in	continuous	
interaction,	in	a	dialectic	process.	Given	the	T-E-TC	framework,	only	someone	who	
knows	the	theory	and	masters	the	technology,	that	is,	who	is	able	to	deal	with	the	
representations	that	are	used	in	the	practice,	would	be	able	to	perform	experiments	
no	matter	–	for	the	moment	–	if	REs	or	TEs.		

My	second	assumption	is	that,	compared	to	science,	an	element	that	is	specific	to	
mathematics	is	P;	in	fact,	we	cannot	talk	about	evidence	only	–	admitting	that	we	can	
have	some	form	of	evidence	in	mathematics5	–	because	we	also	have	“validity”.	
Therefore,	when	considering	TEs	in	mathematics,	it	will	be	necessary	to	evaluate	
their	relationship	with	Ps	or,	in	other	words,	the	epistemic	value	of	TEs.	However,	
two	caveats	are	important	to	consider	here.	First,	as	Buzzoni	(2011)	sums	up,	“what	
is	to	be	accepted	as	a	“proof”	is	a	historical	question,	to	be	decided	by	working	
mathematicians”	(p.	78).	Second,	proof	might	still	be	seen	as	the	main	objective	of	
the	mathematical	activity,	as	the	received	view	maintains;	however,	it	should	also	be	
acknowledged	that	at	least	in	a	first	phase	proof	involves	dynamic	and	informal	
reasoning,	which	means	that	proofs	in	the	practice	are	not	necessarily	formal,	but	
proceed	in	ways	that	are	defined	by	the	mathematical	context,	sometimes	extending	
beyond	what	the	formalism	at	play	allows	for.	

On	this	point,	Lakatos	(1976)	warns	us	against	the	danger	of	considering	
mathematics	only	from	the	point	of	view	of	formalism.	As	he	explains	in	an	
important	footnote,	“formal	philosophy”	proceeds	in	an	ill-posed	way.	First,	it	states	
something	that	is	in	fact	right	about	formal	systems;	second,	it	makes	the	claim	that	
this	something	applies	to	all	mathematics,	which	is	acceptable	if	one	identifies	
mathematics	and	formal	systems;	finally,	“with	a	surreptitious	shift	in	meaning”	
(Lakatos	,1976,	footnote	1,	p.	4),	the	term	“mathematics”	is	used	in	the	ordinary	
sense.	Lakatos	quotes	here	Quine	(1951,	p.	87):	“this	reflects	the	characteristic	
mathematical	situation;	the	mathematician	hits	upon	his	proof	by	unregimented	
insight	and	good	fortune,	but	afterwards	other	mathematicians	can	check	his	proof”.	
However,	according	to	Lakatos,	the	checking	of	an	ordinary	(informal)	proof	is	in	
																																																								
4	Ferreiros	(2016)	as	well	defends	the	idea	that	advanced	mathematics	–	differently	from	elementary	
mathematics	–	is	based	on	hypotheses,	that	is,	on	hypothetical	assumptions.	As	he	explains,	this	
refers	to	a	long	tradition	of	reflection	on	mathematical	knowledge,	including	Riemann,	Peirce,	
Poincaré,	Weyl,	Quine,	and	Putnam.	
5	On	this	point,	see	Gowers	(forthcoming).	
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most	cases	a	very	delicate	enterprise,	and	“to	hit	on	a	‘mistake’	requires	as	much	
insight	and	luck	as	to	hit	on	a	proof:	the	discovery	of	‘mistakes’	in	informal	proofs	
may	sometimes	take	decades	–	if	not	centuries.”	In	this	spirit,	I	will	endorse	a	
“genetic-reconstructive”	approach	to	the	logical	moment	of	justification,	in	line	with	
Buzzoni’s	view	(2011,	p.	75).	In	particular,	I	will	focus	on	the	possibility	for	a	proof	
to	be	reproduced,	that	is,	on	the	human	ability	to	re-appropriate	proofs	in	the	first	
person.6	This	point	is	crucial:	if	the	present	aim	is	to	study	the	relationship	between	
experiments	and	proofs,	in	analogy	with	empirical	science,	then	replicability	is	an	
issue.	TEs	can	offer	an	insight	into	a	new	proof,	or	means	to	understand	a	proof	(see	
van	Bendegem	2003).	Such	a	genetic-reconstructive	approach	allows	bypassing	the	
dichotomy	proposed	by	the	standard	view	between	the	context	of	discovery	and	the	
context	of	justification.	

My	third	assumption	is	that	when	it	comes	to	TEs	in	mathematics,	I	will	consider	
human	reasoning	only,	without	taking	into	account	the	possible	contributions	of	
computers.	It	is	important	to	clarify	this	point	since	the	term	“experimental”	
mathematics	(henceforth	EM)	has	been	commonly	used	to	refer	to	mathematics	that	
is	done	“computationally”		(see	van	Bendegem	1998).	However,	I	will	follow	once	
again	Buzzoni	in	excluding	this	form	of	mathematics	from	the	practice	relating	to	
TEs	since,	when	using	computers	to	do	mathematics,	there	is	“no	interaction	
between	our	body	and	mathematical	objects”	(Buzzoni,	2011,	p.	70).	In	the	course	of	
the	paper,	it	will	become	clearer	what	I	intend	here	by	interaction	and	mathematical	
“objects”.	Of	course,	I	am	not	claiming	that	the	contribution	of	computers	is	not	
relevant	for	contemporary	mathematics;	by	contrast,	EM	will	be	included	in	the	
general	framework	proposed	at	the	end.		

To	sum	up,	these	three	assumptions	about	experiments	in	mathematics	and	in	
particular	TEs	define	a	background	that	is	close	to	“non-standard”	views	of	
mathematics	such	as	the	ones	proposed	by	Lakatos,	Rav	and	van	Bendegem.7	

1.3	Some	complications:	what	general	framework	to	endorse?	

There	is	a	sense	in	which	the	main	objective	of	the	present	article	is	terminological,	
that	is,	the	definition	of	the	terms	in	question	in	such	a	way	that	it	will	be	possible	to	
conceptually	distinguish	TEs	from	REs,	EM	and	Ps,	precisely	for	the	reason	that	the	
literature	is	at	present	confounding	them.		

There	are	even	more	complications.	Rav	(2005)	argues	in	a	footnote	that	
traditionally	experiments	in	mathematics	are	TEs	for	searching	connections	and	
possible	deductive	paths;	the	use	of	computers,	which	is	a	recent	innovation,	can	
help	“in	exploring	and	formulating	conjectures	or	as	an	aid	in	searching	for	proofs.”	
(footnote	1,	p.	50);	however,	this	does	not	make	mathematics	a	“quasi-empirical	
science	in	its	totality”.	In	his	view,	“quasi-experiments”	(henceforth	QEs)	in	
mathematics	are	experiments	that	are	performed	for	searching	connections	and	
possible	deductive	path,	and	therefore	they	seem	to	be	closer	to	inferential	views	of	
TEs	such	as	Norton’s,	considering	TEs	as	arguments.	If	we	go	back	to	Proofs	and	
Refutations	(Lakatos	1976),	from	which	many	of	the	views	presented	so	far	-	

																																																								
6	Discussing	Greek	mathematics,	Netz	(1999)	introduces	the	he	principle	“repeatability”	of	proof,	of	
which	the	generalizability	of	result	is	a	derivation.	
7	Despite	being	a	Platonist,	also	Brown	is	very	close	to	Lakatos’	view.	See	on	this	point	Brown	(2022).	
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including	Rav’s	–	take	inspiration8,	the	confusion	increases.	In	a	passage,	the	teacher	
proposes	to	retain	the	term	“proof”	for	“a	thought-experiment	–	or	‘quasi-experiment’	
–	which	suggests	a	decomposition	of	the	original	conjecture	into	subconjectures	or	
lemmas,	thus	embedding	it	in	a	possibly	quite	distant	body	of	knowledge”	(Lakatos	
1976,	p.	9).	For	example,	the	proof	of	the	Descartes-Euler	conjecture,	which	is	the	
subject	of	the	book,	embeds	the	original	conjecture	–	about	crystals,	that	is,	solids	–	
into	the	theory	of	rubber	sheets,	which	is	something	that	Descartes	or	Euler,	who	
conceived	the	original	conjecture,	could	not	predict.	Lakatos	seems	to	suggest	here	
that	all	–	or	just	some?	–	Ps	are	TEs	or	QEs.	However,	this	does	not	necessary	imply	
that	all	TEs	are	proofs.	Or	does	it?	Are	there	mathematical	TEs	that	are	not	proofs?	If	
we	consider	pure	mathematics,	what	would	the	difference	between	Ps	and	TEs	or	
QEs	be,	if	experiments	in	this	field	do	not	seem	to	define	a	domain	or	method	that	is	
“qualitatively	distinct	from	other	mathematical	domains	or	methods	or	proofs”	
(Buzzoni,	2011,	p.	77)?	

There	are	also	other	two	important	points	to	consider.	First,	mathematical	
counterexamples	do	not	arise	from	experimental	practices	(Buzzoni	2011,	p.	71);	
this	is	also	recognized	by	Putnam	(1975),	who	speaks	of	a	“quasi-empirical”	method	
analogous	to	methods	in	the	empirical	science,	with	the	important	difference	that	in	
mathematics	it	results	in	the	product	of	a	calculation	and	not	in	the	report	of	an	
observation.	Second,	it	looks	like	visual	reasoning	and	picture	proofs	are	
everywhere	in	mathematics.	What	is	their	relationship	with	TEs?	Are	they	analogous	
to	them?	Or	are	they	a	case	of	REs	in	mathematics?	Or	just	of	Ps?	

Let	us	try	to	sum	up	what	we	have	so	far.	I	assumed	that	there	are	experiments	in	
mathematics.	However,	differently	from	the	empirical	scientist,	the	mathematician	is	
at	once	an	experimenter,	a	theoretician,	and	an	engineer:	following	Rav’s	suggestion,	
every	experiment	is	in	a	continuous	–	neither	trivial	nor	“mechanical”	–	interaction	
with	hypotheses	to	test,	theoretical	assumptions,	and	the	available	technology.	This	
last	aspect	is	crucial:	mathematics	–	as	a	culture	–	has	seen	the	creation	of	
representational	systems,	which	are	in	the	course	of	time	selected	and	accepted	as	
reliable	by	the	community	and	whose	correct	functioning	has	to	be	learned.	These	
tools	–	these	physical	objects	–	are	ready	to	be	used	to	study	the	objects	of	
mathematics.	Mathematics	is	therefore	a	experimental	science	but	of	a	particular	
nature:	to	test	their	hypotheses,	mathematicians	use	their	mind	as	a	laboratory	but	
they	also	enrich	their	reasoning	by	referring	to	the	representational	systems	that	
mathematics	has	selected	in	time.	Moreover,	as	Anapolitanos	points	out,	the	activity	
of	the	mathematicians	is	subject	to	CCC:	if	natural	science	is	constrained	by	what	
exists,	mathematics	cannot	go	beyond	what	could	possibly	exist.		

We	can	thus	start	from	defining	the	domain	of	the	mathematical	activity,	which	is	
characterized	by	T-E-TC	and	CCC	and	includes	TEs	and	Ps	(see	Figure	1).	However,	
what	is	their	relationship?	Some	TEs	might	be	Ps,	but	are	all	of	them	as	such?	And	
are	all	Ps	TEs?	Where	should	experiments	in	general	be	put?	Are	TEs	and	Ps	both	
kinds	of	experiments?	And	where	to	put	REs	and	QEs?	Is	there	something	outside	
the	circle	that	we	are	missing?	

	
																																																								
8	Several	possible	taxonomies	such	as	the	ones	presented	in	Anapolitanos	(1991)	or	van	Bendegem	
(forthcoming)	are	indeed	"extensions"	of	Lakatos'	ideas.	
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Figure	1.	A	first	schema	of	the	framework.	

In	the	remainder	of	the	paper	I	will	try	to	disambiguate	the	different	terms	at	play:	
the	desideratum	will	be	to	clarify	what	a	TE	is	in	mathematics,	whether	it	is	the	
same	as	a	RE	or	not,	and	what	role	technology	has,	an	aspect	in	line	with	the	T-E-TC	
framework	that	has	been	partly	neglected	by	the	standard	approaches.	As	Buzzoni	
(2011,	p.	66)	claims,	“we	need	no	starting	point	other	than	our	everyday,	
conceptually	mediated	interactions	with	the	world”;	for	this	reason,	I	will	endorse	as	
well	an	operationalist-interventionist	view	of	mathematical	experience.	For	this	
reason,	in	Section	2,	I	will	present	three	possible	examples	of	mathematical	
“experiments”	with	triangles	–	the	simpler	geometric	figure	that	can	be	drawn:	(i)	a	
"Meno-inspired"	example,	(ii)	a	“Klein-inspired”	example,	and	finally	(iii)	an	
experimental	study	in	mathematics	education.	In	the	Section	3,	I	will	present	the	
general	framework	and	discuss	what	these	three	examples	are	example	of.	Finally,	in	
Section	4,	I	will	list	the	advantages	of	this	general	framework.		

2.	Three	examples	of	experimenting	with	triangles	

2.1	“Fold	the	triangles	and	tell	me	what	happens!”	

Example	1	is	taken	from	Giaquinto	(2007)	and	is	of	a	clear	Platonic	inspiration,	since	
it	recalls	the	task	of	doubling	the	area	of	a	given	square,	that	is,	the	problem	that	the	
slave	of	the	Meno	dialogue	is	asked	to	solve.		

Giaquinto	asks	the	reader	to	imagine	a	square:	

“Each	of	its	four	sides	has	a	midpoint.	Now	visualize	the	square	whose	corner-points	
coincide	with	these	four	midpoints.	If	you	visualize	the	original	square	with	a	
horizontal	base,	the	new	square	should	seem	to	be	tilted,	standing	on	one	of	its	
corners,	“like	a	diamond”	some	people	say.”	(p.	51)	

In	the	book,	a	figure	illustrates	this	procedure,	but	there	is	no	need	of	a	physical	
figure:	our	imagination	and	our	background	knowledge	about	squares	and	
diamonds	is	enough	to	follow	the	instructions	in	our	mind.	As	we	will	see,	the	
general	framework	that	I	shall	propose	at	the	end	will	take	this	issue	into	account.	
For	now,	the	question	is:	is	the	inner	square	smaller	than	the	outer	square?	And	
what	is	the	relation	between	their	areas?	The	original	square	is	clearly	bigger,	but	
how	much	bigger?	Giaquinto	continues	by	giving	new	instructions:	

EXPERIMENTS?

P TEs

T-E-TC CCC
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“One	can	now	visualize	the	corner	triangles	folding	over,	with	creases	along	the	
sides	of	the	tilted	square.	[…]	Assuming	that	this	leads	you	to	the	belief	that	the	
corner	triangles	can	be	arranged	to	cover	the	inner	square	exactly,	you	will	infer	
that	the	area	of	the	original	square	is	twice	the	size	of	the	tilted	inner	square”.	(pp.	
51-2)	

In	his	reconstruction,	by	imagining	performing	the	folding	action	described	above,	
one	gets	to	the	belief	B:	

[B]	If	ci	(‘‘the	inner	square’’)	is	the	square	whose	vertices	are	midpoints	of	the	
sides	of	a	square	c	(‘‘the	original	square’’),	then	the	parts	of	c	beyond	ci	(‘‘the	
corner	triangles’’)	can	be	arranged	to	fit	exactly	into	ci,	without	overlap	or	
gap,	without	change	of	size	or	shape."	

How	do	we	arrive	at	B?	What	kind	of	evidence	do	we	have	for	B?	Are	we	entitled	to	
hold	it	true	and	why?	

In	Giaquinto’s	reconstruction,	B	cannot	be	an	inference	coming	from	sense	
experience,	since	sense	experience	would	not	exclude	counterexamples.	We	can	fold	
napkins	over	and	over	again	and	never	find	that	they	exactly	fit	into	the	inner	square.	
It	cannot	either	be	an	inner	experience,	since	such	an	experience	would	exclude	the	
phenomenology	of	seeing	and	comparing	and	evaluating.		In	his	view,	the	role	of	
visualizing	may	be	precisely	to	bring	to	mind	prior	beliefs	and	to	activate	prior	
inferential	dispositions:	in	this	case	as	well	as	in	other	analogous	cases	in	geometry,	
visualizing	has	a	non-evidential	role,	since	it	is	part	of	an	a	priori	means	of	acquiring	
belief	or,	in	other	words,	of	an	a	priori	means	of	discovery.	For	this	reason,	despite	
being	non-evidential,	the	visual	element	is	non-superfluous.		

According	to	Giaquinto,	one	may	deny	Plato’s	claim,	that	is,	that	the	subject’s	prior	
cognitive	state	includes	believing	B,	and	accept	that	it	accommodates	cognitive	
resources	that	are	sufficient	to	produce	B	upon	visualizing;	he	argues	for	the	
existence	of	stored	category	representations	for	the	visual	recognition	of	particular	
figures,	in	this	case	a	square,	which	are	activated	not	only	when	we	see	a	physical	
square,	but	also	when	we	generate	a	square	in	our	imagination.	Giaquinto	bases	his	
view	on	cognitive	science	work	and	in	particular	on	Kosslyn	(1980),	where	it	is	
claimed	that	such	stored	visual	category	representations	exist	and	they	are	activated	
in	both	perceptual	recognition	of	shapes,	also	in	unfavorable	conditions	such	as	poor	
light	or	partial	occlusion,	and	in	the	generation	of	visual	images	in	our	imagination.	
For	this	reason,	and	this	is	where	Giaquinto	goes	back	to	Kant,	the	example	is	a	case	
of	synthetic	a	priori	knowledge.		

In	the	present	article,	my	aim	is	neither	to	present	Giaquinto’s	view	in	its	details,	
which	include	the	appeal	to	restricted	universal	quantification,	nor	to	endorse	his	
“neo-Kantian”	posture.	By	contrast,	I	will	just	take	into	account	this	example	in	
relation	to	my	question	about	the	role	of	TEs	is	mathematics.	As	Giaquinto	claims,	by	
visualizing	such	a	procedure,	one	gets	to	the	belief	B.	Is	this	an	experiment	in	the	
end?	And	if	this	were	the	case,	would	it	be	a	RE	or	a	TE?	What	is	its	epistemic	value?	
What	if	instead	it	is	not	an	experiment	but	a	P,	based	on	cognitive	science	findings?	
We	will	see	what	place	Example	1	will	take	in	the	general	framework	proposed	in	
the	next	section.	For	the	moment,	let	us	consider	the	second	example.		
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2.2	“Look	at	triangles,	they	are	in	all	cases	isosceles!”		

Example	2	is	the	famous	(wrong)	proof	presented	by	Klein	in	1908	that	all	triangles	
are	isosceles.	Here	is	how	Klein	asks	the	reader	to	proceed.	Consider	an	arbitrary	
triangle	ABC	and	draw	the	bisector	line	from	the	angle	A	and	the	perpendicular	to	
side	BC	which	goes	to	its	middle	point	D.	If	these	two	lines	were	parallel,	the	bisector	
would	also	be	the	altitude	of	the	triangle	and	the	triangle	would	obviously	be	
isosceles.	Assume	instead	that	these	two	lines	meet.	Two	cases	are	logically	possible:	
the	meeting	point	O	may	be	inside	or	outside	the	triangle.	In	both	cases,	draw	the	
segments	OE	and	OF	that	are	perpendicular	to	AC	and	AB,	respectively.	Finally,	join	O	
to	B	and	to	C.	

Figure	2	presents	the	case	where	O	is	inside	the	triangle.	The	right	triangles	AOE	and	
AOF	are	congruent,	because	they	have	the	hypotenuse	AO	in	common,	the	angles	in	A	
are	equal	by	definition	and	also	the	two	right	angles	are	equal.	We	can	then	conclude	
that	AF	is	equal	to	AE.	Analogously,	the	two	right	triangles	OCD	and	OBD	are	
congruent,	since	they	have	OD	in	common,	DB	is	equal	to	DC	by	definition,	and	the	
right	angles	are	equal.	We	can	then	conclude	that	OB	=	OC.		

	

		
Figure	2.	O	is	inside	the	triangle	

Now,	because	of	the	first	congruence,	OE	is	equal	OF;	then,	we	derive	the	congruence	
of	triangles	OEC	and	OFB.	Hence,	FB	is	equal	to	EC.	But	if	we	add	equals	to	equals,	
then	we	get	to	the	conclusion	that	AB	is	equal	to	AC.	Therefore,	the	triangle	ABC	is	
isosceles.	

What	about	the	case	where	O	is	outside	the	triangle,	as	in	Figure	3?	Analogously	to	
the	case	where	O	is	inside	the	triangle,	it	can	be	inferred	that	the	pairs	of	triangles	
OFA	and	OEA,	OBD	and	OCD,	OBF	and	OCE	are	all	congruent.	Therefore,	AF	is	equal	to	
AE,	and	FB	to	EC.	If	we	subtract	equals	to	equals,	then	we	get	to	the	conclusion	that	
AB	is	equal	AC.	Once	again,	the	triangle	ABC	is	isosceles.		

	

A

B CD

E
F

O
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Figure	3.	O	is	outside	the	triangle.		

The	proof	took	into	account	the	two	possible	cases,	and	it	showed	that	the	triangle	
ABC	is	isosceles	for	both.	Something	has	clearly	gone	wrong,	but	what?		

According	to	Klein,	‘‘the	only	thing	in	this	proof	that	is	false	is	the	figure’’,	because	
‘‘the	argument	is	always	based	upon	inaccurate	figures,	with	perverted	order	of	
points	and	lines’’	(Klein,	2004,	p.	202).	The	truth	is	that	O	can	never	fall	inside	the	
triangle,	and	as	a	consequence	the	locations	of	this	point	can	never	be	as	drawn	in	
the	two	figures	above.	Figure	4	is	the	correct	figure	that	"clears	up	this	sophism	
completely”	(ibidem).	Of	the	two	feet	E	and	F,	one	must	in	fact	lie	inside	the	side	on	
which	it	lies	and	the	other	outside,	as	shown.	If	this	is	the	case,	then	AC	=	AE	-	CE,	
and	AB	=	AF	+	BF	=	AE	+	CE.	

	

	
Figure	4.	The	correct	figure.	

As	for	Example	1,	what	kind	of	reasoning	do	we	find	here?	Is	Example	2	an	
experiment?	To	be	true,	in	comparison	to	Example	1,	Example	2	looks	more	like	a	RE	
than	a	TE:	the	reader	is	not	(only)	asked	to	imagine	things,	but	to	look	at	physical	
figures	that	were	(wrongly)	drawn	on	a	piece	of	paper.	It	might	also	be	that	Example	

A

B
C

D

E

F

O

A

CB

F

E

D
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2	is	indeed	a	P,	or	better	a	bad	P	for	reasons	that	we	have	to	specify,	but	still	a	P.		We	
will	see	below	where	Example	2	should	be	placed	in	the	general	framework.		

2.3	“What	do	you	get	when	you	add	more	and	more	and	more	triangles?”	

Example	3	is	the	report	of	a	very	interesting	experimental	work	in	mathematics	
education	(Bråting	&	Pejlare	2008).	The	authors’	aim	was	to	establish	what	role	
visualizations	might	have	in	learning	–	and	teaching	–	mathematics	and	in	
mathematical	understanding.9	As	a	case	study,	they	take	von	Koch’s	"snowflake"	
(von	Koch	1906,	pp.	145–146).		

The	snowflake	is	a	visualization	that	was	elaborated	by	the	Swedish	mathematician	
von	Koch	to	represent	an	everywhere	continuous	but	nowhere	differentiable	
function.	Weierstrass	had	already	given	a	formalization	of	this	kind	of	function,	but	
von	Koch	was	not	satisfied	by	this	analytic	version	of	it	because,	according	to	him,	it	
did	not	reflect	the	intrinsic	geometrical	nature	of	the	function:	to	"see"	it,	it	would	be	
very	different.	von	Koch’s	idea	is	that	in	the	snowflake	figure	the	mathematician	sees	
in	the	figure	an	everywhere	continuous	but	nowhere	differentiable	function,	that	is,	
that	it	is	not	possible	to	draw	the	tangent	in	any	point	of	the	curve.		

The	authors	of	the	study	have	doubts:	to	recognize	this	impossibility	is	a	matter	of	
possessing	the	necessary	expertise	and	not	of	seeing	the	right	visualization.	In	order	
to	figure	out	whether	they	are	right,	they	gave	31	university	students	in	
mathematics	the	following	task.	

Consider	the	construction	that	follows:	

• Start	with	an	equilateral	triangle	where	each	side	has	length	1.	

• On	the	middle	third	of	each	of	the	three	sides,	build	an	equilateral	triangle	with	sides	of	length	
1/3.	Erase	the	base	of	each	of	the	three	new	triangles.		

• On	the	middle	third	of	each	of	the	twelve	sides,	build	an	equilateral	triangle	with	sides	of	length	
1/9.	Erase	the	531	base	of	each	of	the	twelve	new	triangles.		

Repeat	the	process	with	this	48-sided	figure.	

	
Please	answer	the	following	questions	as	carefully	as	you	can!		

1. For	how	long	can	you	repeat	the	process?		

																																																								
9	The	role	and	possibly	the	limits	of	the	use	of	visualizations	is	still	a	core	issue	for	mathematics	
education:	more	experimental	work	should	be	done	on	this	point.	In	a	more	recent	paper,	Bråting	
(2012)	discusses	other	examples	in	the	light	of	the	historical	development	of	mathematics	to	show	
the	importance	of	interpretation	when	it	comes	to	visualizations,	by	arguing,	contra	Giaquinto,	that	a	
possible	division	between	“visible	mathematics”	and	“less	visible	mathematics”	is	misleading.		
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2. What	figure	will	you	get	at	the	end?	Is	it	continuous?	Is	it	differentiable?	

According	to	their	results,	16	students	think	that	the	figure	at	the	limit	is	uniform	
everywhere	except	in	a	certain	finite	number	of	points.	Seven	among	these	16	
students	believe	that	at	the	end	the	figure	will	be	a	circle	or	a	square,	and	9	of	them	a	
"flower".	One	student	in	this	last	group	comments	that	at	the	limit	the	triangles	will	
become	so	small	that	the	figure	will	transform	into	a	uniform	curve,	that	is,	it	will	
become	continuous	and	differentiable.	Some	of	these	possibilities	are	illustrated	in	
Figure	5.	14	students	do	not	think	that	the	figure	at	the	end	will	be	everywhere	
uniform,	and	therefore	they	show	they	are	familiar	with	the	flake	curve.	Nine	
students	do	not	give	pertinent	answers.	It	seems	therefore	that	intuition	alone,	if	not	
“enhanced”	by	the	right	background	knowledge,	would	lead	people	astray.		

	
Figure	5.	Some	of	the	students’	proposal	of	how	the	snowflake	will	look	like	at	the	limit.		

What	where	the	students	asked	for	in	this	example?	Was	the	task	describing	an	
experiment?	And	if	this	is	the	case,	was	it	a	RE	or	a	TE?	Moreover,	in	Example	3,	and	
contrary	to	Example	2,	we	are	confronted	with	a	procedure	that	does	not	seem	to	
have	the	character	of	a	P.	Example	3	as	well	will	find	a	place	in	the	general	
framework	that	I	will	propose	in	the	following	section.		

3.	Back	to	the	framework	

3.1	Three	regions	in	the	experimenting	activity	

In	the	previous	section,	I	gave	three	examples	of	procedures	that	could	be	
considered	as	experiments	in	mathematics.	Of	course,	in	order	to	be	sure	about	it,	
we	need	to	stipulate	what	mathematical	experiments	are,	if	there	are	any,	and	
whether	they	are	all	TEs	or	it	is	possible	to	distinguish	between	RE	and	TEs	also	in	
mathematics.		

In	the	Introduction,	I	assumed	that	mathematical	activity	is	characterized	by	a	
dialectic	process	involving	three	elements:	T-E-TC.	A	common	feature	of	the	three	
examples	that	I	presented	is	the	appeal	to	background	knowledge	and	to	the	
consequent	theoretical	assumptions	one	needs	to	be	aware	of.	For	this	reason,	
whatever	the	nature	of	the	reasoning	process	in	the	three	cases,	it	should	not	be	
“naïve”	but	subject	to	constrains.	In	fact,	as	suggested	by	Anapolitanos,	all	over	
mathematics	there	are	CCC	to	consider,	at	the	point	that	experimenting	in	
mathematics	is	defined	by	what	mathematicians	are	allowed	or	not	to	conceive.	
Therefore,	experimenting	in	mathematics	is	characterized	by	T-E-TC	and	CCC.	
However,	what	kinds	of	constraints	are	we	talking	about?	Which	constraints	
characterize	REs	and	TEs	in	mathematics?	And	what	about	Ps?	

In	order	to	reply	to	these	questions,	let	us	focus	on	the	nature	of	these	constraints	in	
turn.	I	assumed	that	in	mathematical	activity	T-E-TC	coalesce	into	a	single	point	and	
cannot	be	considered	in	isolation	one	from	the	other;	therefore,	I	will	define	as	
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notified	the	constraints	that	are	all	over	the	mathematical	practice,	which	depend	on	
background	theoretical	assumptions	and	are	assimilated	through	learning.	However,	
I	will	distinguish	between	different	“regions”	in	the	experimenting	activity	based	on	
the	constraints	and	on	the	technology	involved	in	turn.	Instead	of	drawing	circles	as	
I	did	in	the	first	outline	of	my	framework	in	Figure	1,	I	will	divide	the	conceptual	
space	into	three	regions.	The	first	region	is	inhabited	by	TEs,	which	are	subject	to	
so-called	internalized	constraints,	that	is,	to	spatio-motoric	constraints	on	the	
mental	representations	that	get	assimilated	in	perception.	The	second	region	is	the	
REs’	region,	where	constraints	are	built-in	in	physical	–	public	–	representations	and	
are	recognized	when	these	representations	are	correctly	used.	Buzzoni	claims	that	
there	is	a	sense	in	which	there	cannot	be	REs	in	pure	mathematics,	since	there	is	no	
external	reality.	However,	as	we	will	see,	I	will	introduce	a	way	to	distinguish	in	pure	
mathematics	between	TEs	and	REs:	in	a	mathematical	RE,	there	is	an	interaction	
with	some	physical	representation	that	has	an	epistemic	value.	The	third	region	
includes	QEs,	that	is,	a	kind	of	experimentation	that	is	based	more	on	propositional	
knowledge	and	on	“playing	with”	the	formalism.	In	the	next	paragraphs,	I	will	
describe	the	three	regions	in	turn.	

3.2	TEs	and	mental	models	

The	first	region	of	the	experimenting	activity	is	occupied	by	TEs,	which	demand	the	
activation	of	a	mental	model.		

To	define	what	a	mental	model	is	in	this	context,	I	will	refer	to	the	work	of	
Nersessian	(2018),	who	describes	TEs	in	science	as	experiments	on	internal	models	
of	physical	situations,	that	is,	as	a	form	of	simulative	model-based	reasoning.	
Nersessian	considers	these	models	as	“structural,	behavioural	or	functional	analogs	
to	a	real-world	phenomenon”	(p.	311).	The	important	point	is	that	the	model	
preserves	some	constraints	that	are	inherent	to	what	it	represents.	These	
constraints	are	assimilated	during	perception	and	thus	internalized:	for	this	reason,	
such	mental	models	are	often	visual	or	tactile	in	nature	and	get	manipulated	in	real	
time;	moreover,	they	embed	a	specific	and	personal	point	of	view	into	the	model	
(Narsessian,	1992,	p.	294).	Nersessian’s	view	moves	against	Norton’s	proposal,	since	
a	model	represents	demonstratively	as	opposed	to	descriptively;	however,	Brown’s	
proposal	is	inappropriate	to	accommodate	this	view	as	well,	since	TEs	are	here	
characterized	not	only	by	visual	processing	but	also	by	motor	processing:	
Nersessian’s	hypothesis	is	that	TEs	are	based	on	the	ability	to	imagine	and	to	re-
experience	from	memory.		

Of	course,	one	could	be	skeptical	about	the	idea	that	in	the	case	of	pure	mathematics,	
perception	and	action	can	play	a	role	at	all.	However,	this	is	the	case	when	we	
consider	how	TEs	are	based	on	imaginative	thinking.	All	mathematical	activity	is	
subject	to	notified	constraints.	Mathematicians	know	that	they	are	doing	
mathematics	and	that	their	perception	and	their	action	have	to	respect	the	
properties	and	the	“behavior”	of	the	mathematical	objects	that	are	in	question	each	
time:	their	manipulations	are	legitimated	by	the	practice.	For	this	reason,	when	
considering	the	constraints	that	are	used	in	constructing	and	manipulating	mental	
models,	they	are	conditioned	by	experience,	including	mathematical	experience	and	
understanding.	For	this	reason,	as	for	TEs	in	science,	a	considerable	metacognitive	
control	is	needed:	perception,	action	and	conceptual	knowledge	play	together	in	the	
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creation	and	the	manipulation	of	specific	mental	models	that	are	created	to	deal	the	
mathematical	objects.10		

According	to	this	definition	of	TEs,	Example	1	described	above	is	indeed	a	TE,	since	
it	is	subject	to	internalized	constraints	that	are	assimilated	through	perception	and	
involve	not	only	vision	but	also	action	and	manipulation	as	well	as	background	
knowledge	about	the	properties	of	squares		–	we	imagine	folding	four	parts	of	a	
“mental”	square.	It	is	important	to	insist	here	that	there	is	no	need	to	physically	
draw	the	diagram,	which	does	not	have	to	be	material:	it	suffices	to	refer	to	our	
imagination	and	memory	to	create	a	mental	model	analog	to	some	physical	situation	
–	the	one	of	folding	a	napkin	–	but	applied	in	a	new	context	to	an	abstract	object	of	
which	we	have	learnt	the	properties.11	TEs	offer	a	heuristic	to	make	hypotheses	
about	the	mathematical	objects	and	to	define	strategies	–	to	which	we	could	not	
have	access	by	relying	on	formalism	only	–	on	how	to	prove	some	mathematical	
claim.		

Other	examples	of	TEs	in	mathematics	according	to	this	definition	are	found	in	the	
literature.	For	example,	it	is	a	TE	to	imagine	a	cyclic	graph	as	a	necklace	(Starikova	&	
Giaquinto,	2018),	which	is	not	that	far	from	Stevin’s	chain	example	that	has	been	
discussed	a	lot	in	the	literature	on	TEs	in	philosophy	of	science	(see	Brown,	2011;	
Norton,	1996,	pp.	349–51	and	Mach,	1905).	Similarly,	imagine	holding	a	knot	
diagram	up	from	one	of	its	threads	and	let	it	fall	to	see	if	the	knot	is	knotted	or	not;	
this	would	be	another	TEs.	12	

Let	us	now	consider	another	example	of	TE	according	to	my	definition,	that	is,	the	
narrative	provided	by	Brown	on	how	to	prove	the	Intermediate	Value	Problem	
(Brown,	1999,	Ch.	3).	Brown	asks	the	reader	to	imagine	a	mountain	climber	starting	
at	the	base	of	the	mountain	at	noon	and	reaching	the	top	at	6	p.m.,	where	she	sleeps	
that	night.	Then,	the	day	after	at	noon,	she	follows	the	same	path	to	go	back.	Of	
course,	there	has	been	a	time	at	which	she	was	at	the	same	point	of	the	mountain	
both	days,	no	matter	how	quickly	she	walks.	Imagine	then	an	equivalent	situation	
where	the	hikers	are	two,	one	starting	at	the	bottom,	the	other	at	the	top;	for	sure	
they	will	meet	somewhere	on	the	path.		

According	to	Brown,	these	two	visualizations	give	an	illustration	to	the	Intermediate	
Zero	theorem	and	the	Intermediate	Value	theorem	respectively.	A	“purely	analytic	
proof”	in	“Bolzano’s	style”,	in	Brown’s	view,	will	just	confirm	what	was	already	
independently-known-to-be-true	thanks	to	the	picture.	This	example	nicely	fits	in	the	
TEs	region	of	my	general	framework:	it	is	subject	to	internalized	constraints	–	we	

																																																								
10	Nersessian	(2018)	goes	on	by	attributing	an	important	role	to	TEs-narratives,	which	lead	to	the	
creation	and	the	manipulation	of	the	mental	models.	In	this	paper,	I	will	not	focus	on	this	element;	
however,	I	agree	that	narratives	are	an	interesting	topic	to	work	on	also	for	mathematics,	not	only	for	
experiments	but	also	for	proofs.	This	is	matter	of	further	research.	
11	Rittberg	&	Freidman	(2021)	discuss	paper	folding	as	a	form	of	“material	reasoning”,	that	is,	as	a	
more	reliable	process	that	what	I	am	describing	here,	having	a	strong	epistemic	value.	In	their	view,	
material	folding	constitutes	a	third	kind	of	mathematical	reasoning	besides	propositional	and	
diagrammatic	reasoning.	In	order	to	show	that	paper	folding	is	indeed	a	mathematical	practice,	they	
present	a	brief	survey	of	the	history	of	paper	folding,	concentrating	mainly	on	the	first	third	of	the	
20th	century.	
12	I	thank	Uriah	Kriegel	for	this	example.		
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know	what	climbing	a	mountain	is	–	and	of	course	there	are	notified	constraints	as	
well	we	need	to	be	aware	of	about	the	features	and	the	behavior	of	a	function.		

However,	there	are	two	important	points	to	make.	First,	I	will	not	follow	Brown	in	
all	the	consequences	of	considering	–	from	his	point	of	view	–	this	reasoning	as	a	TE.	
In	fact,	here	I	side	with	Norton	and	deny	that	thanks	to	this	kind	of	TEs	one	
immediately	see	the	truth	of	some	mathematical	statements;	of	course,	imagination	
here	is	“constrained”	by	background	knowledge	that	one	needs	to	already	possess,	
but	would	that	be	sufficient	to	conclude	that	the	statement	is	true?	Second,	despite	
what	Brown	says,	we	do	not	really	need	the	picture	of	the	function	to	follow	his	
narratives:	it	suffices	to	have	an	idea	of	what	the	picture	would	look	like.	In	my	view,	
he	conflates	the	use	of	imagination	and	the	use	of	diagrams	and	visualizations;	one	
of	the	advantages	of	my	general	framework,	as	I	will	show,	will	be	to	conceptually	
distinguish	between	the	two	forms	of	experiments.		

3.3	REs	and	material	anchors		

The	second	region	of	the	experimenting	activity	is	inhabited	by	mathematical	REs;	it	
is	important	to	note	that	in	my	definition,	by	performing	a	RE	one	does	not	(only)	
refer	to	a	“mental”	model	but	to	a	“material”	one,	that	is,	to	an	“anchor”	for	reasoning.		

Following	the	work	of	Hutchins	(1995),	“material	anchors”	are	to	be	intended	as	
physical	artifacts	that	serve	as	“repositories	of	knowledge”.	Hutchins	takes	the	
example	of	the	instruments	that	are	used	in	Western	navigation,	and	explains	their	
functioning:	computational	constraints	are	built-in	the	material	anchors,	which	are	
constructed	in	durable	media	and	as	a	consequence	they	can	be	shared	and	become	
part	of	a	culture.	To	clarify,	consider	as	an	example	the	wind	rose	(Frake,	1985),	
where,	in	Hutchins’	reconstruction,	the	conceptual	structure	of	time	is	blended	with	
the	material	structure	of	the	compass	rose,	thus	allowing	the	navigator	to	
experience	direction	as	an	expression	of	time	(Hutchins,	2005,	p.	1569).	According	
to	Hutchins,	knowledge	gets	“crystallized”	in	such	artifacts,	by	building	
computational	constraints	of	the	task	into	their	physical	structure;	for	this	reason,	
material	anchors	are	not	only	mnemonic	devices	but	also	dynamic	tools	that	are	
supposed	to	be	manipulated.	Therefore,	what	gets	crystallized	really	is	the	practice	
of	using	a	physical	artifact	to	solve	some	problem.		

Hutchins’	material	anchors	are	physical	devices	whose	structure	captures	
regularities	in	the	world	of	phenomena	in	such	a	way	that	computations	can	be	
performed	by	manipulating	them:	the	syntax	of	a	particular	symbolic	world	gets	
represented	in	the	physical	constraints	of	the	very	artifact.	What	about	material	
anchors	in	pure	mathematics?	Similarly	to	the	case	of	TEs	and	mental	models,	the	
structure	of	the	physical	objet	in	a	RE	should	capture	regularities	in	the	“behavior”	
of	the	mathematical	objects	that	is	designed	to	represent.	As	a	consequence,	the	
constraints	that	characterize	the	region	of	REs	in	the	experimenting	activity	zone	of	
mathematics	are	defined	as	built-in	constraints,	that	is,	constraints	that	are	
embodied	in	the	structure	of	the	material	tools	that	are	introduced	by	the	practice.	
Here	the	interaction	between	T,	E	and	TC	becomes	even	more	evident	than	in	the	
case	of	TEs.	

In	this	framework,	Example	2	and	Example	3	above	are	both	cases	of	REs.	To	be	true,	
they	are	both	“limit”	cases,	in	a	sense	that	will	be	explained	below.	Assuming	a	
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distinction	that	have	been	proposed	in	the	literature	(see	Brown,	1991),	they	can	be	
considered	as	“destructive”	REs,	since	they	“go	wrong”,	and	this	shows	that	some	
constraints	have	not	been	respected.		

For	the	sake	of	my	argument,	let	me	start	from	Example	3.	Its	nature	of	experiment	
is	“mixed”:	notified	constraints	are	not	respected	–	students	do	not	possess	the	right	
understanding	of	the	function	–	and	also	they	do	not	recognize	the	constraints	that	
are	built-in	the	representations	that	they	are	given	in	the	text	of	the	task.	For	this	
reason,	it	is	a	RE.	However,	the	figures	drawn	by	the	students	are	illustrations	of	
their	mental	model	of	the	sides	of	the	original	representation	becoming	more	and	
more;	for	this	reason,	Example	3	is	also	a	TEs.	In	fact,	the	lines	in	the	framework	are	
blurred,	and	this	is	because	the	framework	allows	for	mixed	cases.	Once	the	terms	
have	been	specified,	the	categories	can	be	considered	as	flexible.			

Think	for	example	of	Freiling	(1986)’s	“philosophical	proof”	of	the	negation	of	
Cantor’s	hypothesis,	where	he	imagines	throwing	darts	at	the	real	number	line	and	
that	is	how	he	gets	to	his	axiom	of	symmetry.13	Freiling	warns	against	arguing	that	
such	an	experiment	can	be	simulated	by	a	physical	experiment;	by	contrast,	he	
believes	that	“such	a	process	should	be	possible	in	the	world	of	mathematics,	which	
is	perhaps	an	idealized	real	world.”	This	is	an	interesting	mixed	case	of	experiment,	
where	some	mental	model	–	presenting	internalized	constraints	we	have	
assimilated	from	the	action	of	physically	throwing	a	dart	–	is	applied	to	what	in	our	
definition	is	a	material	anchor,	with	built-in	constraints,	that	is,	the	real	number	line.	
And	its	result	looks	like	a	P.	I	will	go	back	to	this	point	below	when	I	will	discuss	the	
place	for	Ps	in	the	general	framework.	For	the	moment,	as	I	will	discuss	in	the	
conclusions,	I	want	to	point	out	that	the	fact	that	the	framework	presents	mixed	
cases	is	not	a	flaw	but	an	advantage,	since	it	shows	that	it	offers	a	good	grid	to	
accommodate	several	cases	and	analyze	their	nature	in	its	details.		

What	about	Example	2?	Notified	and	consequently	built-in	constraints	are	not	
respected:	it	is	not	the	figure	that	is	not	correct,	but	the	reasoning	behind	the	
incorrect	way	of	drawing	it.	In	other	words,	the	figures	were	triggered	by	a	series	of	
uncorrected	–	and	propositional	–	hypotheses;	it	is	like	having	a	flawless	identikit	
obtained	by	a	description	that	is	considered	as	reliable,	despite	the	fact	that	it	is	
unfortunately	given	by	an	unreliable	witness.14	To	sum	up,	there	is	something	wrong	
about	the	informal	reasoning	behind	the	construction	of	these	figures	and	not	in	the	
figures	themselves	or	in	the	possibility	of	putting	them	to	the	test.	If	they	were	
drawn	correctly,	they	would	have	not	led	us	astray.	However,	Example	2	is	a	“limit”	
case.	In	fact,	there	is	a	sense	in	which	it	looks	more	like	a	P	than	Example	1	and	
Example	3.	I	will	go	back	to	this	point	below	when	I	will	talk	about	Ps.	

Before	describing	the	third	region	of	the	experimenting	activity	zone,	let	me	discuss	
two	important	points.	First,	in	both	TEs	and	REs,	some	kind	of	"bodily"	interaction	
with	the	objects	of	the	experiments	is	acknowledge:	perception	and	action	can	be	
intended	as	fully	imaginative	in	the	case	of	TEs	or	as	carried	out	in	interaction	with	
external	representations	in	REs.	Moreover,	in	the	distinction	between	internalized	
and	built-in	constraints,	it	is	possible	to	see	two	different	ways	of	proceedings	in	the	
																																																								
13	I	thank	Jean	Paul	van	Bendegem	and	Colin	Rittberg	for	having	pointed	out	to	me	this	illustrative	
example.		
14	I	thank	Mario	Piazza	for	this	metaphor,	which	we	presented	in	our	book	(Giardino	&	Piazza,	2008).	
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experimenting	activity	characterizing	these	two	regions.	In	TEs,	the	mathematician	
happens	to	be	more	free,	while	in	REs	the	anchors	offer	some	“resistance”	to	their	
imagination:	this	is	very	clear	in	Example	2,	where	experts	is	not	allowed	to	do	
whatever	they	want	with	the	figures,	which	have	to	respect	notified	and	built-in	
constraints.	For	this	reason,	we	could	think	in	terms	of	the	two	regions	as	expressing	
a	more	“creative”	and	a	more	“stipulative”	way	of	reasoning15	in	the	experimenting	
activity:	TEs	offer	the	possibility	of	opening	new	horizons	and	identify	novel	
strategies	for	Ps,	for	example	by	describing	images	that	reveal	some	properties	that	
are	recognized	for	the	first	time	thus	exploring	the	hidden	aspect	of	the	conceptual	
structure	at	play;	REs	are	instead	constrained	by	the	rules	of	the	available	
representational	system:	however,	since	perception	and	action	still	play	a	role	in	
REs,	there	is	still	a	marge	–	even	if	a	narrower	one	–	to	apply	also	in	this	region	a	
mental	model	assimilated	through	the	experience	in	the	world,	which	is	what	
happens	in	mixed	cases	such	as	throwing	darts	on	the	real	number	line.	

In	the	next	paragraph,	I	will	describe	the	third	region	of	the	experimenting	activity,	
where	we	find	other	forms	of	reasoning	based	on	experimenting	this	times	based	on	
the	appeal	to	the	mathematical	formalism.				

3.4	QEs	and	material	supports	

The	third	region	is	inhabited	by	forms	of	reasoning	in	mathematics	that	were	left	out	
from	the	first	schema	of	the	framework,	that	is,	by	the	mathematical	QEs	Lakatos	
talks	about.	In	my	framework,	a	QE	can	be	of	two	kinds:	(i)	the	decomposition	of	
some	conjecture	into	lemmas,	by	dissecting	a	problem	into	sub-problems	and	(2)	
the	search	for	connections	and	deductive	paths.	This	region	takes	in	counterfactual	
reasoning,	as	for	example	when	a	mathematician	imagines	other	axioms	as	an	
alternative	to	the	accepted	ones.	According	to	my	framework,	this	is	the	form	of	
experimentation	that	relies	more	on	the	language	of	mathematics,	that	is,	on	the	
available	formalism.	However,	in	this	case,	the	formalism	does	not	serve	as	an	
anchor	–	if	that	were	the	case,	we	would	have	a	RE	–	but	just	as	a	material	“support”	
to	the	reasoning.	As	a	consequence,	the	interaction	with	this	support	does	not	
involve	perception	and	action	in	the	same	relevant	way	as	in	the	other	two	regions;	
of	course	one	has	to	“see”	the	formal	sentences	to	read	and	understand	them,	but	it	
suffices	to	apply	syntactic	abstract	rules	in	order	to	manipulate	them.	To	some	
extent,	QEs	are	closer	to	mathematical	“arguments”	as	Norton	defines	them.16	

None	of	the	examples	presented	above	can	be	put	into	this	part	of	the	framework,	
which	is	not	surprising,	given	the	intrinsically	geometrical	nature	of	the	three	of	
them.	However,	several	of	the	cases	of	experiments	discussed	in	the	literature,	in	
particular	in	van	Bendegem	(1998,	2003,	forthcoming),	are	QEs	according	to	my	
framework.	Moreover,	this	region	allows	me	to	accommodate	also	EM:	computers	
have	now	a	role	as	“quasi-experimenters”,	since	they	cannot	rely	neither	on	mental	
models	nor	on	material	anchors,	but	only	on	the	mathematical	formalism.		

																																																								
15	I	thank	Anouk	Barberousse	for	having	pointed	out	this	issue	to	me.	
16	Larvor	(2013)	argues	that	some	arguments	in	mathematics	are	not	in	principle	verbal	but	inscribed,	
that	is,	a	form	of	syntactic	reasoning	exploiting	mathematical	notation.	Since	he	focuses	on	the	
written	formalisms,	I	would	suggest	that	what	he	refers	to	is	a	limit	case	between	QEs	and	REs,	where	
the	formalism	is	more	than	a	simple	material	support	but	becomes	a	material	anchor.	
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Let	me	then	sum	up	what	we	have	so	far:	mathematics	as	an	experiment	activity	is	
divided	into	three	regions,	all	subjects	to	notified	constraints:	(i)	TEs,	implying	
imagination	and	mental	models,	are	subject	to	internalized	constraints;	(ii)	REs	
make	use	of	material	anchors,	whose	structure	is	designed	as	having	built-in	
constraints;	(iii)	QEs	allow	exploring	counterfactual	situations	based	on	
mathematical	formalism	as	a	material	support;	the	category	of	QEs	includes	the	
appeal	to	computers	and	thus	EM	(see	Figure	6).	

	

	
Figure	6.	A	schema	of	the	three	regions	in	the	experimenting	activity	

Is	this	all?	As	I	pointed	out	in	the	Introduction,	Ps	are	still	an	important	element	of	
the	practice	of	mathematics.	In	the	next	paragraph,	I	will	show	how	my	framework	
allows	accommodating	them	too	in	the	general	picture.	

3.5	The	proving	activity	

P	is	part	of	mathematics	and	for	this	reason	and	in	contrast	with	radical	non-
standard	views,	a	specific	place	will	be	given	in	the	framework	to	the	proving	
activity	as	distinguished	–	at	least	conceptually	–	from	the	experimenting	practice.	
However,	remember	that	all	the	lines	in	the	framework	are	blurred,	thus	allowing	
for	mixed	and	limit	cases	as	already	seen	for	the	experimenting	activity;	moreover,	
my	aim	is	to	try	to	be	orthogonal	to	the	–	in	my	view	–	misleading	distinction	
between	context	of	discovery	and	context	of	justification.			

First	of	all,	in	my	framework,	the	proving	activity	is	an	extension	only	of	the	REs	and	
QEs	regions,	since	it	is	possible	that	in	the	two	cases	a	mathematician	will	get	from	
an	experiment	to	a	proof.	This	is	not	the	case	for	TEs,	which	have	lesser	epistemic	
strength.	As	discussed	above,	in	TEs	mathematicians	play	with	their	imagination	and	
“see”	possibilities;	however,	the	internalized	constraints	have	to	be	carefully	
checked,	and	the	natural	way	to	go	would	be	to	start	from	a	TE	and	then	find	ways	to	
define	a	RE	or	a	QE	based	on	the	insight	obtained	in	the	TE.		

If	REs	become	proofs,	I	define	them	“experimental”	proofs	(henceforth,	EP),	where	
anchors	and	their	built-in	constraints	are	still	part	of	the	reasoning;	if	QEs	become	
proofs,	I	define	them	“formal”	proofs	(henceforth,	FP),	that	is,	proofs	that	are	
characterized	by	the	use	of	some	particular	formalism	and	considered	as	rigorous.	
However,	let	me	point	out	again	that	what	is	considered	as	an	accepted	P	might	
change	across	time	and	among	different	communities,	so	the	scope	of	the	EP	region	
can	vary	according	to	the	mathematical	cultures	considered	each	time.	For	example,	
think	again	of	Freiling’s	axiom	of	symmetry.	Depending	on	how	much	its	mixed	
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nature	is	considered	as	a	flaw,	his	argument	can	be	considered	as	an	EP	or	not.	
However,	the	FP	region	is	by	nature	the	one	that	is	more	rigorous	and	more	
rigorously	defined.	When	it	comes	to	FPs,	disagreements	among	mathematicians	are	
normally	solved,	and	there	is	finally	epistemic	peace:	mathematicians	agree	that	
what	has	been	provided	is	indeed	a	proof;	this	is	the	only	region	in	the	framework	
where	there	is	no	point	of	view.17	Thus,	FPs	solve	disagreements;	despite	the	fact	
that	this	does	not	mean	that	they	are	necessary	for	mathematicians	to	believe	in	
some	particular	result,	it	is	a	fact	that	when	a	FP	is	given,	even	if	it	does	not	respect	
the	way	in	which	the	original	informal	proof	was	given	and	is	a	totally	different	
proof,	the	result	is	considered	as	certain.18	According	to	the	framework	then,	FPs	are	
defined	in	opposition	to	“informal”	proofs,	that	is,	EPs	but	also	some	cases	of	QEs	
and	REs;	despite	the	fact	that	FPs	are	not	necessarily	the	most	creative	part	of	
mathematics	–	the	strategy	behind	a	FPs	is	normally	identified	in	a	REs	or	a	QEs	–	
they	are	still,	and	with	good	reason,	a	crucial	part	of	the	mathematical	activity.19		

Figure	7	illustrates	the	final	general	framework:	this	includes	an	experimenting	zone,	
which	is	divided	in	the	regions	of	TEs,	REs	and	QEs,	and	a	proving	zone,	which	is	
divided	in	the	regions	of	EPs	and	FPs	and	confines	respectively	with	the	REs	and	the	
QEs	regions.	It	should	not	be	forgotten	that	all	internal	lines	in	the	framework	are	
blurred,	and	that	limit	and	mixed	cases	are	allowed.		

	
Figure	7.	A	schema	of	the	general	framework	

4.	Conclusions:	the	advantages	of	the	framework		

																																																								
17	De	Toffoli,	S.	(2021)	argues	that	the	main	function	of	mathematical	justification	deriving	from	
rigorous	proofs	is	to	guarantee	that	the	mathematical	community	can	correct	errors	that	inevitable	
arising	from	our	human	fallible	practices.	Hamami	(forthcoming)	recognize	that	there	are	non-
deductive	reliable	methods,	but	that	it	is	thanks	to	deductive	methods	proofs	that	contain	repairable	
mistakes	can	be	corrected,	and	proofs	that	cannot	be	repaired	will	be	rejected.		
18	Rittberg	et	al.	(2020)	aims	to	show	that	epistemic	injustice	can	manifest	itself	also	in	the	practice	of	
mathematics,	and	to	do	so	the	authors	discuss	a	case	where	a	FP	is	subject	to	doubt,	since	it	proves	a	
mathematical	statement	that	is	considered	by	a	part	of	the	community	so	obvious	–	in	relation	to	“the	
existing	body	of	knowledge”	of	the	field	–	that	it	would	need	no	proof.				
19	On	the	relationship	between	rigorous	and	formal	proofs,	considering	the	practice	of	proving,	see	
Hamami	(2022).	
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I	started	with	questions	about	the	existence	of	TEs	in	mathematics	and	their	
relationship	with	other	kinds	of	experiments.	The	framework	I	propose	here	
presents	several	advantages,	by	dividing	the	activity	of	mathematics	into	different	
regions.	If	notified	constraints	characterize	the	mathematical	activity	as	a	whole,	
some	constraints	are	specific	to	regions	of	it.20	

A	first	advantage	is	that	this	framework	is	based	on	the	practice	of	mathematics	and	
it	is	to	some	extent	orthogonal	to	the	opposition	that	we	find	in	the	discussion	in	
philosophy	of	science	between	TEs	as	visualizations	versus	TEs	as	arguments.	More	
importantly,	the	framework	highlights	the	importance	of	visualizations	but	
distinguishes	between	a	kind	of	visualization	that	is	more	“free”	and	related	to	
imagination	and	internalized	constrained	–	as	in	TEs	–	and	another	kind	of	
visualization	relying	on	diagrams	and	more	in	general	on	systems	of	representations	
and	their	built-in	constraints.	This	allows	us	distinguishing	between	so-called	
picture-proofs	that	are	TEs	or	REs	and	to	evaluate	when	and	whether	they	reach	the	
status	of	EPs.	

A	second	advantage	is	that	the	reasoning	that	results	from	these	forms	of	
experimentation	is	not	only	of	a	visual	nature,	but	includes	the	action	on	some	
representations	–	either	mental	or	material.	For	this	reason,	the	framework	offers	a	
way	to	distinguish	between	TEs	and	REs	in	pure	mathematics,	despite	the	fact	that	
there	is	no	empirical	counterpart	to	take	into	account;	however,	this	helps	define	an	
analogy	with	what	happens	in	the	laboratory,	since	also	in	the	natural	sciences	there	
exist	both	mental	TEs	and	material	REs	using	the	available	tools.	

A	third	advantage	is	that	by	specifying	the	role	of	technology,	the	framework	offers	a	
reasonable	way	to	think	of	at	least	a	part	of	mathematics	as	“embodied”.	In	TEs,	REs,	
and	EPs	our	embodied	knowledge	and	experience	is	relevant;	this	is	less	so	in	the	
case	of	QEs,	EM	and	FP.	

A	forth	advantage	is	that	the	framework	rehabilitates	QEs	in	mathematics	beside	
visualization	and	representational	systems,	thus	including	counterfactual	thinking	
based	on	the	expressive	power	of	formal	languages	and	allowing	fitting	EM	–	which	
is	a	reality	in	contemporary	mathematics	–	into	the	framework.	

A	fifth	and	last	advantage	is	that	the	framework	is	very	flexible;	as	I	have	already	
pointed	out,	the	internal	lines	are	blurred,	so	as	to	allow	for	accommodating	limit	or	
mixed	cases.	This	responds	to	the	objective	of	the	article,	which	was	to	offer	some	
grid	to	make	order	in	the	conceptual	space	between	experimenting	and	proving,	
from	the	point	of	view	of	the	mathematical	practice.		

To	conclude,	in	this	article	I	argued	that	mathematical	practice	is	subject	to	notified	
constraints	as	a	whole;	one	possible	objection	could	be	that	I	did	not	explain	how	
notified	constraints	are	established	from	the	beginning.	However,	this	issue	is	
orthogonal	to	the	framework,	and	is	indeed	one	of	the	central	questions	for	a	
philosophy	of	the	mathematical	practice.	For	this	reason,	I	believe	that	my	

																																																								
20	The	aim	of	this	article	is	in	spirit	very	close	to	van	Bendegem	(2022),	which	presents	an	alternative	
general	and	complex	scheme	to	accommodate	mathematical	thought	experiments.	
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framework	is	for	the	moment	safe	from	this	objection,	and	that	the	question	about	
where	notified	constraints	come	from	can	be	matter	of	further	research.		
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