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SUMMARY 

Looming-sensitive neurons (LSNs) are motion-sensitive neurons tuned for detecting imminent collision. 

Their main characteristic is the selectivity to looming (a 2D representation of an object approach), rather than to 

receding, stimuli. In this work, we studied a set of LSNs by performing surface extracellular recordings in the 

optic nerve of Neohelice granulata crabs, and characterized their response against a wide range of computer-

generated visual stimuli with different combinations of moving edges, highlighting different components of the 

optical flow. In addition to their selectivity to looming stimuli, we characterized other properties of these 

neurons, such as low directionality; reduced response to sustained excitement; and an inhibition phenomena in 

response to visual stimuli with dense optical flow of expansion, contraction, and translation. To analyze the 

spatio-temporal processing of these LSNs, we proposed a biologically plausible computational model which was 

inspired by previous computational models of the locust LGMD neuron. The videos seen by the animal during 

electrophysiological experiments were applied as an input to the model which produced a satisfactory fit to the 

measured responses, suggesting that the computation performed by LSNs in a decapod crustacean appears to be 

based on similar physiological processing previously described for the LGMD in insects. 
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INTRODUCTION  

 

 Arthropods (especially insects and crustaceans) are important animal models for studying the 

neurophysiological bases of visual processing and visually guided behaviors. This is primarily due to 

the variety and complexity of the behaviors they exhibit, together with the relative simplicity of their 

nervous systems (Srinivasan and Zhang 2004; Hemmi and Tomsic 2012). The performance of these 

visuomotor behaviors strongly depends, at the sensory level, on a set of Motion-Sensitive Neurons 

(MSNs), which can perform specialized spatio-temporal processing and integration of the information 

relating to the optical flow (OF) field. The OF is defined as the apparent motion of the image intensities 

(or brightness patterns), and ideally corresponds to the velocity field: the 2D projection onto a retina of 

the relative 3D motion of scene points (Nelson and Aloimonos 1988).  Using the information extracted 

from the OF (adapted to the nature of the task and the environmental conditions), an animal can 

analyze the motion of predators, prey or conspecifics, and can also extract information about its own 

movement relative to fixed objects. 

 In relation to insects, a paradigmatic example of MSNs are the lobula plate neurons (LPNs) of 

the fly, which act as neuronal matched filters producing an accurate and continuous report of the 

overall state of wide-field optical flow generated by its self-motion (Krapp and Hengstenberg 1996). 

This is achieved through a nonlinear spatio-temporal integration of information from elementary 

motion detectors that locally encode the direction of the OF field. Another paradigmatic example of a 

motion detector in insects is the lobula giant motion detector (LGMD) neuron (Rind and Simmons 

1999), which has been proposed as an important element in avoidance behaviors to imminent collision 

(Fotowat and Gabbiani 2011). Its main characteristic is the tuning to looming, rather than to receding, 

stimuli. This property manifests in a selectivity to the stimuli on a collision trajectory, since although 

the looming and receding stimuli activate the same photoreceptors with the same angular speed (but 

with reversed direction), the LGMD neuron produces a much greater response to expansion than 

contraction. In the last years, diverse MSNs have been characterized in different species, exhibiting a 

similar processing as that of the LGMD, and were jointly denominated as Looming-Sensitive Neurons 

(LSNs). Examples of insects LSNs have been characterized in locusts (Rind and Simmons 1992, 

Gabbiani et al. 1999, Gray et al. 2010, Rosner and Homberg 2013), flies (Borst 1991), and praying 

mantis (Yamawaki 2009); and in vertebrates, LSNs were found in pigeons (Wang and Frost, 1992) and 

fish (Preuss et al. 2006, Dunn et al. 2016). 
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 In crustaceans, the existence of MSNs (known as jittery motion detectors) with sensitivity to 

looming stimuli has been reported in lobsters (Glantz 1974). In the crab Neohelice granulata, four 

neuronal types of MSNs were identified in the lobula (third optic neuropil), and two monostratified 

lobula giant neurons (MLGs) show typical characteristics of LSNs (Oliva et al. 2017; Medan et al. 

2007; Tomsic et al. 2017). 

 Neuroanatomical studies indicate that the visual nervous systems of insects and decapod 

crustaceans may be homologous (Strausfeld 2005). Nilsson and Osorio (1998) proposed important 

evidence supporting this hypothesis, including that insects and malacostracan crustaceans have: a) 

nearly identical compound eyes sharing the same cellular composition of the ommatidia, b) the same 

general layout of the optic ganglia, and c) important similarities of structural and physiological neuron 

types in the first optic ganglion. At the level of the lobula, MSNs are also elements common to insects 

and crustaceans, with large tangential processes collecting information from extensive parts of the 

retinotopic mosaic and with axons projecting to the midbrain (e.g., Sztarker et al. 2005; Medan et al. 

2007).  

 Given this proposed homology in their visual system morphology, it is interesting to compare 

the looming stimuli processing in LSN neurons of insects and a decapod crustacean. To accomplish 

this, in the first part of this work, we characterized the visual response in a set of MSNs by extracellular 

recordings in the optic nerve of N. granulata crabs (also referred to in this publication as Neohelice). 

Using this technique, we characterized the neuronal response against a wide range of optical flow 

patterns, showing that the measured MSNs were highly sensitive to looming stimuli, and therefore can 

be classified as LSNs. In the second part of the study, we proposed a biologically plausible 

computational model based on previous experimental results and computational models of the insect 

LGMD neuron. We started from a previously proposed model for Neohelice’s MLG neurons (Oliva 

and Tomsic 2014) and we incorporated two improvements to that model that allowed us to simulate the 

neuronal response to the wide set of stimuli applied in this work: the model's inputs were the videos 

observed by the animal during the electrophysiological experiments, and we incorporated the 

phenomenon of presynaptic lateral inhibition previously modeled in the LGMD (Rind and Bramwell 

1996, Rind et al. 2016). The model helped us analyze the spatio-temporal processing for the LSNs 

measured in this work showing that the computation performed by LSNs in a decapod crustacean 

appears to be based on similar physiological processing previously described for the LGMD in insects. 
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METHODS 

 

Animals 

Animals used were adult male Neohelice (previously Chasmagnathus) granulata crabs 

measuring 2.7–3.0 cm across the carapace and weighing approximately 17 g. The crabs were collected 

in the rías (narrow coastal inlets) of San Clemente del Tuyú, Argentina, and transported to the 

laboratory, where they were housed in plastic tanks (35 × 48 × 27 cm) that were filled to a depth of 2 

cm with diluted seawater, to a density of 20 crabs per tank. The water used in the tanks and other 

containers during the experiments was prepared using hw-Marinex (Winex, Hamburg, Germany), at a 

salinity of 10–14%, pH 7.4–7.6, and maintained within a temperature range of 22–24°C. The holding 

and experimental rooms were maintained on a 12 h:12 h light:dark cycle (lights on from 07:00 to 19:00 

h), and the experiments were performed between 08:00 and 19:00 h. Crabs were fed rabbit pellets 

(Nutrients, Buenos Aires, Argentina) every three days, and the water was changed after feeding.  

 

Visual stimuli  

 Computer-generated visual stimuli were projected on a flat-screen monitor (LG 18.5”; 

horizontal and vertical screen dimensions were 41 cm by 23 cm, respectively, refreshing rate 60 Hz). 

Irradiance on the monitor screen was 4 mW/m2 (black) and 205 mW/m2 (white background).   

Changes in luminance: These stimuli simulate the instantaneous appearance of dark objects. The sizes 

of the objects tested were: 0.5°, 1.9°, 3.9°, 7.3°, and 14.5°.  

 

Moving stimuli that highlighted different components of OF: The OF field seen by an animal can be 

split into two components: rotational and translational (Nelson and Aloimonos 1988). The following set 

of visual stimuli was designed to emphasize these two components (see Fig. 1).  

 

A) Moving edges at constant angular velocity: A relative turning about a fixed axis, between the 

animal and the objects, results in a rotational optical flow field (ROF). The ROF was produced by 

moving a dark edge in three different directions (denoted as ME(1-3)) over a white background with a 

constant angular velocity of θ' = 26 °/s (Fig. 1a). Since there is only a single edge moving on the 

screen, the ME(1-3) stimuli produced a sparse ROF. In order to detect the possible presence of lateral 

inhibition phenomena, we also stimulated with an optomotor pattern (denoted as OPTO), moving at 
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constant angular velocity (θ' = 26 °/s, Δϕ = 12°), (Fig. 1a). This stimulus simulated the movement of 

many objects when the animal rotates around its own vertical axis and generated a dense ROF.  

 

B) Looming and receding: A relative approach between the animal and an object produces a 

translational optical flow (TOF) with an expansion in the direction of motion. The TOF of expansion 

was generated with looming stimuli (denoted as LOOM) which are simulated by dark squares of 

various sizes approaching at constant speeds on a direct collision course towards the animal (Fig. 1b). 

 Because a single object approaching on a white background was simulated, these stimuli 

produced a sparse TOF of expansion.  The stimuli applied has been described in detail elsewhere (Oliva 

et al. 2007; Oliva and Tomsic 2014). Briefly, l denotes the object half-size. The distance between the 

animal eye and virtual object at time t is x(t) = L-v·t, and the object subtends an angle (t) on the eye. 

Thus, we can write: 

 
)//()2/tan(/1

1

//

1
2/tan

0 vltltvlLtvL

l













   

Eq.1 

 With the chosen coordinate system and time definitions, we have x(t)  0, t  0. Where v is the 

absolute value of the approach speed.  Eq. 1 indicates that each stimulus is characterized by a value of 

l/v and of 0. Objects were simulated to start their approach from a distance L of 5 m. Due to the limits 

imposed by the screen’s size and distance from the animal’s eye, the maximum stimulus expansion was 

 = 60º.  We used a total of six looming stimuli (Table 1). In addition to the looming stimulus, we also 

simulated a receding stimulus (denoted as RECED) which represented the object moving away at speed 

v. This stimulus presented the same angular size values as the looming stimulus, but with an inverted 

temporal sequence (Table 1, stimulus 2). Under these conditions, the receding stimulus generated a 

sparse TOF of contraction. 

  

C)  Looming and receding patterns: These stimuli simulated a situation in which the animal runs while 

observing many fixed objects in the environment (Fig. 1c). We simulated the animal traveling at a 

speed v = 17 cm/s, within a quadrangular tube of height H = 2⋅l = 4 cm, therefore the stimulus 

produced a sequence of superimposed looming stimuli with an l/v = 0.117 s (similar to the value of 

stimulus 2 in Table 1). Looming and receding patterns correspond to a dense TOF of expansion and 

contraction and are denoted LOOM-P and RECED-P, respectively. The simulation was generated by 

the superposition of loomings or recedings; in which LOOM-P corresponds to the visual stimulus 
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observed in the direction of movement and RECED-P to the visual stimuli observed in the opposite 

direction to the movement. It is important to note that the edge pattern was repeated with a spatial 

period λ = 17 cm; therefore, the temporal frequency of the passage of the edges was: f = v/λ = 1 Hz. 

 

Electrophysiology 

 For dissection, the crab was sedated in a container (bowl) with ice and its chelae fixed with 

acrylic glue. The crab was positioned in the center of the arrangement of monitors within the Faraday 

cage. The clamp with the crab was held in position using a magnetic holding device (Fig. 2a). The 

eyestalks were immobilized with a piece of paper, maintaining the view at an angle of 40° ± 10 with 

the screen. Next, the animal's statocyte was removed under a magnifying glass and the optic nerve was 

found (which corresponds to the Protocerebral tract in Medan et al (2007)). Once the nerve was 

reached, it was contacted with a suction electrode (borosilicate glass; 1.2 mm outer diameter, 0.68 mm 

inner diameter) pulled with a Brown-Flaming micropipette puller (P-97; Sutter Instrument, Novato, 

CA, USA). Electrode resistance was approximately 40 KΩ.  The suction electrode was positioned with 

a micromanipulator NARISHIGE (Japan). The electrode's signal steadily remained around 30 µV 

during the stimulation and the signal was amplified and digitized with the RHA2000 (Intantech) 

system. Two computers were used: PC1 was used to visually stimulate the crab by projecting images 

generated on the monitor with a frequency of 60 Hz (Psychotoolbox - Matlab, The MathWorks, Inc., 

Natick, MA, USA). PC2 recorded the electrophysiological activity through an Intan Amplifier software 

at a sampling frequency of 25 kHz. Finally, PC1 was connected to PC2 via an auxiliary wire, which 

allowed synchronization of the recordings. 

 Similar to methods used in a previous work (Oliva et al. 2007), we began stimulation after the 

animal had remained visually undisturbed for 3 min inside the setup, and the inter-trial interval was set 

to 1 min to minimize the effect of habituation on the neuronal response. A total of 15 neurons from 9 

animals were studied. Only one neuron showed a directional response and was separated from the 14 

non-directional neurons that were studied in this work. In the first phase of the experiment, the intensity 

of the neuronal response was measured by applying a looming stimulus (stimulus 2 from Table 1) 

alternately on three positions around the animal (Fig. 2a, right panel). The firing rate was maximal 

upon stimulation in the ipsilateral monitor (right screen), for this reason, the characterization of the 

neuronal processing for the wide set of stimuli was performed using this monitor (more details in 

Results section). 
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During the experiment, crabs intermittently moved their legs for a few seconds, but generally these 

movements did not affect the electrode seal. The technique of extracellular measurement with suction 

electrodes allowed prolonged recording lasting between 3 and 5 hours. 

 

Data analysis 

 The spike sorting process consisted of the following steps (Quian Quiroga 2007): a) the 

continuous raw data was band-pass filtered between 300 Hz and 3000 Hz; b) the spikes were detected 

using an amplitude threshold (Thr) set to Thr = 5σn, where σn was an estimate of the standard deviation 

of the bandpass filtered background noise, c) the relevant features of the spike shapes were extracted, 

thus giving a dimensionality reduction, and finally d) the features were the input of a clustering 

algorithm that performs the classification. In this work, two basic approaches of spike sorting were 

tested. The first method applied was the WaveClus software (Quiroga et al. 2004; Wild et al. 2012). In 

the second method, we selected a 1-ms wide window around each detected spike, generating a vector of 

dimension (251). To extract the relevant characteristics of these vectors, the principal components 

analysis (PCA) method (first 5 components) was used. In addition, a K-means algorithm was used for 

clustering different neurons. The optimal number of clusters was determined according to the criteria of 

Calinski-Harabasz and Davies-Bouldin. The two methods detected 1 to 3 spike classes for all 

recordings (Fig. 2b-c).  All data analysis procedures were written in Matlab (The MathWorks, Inc., 

Natick, MA, USA). Both methods produced similar spike sorting results. We estimated the 

instantaneous firing rate by convolving the spike trains with a square window (width of 200 ms) and 

normalizing the resulting waveform such that its integral was equal to the total number of spikes over 

the entire trial (Gabbiani et al. 1999). The Kruskal–Wallis test was used to compare the medians of 

samples across different stimuli (P-values were denoted as PKW). To compare two groups, a sign test 

was used (P-values were denoted as PSIGN). The parameters of the different proposed models were 

estimated by nonlinear least-squares error minimization (nlinfit and patternsearch algorithms in 

Matlab). The uncertainties (standard deviation) of the model parameters were estimated using the 

bootstrap method (Wasserman 2004). All data analysis procedures were written in Matlab (The 

MathWorks, Inc., Natick, MA, USA). 
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RESULTS 

 

Neuronal response to changes in luminance 

 Figure 3a shows the neuronal responses to a local luminance change associated with the 

appearance of a dark square of angular size θ. Similarly to what was described in previous work for 

lobula giant neurons (Beron de Astrada and Tomsic 2002), responses to changes in luminance were 

phasic. In all of the measured neurons, responses were not detected for the stimulus with an angular 

size of 0.5° and the intensity of the phasic response increased with the angular size of the visual area 

stimulated. Figure 3b shows the number of spikes emitted as a function of the angular size of the 

square. This curve was adjusted as R(θ) = α(θ-β)γ, (for θ > β) where θ is the angular size of the square. 

The values obtained by least-squares were:  units α = 1.94 ± 0.8, β = 0.66° ± 0.57°, γ = 0.85 ± 0.15. 

Interestingly, the value of the parameter β obtained by the fit was similar to estimates for ommatidial 

minimum size. In fact, in the lateral part of the eye, the interommatidial angles vary between 0.6° and 

0.4°, respectively (Berón de Astrada et al. 2012).  

 

Neuronal response to moving edges at constant angular velocity 

 Figure 4a shows a typical extracellular recording, a firing rate response from a typical neuron, 

and the average firing rate as a function of time in response to moving edges at constant angular 

velocity from 14 neurons from 9 different animals (one average response, per stimulus and per neuron 

were included in the analyses). The first three traces correspond to dark moving edges going through a 

white background in different directions ME (1-3), producing a sparse ROF. An initial phasic response 

was observed for the three stimuli. The fourth trace shows the response to OPTO stimulus 

(corresponding to a dense ROF), where we observed an initial intense response that abruptly decreased. 

Figure 4b shows the maximum firing rate for each stimuli; no significant differences were found when 

using this parameter to compare between the stimuli (PKW = 0.32). However, we found significant 

differences between the mean firing rate during the stimulation (Fig. 4c). The stimulus OPTO produced 

a significantly lower response (PKW < 0.01).  

 Finally, to analyze the directionality of the neuronal response, we performed comparisons 

between the three stimuli ME (1-3) for individual neurons. We studied a set of 9 neurons for which it 

was possible to record more than five trials for each stimulus, and compared (for each neuron 

separately) the mean firing rate during stimulation. In 8 neurons, no significant differences for the three 
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directions of movement were found and, therefore, we concluded that the measured neurons did not 

present a significant degree of directionality in their response.  The neuron that showed a directional 

response was separated from the group of non-directional neurons and was not included in this 

analysis. 

 

 

The neuronal response to looming and receding 

 Figure 5a shows the typical extracellular recordings, a firing rate response from a typical 

neuron, and the average firing rate versus time for the stimuli LOOM, RECED, LOOM-P, and 

RECED-P from 14 neurons from 9 different animals (one average response per stimulus and per 

neuron were included in the analyses). These four stimuli produced sparse (or dense) optical flow of 

expansion or contraction. Figure 5b shows the maximum firing rate produced by each stimulus. The 

looming stimulus produced the highest maximum firing rate for all stimuli (PKW < 0.01). The response 

to LOOM was significantly higher than the response to RECED (PSIGN < 0.05). Similarly, LOOM-P 

and RECED-P were compared and significant differences were detected in favor of stimulus LOOM-P 

(PSIGN < 0.05). Finally, LOOM and LOOM-P were also compared and significant differences were 

detected in favor of stimulus LOOM (PSIGN < 0.05). In summary, the measured MSNs were highly 

sensitive to looming stimuli (sparse and dense TOF of expansion), and therefore can be classified as 

LSNs.  

 

LSN response to looming stimuli from different approaching directions 

 To study the sensitivity of the LSNs to looming stimuli from different approaching directions, 

the neuronal response was recorded by applying a looming stimulus (stimulus 2 from Table 1) 

alternately on the three screens around the animal (Fig. 2a, right panel). Figure 6a shows a typical 

peristimulus time histogram for one of the neurons detected in Fig. 2c. To quantify the intensity of the 

response to the stimulation from each screen, the standardized response r was defined as r(n) = Rmax 

(n)/Rmax (R), where n = {right: R, center: C, left: L} identifies the corresponding monitor, and Rmax is 

the maximum firing rate to looming stimulus (colored circles in Fig. 6a). Figure 6b shows the value of 

the response r for each monitor in the 14 neurons studied. It can be observed that the neurons 

responded intensely to the stimulus presented on each one of the screens surrounding the animal, 
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suggesting that its receptive field encompasses the entire visual field of the animal and that the firing 

rate was maximum upon stimulus from the ipsilateral monitor (right). 

 

LSN response to looming stimuli with different dynamics of expansion 

 In a previous section, we showed a preference of the recorded neurons for looming stimuli. 

Figure 7 shows a typical extracellular recordings, a firing rate response from a typical neuron, and the 

average firing rate in response to the six looming stimuli described in Table 1, applied to each animal 

from the right monitor (14 neurons from 9 different animals, one average response per stimulus and per 

neuron were included in the analyses). For stimuli 1-4 (Table 1), we maintained an approaching speed 

of v = 142.5 cm/s and changed the size of the object l from 8.5 to 64 cm. For stimuli 5-6, we 

maintained l = 17 cm while varying the speed of the object v from 71.5 to 286 cm/s. The firing rate 

progressively increased as the image of the virtual dark object grew over the retina of the animal. 

Another feature observed in different recordings to looming stimuli was the existence of a transient 

component of the response at the beginning of the expansion. This effect could be observed in stimulus 

4 (θ0 = 14.5°, see arrow in Fig. 7). 

 Figure 8a shows the average firing rate R(t) as a function of the angular size of the expanding 

object θ(t-δn) and in Fig. 8b as a function of the angular velocity of expansion θ'(t- δn) for the six 

stimuli from Table 1. The neuronal delay δn was assumed to be 40 ms and this assumption was based 

on the minimum delays of neural phasic responses to changes in luminance (Fig. 3). Comparing Fig. 

8a-b, we conclude that the spread of the firing rate given an angular size value θ(t-δn) (vertical dotted 

line in Fig. 8a) is much larger than the dispersion of the firing rate given the corresponding angular 

velocity value θ'(t-δn) (Fig. 8b). Therefore, we next describe the average neural firing rate as a function 

of the angular velocity using the following phenomenological model, which was adjusted by least 

squares: 
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The mean absolute error of the fit was 8.1 Hz and the values of the model parameters estimated were: 

Rmax = 118 ± 5 Hz, θ'50% = 192 ± 4 º/s and R0 = 0.4 ± 0.1 Hz (uncertainty of each parameter was 

obtained using the bootstrap method).  
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 It is important to note that the phasic response in the onset of stimulus 4 was only detected at 

the beginning of the expansion. Figure 8b shows that varying the parameter 0 did not have an 

appreciable influence in the later response to the looming stimulus. 

 

Biologically plausible computational model for spatio-temporal processing and integration in the 

examined LSNs 

 In this section, we propose a biologically plausible computational model that aided us in 

analyzing the spatio-temporal processing and integration of the examined LSNs. To proposed the 

model, we used information from studies carried out for more than 40 years in the locust LGMD 

neuron showing that several biophysical processes operate in parallel to shape and tune the visual 

response of this LSN (Rowell et al. 1977, Rind and Bramwell 1996, Jones and Gabbiani 2012). To 

construct the model, we started from a previously proposed model for Neohelice's MLG neurons (Oliva 

and Tomsic 2016), but in this work, we incorporated two improvements: a) the model input was the 

videos observed by the animal during the electrophysiological experiments; and b) the phenomenon of 

presynaptic lateral inhibition was incorporated. Figure 9 shows the model for the proposed neural 

circuitry which is based on the previous models developed for Neohelice's MLG1-2 neurons (Oliva and 

Tomsic 2014, 2016) and the proposed circuit for presynaptic lateral inhibition in the LGMD neuron 

(Rowell et al. 1977). 

Feed-forward Excitation (FFE) and Inhibition (FFI): It is assumed that the circuit presynaptic to the 

neurons (Fig. 9a) uses as input the sequence of images I(t) having a range of values between 0 and 1. 

Each photoreceptor senses the image intensity at the position (i,j) (which is discretized to an area of 

approximately 1.4  1.8) and columnar cells produce a signal proportional to the changes of intensity 

of the image Iij(t) in that region, according to:  

 

)()()(  tItItI ijijij        Eq. 2 

Where δ is the time interval between video frames. Depending on the visual stimuli, the intensity in 

each column can decrease or increase, and these changes (at position (i,j)) are signaled by two different 

pathways called offcij(t)=poslin(-ΔIij(t)) and oncij(t)=poslin(ΔIij(t)), where poslin represents the positive 

linear transfer function. In Neohelice, this assumption is based on previous observations (Medan et al. 

2007), in which the intensity and the delay to OFF and ON stimulus were significantly different. 
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 As shown in Fig. 6, looming sensitivity for LSNs was intense throughout their large receptive 

field. Additionally, the sensitivity variation on the stimulation screen (right monitor) was 

approximately 20%. Consequently, similar to our previous model for MLG2 neurons (Oliva and 

Tomsic 2016), we assume that the computational model for LSNs in this work does not require the 

introduction of a receptive field sensitivity function. 

Similar to the LGMD model (Rowell et al. 1977, Rind and Bramwell 1996), we assumed that the 

columnar excitatory channels (producing the FFE) are mutually inhibited through lateral inhibition 

processes presynaptic to the LSN. Thus, the signal preij(t) that descends through the downstream 

channel (i,j), produces a response that is proportional to the activation of ON/OFF channels (Beron de 

Astrada et al. 2013) and their response is assumed to be decreased proportionally to a delayed spatial 

average activity of the neighboring channels in a region of (8  8) channels that were called aij(t): 
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  Eq. 3 

Where preFFE is the total presynaptic excitation and the coefficient kpre,e is used to normalize the preFFE 

signal; γ1,2 are associated to the weight of ON signals and lateral inhibition, respectively; and δLI is the 

delay associated with the lateral inhibition process. 

Similar to the LGMD model, it was assumed that the total FFI signal integrates the activity of all the 

columnar channels according to: 

 





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ij
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ij
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ipreFFI tctcktpre
,

3, ))()(()(      Eq. 4 

Where the coefficient kpre,i is used for normalization and γ3 is a coefficient to be fitted that measures the 

relative intensity of ON channels with respect to OFF channels. 

Similar to previous models for MLG neurons (Oliva and Tomsic 2014; 2016), it is assumed that the 

release of excitatory neurotransmitters Texc (and inhibitory Tinh) from the columnar processes to the 

LSNs follows first-order dynamics with characteristic time constants τexc and τinh according to: 
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where δe and δi are the excitatory and inhibitory synaptic latencies, respectively. The excitatory 

synaptic conductance gexc (and inhibitory ginh) associated with FFE and FFI are given by: 
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      Eq. 6 

where ge,max and gi,max are the maximum total excitatory and inhibitory conductances, respectively. The 

parameter Texc,50% corresponds to the value of Texc when gexc reaches 50% of ge,max. We approximated 

the filtered membrane potential Vmf(t) to its steady state as: 
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where gL is the leak conductance and EL, Eexc, and Einh are the leak, excitatory, and inhibitory reversal 

potentials, respectively. Finally, we assumed a covariation between firing rate R(t) and Vmf(t) 

(experimentally observed in Oliva and Tomsic 2014) according to:  

 

))(()( tVposlinktR mfR         Eq. 8 

 Now that the assumptions of the model have been described, we explain how the simulation is 

performed: From the videos I(t), the variables offcij(t) and oncij(t) were calculated (Eq 2). Then, the total 

presynaptic signal associated with the FFE and the FFI (preFFE(t) and preFFI(t)) were obtained using 

Eqs. 3 and 4. The integration of Eq. 5 was performed using the forward Euler method and the 

excitatory and inhibitory conductances (gexc and ginh) were calculated according to Eq. 6. Finally, the 

filtered membrane potential, Vmf, and the firing rate, R, were obtained using Eqs. 7-8, respectively.  

 

 

Parameter selection and model fit 

 The model presented in the previous section determined a nonlinear spatio-temporal filter acting 

on the sequence of images I(t) seen by the animal during the electrophysiological experiments and had 

a wide set of parameters that must be fitted to reproduce the firing rate measured experimentally. 
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Similar to previous work (Oliva and Tomsic 2014), we assumed the resting membrane potential EL= 0 

mV, the excitatory synaptic reversal potential Eexc= 60 mV, and inhibitory synaptic reversal potential 

Einh= -3 mV. The signals preFFE(t) and preFFI(t) were normalized to the maximum value reached for all 

stimuli. To meet this condition, the constants kpre,e= 0.0033 and kpre,i= 0.0011 were used. All the 

remaining parameters of the model were estimated by nonlinear square error minimization between the 

experimental average firing rate and the model prediction. For this, we used a nonlinear least squares 

method to fit the experimental measurements (patternsearch algorithm in Matlab). The values obtained 

for the estimated parameters were: firing rate constant kR= 4 Hz, excitatory and inhibitory time 

constants and delays τexc= 40 ms, τinh= 777 ms, δe= 40 ms, δi= 80 ms, and δLI= 40 ms. The parameters 

related to synaptic conductances were: (gexc,max/gL)= 8.3, (ginh,max/gL) =  7.5, Texc,50% = 0.48, Tinh,50%= 

0.04. Because the ‘maximum normalized excitatory and inhibitory conductance’ were referred to the 

leak conductance, they are dimensionless. Finally, the adimensional parameters that measure the 

relative influence of the ON units were: γ1 = 0.5, γ3 = 2.78; and for the lateral inhibition influence γ2 = 

1.69.  

 As shown in Fig. 10 (red traces), through optimizing these parameters, a satisfactory fitting can 

be achieved throughout all stimuli (the mean absolute error of the fit was 2.3 Hz), showing that the 

biologically inspired model is useful for capturing the relevant aspects of the LSN response. 

 Next, we analyzed how the model responds to the same visual stimuli without the presence of 

presynaptic lateral inhibition (LI). For this, we compared the predictions of the model described above 

(with LI, red lines in Fig. 10) with the predictions of another model in which we set the parameter γ2 = 

0 (canceling the inhibitory influence produced by the activity of the neighboring channels aij(t) in Eq. 

3). Therefore, this second model is equivalent to the one proposed in Oliva and Tomsic 2016) where 

only FFE and FFI acted. Canceling only the parameter γ2 results in a generalized increase in the 

response. Therefore, to optimize the predictions of the model without lateral inhibition, the parameter 

(ginh,max/gL) was again adjusted to the value: (ginh,max/gL) = 11. The results of adjusting the model 

without lateral inhibition are shown in Fig. 10 (green traces). The mean absolute error of the fit was 4.1 

Hz. In Fig. 10a, it is observed that the model without LI overestimates the neuronal activity to an 

OPTO stimulus. In Fig. 10b, it is observed that for the LOOM-P stimulus, readjusting the maximum 

conductance associated with the FFI compensates for the absence of the LI. For the case of the 

RECED-P stimulus, increasing the FFI does not compensate for the absence of the LI, and the model 

without LI overestimates the activity. Finally, for the looming stimuli (Fig. 10c) it is observed that the 
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model without LI overestimates the response, mainly at the beginning of the expansion (when the 

angular velocities are low). 

 

 

 

DISCUSSION 

 

Spatio-temporal processing and integration in LSNs 

 Due to the biological relevance of collision avoidance behaviors, there is a great interest in 

understanding how visual sensory circuits encode looming stimuli and what is the spatio-temporal 

processing and integration that tune LSNs to these stimuli. To date, the most complete answers to these 

questions have been obtained in the LGMD neuron of the locust. The main conclusion has been that 

several biophysical processes operate in parallel to shape the visual response of the LSNs (reviewed in 

Oliva 2015). These processes include: A) the dynamic balance between feed-forward excitation and 

feed forward inhibition; in which both processes are fed by the activity of columnar information 

channels with non-directional information (Rind and Bramwell 1996, Jones and Gabbiani 2010); B) the 

lateral inhibition between neighboring columnar channels that would protect LSNs from habituation by 

the dense optical flow produced in the animal's eye by movement of the animal itself (O'Shea and 

Rowell 1975, Rind and Bramwell 1996, Gabbiani et al. 2002), and C) adaptation processes inhibiting 

their response to stimuli that are constant over time (Peron and Gabbiani 2009). 

 In the first part of this work, we used extracellular recordings to exhaustively characterize 

MSNs’ response against a wide range of optical flow patterns, showing that they were highly sensitive 

to looming stimuli, and therefore could be classified as LSNs. The neuronal responses for the LSNs 

recorded in this work showed important similarities to those previously measured for the MLG2 

neurons in Neohelice (Oliva and Tomsic 2016). These similarities were: a) a rather uniform looming 

sensitivity throughout a large receptive field, b) a higher response to looming, rather than to receding 

stimuli (Fig. 5b in this work) and (Oliva et al. 2007), c) the firing rate of the LSNs can be described as 

function of the angular velocity θ' (Fig. 8b), d) phasic responses to changes in luminance (Fig. 3) and 

also at the beginning of looming stimuli with θ0 greater that 14 (Oliva and Tomsic 2016), and e) a 

reduction of response to OPTO stimulus, (Fig. 4c in this work) and (Medan et al. 2007).  
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 In the second part of this work, we proposed a computational model consistent with the 

previous results and models for Neohelice's lobula giant neurons and for the locust's LGMD neuron. 

The model presented in this work represented a simplification in relation to the models with greater 

physiological realism for the LGMD (Rind and Bramwell 1996, Jones and Gabbiani 2012). 

Nevertheless, this simplification allowed us to optimize the parameters by least squares to adjust the 

predictions of the model to the experimental measurements, and as we show in the next section, to 

analyze the physiological processing acting in parallel in the examined LSNs. 

 

Neuronal response to changes in luminance  

 The first experiment studied the neuronal response to local changes in luminance (Fig. 3). A 

phasic response was observed, which is a characteristic property of Neohelice's MLGs neurons in crabs 

(Beron Astrada and Tomsic 2002, Oliva and Tomsic 2014, 2016) and in the locust LGMD neuron 

(Rowell et al. 1977). As shown in Fig. 3b, the neuronal response even showed a sensitivity to stimuli 

that activate no more than a dozen ommatidia. According to the model proposed in Fig. 9, the phasic 

response was a consequence of the action of fast feed-forward excitation (whose intensity was 

proportional to the number of activated columnar channels) and the delayed slow feed-forward 

inhibition that canceled subsequent neuronal activity. This response can be interpreted as a local 

estimation of the system's temporal impulse response, and according to the model, the dynamic balance 

between FFE and FFI produces a high-pass filtering mechanism. This effect (added to the rectification 

for the firing rate in Eq. 8) generates one of the mechanisms for the selectivity to the looming stimuli. 

  

Moving stimuli that highlighted different components of the OF 

 The study of neuronal responses to moving stimuli comprised the analysis of two different 

components of the optical flow. First, optical flows associated with rotating edges movements (denoted 

as ROF). These flows would be generated if the animal revolved around its vertical axis and observed 

fixed edges, or conversely, if the animal was fixed with rotating edge movement around its vertical axis 

with constant angular velocity. Second, the translational optical flow of expansion or contraction 

(denoted as TOF) that would be generated if an object was approaching (or moving away from) the 

fixed animal. This flow may also occur if the animal approaches (or moves away from) from fixed 

objects in the environment. In addition, for ROF and TOF, two basic conditions were simulated: sparse 

optical flows (stimuli ME(1-3), LOOM, and RECED) that would be generated if the animal interacted 
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with a single object, and also the dense optical flow that would appear if the animal interacted with 

many objects (OPTO, LOOM-P and RECED-P), see Fig. 1. 

 

Neuronal response to ROF 

 Stimuli characteristic of an ROF were ME (1-3) and OPTO (Fig. 1a). Fig. 4a shows that the 

firing rate started with a peak and then decreased. Comparisons of responses throughout stimulation 

showed that the stimulus OPTO produced a significantly lower response, in which after the initial peak, 

the firing rate decreased toward the baseline near zero (Fig. 4c). In the case of ME (1-3), the firing rate 

remained constant at higher steady values (lower than the peak). According to the model proposed in 

Fig. 9, the drop in the firing rate was due to the action of two effects: the dynamic balance between 

feedforward excitation and a delayed inhibition (Fig. 9c); and also as a consequence of lateral 

inhibition between the excitatory columnar channels.  

 In relation to the response to OPTO stimulus, our model attributed the reduction of its initial 

peak response to the delayed lateral inhibition mechanism (O'Shea and Rowell 1975; Rind and 

Bramwell 1996; Gabbiani et al. 2002; Rind et al. 2016). Under this assumption, the moving dark and 

white bars of this stimulus would produce an inhibitory effect among the neighboring activated 

columnar channels presynaptic to LSNs, thereby decreasing the firing rate (Fig. 9b, panel (iv)).  

Therefore, in contrast to neurons involved in optomotor response behaviors, such as those broadly 

studied LPNs in the fly (Borst and Haag 2002), the recorded neurons had a weak response to wide-field 

motion (Rind and Simmons 1992, Medan et al. 2007).  

 In relation to the directionality of neural responses, the studied LSNs showed no significant 

differences between ME (1-3) stimuli. This indicates that the measured neurons did not have a 

preferred direction in their response, which is in agreement with the type of response also measured in 

insect LSNs (Krapp and Gabbiani 2005, Yamawaki and Toh 2009, Jones and Gabbiani 2010). 

According to the model (Eq. 2), this is a consequence of the FFE being fed by the activity of columnar 

information channels signaling the change in luminance without directional information (Rind and 

Bramwell 1996, Jones and Gabbiani 2010). 

 Neuronal response to TOF 

 The other group of visual stimuli analyzed in this work consisted of sparse (or dense) optical 

flows of expansion and contraction, corresponding to the stimuli LOOM, RECED, LOOM-P, and 

RECED-P (Fig. 1b-c). By comparing the maximum firing rates for these four stimuli, we found that the 
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looming response was significantly greater (Fig. 5b). In particular, the LOOM response was 

significantly higher than that of RECED. This result indicates that the measured MSNs reflected the 

most relevant property of LSNs, which is their preferential response to looming stimuli, rather than to 

receding stimuli (Oliva et al. 2007).  

  Previous phenomenological studies to characterize LSNs have been carried out in different 

animal species using input-output functions of the type R(t)=g(z(t-δn)). Where z is an input optical 

variable, R(t) is the neuronal firing rate, δn is the delay time and g a nonlinear function. The most 

commonly used optical variables are the angular velocity θ'(t) and the angular size θ(t). Using this 

information, an animal could compute in parallel several other variables of interest, such as the time to 

collision τ=θ/θ'(t) and η= θ'·e-α·θ, which is called the η function (Laurent and Gabbiani 1998). These 

results show that animal’s brain can reconstruct approaching objects using several computations in 

which each variable provides a different piece of information about the state of the environment, and 

the animal presumably makes an informed decision based on these different inputs. As shown in Fig. 8, 

the firing rate of the LSNs measured in this work can be described phenomenologically as a function of 

the angular velocity θ' and therefore can be classified as ρ-type neurons (Laurent and Gabbiani 1998). 

In this way, the computation performed by these neurons only contemplates a part of the computation 

of the variable η= θ'·e-α·θ that the LGMD neuron performs. 

Although the phenomenological model satisfactorily describes the response of LSNs to looming stimuli 

and is useful for correlating neuronal activity with behavior (Oliva and Tomsic 2016), there is interest 

in studying which physiological processes shape the responses of the LSNs, using detailed 

computational models such as those developed for the LGMD neuron (Rind and Bramwell 1996, Jones 

and Gabbiani 2012) to predict the neuronal response against more complex spatio-temporal patterns of 

activation in the ommatidia arrangement. A first effect not considered by the phenomenological model 

is related to the phasic responses observed at the beginning of the expansion in the looming stimulus 4 

(indicated by an arrow in Fig. 7). According to the proposed model, the phasic response for looming 

stimuli is a consequence of fast feed-forward excitation and the delayed slow feed-forward inhibition 

that reduces subsequent neuronal activity. As size and angular velocity increase during the expansion, 

the excitation increases and the firing rate again grows until the expansion ends. According to the 

model, the transient effect at the beginning of the expansion has a similar cause to that observed for the 

beginning of the stimulus ME-1 in Fig. 9c and can be explained due to the same balance between 

excitatory and inhibitory conductance dynamics. 
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 When comparing the neuronal maximum firing rate for the two stimuli of expansion (LOOM 

and LOOM-P), we found that there were significant differences in favor of LOOM. This result 

contrasts with results of studies in other crabs (Horseman et al. 2011), in which the visual sensitivity of 

a set of MSNs was locally measured and a typical response of a matched filter was found, that would 

imply a maximum response to the LOOM-P stimuli. According to the model presented in this work, the 

declining response to LOOM-P stimulus (relative to LOOM) observed in the measured LSNs was a 

consequence of feed-forward and lateral inhibition that would reduce the response to dense optical flow 

of expansion. Similar to what was found for the OPTO stimulus, lateral inhibition would protect the 

habituation of LSNs to the optical flow of expansion and contraction generated by the movement of the 

animal in a rich-textured environment.  

 Another important effect observed in responses to LOOM-P and RECED-P stimuli was an 

abrupt oscillation of the firing rate at a frequency of 1 Hz (Fig. 5a). These peaks of activity were 

synchronized with the expansion/contraction of the larger dark square border (Fig. 1c). The response 

peaks upon exposure to the LOOM-P stimulus were greater than those in response to RECED-P, 

because the LOOM-P stimulus comprised a sequence of looming stimuli, while the RECED-P was 

composed of a sequence of receding stimuli. However, it should be noted that although the model 

predicted the existence of peaks in the firing rate, the fitting of the activity slightly overestimated the 

response to the LOOM-P and RECED-P stimuli (Fig. 10b). We attribute this problem to the fact that 

the proposed model did not incorporate the aforementioned phenomenon of adaptation (Peron and 

Gabbiani 2009) and also the phenomenon of short-term habituation observed in presynaptic columnar 

channels to MSNs (Beron de Astrada et al. 2013). 

 Beyond the above, we consider that the model proposed in this work allows the capture of 

relevant aspects of the visual response in the context of collision avoidance for a group of LSNs in 

Neohelice, and also suggests that the computation performed by these neurons in a decapod crustacean 

appears to be based on similar physiological processing previously described for the LGMD in insects. 

 

Usefulness of extracellular techniques for neuroethological studies 

 The use of the extracellular technique allowed us to obtain prolonged stable records of about 5 

hours, aiding the characterization of the neuronal response to a broad set of visual stimuli to analyze the 

spatio-temporal processing and integration in LSNs. However, to identify each specific neuronal type 

in relation to previous identifications based on intracellular recordings and stains (Tomsic et al., 2017), 
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further studies involving simultaneous intracellular and extracellular measurements of LSN responses 

are needed. Another technique that could be used for the identification of the recorded neurons is the 

one proposed by Kostarakos and Hedwig (2017), whose responses are recorded extracellularly and can 

be identified using the same suction electrodes to deliver fluorescent tracers into the nervous system by 

means of electrophoresis, allowing retrograde labeling. Finally, the last reason justifying the usefulness 

of extracellular techniques on the surface of the optic nerve is the interest of understanding how the 

LSNs regulate the visually guided collision avoidance behaviors. Two previous studies in freely-

behaving insects that analyzed this point were performed in locusts using an experimental preparation 

that allowed the study of the relationship between the DCMD's activity by surface extracellular 

recordings with hook electrodes in the optic tract, the electromyographic activity measurements in 

muscles, and the behavioral response (Santer et al. 2008, Fotowat et al. 2011). As shown in this work, 

the possibility of making surface extracellular recordings of LSNs from Neohelice's optic nerve is an 

indication of the feasibility of further studies similar to those conducted in locusts. 
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FIGURE LEGENDS: 

Fig. 1 Visual Stimuli. (a) Moving Edges (ME1-3): (i-iii) A dark edge moved at constant angular 

velocity in three different directions  = θ' = 26 °/s. (iv) OPTO: An optomotor pattern moved at 

constant angular velocity (Δϕ = 12°,  = 26 °/s)  (b) Looming and receding corresponded to sparse 

translational optical flow (TOF) of expansion and contraction. (i) LOOM or looming stimuli: l was the 

half-size of the object, v was the approach speed, L was the initial distance and θ is the angular size of 

the object in degrees. (ii) RECED or receding stimulus.  (c) (i) Simulation of the animal moving 

through a tunnel of 4 cm width at a speed of 17 cm/s. The spatial period of the white and black bands 

was λ = 17 cm. Looming and receding patterns correspond to dense TOF of expansion and contraction. 

The simulation was generated by a superposition of loomings or recedings. (ii) LOOM-P: visual stimuli 

observed in the direction of movement. (iii) RECED-P: visual stimuli observed in the opposite 

direction to the movement 

Fig. 2 Electrophysiology. (a) The animal was located in the center of the setup and inmobilized by its 

carapace. The statocyte was removed and a suction electrode made contact with the optic nerve. PC2 

recorded the electrophysiological activity and PC1 emitted a synchronization signal to PC2 via an 
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auxiliary wire, which allowed the synchronization of recordings in PC2 with the visual stimulation 

produced by PC1. (b) Typical extracellular recordings (gray traces) in response to looming stimulus 

number 2 (Table 1) alternately applied on the three screens around the animal. Three spikes' classes 

were detected (for details of the spike sorting method, see the Data analysis section). The black curved 

line at the bottom of the panel represents the angular size, θ(t), of the looming stimulus. Vertical dashed 

lines signal the beginning of the stimulus. (c) Isolated spikes detected by spike sorting process. In this 

recording, the spike sorting algorithm found three neuronal classes 

 

Fig. 3  Neuronal response to changes in luminance. Dark square figures of different angular sizes θ 

were applied. (a) Upper traces: extracellular recording from a single animal illustrating the types of 

responses. In these recordings, the spike sorting algorithm found two neuronal classes. The gray 

horizontal line at the bottom of each panel represents the stimulation. Vertical dashed lines signal the 

beginning of the stimulus. (b) Average number of spikes emitted in a time window of 0.5 s after the 

luminance change (14 neurons from 9 different animals (one average response per stimulus and per 

neuron were included). The error bars represent mean ± SD. The black curve corresponds to the fit by 

least squares according to R(θ) = α.(θ-β)γ 

Fig. 4 Neuronal response to dark moving edges and optomotor stimuli.  (a) Upper traces: A typical 

extracellular recording from a single animal illustrating the type of responses. In these recordings, the 

spike sorting algorithm found three neuronal classes. Second traces: peristimulus time histograms 

(black thin trace) showing a typical response from a single neuron. Third traces: peristimulus time 

histograms showing the average spike rate (black trace) from 14 neurons from 9 different animals (one 

average response per stimulus and per neuron were included in the analyses). The gray bands represent 

the standard deviation around the mean. The horizontal gray line at the bottom of each panel represents 

the stimulation. (b) Mean maximum firing rate during stimulation. Error bars represent mean ± SD. No 

significant differences were observed. (c) The mean firing rate during stimulation showed that the 

response to the stimulus OPTO was significantly lower 

 

Fig. 5 Neuronal response to sparse (and dense) optical flow of expansion and contraction. (a) Upper 

traces: A typical extracellular recording from a single animal illustrating the type of responses. Second 

traces: peristimulus time histograms (black thin trace) showing a typical response from a single neuron. 

Third traces: peristimulus time histograms showing the average spike rate (black thin trace) from 14 
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neurons from 9 different animals. The gray bands represent the standard deviation around the mean.  

The black curved lines at the bottom of each panel represent the stimulation. (b) The maximum firing 

rate produced by each stimulus. Error bars represent mean ± SD 

 

Fig. 6 Neuronal responses to looming stimuli from different approaching directions. (a) A typical LSN 

peristimulus histogram in response to looming stimulus number 2 presented on the different monitors. 

The small colored circles represent the maximum firing rate, Rmax, to looming stimulus in each screen. 

Each color represents one direction of approach in Fig. 2a (right: blue, center: black, left: red). (b) LSN 

response magnitude r for the 14 recorded neurons. The standardized response r was defined as r(n) = 

Rmax (n)/Rmax (R), where n = {R, C, L} identifies the corresponding monitor (see Fig. 2a) 

 

Fig. 7 Neuronal response to looming stimuli with different dynamics of expansion (see Table 1). Upper 

traces: A typical extracellular recording from a single animal illustrating the type of responses. Second 

traces: peristimulus time histograms (black thin trace) showing a typical response from a single neuron. 

Third traces: peristimulus time histograms showing the average spike rate. The gray bands represent 

the standard deviation around the mean. The gray curved lines at the bottom of each panel represent the 

angular size, θ(t), of the looming stimulus. Vertical dashed lines signal the beginning of the stimulus 

expansion. The arrow shown in the response to stimulus 4, indicates the phasic response observed at 

the beginning of the expansion 

 

Fig. 8 Average firing rate and phenomenological model for the LSNs responses to looming stimuli. 

Data obtained for the six stimuli of Table 1 (gray traces) plotted as a function of two different optical 

variables: (a) angular size θ, (b) angular velocity θ'. Black lines correspond to the fits using the 

phenomenological model  

 

Fig. 9 Biologically inspired computational model of LSNs. (a) Schematic diagram of the neural 

circuitry thought to be operating in the examined LSN neurons inspired by the qualitative LGMD 

model (Rowell et al. 1977), and the quantitative models proposed by Rind and Bramwell (1996) and 

Jones and Gabbiani (2012). Open circles and triangles represent excitatory and inhibitory synapses, 

respectively.  Each columnar channel produced a signal proportional to the ON and OFF changes of 

intensity of the image through the oncij(t) and offcij(t) units, respectively. These signals go down through 
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the excitatory columnar processes (vertical black lines) that are mutually inhibited by lateral inhibition 

(LI, horizontal gray lines). This information is spatially integrated to produce the excitatory synaptic 

conductance gexc(t) associated with FFE (see Eqs. 3,5-6). On the other hand, the FFI is generated from 

the spatial integration of the columnar information producing the inhibitory synaptic conductance 

ginh(t) (see Eqs. 4,5-6). The dynamic balance of synaptic excitation and inhibition determines the 

membrane potential Vmf(t) (Eq. 7), which co-vary with the firing rate R(t) (Eq. 8). (b) Each image 

represents the activation of the columnar channels of the circuit. (i) Moving image Iij(t) which is the 

input of the model. (ii) Activation of the oncij columnar channels that sense the OFF-> ON transitions in 

luminance. (iii) Activation of the offcij columnar channels that sense the ON-> OFF transitions. (b.iv) 

Activation of the preij channels without applying the poslin function to assess the influence of lateral 

inhibition (Eq. 3). (c) Temporal evolution of the model variables. (i) Moving image Iij(t) at the input of 

the model. (ii) Temporal evolution of the excitatory and inhibitory normalized conductances (Eq. 6). 

(iii) Temporal evolution of the firing rate (Eq. 8) 

 

Fig. 10 Average data and model fits of the firing rate of LSNs. Peristimulus time histograms (black 

traces) show the average spike rate. The gray error bands represent mean ± SD. Dotted red lines 

represent the firing rate predicted by the model with the presence of presynaptic lateral inhibition (with 

LI). Dotted green lines represent the firing rate predicted by the model without the presence of LI. The 

arrows indicate the stimuli in which the model without LI overestimates the neuronal response. The 

horizontal gray lines represent stimulation time. Dashed vertical lines signal the beginning of the 

stimulus. (a) The model's fits of the firing rate dynamics for ROF stimuli: ME1-3 and OPTO (see Fig. 

4). (b) The model's fits of the firing rate dynamics for TOF stimuli: LOOM, RECED, LOOM-P, and 

RECED-P (see Fig. 5).  (c) The model's fits of the firing rate dynamics for looming stimuli with 

different dynamics of expansion (see Table 1 and Fig. 7). The angular size, θ(t), of the looming object 

is represented by the gray curved line at the bottom of each panel  

 

TABLE LEGENDS 

 

Table 1. Looming stimulus parameters (see Fig. 1b). Looming stimulus parameters (stimuli 1-6), 

where l is the half-size of the object, v is the approach speed, L is the initial distance, T is the travel 
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time between the initial position to the collision, and θ is the angular size of the object in degrees. The 

parameter l/v and θ0 
are used to describe the dynamics in terms of time to collision (see Eq. 1) 

 

Abbreviations 

LGMD Lobula Giant Motion Detector 

MSN Motion-sensitive neuron 

LSN Looming-sensitive neuron 

DCMD Descending contralateral movement detector 

MLG Monostratified lobula giant 

OF Optical flow 

ROF Rotational optical flow 

TOF Translational optical flow  

FFE Feed-forward Excitation 

FFI Feed-forward Inhibition 

LI Lateral Inhibition 
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Stimulus 

Number  

l 

(cm) 

 v 

(cm/s) 

l/v 

(ms) 

L  

(m) 

T  

(s) 

 θ0 

(deg) 

1 8.5 142.5 56 5 3.5 1.9 

2 17 142.5 120 5 3.5 3.9 

3 32 142.5 225 5 3.5 7.3 

4 64 142.5 450 5 3.5 14.5 

5 17 71.5 238 5 7 3.9 

6 17 286 60 5 1.75 3.9 
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