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Abstract: Riparian forests are complex ecosystems shaped by their connectivity to a river system,
which produces a mosaic of ages and species. Because of increasing anthropic pressure from factors
such as damming or climate change, they are often endangered and suffer from a drop in groundwater
accessibility and increased water stress. By combining hyperspectral, LiDAR, and forestry datasets
along a 20 km corridor of the Ain River, this paper assesses the ability of remote sensing to characterize
and monitor such environments. These datasets are used to investigate changes in site conditions and
forest characteristics, such as height and canopy water content, along a gradient of ecosystem ages
and for reaches under distinct geomorphic conditions (shifting, sediment-starved, incised). The data
show that, over time, forest patches aggrade, and the forest grows and becomes more post-pioneer.
However, forest patches that are located in the incised reach aggrade more and appear to be less
developed in height, more stressed, and feature species compositions reflecting dryer conditions, in
comparison with better-connected patches of the same age. Random forest analysis was applied to
predict the indicators of forest connectivity with remotely sensed LIDAR and hyperspectral data,
in order to identify the spatial trends at the reach scale and compare them with the geomorphic
segmentation of the river. The random forest classifications achieved an accuracy between 80%
and 90% and resulted in spatial trends that highlighted the differences in hydrological connectivity
between differing geomorphic conditions. Overall, remote sensing appears to be a good tool for
characterizing the impact of channel incisions and adjustments on riparian forest conditions by
identifying the locations of dryer forest patches. In addition, good accuracy was achieved when
attempting to classify these forest patches, even when using hyperspectral data alone, which suggests
that satellite data could become a powerful tool for monitoring the health of riparian forests, in the
context of increasing anthropic pressures.

Keywords: fluvial remote sensing; riparian forest; channel incision; water stress; LiDAR; hyperspectral;
hydrological connectivity; ain river

1. Introduction

Riparian forests are rare environments that are uniquely defined by their relation-
ship to the fluvial system [1,2]. They are species-rich hotspots that provide a range of
ecosystem services [3], including stream temperature regulation [4–6], water quality im-
provement [7,8], and cultural services [9]. Because of the reciprocal feedback between
vegetation and channel morphology, riparian forests provide valuable information on the
hydromorphological status and temporal trajectories of rivers [10].
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However, riparian forests are also very fragile and are frequently threatened. Pioneer
species living in riparian environments rely on their hydrological connectivity to the river
and are sensitive to changes in water availability [11]. Historically, riparian forests have
been altered by human activities, such as gravel mining and damming [12–14]. Examples
of alterations include channel incision, which can lead to increased stress and mortality [15]
and limit forest renewal and channel shifting [16]. In addition, riparian forests are sensitive
to increases in temperature and variations in the precipitation and flow regimes brought
about by climate change [17–19].

Therefore, the ability to characterize riparian vegetation and to monitor its response to
change is important, whether such change is due to increased anthropic pressures or to
restoration actions aimed at restoring species diversity and ecosystem services or improving
water availability.

Field observations and measurements coupled with environmental variables were
widely used in early studies seeking to describe the establishment and successional patterns
of riparian vegetation and its responses to change [20–22].

In the past two decades, new complementary approaches based on remote sensing
techniques have emerged, and these are able to collect meaningful and spatially continuous
information about river networks and riparian forests [23–25] and have become more
accessible, even to stakeholders [26].

Most published riparian vegetation studies exploiting remote sensing techniques have
focused on the use of color (RGB) or multispectral aerial imagery, but developments in the
availability of UAV and LiDAR systems have led to an increase in the proportional use of
LiDAR in recent years [27]. In riparian forests featuring the willow (Salix sp.) and poplar
(Populus sp.) species, both color images and LiDAR data have been used to characterize
the forest composition and structure and to study temporal dynamics and bio-geomorphic
feedback (Table 1).

Table 1. Example remote sensing publications involving riparian forest with poplars and/or willows
and the main focus of the studies.

Reference Data Type Multi-Date
Acquisition

Species
Identification

Structural
Information

Temporal
Dynamics

Topography and
Hydrological
Connectivity

[28] LiDAR X

[29] RGB imagery +
LiDAR X X

[30] Landsat imagery X X

[31] RGB imagery +
photogrammetry X X X X

[32] RGB imagery X

[33] RGB imagery +
photogrammetry X X X X

[34] LiDAR X X

[35] RGB imagery +
LiDAR X X X X

[36] RGB imagery +
LiDAR X X X X

[37]
RGB imagery +

LiDAR +
photogrammetry

X X X

[38] RGB imagery +
LiDAR X X X X X

[39] Hyperspectral
imagery X X

[40]
Hyperspectral

imagery + Landsat
imagery

X X X
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Imagery has traditionally been used to help with delineating riparian corridors, map-
ping key vegetation species, and, depending on its spectral resolution, providing indicators
of health, such as the narrowband normalized difference vegetation index (NDVI) [41].
Multidate acquisitions can then help detect change, support biogeomorphic investiga-
tions of fluvial processes [30], and help map and monitor species by integrating seasonal
differences in phenological traits between species [42].

In contrast, LiDAR data provides three-dimensional information about both the vege-
tation cover and the topography of the reach under the canopy cover [35,43]. Therefore, it
can be used to distinguish between the developmental stages of a specific species and help
in studying vegetation growth [28], and it can contribute to the study of the interactions
between channel topography and riparian vegetation [34]. Recent research even showed
that LiDAR allowed for discrimination between common riparian species along a corri-
dor of the Selune River, France [38]. Databases of topographic variables can be built for
entire regions and be exploited to make quantitative assessments of human-driven channel
changes at the regional level [44,45].

Although the acquisition of multiple LiDAR campaigns along long river corridors
is costly, single campaigns have been used in conjunction with time-series acquisitions
of aerial images to provide added information about channel topography [34–36]. Re-
cently, studies using structure-from-motion (SfM) photogrammetry attempted to study
bio-geomorphic feedback across repeated surveys, even though information under the
canopy cover was limited [31,33,37].

Most studies have used a rather limited spectral resolution; RGB and multi-spectral
imagery techniques employ wide spectral bands that do not reveal the finer spectral features
of vegetation. However, these features can be accessed by hyperspectral remote sensing,
which enables the use of the precision vegetation indexes developed using spectroscopy
in laboratory settings or through field sampling [46] and that can target wavelengths
correlating with leaf water content and pigment concentration [47–51].

Hyperspectral imaging is already used in agricultural studies to classify crops, monitor
their health, and predict yields [52]. It has also been successfully paired with LiDAR
imagery in forestry studies to classify species at the tree level [53], with some studies even
featuring multi-date surveys targeted at phenological windows or flowering stages [54], or
to contribute to forest inventories [55].

In riparian environments, hyperspectral imagery with Landsat data has been used
to provide in situ data for investigating the responses of pioneer species (such as poplars
and willows) to groundwater decline following a drought event [40] and to investigate
changes in competitor/stress tolerator/ruderal (CSR) strategies in hydrologically-altered
reaches [39]. These examples show the potential of hyperspectral imagery for investigating
hydrogeomorphic feedback in riparian communities.

Studies coupling hyperspectral data with LiDAR data in riparian environments are
rare. In [56], hyperspectral and LiDAR data were analyzed using machine learning tech-
niques to monitor natural grasslands in lowland river valleys for habitat protection and
conservation purposes. A similar methodology was then applied to identify herbaceous
and shrub species on the Vistula River, Poland [57]. A few other studies were able to iden-
tify tree species or to map the health of individual trees in mature forest floodplains [58–60].
However, the forests analyzed in these studies mostly featured hardwood and evergreen
species belonging to later successional stages and were not subject to the mosaics of age
and hydrological connectivity that can be found in riparian corridors.

Indeed, pioneer species that have recently colonized gravel bars can co-exist with later
successional stages along an age gradient. In addition, because of anthropic pressures or
specific lithology, the geomorphic features of a river and its banks can vary along its length
and lead to gradients of hydrological connectivity inside the forest (e.g., more elevated
riverbanks that are less frequently flooded, lack of lateral mobility). Both of these gradients
can lead to changes in the characteristics of the riparian forest (e.g., changes in species
composition, forest growth, and sensitivity to water stress).
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Therefore, the aims of this study were to combine hyperspectral, LiDAR, and forestry
data to:

(1) Explore changing biophysical characteristics along age gradients.
(2) Explore changing biophysical characteristics between river reaches with differing

geomorphic features and hydrological connectivity.
(3) Assess the use of random forest classifiers to predict forest connectivity in ripar-

ian forests.

First, we expected that such data would show that some patches become higher, are
less affected by overflow sedimentation, and progressively shift from pioneer species to
post-pioneer hardwood species along the age gradient. Second, we expected that remote
sensing information would be able to show that patches along the hydrological connectivity
gradient (considering a similar age-group) become dryer and their vegetation structure
becomes less homogeneous and sparser. In both cases, coupling hyperspectral and LiDAR
data for the analysis should allow for quantitative estimation of the physical and temporal
thresholds associated with important shifts.

We explored these two issues on the Ain River, France, where combined airborne and
field data exist within a well-established geomorphic framework [61]. In our analysis, we
first took a look at the topographic, structural, and spectral information for the selected
forestry plots. Two sites were selected because they have good hydrological connectivity,
while also featuring a mosaic of ages with plots ranging from three to forty years old
(y.o.). Other sites were selected based on previous studies featuring mature riparian forest
of a similar age, but on a gradient of hydrological connectivity due to channel changes
(e.g., incised vs. stable or slightly aggrading channels).

We then expand this analysis over a dataset representing 400 ha of riparian forest for
which forestry data is available, to see whether similar trends can be identified. Then, we
use random forest classification to try to target different indicators of forest connectivity in
a riparian landscape.

We can then create maps of the hydrological connectivity of the riparian forest of the
Ain River and compare them with preexisting information on the variations in geomorphic
characteristics inside the study reach [61].

2. Study Site

The study area is located on the Ain River, which is a large meandering gravel-bed
river that is one of the main tributaries of the upper Rhône River, France (Figure 1). In
the early 20th century, its fluvial pattern shifted from a braided one towards a sinuous
single-thread pattern [62]. Changes in pastoral and silvicultural practices after the Second
World War led to colonization of the river’s terrestrial margins [63] by a riparian forest
whose main species are black poplar (Populus nigra) and European ash (Fraxinus excelsior).

The free meandering pattern of the Ain River leads to erosion of the older portions
of the riparian forest and the creation of gravel bars that are colonized by willow species
(Salix alba, Salix elaeagnos) that trap finer sediments and progressively aggrade, allowing
colonization by poplars [64]. As the black poplars reach a height greater than that of the
willows, other species appear in the understory, such as Norway maple (Acer platanoides),
sycamore (Acer pseudoplatanus) and small-leaved lime (Tilia cordata) on dryer soils, while
the pioneer willows die off (Figure 2). In older portions of the forest, Fraxinus excelsior
overtakes Populus nigra as the most abundant species in the forest. In addition, invasive
species, such as ash-leaved maple (Acer negundo) and Japanese knotweed (Fallopia japonica),
tend to colonize the younger more-connected portions of the forest, to the detriment of the
typical early pioneer species, such as willows.
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During the 20th century, a chain of dams was built for hydroelectric purposes upstream
of the study reach, with these including the Vouglans dam, which has a reservoir of 600 mil-
lion cubic meters and induces downstream sediment starvation that propagates 500 m per
year on average [61]. As a result, the incision of the riverbed progresses downstream, and
only certain portions of the study reach are still sufficiently geomorphologically active to
enable rejuvenation of the riparian forest through channel shifting and maintenance of a
groundwater level close to the surface.

The impact of these anthropic drivers on the health of the forest has started to be
assessed, mostly through long and costly traditional in-field vegetation surveys by the
French National Forestry Office (ONF), conducted in 2006 and 2017 [65,66]. These surveys
showed that the proportion of poplars and willows is decreasing, and that rejuvenation
only occurs in the shifting reaches of the river, which are also associated with an increase in
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exotic species. A Landsat-based study [67] suggested that the impact of these anthropic
drivers on forest health could be assessed through the use of remote sensing, but the spatial
scale at which the study was conducted was too limited to assess anything other than a
downward trend in the NDVI.

Therefore, the riparian forest of the lower Ain River basin can be considered a complex
mosaic, where issues concerning species distributions, rejuvenation, and water stress
intertwine as a result of the geomorphological changes that have taken place over the last
century. Given the extensive datasets available, this carefully selected case study provides
a unique opportunity to study the characterization of riparian forests.
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Figure 2. Trajectories of the riparian forest based on surveys conducted by the French National
Forestry Office. They distinguish an initial colonization and growing phase (by Salix sp. and
Populus nigra) from later successional stages that are more mature, where the tree width of
Populus nigra increases and post-pioneer species start appearing in the understory or overtake as the
predominant species.

3. Materials
3.1. Remote Sensing Information

The remote sensing data used in this study includes airborne hyperspectral imagery
acquired in 2015, two airborne LiDAR surveys (in 2008 and 2015), and a series of aerial
photographs that were acquired from eleven campaigns since the 1940s (Table 2).

Table 2. Remote sensing datasets used in this study.

Type of Data Years of Acquisition Spatial Resolution Spectral Information

Aerial Photographs
1945, 1954, 1963, 1971, 1980,

1991, 1996, 2000, 2005,
2009, 2012

0.5 × 0.5–1 × 1 m Color RGB imagery since 2000,
black and white before

LiDAR 2008 1.8 pts/m2 NIR Laser, but only topographic
points were available

LiDAR 2015 18.6 pts/m2

per laser
NIR laser +
green laser

Hyperspectral 2015 1 × 1 m 361 spectral bands
(380–2500 nm)

3.1.1. Hyperspectral Imagery

On 29 September 2015, airborne hyperspectral imagery was acquired as part of a
project funded by the European Facility of Airborne Research (EUFAR).

The remote sensing campaign led to the acquisition of twenty hyperspectral flight
lines imaged with a Specim AISA Fenix hyperspectral camera sensor flown on a NERC-
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ARF (Natural Environment Research Council Airborne Research Facility) aircraft. This
sensor consisted of two detectors that enabled the coverage of a spectral range between
380 nanometers and 2500 nanometers. The mean full width at half maximum across the
361 spectral bands was 3.98 nanometers. A mean flight altitude of 720 m resulted in each
image having a ground resolution of 1 × 1 m.

3.1.2. LiDAR Data

The EUFAR dataset was complemented by a topo-bathymetric LiDAR acquisition
made over the study reach in August 2015. This campaign was acquired at the request of
Electricité de France (EDF) to study the bathymetry of the river channel [68]. An Optech
Titan sensor was flown on an aircraft 329 m above the ground, resulting in around ten
billion data points. The final point density was 18.6 points/m2 for each laser, and the
vertical accuracy was around 10 cm.

A second and older LiDAR dataset was also used in this study. This dataset was
acquired on the 6 and 8 March 2008. However, only a post-processed point cloud without
the vegetative cover was available; therefore, it was only used in conjunction with the 2015
topo-bathymetric LiDAR data to extract information related to sedimentation or erosion
under the canopy cover between the two dates.

3.1.3. Series of Aerial Photos Since the 1940s

Historical aerial photographs produced by the Institut National de l’Information
Géographique et Forestière (IGN) were used to assess the age of riparian vegetation by
photo interpretation. These data were collected over 11 campaigns from 1945 to 2012 and
were available for the following years: 1945, 1954, 1963, 1971, 1980, 1991, 1996, 2000, 2005,
2009, and 2012. The gap between acquisitions has become shorter in more recent years, and
color images have been acquired since the 2000 campaign. The ground resolution of the
images varied between 100 and 50 cm per pixel.

3.2. Field Calibration Data
3.2.1. Vegetation Survey during the Airborne Campaign in 2015

Following the 2015 acquisition, fieldwork was conducted in September and October
by the EVS laboratory staff to survey the riparian forest in thirty plots with a 10 m radius
(Figure 3).

The central position of each plot was acquired with a GeoExplorer 6000 handheld
global positioning system. Within a ten-meter radius, each individual tree with a diameter
above 30 cm was referenced to a database, and its height was recorded (Table 3). In addition,
all individual trees with a diameter above 7.5 cm within a smaller five-meter radius were
also referenced to the database. The tree species were assessed according to leaf morphology.
Soil-related information, such as organic matter and sediment size, was also assessed.

The locations of the plots were decided, so that the surveys included: (1) two series
of plots along an age gradient in shifting reaches of the river, and (2) one series of mature
forest plots of the same age along a gradient of vertical connectivity.

The two series of plots sampled along the age gradient (Chatillon and Mollon North)
benefited from the lateral mobility of the river. The fluvial dynamics of the reach allow for
the creation of new gravel bars, and their colonization by new pioneer vegetation. This
mobility helps maintain forest rejuvenation and leads to patches differing in age (from 4 to
40 years for the plots sampled along this gradient) and developmental stage within the
same geographic area.
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Table 3. Measurements and observations recorded in the two forestry surveys.

Characteristic 2015 Vegetation Plots
(EVS Lab)

2017 Vegetation Plots
(ONF Survey)

Species composition X X

Tree diameter

10 m radius
if diameter > 30 cm

5 m radius
if diameter > 7.5 cm

Tree height
(in 5-m classes)

10 m radius
if diameter > 30 cm

5 m radius
if diameter > 7.5 cm

Basal area X
Understory cover 5 m radius

Grass cover 5 m radius

Dead trees

10 m radius

5 m radius
if diameter > 30 cm

5 m radius
if diameter > 7.5 cm

Soil depth X X
Soil humidity X

Organic matter X
Age X
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In comparison, the vertical connectivity gradient includes forest plots that are of the
same age (70–80 years) but are spread out across differing levels of lateral mobility and
channel incision. These plots were chosen on the basis of previous studies conducted by
Dufour [63] that highlighted differences in the growth of European ash, depending on the
elevation of forest plots, relative to the water level of the river, which affects the distance to
groundwater and the frequency of flooding. We consider them to be mature forest plots in
the case of the Ain River riparian forest because they belong to the later successional stages
identified by the ONF and to some of the oldest sectors of the riparian forest.

Both the Mollon (South) and Martinaz plots are located in the river reach with the
highest lateral mobility and feature a low vertical elevation, although the high lateral
mobility has resulted in a shift in the main channel in recent years, which explains why the
Martinaz plots are laterally distant from the river channel.

Of the remaining sites, the Bellegarde site and the Vorgey site are located in the
incised sector of the river, whereas the Cormoz site is near the frontier between these two
geomorphic sectors and is situated on an elevated outer bank of the river channel. All three
of these sites feature a higher elevation, relative to the river level than the Mollon (south)
and Martinaz sites and, therefore, lower degrees of hydrological connectivity.

3.2.2. The Extensive Vegetation Surveys Performed in 2008 and 2017 by ONF

The vegetation surveys (for which remote sensing information was acquired) con-
ducted by the ONF at the request of the local stakeholders in 2008 and 2017 covered c.
400 plots in the study reach, one per hectare of forest (see Figure 3 and Table 2).

For each vegetation plot, the basal area of each species and the total basal area were
measured using a relascope. This basal area measurement corresponds to the superficy
(assumed to be circular) of a cross-section of the tree at 1.3 m from the ground. Additional
information, such as grass cover, was collected within a five-meter radius to assess the
ecological diversity of the plot. Information on the presence or absence of key invasive
species, such as Fallopia japonica and Acer negundo, was added to the survey database.
Species were determined using an identification key focusing on twigs. The soil depth and
humidity were also assessed for each plot.

The age indications in this dataset came from post-hoc assessments by the ONF team
and relied on identifying the year of colonization by looking at the series of historical aerial
photographs, described in Section 3.1.3.

The field operators who performed these surveys were trained forestry professionals
and were different from the team of EVS researchers that conducted the survey described
in Section 3.2.1.

4. Methods

The methodology used in this paper is divided into four different steps, as shown in
Figure 4. First, forest indicators were extracted from the LiDAR and hyperspectral data,
providing information about the forest structure, spectral reflectance, and the topography
of the corresponding forest plot. Then, this expanded dataset was coupled with the veg-
etation field surveys, in order to explore the characteristics of the riparian forest along
an age gradient from early pioneer individual trees that have not yet reached maturity
to later successional stages dominated by 50+ year poplars and post-pioneer species. By
simultaneously exploring these characteristics along differing geomorphic reaches, we then
studied how forest plots of a given age are impacted by reach-scale geomorphic features,
such as channel incision and sediment starvation.
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Finally, random forest classifiers—using remotely sensed indicators generated from
LiDAR and hyperspectral data as predictors—were constructed to discriminate between
different hydrological connectivity levels according to key target species (for wet and dry
environments), identify the transition from pioneer poplar forest towards post-pioneer
hardwood forest, and identify growing and mature forest patches. The resulting classi-
fications were used to map the key characteristics of the riparian forest along the 20-km
reach of the lower Ain River basin and provide a view of the resulting spatial trends at the
reach scale.

4.1. Data Processing: Extracting Forest Indicators from Hyperspectral and LiDAR Data

Both the hyperspectral and LiDAR datasets were processed to facilitate the extraction
of metrics at the plot level. The complete list of metrics can be found in Appendix A, and
for each metric, the mean, minimum, maximum, variance, and standard deviation were
extracted for each plot in the EVS and ONF dataset.
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The LiDAR data from 2015 were initially processed using the lidR library [69] to extract
a digital elevation model (DEM), digital height model (DHM), and structural vegetation
metrics. The Fluvial Corridor Toolbox [70] was then used to detrend the DEM, relative to
the water level under low-flow conditions (Q = 16 m3/s), to provide the relative elevation
of each plot, with respect to the water level.

Further processing included using SAGA GIS [71] to extract a wide range of plot-
level topographic indexes found to be relevant for riparian grassland classification in a
previous study [56].

The LiDAR data from 2008 were also processed using the lidR library to extract a
DEM. Only this information was extracted from the data because only ground points
were present in the available post-processed point cloud. This digital elevation model was
then subtracted from the 2015 model to assess sedimentation processes, according to the
difference in plot elevation between the two dates.

The accuracy of this process was assessed by choosing 12 ground control points along
the study reach in areas that we assumed to have a stable elevation (such as roads and fields)
and looking at the difference in vertical elevation between the two LiDAR datasets for these
control points. This resulted in a mean error of 9.6 cm and a median error of 9.5 cm.

Since the spatial coverage of the second LiDAR dataset was also limited, it was not
used as a predictor for the random forest classification in step 3 of the methodology, but
only to help characterize the vegetation plots in step 2 of the analysis.

For the hyperspectral imagery, a minimum noise fraction was produced, in order
to denoise the initial image into meaningful bands holding the majority of the spectral
information. The minimum noise fraction was calculated for only the vegetated area of the
hyperspectral image by applying a vegetation mask based on the LiDAR-derived canopy
height model. In addition, a set of hyperspectral vegetation indexes were calculated, with
these targeting key vegetation features, such as pigmentation, greenness, and canopy water
content (listed in Appendix A).

4.2. Data Analysis: Studying the Riparian Forest by Assessing the Impact of Channel Incision and
Vertical (Dis) Connection to the River System

The data processing phase was then followed by a more classical analysis of forest
characteristics, in which they were plotted against the age of the forest and grouped by
geomorphic reach (incised, shifting, and sediment-starved). This allowed for visualization
of the impact of age on the riparian forest by looking at how individual characteristics
evolved through time, and also allowed for trends in forest plots between geomorphic
reaches of the same age to be distinguished.

Topographic changes were explored first to better understand the changes in site
conditions along both the age and connectivity gradients. Overbank sedimentations and
the LiDAR-derived elevation of the forest plot, relative to the water level of the river during
low-flow conditions, were used as proxies for forest connectivity (depth to groundwater and
flooding frequency), while field survey data provided information about soil development.

Changes in species compositions were then explored to better understand the response
of the communities to the changes in site conditions occurring along the two gradients.

Finally, the resulting estimates of changes in the structure of the riparian forest and
the reflectance of its canopy were explored by focusing on forest height, canopy greenness,
and canopy water content. Variations in forest structures were tested against variations in
biochemical characteristics to better understand which of the changes could be driven by
stress responses.

4.3. Random Forest Classifications of Forest Connectivity and Resulting Maps

Following the analysis of the forest characteristics, random forest classifiers were
constructed for the four different classification targets of age group, forest type, presence of
Fallopia japonica, and presence of Tilia cordata (Table 4). All the indexes listed in Appendix A
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were used as inputs to the classifiers, and a randomly sampled dataset of 50 plots was used
for each class.

Table 4. Classification targets.

Classification Target Classes Site Conditions

Age group Growing and mature Identifies the presence of lateral
mobility and forest rejuvenation

Forest type Poplar forest and
hardwood forest

The poplar forest should be
located in growing forest patches
and in mature forest patches that

are well-connected to the river

Fallopia japonica Presence and absence Requires a wet environment and
well-connected forest patches

Tilia cordata Presence and absence Colonizes and grows on the driest
forest patches

The classification targeting age groups attempted to distinguish between the growing
forest and mature forest patches. Growing forest patches are likely to be located in areas
where lateral mobility occurs and leads to forest rejuvenation, whereas mature patches are
likely to be located on either well-connected areas of the river that have not yet been eroded
or along reaches impacted by sediment starvation. For practical purposes, we distinguished
between the “growing” and “mature” types of forest patches by referring to the age at
which plot composition shifts towards post-pioneer and vegetation height (therefore, the
height of poplar trees in the plot) reaches its maximum. This results in the “growing” class
targeting the parts of the riparian forest that are of interest for the local stakeholders, due
to having higher patrimonial value.

The forest type classification attempted to distinguish the dominant species at the
canopy level. The poplar forest is likely to be located in growing forest patches and well-
connected mature forest patches, whereas the post-pioneer forest is the development stage
where the poplar population is replaced by the European ash on presumably older and
less-connected forest plots.

The last two classifications target the presence or absence of key indicator species that
prefer specific soil conditions. In addition, Fallopia japonica is presumably not present in
the forest plots at the canopy level. These two classifications provide information about
site conditions.

To better understand the classifiers, the best-predictive variables were identified
for each of them, and their results were compared with a pre-existing plot classification
performed by the ONF and based on field characteristics, such as species composition and
stem diameter.

In addition, the classifications were also attempted using only LiDAR data or only
hyperspectral data to determine whether both are required for such applications.

Finally, the results from the classifiers were mapped and checked against the three
geomorphic reaches to better understand the spatial trends of connectivity of the riparian
forest of the Ain River at the reach-scale.

5. Results
5.1. Exploring Forest Characteristics and Their Evolution along the Age Gradient at Varying
Degrees of Hydrological Connectivity
5.1.1. Characterization of Hydrological and Sedimentological Changes

First, two physical indicators of hydrological connectivity derived from the remote
sensing data were explored for both forestry surveys: (1) the elevation of vegetation plots
relative to the water level of the river (measured under low-flow conditions), and (2)
overbank sedimentation under the canopy cover between 2008 and 2015 (Figure 5).
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Both overbank sedimentation and the elevation of plots, relative to the water level
of the river, provide information about flooding frequency, and therefore, hydrological
connectivity, whereas plot elevation also provides information about the distance of the
vegetation plot to groundwater resources. Hence, lower overbank sedimentation and
higher plot elevation are representative of dryer physical conditions in the corresponding
vegetation plots.

The elevation relative to the low-flow water level was lowest for the youngest forest
plots of the EVS dataset, which are located on recently-formed gravel bars (Figure 5a). After
these, the elevation rose quickly because most forest plots above 8 years old were located
two meters above the low-flow water level. Because of the free meandering mechanics of
the Ain River within this reach, some of the older plots (17 y.o., 20 y.o., and 22 y.o.) were
located near to topographic depressions, such as paleo-channels and cut-off reaches, and
featured a lower elevation (<2 m). This suggests that local fluvial dynamics can induce
variability in plot elevation within a given reach and for a given age; for example, low
elevation due to the presence of paleo-channels that are closer to the water table.

A similar trend can be observed in overbank sedimentation, which relies on frequent
flooding and its associated with sediment deposition to drive an increase in plot elevation.
The sedimentation rate is initially high for the youngest EVS plots (>20 cm), then drops
sharply after ten years, reaching values hovering between 10 and 20 cm (Figure 5c).

Overall, the two indicators combined show trends of increasing elevation and de-
creasing sedimentation with age, reaching a plateau during the first ten years after plot
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colonization. This is also the case for the ONF dataset, which provides a more extensive
view of the riparian forest of the Ain River, but one in which plots are less homogeneous
in age.

Indeed, in the ONF plots, the elevation relative to low-flow water level (Figure 5b) was,
on average, lower than two meters for plots up to 10 years old and for the few 19-year-old
plots, but was two meters or higher when riparian vegetation was older, reaching values
above four meters for some of the oldest plots. The mean overbank sedimentation of plots
younger than ten years was above 20 cm, reaching as high as 60 cm on one plot, but this
value dropped sharply afterwards, with sedimentation reaching values closer to 10 cm on
average (which was also the mean error for the vertical difference between the two LiDAR
studies in locations with stable altitude) (Figure 5d).

However, age is not the only driver of change evident on Figure 5, as there are
differences between the river reaches with lower lateral mobility (the incised reach and the
sediment-starved one, where lateral mobility is constrained by morainic deposits) and the
shifting reach of the river where lateral mobility is high. Plots of the same age located in the
incised or sediment-starved reaches, as opposed to the shifting reach of the river, feature a
higher elevation relative to the water level of the river (averages for different ages varying
between 50 and 100 cm) and lower sedimentation (averages for different ages varying by
up to 10 cm).

Two field measurements focusing on the soil at the center of each of the forest plots
were explored for the ONF dataset: (1) soil depth up to one meter measured by an auger
(Figure 6a) and (2) the available water capacity of the soil (Figure 6b). Both measurements
are important for the development of riparian vegetation because they affect root growth
and the potential abundance of water resources in the upper layer of the soil.
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Both soil depth and available water capacity increased with age in the shifting reach,
with really low values in the early phase of riparian colonization (soil depth < 25 cm and
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available water capacity < 25 mm for plots up to 10 years old) when pioneer species help to
trap finer sediments on the gravel bar. The values reached plateaus at around 60 cm for soil
depth and 75 mm for available water capacity at ages ranging from 50 to 70 years, although
plots older than 70 years featured higher average values for both indicators. In addition,
the soil depth was probably underestimated because of multiple vegetation plots reaching
the maximum depth that could be measured with the hand auger.

Similar to the two previous indicators of hydrological connectivity (elevation relative
to low flow water level and sedimentation between 2008 and 2015), the values of soil
depth and available water capacity for plots of a given age differ according to which of
the hydrogeomorphic reaches of the river they are located in. Both the incised reach of the
river and the sediment-starved reach downstream of the shifting reach feature lower soil
depth and available water capacity for their age, in comparison with plots located in the
reach with high lateral mobility.

However, plots less than 50 years in age do not appear to show the same trend.
This is partly due to their low number overall (one observation for ages 35 and 44 and
two observations for age 15). These plots are located really close to older and mature forest
plots, which may introduce variability, depending on the quality of the geo-referencing and
the location of the measurement within the plot.

To summarize, all four indicators show changes along two different gradients: an age
gradient that accompanies vegetation growth and a hydrological connectivity gradient that
highlights differences between vegetation plots of the same age that are not located in the
same geomorphic reach of the river.

The shifting reach, where erosive processes are still occurring, appears to be the one
with highest hydrological connectivity, since the rejuvenation of riparian vegetation still
occurs in the reach after 1965, contrary to the other two reaches. On average, even older
forest plots feature lower elevation (relative to the water level of the river), higher sedimen-
tation, and deeper soil with higher available water capacity. Both of the other reaches seem
to be degraded, compared with this reference state, with the incised reach upstream of the
study site tending to appear as though it has slightly worse hydrological connectivity than
the sediment-starved reach downstream of the shifting portion of the river.

5.1.2. Associated Changes in Species Composition According to Field Surveys

The plots sampled by the EVS survey mainly comprised pioneer riparian species
such as Salix sp. and Populus nigra, whose colonizing ability relies on frequent flooding
(Figure 7a). Post-pioneer species, such as Fraxinus excelsior, only become more abundant
in the older plots that were sampled on the vertical connectivity gradient (70 y.o.) across
both the shifting and incised reaches of the river. This shift towards more post-pioneer
compositions was more advanced in the plots sampled in the incised reach of the river,
with only 20% of pioneer species remaining in a given plot, while 50% remained in the
plots located in the shifting reach.

The same trend can be observed for the extensive ONF dataset, which shows the
colonization of forest plots by Fraxinus excelsior after 30 years (Figure 7b). Once again,
this colonization is more advanced for plots in either the incised or sediment-starved
reaches of the river, compared with plots located in the shifting reach. This suggests
that the hydrological disconnection caused by the incision of the riverbed creates an
environment that is more favorable to Fraxinus excelsior than to the typical pioneer species
of the Ain River.

In the case of the survey conducted by EVS, this variation in hydrological connectivity
results in the presence of an abundance of species that prefer to colonize dryer soils (Table 5).
On the Vorgey and Cormoz sites, Tilia cordata can account for half of the individual trees
in a given plot, whereas only one or two individuals have been recorded (when present)
on plots with better connectivity, such as the Mollon and Martinaz plots. Those plots
with lower connectivity are also favored by shrub species, such as Corylus avellana and
Crataegus monogyna.
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Table 5. Example species distributions from the vegetation survey conducted by the EVS laboratory
along the vertical gradient (70 y.o.) for plots in both the shifting reach and incised reach.

Site and
Plot Number Reach Proportion of

Tilia sp.
Proportion of
Shrub Species

Presence of
Fraxinus excelsior

Mollon 1 Shifting 2% 8% Present
Mollon 2 Shifting 0% 0% Present

Martinaz 1 Shifting 10% 10% Present
Martinaz 2 Shifting 6% 9% Present
Cormoz 1 Incised 56% 0% Absent
Cormoz 2 Incised 0% 85% Absent

Bellegarde 1 Incised 0% 0% Present
Bellegarde 2 Incised 0% 0% Present

Vorgey 1 Incised 0% 41% Present
Vorgey 2 Incised 78% 0% Present

In addition, the few plots that have not been colonized by Fraxinus excelsior are the
ones with the highest amount of Tilia individuals and shrub species, which suggests that,
in some locations, the soil is too dry to be favorable to the growth of Fraxinus. However,
the vegetation in the Bellegarde site does not contain Tilia individuals and shrub species,
despite being located in the incised reach of the river. Instead, the vegetation in these two
plots consists of mostly post-pioneer species, with species associations typically found
in continental forests, such as Acer campestre, Acer pseudoplatanus, Acer platanoides, and
Quercus pedunculata.
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Similarly, on older vegetation plots (>50 y.o.) from the ONF survey, those species
with a preference for dryer soils (Tilia cordata) or a more mature post-pioneer environment
(Acer sp. other than negundo) were present on forest plots with a high elevation, relative to
the water level at low flow (Figure 8). On the contrary, plots where a few individuals of
Salix sp. or the invasive Acer negundo remain had a lower relative elevation, although they
may also be located in plots of less homogeneous age. In this case, the empirical cut-off in
relative elevation between these two different compositions appears to be around 2.5 m,
which once again highlights the role of vertical (dis)connectivity in the composition of
riparian forests.
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To summarize, the composition of the riparian forest shifts with age and depends on
the vertical connectivity of a given forest plot. Post-pioneer species, such as Fraxinus excelsior,
colonize already established forest plots dominated by traditional or invasive pioneer
species (Populus nigra, Salix sp., and Acer negundo). This shift towards a more post-pioneer
environment is more pronounced for forest plots located in the incised or sediment-starved
reaches of the riparian forest, which are also those plots with lower hydrological connectiv-
ity (lower flooding frequency, high depth to groundwater, and lower soil water capacity).
This shift is also associated with the development of shrub species and the growth of
Tilia cordata, which can become dominant in the driest forest plots.

5.1.3. Associated Changes in Forest Structure and Reflectance

As illustrated by a transect of the LiDAR data over the Chatillon site, the structure
of the riparian forest changes with age (Figure 9). The early developmental stages of
the riparian forest are illustrated by such a transect: the early stages of the floodplain
are colonized by willows, and then the poplar trees grow higher than the willow trees,
which progressively leads to the development of a more mature pioneer forest, in which an
understory can develop.
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This growth can be seen at the plot level through structural indexes such as the height
of the vegetation in the plot or the standard deviation of canopy height (Figure 10). In the
case of the forest plots from the EVS survey sampled along the age gradient, the linear
relationship between the age of the plot and the height of the canopy (20 observations in
Figure 10a) is strong, with an r2 of 0.82 and a residual standard error of about four years.
The standard deviation of canopy height (20 observations in Figure 10c) is also linearly
correlated with plot age, with an r2 of 0.87, and a residual standard error of about three
years. In both cases, the error from the regression is close to the gap in years between the
aerial photographs that were used to determine the age of each plot (one campaign every
three to five years for the most recent ones).
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The growth of the riparian forest with age is also visible in the plots from the ONF
survey, even though the age of each individual plot is less homogeneous. Both the height
of the canopy in the plots (Figure 10b) and its standard deviation (Figure 10d) increases
with age, until it reaches a plateau in the case of height or decreases in the case of standard
deviation at around 40 years. Once again, age is not the only explanatory factor, as forest
plots on the incised or sediment-starved reaches tend to have a lower maximum canopy
height, compared with plots of the same age in the shifting reach, as well as a lower
standard deviation of canopy height.
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These changes in the maxima and standard deviation of canopy height also illustrate
the successional stages of the riparian forest, with the poplar trees growing above a more
uniform shrub-land of willows, therefore giving an increase in canopy height and its
standard deviation. When the poplar trees reach maturity, the height of the canopy tends
to no longer increase, and as the forest develops, the difference in height between trees in
the plot is reduced. However, the changes in the maxima and standard deviation of the
canopy height also suggests an impact of the vertical connectivity gradient of the riparian
forest, with plots with less access to groundwater and frequent flooding (in the incised and
sediment-starved reaches) featuring lower maxima of tree elevation, either due to poplars
not growing as high or due to the transition towards smaller post-pioneer species.

This relationship between access to groundwater and tree structure can be assessed
using hyperspectral indexes of greenness and canopy water content, such as the ReNDVI
or the NDII (Table 6). Although the correlation between height and spectral indexes tradi-
tionally used to detect forest or crop stress is low for growing forest plots (≈100 observa-
tions), it increases to around 0.5, when only mature forest plots are considered (>50 y.o.,
≈300 observations).

Table 6. The five hyperspectral indexes showing the strongest correlation with canopy height for
plots older than 50 years, and their correlation coefficients with forest plots younger than 50 years,
forest plots older than 50 years, and all forest plots located in the well-connected shifting reach.

Spectral Index Reference Target
R2 vs. Mean

Height
(<50 y.o.)

R2 vs. Mean
Height

(>50 y.o.)

R2 vs. Mean Height
(All Plots in the
Shifting Reach)

ReNDVI [48] Greenness 0.09 0.47 0.30
VREI1 [72] Greenness 0.11 0.52 0.33
NDII [73] Canopy water content 0.21 0.49 0.33

NDMI [74] Canopy water content 0.20 0.47 0.31
MSI [49] Canopy water content 0.21 0.49 0.33

This suggests that lower accessibility to the water resource and the resulting stress on
individuals or communities is one of the driving factors behind the structural variability of
the riparian forest, and that it can be detected using hyperspectral indexes. Indeed, both
greenness and canopy water content tended to be lower in forest plots located in the incised
or sediment-starved reaches than in the plots located in the shifting reach of the Ain River
(Figure 11).

5.2. Can We Predict and Map the Shift in Forest Composition, Structure, and Reflectance That
Results from Vertical (Dis)connection of the Riparian Forest Due to Channel Incision?
5.2.1. Random Forest Classifications

Random forest classifiers were trained on four distinct binary classification targets
for the ONF plots to explore how LiDAR and hyperspectral data are able to predict key
characteristics of the riparian forest (Table 7).

The best accuracy for the prediction of forest type was reached in the discrimination
between the well-connected poplar forest plots (>75% black poplar trees) and post-pioneer
hardwood forest (>75% European ash trees), with a class error between 12% and 14% when
using both data types. The accuracy was also high when attempting the classification using
only LiDAR (class error between 16% and 18%) or hyperspectral (class error between 18%
and 20%) data.

Class errors lower than 20% were reached for the other classification targets when
coupling hyperspectral and LiDAR data, resulting in an overall accuracy higher than 80%.
This was also the case for predicting plots where the invasive Fallopia japonica or Tilia cordata
were present or absent, even though these species are not necessarily dominant or present
at the canopy level in the plots in the case of Fallopia japonica. Predicting species that do not
present at the canopy level, coupled with the ability to predict degrees of plot elevation
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(and therefore distance to the water resource) using spectral and structural characteristics,
suggests that the classifiers do not necessarily distinguish between specific species, but
rather between the degrees of forest connectivity that were observed in the analysis of
forest characteristics.
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Table 7. Class error for each of the four random forest classifiers, according to the data used in the
classifier–LiDAR and/or hyperspectral (HS). For each class, 50 plots were used to train the classifier.

Classification Target Class Class Error
LiDAR + HS

Class Error
LiDAR Only

Class Error
HS Only

Age group
Growing
(<50 y.o.) 18% 24% 20%

Mature
(>50 y.o.) 16% 16% 28%

Forest type Poplar forest 14% 18% 20%
Hardwood forest 12% 16% 18%

Presence of
Fallopia japonica

Present 20% 20% 26%
Absent 16% 14% 28%

Presence of
Tilia cordata

Present 20% 36% 26%
Absent 18% 28% 24%

Overall, the class errors were similar once the classifiers were applied to all of the
forest plots, instead of the 50 plots–50 plots training samples (Table 8), which suggests
that the classifier did not overfit the training data. While the mean error between the two
classes dropped slightly for all classification targets, the highest class error was achieved
for predicting the presence of Tilia cordata. In this case, the classifier predicted the presence
of Tilia cordata in almost a quarter of the forest plots in which the species is absent.
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Table 8. Class error for each of the four random forest classifiers (HS + LiDAR) once the random
forest classifier was used to predict classes for each of the forest plots, instead of only the training data.
The total number of plots was lower for the Forest Type classification target, due to the definition of
each class (>75% black poplar or European ash trees in the plot), not including all forest plots.

Classification Target Class Predicted A. Predicted B. Class Error Mean Error

Age group

(A.) Growing
(<50 y.o.) 84 19 18.5%

13.5%
(B.) Mature
(>50 y.o.) 28 281 9%

Forest type (A.) Poplar forest 120 17 12%
11%(B.) Hardwood forest 8 72 10%

Presence of Fallopia japonica (A.) Present 76 6 7.5%
12%(B.) Absent 53 277 16%

Presence of Tilia cordata
(A.) Present 96 9 9.5%

17%(B.) Absent 75 232 24.5%

The best-predictive variables in the random forest classifiers were bands from the
minimum noise fraction and spectral indexes targeting greenness (ReNDVI, VREI1), or
canopy water content (NDNI, WBI) in the case of the hyperspectral data (Figure 12). For
the LiDAR data, structural information, such as the variance of the standard deviation of
the canopy height (zmax, zq90), and topographic indexes, such as the elevation above the
base-flow water level (detrend) and direct insolation (DI), were the best predictors.
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However, the mean decrease in gini (feature importance) was relatively low (<2%) for
all of the classifications because a lot of the individual variables could be replaced by other
correlated variables that achieved similar results.

Comparing the results of the classifications against the forest types determined by
traditional forestry techniques by the ONF allows for a more precise look at the results of
the classifiers and shows differences between classification targets (Table 9).

Table 9. Forest type of each vegetation plot according to the ONF survey and the number of plots of
each type classified in each class of the four random forest classifications.

Forest Type (ONF)
Age Group Forest Type Fallopia japonica Tilia cordata

Growing Mature Poplar Hardwood Present Absent Present Absent

Early pioneer forest 17 0 16 1 15 2 0 18
Rapid growth series 32 35 62 5 47 20 6 61
Slow growth series 22 22 29 15 21 23 15 29

Mature poplar forest
with an understory 2 122 56 68 17 107 81 43

Post-pioneer
hardwood forest 6 88 13 81 15 79 59 35

Others 29 37 36 30 36 30 10 56

The early pioneer forest is defined as the first stage of forest growth and development
by the ONF and is easily discriminated across all four classification targets: it corresponds
to a poplar forest that is still young and is well-connected to the river channel, therefore
being a favorable environment for the growth of the invasive Japanese knotweed.

Both the rapid-growth series and slow-growth series feature riparian forest plots
that have not yet reached the most mature stage of growth (developed understory and
large tree diameter) of the poplar forest on the Ain River, according to the ONF. The key
difference between the two series is that the slow growth one is supposed to grow on
elevated riverbanks that are less frequently flooded.

Half of the plots in the series were categorized as mature forest plots by the age group
classifier, which suggests they had reached a forest structure similar to the one seen in most
forest plots above 50 y.o, an age that the forest plots of both ONF types can reach because
the limiting factor for the next stage is tree diameter.

In addition, plots from the slow-growth series, which should be less connected to
the river system, are more often predicted as favorable to the development of Tilia cordata,
whereas plots from the rapid growth series are more often classified as favorable to the
development of Fallopia japonica, which fits with the concept that the main difference
between these two forest types is their degree of hydrological connectivity.

Finally, when reaching the most mature stages of the poplar forest, where it transitions
towards post-pioneer hardwood forest, the majority of forest plots are predicted as mature
and are not favorable to the development of Fallopia japonica. However, less than half
of them are predicted as being favorable for Tilia cordata, and half of the plots that the
ONF surveyed as representing the final stage of the riparian forest before the transition
to hardwood species are predicted as being hardwood forest already, which suggests that
they are under transition.

In summary, although the classifications reached similar accuracies, they show vari-
ability in how the forest plots are divided between the two classes (more or less connected
to the river system) for each classification. The distributions of plots favorable to the devel-
opment of Fallopia japonica (invasive on well-connected forest plots) and to the development
of Tilia cordata (growing on the driest forest plots) are not symmetric, suggesting that
some forest plots have a degree of hydrological connectivity in between the levels, clearly
differentiating the two classes.
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5.2.2. Mapping Indicators of Riparian Forest Connectivity across the Lower Ain River

Overall, the results from the classification offer a specific view of the degree of hydro-
logical connectivity of the riparian forest. The age group classification shows the location of
riparian forest plots that are still growing and have been rejuvenated after the construction
of the Vouglans dam (≈50 years before the data acquisitions). The forest type shows the
location of the typical pioneer forest, comprised mostly of poplar trees, and where it has
started transitioning or has transitioned towards the post-pioneer hardwood forest because
of a lack of forest rejuvenation. Finally, the presence of either Fallopia japonica or Tilia cordata
inside a vegetation plot is an indicator of riparian forest plots that have good hydrological
connectivity or that are dry, respectively. Furthermore, all of the classifications resulted in a
similar spatial trend across the lower Ain River (Figure 13).

Remote Sens. 2023, 1, x FOR PEER REVIEW 24 of 33 
 

 

age group or the other), and were also mostly predicted as being favorable towards the 
implantation and growth of Fallopia japonica. 

 
Figure 13. Spatial trends of riparian forest connectivity across the lower Ain River, according to the 
four random forest classifiers and their respective targets. (For coordinate references, see Figure 3 
or Figure 14). 

Finally, those plots located along the third geomorphic reach, referred to as the 
sediment-starved reach in this paper, were mostly mature vegetation plots because the 
lateral mobility of the river was constrained by morainic deposits. While, on the one hand, 
this element, coupled with the lack of favorable forest patches for Fallopia japonica, shows 
a low degree of hydrological connectivity, compared with forest patches from the shifting 
reach; on the other hand, the fact that the same forest patches are also predicted as being 
unfavorable for Tilia cordata suggests that the degree of hydrological connectivity is higher 
than that for plots in the incised reach, which would, therefore, be dryer. This degree of 
connectivity between that of the incised reach and that of the shifting reach would explain 
the equal division of forest patch predictions between poplar forest and post-pioneer 
hardwood forest. 

All four classification targets generated maps demonstrating that the impact of 
channel incision on the riparian forest could be assessed by coupling LiDAR and 
hyperspectral data. However, using hyperspectral data alone can lead to extremely 
similar maps at the scale of the lower Ain River (Figure 14). Therefore, reflectance data 
alone were used to predict the upstream–downstream trend of hydrological connectivity 
of the riparian forest, and to discriminate between the incised and shifting sections of the 
river. 

Figure 13. Spatial trends of riparian forest connectivity across the lower Ain River, according to the
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or Figure 14).

The incised reach located in the upstream portion of the study area is characterized
by older vegetation patches, apart from a few exceptions near small gravel bars. These
patches were mostly predicted to be post-pioneer hardwood forest plots, although a few
plots were still predicted to be poplar forest plots, mostly those located near paleo-channels
or extremely close in elevation to the river. In addition, the whole reach features unfavor-
able conditions for the development of Fallopia japonica, but favorable conditions for the
development of Tilia cordata.

In the shifting reach, lateral mobility leads to the rejuvenation of the riparian forest
and the presence of many forest plots that have not yet reached maturity, although some
mature plots can be seen on more elevated or older riverbanks that have not yet been
rejuvenated, such as in the Mollon Site (south), whose specific location can be found in
Figure 3. Even though there is a diversity between mature and growing forest plots in this
shifting reach of the river, most plots were predicted to be poplar forest plots, rather than
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post-pioneer hardwood forest plots (irrespective of whether they were predicted in one
age group or the other), and were also mostly predicted as being favorable towards the
implantation and growth of Fallopia japonica.
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hyperspectral data and the map resulting from only hyperspectral data.

Finally, those plots located along the third geomorphic reach, referred to as the
sediment-starved reach in this paper, were mostly mature vegetation plots because the
lateral mobility of the river was constrained by morainic deposits. While, on the one hand,
this element, coupled with the lack of favorable forest patches for Fallopia japonica, shows a
low degree of hydrological connectivity, compared with forest patches from the shifting
reach; on the other hand, the fact that the same forest patches are also predicted as being
unfavorable for Tilia cordata suggests that the degree of hydrological connectivity is higher
than that for plots in the incised reach, which would, therefore, be dryer. This degree of
connectivity between that of the incised reach and that of the shifting reach would ex-
plain the equal division of forest patch predictions between poplar forest and post-pioneer
hardwood forest.

All four classification targets generated maps demonstrating that the impact of channel
incision on the riparian forest could be assessed by coupling LiDAR and hyperspectral
data. However, using hyperspectral data alone can lead to extremely similar maps at the
scale of the lower Ain River (Figure 14). Therefore, reflectance data alone were used to
predict the upstream–downstream trend of hydrological connectivity of the riparian forest,
and to discriminate between the incised and shifting sections of the river.
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6. Discussion

Combining hyperspectral, LiDAR, and field data allowed for the analysis of the char-
acteristics of the riparian forest of the lower Ain River, which is a forest featuring patches
of varying ages due to rejuvenation that are distributed across reaches with different geo-
morphic features (high lateral mobility, constrained lateral mobility, and channel incision).

The topographic and sedimentological status of the riparian forest was investigated
at a large scale along a 20-km river corridor, which highlighted both age (objective 1) and
channel incision (objective 2) as drivers of change. Age led to a reduction in sedimentation
processes as forest patches became more elevated and to development of forest soil leading
to increased depth and available water capacity, which is in line with previous observations
of young trees altering the topography of gravel bars [34]. Channel incision led to a decrease
in patch connectivity at a given age, with an increase in plot elevation and a decrease in
sedimentation, soil depth, and available water content.

Analysis of the field data showed that a transition from a pioneer forest consisting
mainly of poplar trees towards a post-pioneer hardwood forest, from which poplars and
other characteristic species of the riparian forest were absent, occurred with age, and this
transition was more pronounced for plots affected by channel incision. For plots of the
same age, channel incision leads to an increase in species preferring dry soil conditions,
such as shrub species or Tilia sp., as is the case on the Drôme and Bès Rivers, where
shrublands featured a higher relative elevation than post-pioneer units of the same age [35],
or as observed by Dufour along the Magra River in Italy, where channel degradation also
favored species adapted to dryer conditions [75].

Both age and patch connectivity were also drivers of change in the overall structure
of the riparian forest and its reflectance. We found that LiDAR-derived height was able
to predict the age of early pioneer communities up to 30 y.o., similar to the results of
work that discriminated poplar developmental stages in Arizona [28]. However, in more
mature patches, the structure of the vegetation was not found to be related to age and
appeared to be more a function of forest connectivity and its associated shifts in species
composition, as the vegetation structure was correlated with canopy water content and
vegetation greenness.

Channel incision appeared to lead to a decrease in canopy greenness and water content,
due to the resulting constraints on the availability of water resources, which suggests a
sign of plant stress following incision, similar to the browning of riparian woodlands in
California following a groundwater drop, due to a drought event [40].

The connectivity of forest patches was predicted through random forest classification
targeting different indicators, such as the presence of species indicative of dryer soil
conditions (objective 3). The accuracy of the classifications was higher than 80%, which
is similar to or slightly lower than found in hyperspectral studies classifying species
in non-riparian environments [53,54] or detecting the presence of Tamarisk sp. [76] in
Southern California.

However, one of the limitations of this work that prevented attempts to directly map
species was that it was restricted to forestry information in the form of vegetation plots
covering a wide surface area in which multiple individuals of different species co-existed,
which resulted in plots of mixed vegetation. Since successful classifications in mixed forests
have been achieved with calibration data at the tree level [58,59] and tree crown detection
from LiDAR data was achieved in a riparian environment in the Susa Valley of Italy [77],
species mapping could be achievable in riparian forests.

Since all four classification targets achieved good results for the Ain River (including
predicting the presence in the plot of Fallopia japonica, a species that cannot be seen at the
canopy level) and led to similar maps showing the trends in hydrological connectivity
of the lower Ain River, caution appears to be necessary when attempting to map species
in riparian environments by remote sensing. The hyperspectral indexes selected by the
random forest classifier were greenness and canopy water content, which can be indicative
of water stress, rather than species. Therefore, it is possible that research work targeting the
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identification of invasive species using satellite data would produce a map of the forest
patches that are more favorable to the growth and development of such species (which can
also be of interest for scientists and stakeholders), rather than showing the actual presence
of that species.

Therefore, future work should pay attention to the fact that differing degrees of
hydrological connectivity, and the water stress that can result from them could interfere
with classifications targeted at species detection in riparian environments. Detecting forest
connectivity and mapping the impact of channel incision, as performed in this study, also
provides useful data for researchers and stakeholders, because it can separate healthy
riparian forest from dryer patches at the reach scale. This could lead to better management
practices and help in prioritizing restoration actions by targeting dryer forest patches.

It seems possible to extract reproducible results on forest characteristics from LiDAR
data, as documented in the previous literature. However, having only one hyperspectral
campaign prevented us from assessing the impact of seasonality on the riparian vegetation
signature and from knowing whether forest connectivity and health could be monitored
from space by multispectral satellite data, such as that from Sentinel-2, or by hyperspectral
data from satellites, such as PRISMA.

Not only are there seasonal differences in the reflectance between individuals of the
same species [39] and between different species that do not have the same phenological
windows [42], but the temperature and water levels are also seasonal. This study used
data collected at the end of summer when the discharge of the Ain River was usually
low and the temperature was high, which may bias the spectra towards the signature of
hydrological connectivity and potentially plant stress.

In order to validate our hypothesis about hydrological connectivity and assess its im-
pact on the spectral signature of riparian trees of the same species, in-field eco-physiological
measurements of tree water stress would be necessary, and these could help target remote
sensing surveys to the correct temporal and seasonal windows for mapping species and/or
forest connectivity and health.

7. Conclusions

In this paper, riparian forest patches were studied by combining in-field surveys with
LiDAR and hyperspectral data to better understand how the patches change through age
and how they are affected by geomorphic changes, such as channel incision.

The topography underneath the forest patches was found to change with age, with
increasing age leading to more elevated patches with a deeper soil that can store more
water. However, forest patches in the incised reach of the Ain River were more elevated and
featured shallower soils with less water retention capacity than those in non-incised reaches.

The composition of the forest was also found to change with age and the degree
of hydrological connectivity. Older forest plots were transitioning towards post-pioneer
environments, with this transition being more advanced for a particular age in forest patches
located in the incised reach of the river. Channel incision also leads to the implantation of
species preferring dryer conditions.

Although the forest grows with age, the heights of forest patches in the incised reach were
found to be lower than those of patches in other reaches. In mature forest plots, the canopy
structure correlated with hyperspectral indexes of greenness and canopy water content,
suggesting that this difference could be due to higher water stress in the communities
growing along the incised reach of the Ain River.

In addition to characterizing the impact of age and vertical connectivity on the riparian
forest and its health, the datasets were used to attempt to predict forest connectivity from
remotely sensed indicators generated from LiDAR and hyperspectral data, with random
forest classification being used to target key species, the shift between the poplar forest and
post-pioneer hardwood forest, and whether forest plots were still growing or mature.

The resulting forest maps highlighted the downstream–upstream gradient of hydro-
logical connectivity along the studied section of the Ain River. Forest rejuvenation does not
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occur in the incised reach, and channel incision led to a more post-pioneer type hardwood
forest, which is favorable to species liking dry conditions. In contrast, the shifting reach
of the river, where fluvial dynamics occur, features a forest where rejuvenation processes
are still ongoing and where older and mature patches can still feature the pioneer poplar
forest typical of the Ain River, although they are more likely to also be favorable for the
development of the invasive Japanese knotweed.

Our study highlights the potential of hyperspectral and LiDAR data for studying
riparian forests and understanding the co-occurring processes of forest growth and impacts
from anthropic changes, such as channel incision. The techniques could provide diagnostic
tools to help differentiate healthy riparian forest from dryer patches that could warrant
restoration actions. In addition, the possibility of using reflectance data alone for mapping
the connectivity of riparian forests is promising for monitoring our forests and their re-
sponses to climate change and restoration actions. However, fully exploring the changes
occurring in riparian forests along the two gradients of age and connectivity required
good field data and information derived from LiDAR data and was a crucial first step for
understanding the processes at play in our study site. Nevertheless, further research is
needed to assess the reproducibility of our results and whether they could be obtained
using low-cost and readily available multispectral data from satellites.
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Appendix A. List of Indexes and Metrics Extracted from the LiDAR and Hyperspectral
Data and Their Abbreviations

Appendix A.1. Narrowband Hyperspectral Indexes

1 MSI
2 NMDI
3 WBI
4 NDWI
5 NDII
6 CAI
7 LCAI

https://elvis.ens-lyon.fr/geonetwork/srv/fre/catalog.search#/home
https://elvis.ens-lyon.fr/geonetwork/srv/fre/catalog.search#/home
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8 PSRI
9 PRI
10 MCARI
11 MRENDVI
12 MRESR
13 MTVI
14 MTVI2
15 RENDVI
16 TCARI
17 TVI
18 VREI1
19 VREI2
20 ARI1
21 ARI2
22 CRI1
23 CRI2
24 NDLI
25 NDNI

Appendix A.2. Topographic Indexes Derived from LiDAR Data

1 Elevation relative to low-flow water level (Detrend)
2 Catchment area (CA)
3 Catchment slope (CS)
4 Modified catchment area (MCA)
5 Topographic wetness index (TWI)
6 Multiresolution index of ridge top flatness (MRRTF)
7 Multiresolution index of valley bottom flatness (MRVBF)
8 Direct insolation (DI)
9 Diffuse insolation (DI.1)
10 Total insolation (TI)
11 Duration of insolation (DoI)
12 Topographic position index (TPI)

Appendix A.3. Structural Indexes Derived from LiDAR Data

1 Maximum height (zmax)
2 Mean height (zmean)
3 Entropy of height distribution (zentropy)
4 Percentage of returns above zmean (pzabovemean)
5 5th percentile of height distribution (zq5)
6 10th percentile of height distribution (zq10)
7 15th percentile of height distribution (zq15)
8 20th percentile of height distribution (zq20)
9 25th percentile of height distribution (zq25)
10 30th percentile of height distribution (zq30)
11 35th percentile of height distribution (zq35)
12 40th percentile of height distribution (zq40)
13 45th percentile of height distribution (zq45)
14 50th percentile of height distribution (zq50)
15 55th percentile of height distribution (zq55)
16 60th percentile of height distribution (zq60)
17 65th percentile of height distribution (zq65)
18 70th percentile of height distribution (zq70)
19 75th percentile of height distribution (zq75)
20 80th percentile of height distribution (zq80)
21 85th percentile of height distribution (zq85)
22 90th percentile of height distribution (zq90)
23 95th percentile of height distribution (zq95)
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24 Cumulative percentage of returns in the 1st layer (zpcum1)
25 Cumulative percentage of returns in the 2nd layer (zpcum2)
26 Cumulative percentage of returns in the 3rd layer (zpcum3)
27 Cumulative percentage of returns in the 4th layer (zpcum4)
28 Cumulative percentage of returns in the 5th layer (zpcum5)
29 Cumulative percentage of returns in the 6th layer (zpcum6)
30 Cumulative percentage of returns in the 7h layer (zpcum7)
31 Cumulative percentage of returns in the 8th layer (zpcum8)
32 Cumulative percentage of returns in the 9th layer (zpcum9)
33 Total intensity (itot)
34 Max intensity (imax)
35 Mean intensity (imean)
36 Percentage of intensity returned by points classified as ground (ipground)
37 Percentage of intensity returned below the 10th percentile (ipcumzq10)
38 Percentage of intensity returned below the 30th percentile ipcumzq30
39 Percentage of intensity returned below the 50th percentile ipcumzq50
40 Percentage of intensity returned below the 70th percentile ipcumzq70
41 Percentage of intensity returned below the 90th percentile ipcumzq90
42 Percentage of intensity returned by 1st returns (p1th)
43 Percentage of intensity returned by 2nd returns (p2th)
44 Percentage of intensity returned by 3rd returns (p3th)
45 Percentage of intensity returned by 4th returns (p4th)
46 Percentage of intensity returned by 5th returns (p5th)
47 Percentage of returns classified as ground per square meter (pground)
48 Points per square meter (n)
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Recognition of Plant Communities at the Reach Scale of the Vistula River, Poland. Ecol. Indic. 2022, 142, 109160. [CrossRef]

58. Dutta, D.; Wang, K.; Lee, E.; Goodwell, A.; Woo, D.K.; Wagner, D.; Kumar, P. Characterizing Vegetation Canopy Structure Using
Airborne Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1160–1178. [CrossRef]

59. Richter, R.; Reu, B.; Wirth, C.; Doktor, D.; Vohland, M. The Use of Airborne Hyperspectral Data for Tree Species Classification in a
Species-Rich Central European Forest Area. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 464–474. [CrossRef]

60. Shendryk, I.; Broich, M.; Tulbure, M.G.; McGrath, A.; Keith, D.; Alexandrov, S.V. Mapping Individual Tree Health Using Full-
Waveform Airborne Laser Scans and Imaging Spectroscopy: A Case Study for a Floodplain Eucalypt Forest. Remote Sens. Environ.
2016, 187, 202–217. [CrossRef]

61. Rollet, A.J.; Piégay, H.; Dufour, S.; Bornette, G.; Persat, H. Assessment of Consequences of Sediment Deficit on a Gravel River Bed
Downstream of Dams in Restoration Perspectives: Application of a Multicriteria, Hierarchical and Spatially Explicit Diagnosis.
River Res. Appl. 2014, 30, 939–953. [CrossRef]

62. Piégay, H.; Bornette, G.; Citterio, A.; Hérouin, E.; Moulin, B.; Statiotis, C. Channel Instability as a Control on Silting Dynamics and
Vegetation Patterns within Perifluvial Aquatic Zones. Hydrol. Process. 2000, 14, 3011–3029. [CrossRef]

63. Dufour, S. Contrôles Naturels Anthropiques de La Structure et de La Dynamique Des Forêts Riveraines. PhD Thesis, Université
Jean Moulin Lyon III, Lyon, France, 2005.

64. Dumas, S. Les Habitats Forestiers de La Basse Vallée de l’Ain: Étude et Analyse; Office National des Forêts: Saint Denis, France, 2004;
p. 38.

65. Dumas, S.; Perrin, V. Le Suivi de La Forêt Alluviale de La Basse Vallée de l’Ain: Inventaire de Niveau II de 2006; Office National des
Forêts: Saint Denis, France, 2006; p. 66.

66. Dumas, S. Inventaire Des Boisements Forestiers de La Basse Vallée de l’Ain; Office National des Forêts: Saint Denis, France, 2017; p. 39.

http://doi.org/10.1016/j.jag.2015.06.014
http://doi.org/10.1016/j.ecolind.2013.06.024
http://doi.org/10.3390/rs8020097
http://doi.org/10.1002/esp.4509
http://doi.org/10.1201/b11222-20
http://doi.org/10.1016/S0034-4257(96)00067-3
http://doi.org/10.1016/S0176-1617(11)81633-0
http://doi.org/10.1016/0034-4257(89)90046-1
http://doi.org/10.1016/S0034-4257(02)00010-X
http://doi.org/10.3390/rs12213665
http://doi.org/10.1016/j.rse.2012.03.013
http://doi.org/10.1111/j.1472-4642.2011.00761.x
http://doi.org/10.3390/rs13101863
http://doi.org/10.3390/rs12111842
http://doi.org/10.1016/j.ecolind.2022.109160
http://doi.org/10.1109/TGRS.2016.2620478
http://doi.org/10.1016/j.jag.2016.07.018
http://doi.org/10.1016/j.rse.2016.10.014
http://doi.org/10.1002/rra.2689
http://doi.org/10.1002/1099-1085(200011/12)14:16/17&lt;3011::AID-HYP132&gt;3.0.CO;2-B


Remote Sens. 2023, 15, 17 32 of 32

67. Lejot, J.; Piégay, H.; Hunter, P.D.; Moulin, B.; Gagnage, M. Utilisation de la télédétection pour la caractérisation des corridors
fluviaux: Exemples d’applications et enjeux actuels. Géomorphol. Relief Process. Environ. 2011, 17, 157–172. [CrossRef]

68. Lague, D.; Feldmann, B. Topo-Bathymetric Airborne LiDAR for Fluvial-Geomorphology Analysis. In Remote Sensing of Geo-
morphology; Paolo Tarolli, S.M.M., Ed.; Developments in Earth Surface Processes; Elsevier: Amsterdam, The Netherlands, 2020;
Volume 23, pp. 25–54.

69. Roussel, J.-R.; Auty, D.; Coops, N.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.-F.; De Boissieu, F.; Achim, A. LidR:
An R Package for Analysis of Airborne Laser Scanning (ALS) Data. Remote Sens. Environ. 2020, 251, 112061. [CrossRef]

70. Roux, C.; Alber, A.; Bertrand, M.; Vaudor, L.; Piégay, H. “FluvialCorridor”: A New ArcGIS Toolbox Package for Multiscale
Riverscape Exploration. Geomorphology 2015, 242, 29–37. [CrossRef]

71. Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated
Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [CrossRef]

72. Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red Edge Spectral Measurements from Sugar Maple Leaves. Int. J. Remote Sens. 1993, 14,
1563–1575. [CrossRef]

73. Hardisky, M.; Klemas, V. Smart, and The Influence of Soil Salinity, Growth Form, and Leaf Moisture on the Spectral Radiance of
Spartina Alterniflora Canopies. Photogramm. Eng. Remote Sens. 1983, 48, 77–84.

74. Wang, L.; Qu, J.J. NMDI: A Normalized Multi-Band Drought Index for Monitoring Soil and Vegetation Moisture with Satellite
Remote Sensing. Geophys. Res. Lett. 2007, 34. [CrossRef]

75. Dufour, S.; Rinaldi, M.; Piégay, H.; Michalon, A. How Do River Dynamics and Human Influences Affect the Landscape Pattern of
Fluvial Corridors? Lessons from the Magra River, Central–Northern Italy. Landsc. Urban Plan. 2015, 134, 107–118. [CrossRef]

76. Hamada, Y.; Stow, D.A.; Coulter, L.L.; Jafolla, J.C.; Hendricks, L.W. Detecting Tamarisk Species (Tamarix spp.) in Riparian Habitats
of Southern California Using High Spatial Resolution Hyperspectral Imagery. Remote Sens. Environ. 2007, 109, 237–248. [CrossRef]

77. Belcore, E.; Latella, M. Riparian Ecosystems Mapping at Fine Scale: A Density Approach Based on Multi-Temporal UAV
Photogrammetric Point Clouds. Remote Sens. Ecol. Conserv. 2022, 8, 644–655. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.4000/geomorphologie.9362
http://doi.org/10.1016/j.rse.2020.112061
http://doi.org/10.1016/j.geomorph.2014.04.018
http://doi.org/10.5194/gmd-8-1991-2015
http://doi.org/10.1080/01431169308953986
http://doi.org/10.1029/2007GL031021
http://doi.org/10.1016/j.landurbplan.2014.10.007
http://doi.org/10.1016/j.rse.2007.01.003
http://doi.org/10.1002/rse2.267

	Introduction 
	Study Site 
	Materials 
	Remote Sensing Information 
	Hyperspectral Imagery 
	LiDAR Data 
	Series of Aerial Photos Since the 1940s 

	Field Calibration Data 
	Vegetation Survey during the Airborne Campaign in 2015 
	The Extensive Vegetation Surveys Performed in 2008 and 2017 by ONF 


	Methods 
	Data Processing: Extracting Forest Indicators from Hyperspectral and LiDAR Data 
	Data Analysis: Studying the Riparian Forest by Assessing the Impact of Channel Incision and Vertical (Dis) Connection to the River System 
	Random Forest Classifications of Forest Connectivity and Resulting Maps 

	Results 
	Exploring Forest Characteristics and Their Evolution along the Age Gradient at Varying Degrees of Hydrological Connectivity 
	Characterization of Hydrological and Sedimentological Changes 
	Associated Changes in Species Composition According to Field Surveys 
	Associated Changes in Forest Structure and Reflectance 

	Can We Predict and Map the Shift in Forest Composition, Structure, and Reflectance That Results from Vertical (Dis)connection of the Riparian Forest Due to Channel Incision? 
	Random Forest Classifications 
	Mapping Indicators of Riparian Forest Connectivity across the Lower Ain River 


	Discussion 
	Conclusions 
	Appendix A
	Narrowband Hyperspectral Indexes 
	Topographic Indexes Derived from LiDAR Data 
	Structural Indexes Derived from LiDAR Data 

	References

