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Looming-sensitive neurons (LSNs) are motion-sensitive neurons tuned for detecting imminent collision.

Their main characteristic is the selectivity to looming (a 2D representation of an object approach), rather than to receding, stimuli. In this work, we studied a set of LSNs by performing surface extracellular recordings in the optic nerve of Neohelice granulata crabs, and characterized their response against a wide range of computergenerated visual stimuli with different combinations of moving edges, highlighting different components of the optical flow. In addition to their selectivity to looming stimuli, we characterized other properties of these neurons, such as low directionality; reduced response to sustained excitement; and an inhibition phenomena in response to visual stimuli with dense optical flow of expansion, contraction, and translation. To analyze the spatio-temporal processing of these LSNs, we proposed a biologically plausible computational model which was inspired by previous computational models of the locust LGMD neuron. The videos seen by the animal during electrophysiological experiments were applied as an input to the model which produced a satisfactory fit to the measured responses, suggesting that the computation performed by LSNs in a decapod crustacean appears to be based on similar physiological processing previously described for the LGMD in insects.

INTRODUCTION

Arthropods (especially insects and crustaceans) are important animal models for studying the neurophysiological bases of visual processing and visually guided behaviors. This is primarily due to the variety and complexity of the behaviors they exhibit, together with the relative simplicity of their nervous systems (Srinivasan and Zhang 2004;Hemmi and Tomsic 2012). The performance of these visuomotor behaviors strongly depends, at the sensory level, on a set of Motion-Sensitive Neurons (MSNs), which can perform specialized spatio-temporal processing and integration of the information relating to the optical flow (OF) field. The OF is defined as the apparent motion of the image intensities (or brightness patterns), and ideally corresponds to the velocity field: the 2D projection onto a retina of the relative 3D motion of scene points (Nelson and Aloimonos 1988). Using the information extracted from the OF (adapted to the nature of the task and the environmental conditions), an animal can analyze the motion of predators, prey or conspecifics, and can also extract information about its own movement relative to fixed objects.

In relation to insects, a paradigmatic example of MSNs are the lobula plate neurons (LPNs) of the fly, which act as neuronal matched filters producing an accurate and continuous report of the overall state of wide-field optical flow generated by its self-motion (Krapp and Hengstenberg 1996). This is achieved through a nonlinear spatio-temporal integration of information from elementary motion detectors that locally encode the direction of the OF field. Another paradigmatic example of a motion detector in insects is the lobula giant motion detector (LGMD) neuron (Rind and Simmons 1999), which has been proposed as an important element in avoidance behaviors to imminent collision (Fotowat and Gabbiani 2011). Its main characteristic is the tuning to looming, rather than to receding, stimuli. This property manifests in a selectivity to the stimuli on a collision trajectory, since although the looming and receding stimuli activate the same photoreceptors with the same angular speed (but with reversed direction), the LGMD neuron produces a much greater response to expansion than contraction. In the last years, diverse MSNs have been characterized in different species, exhibiting a similar processing as that of the LGMD, and were jointly denominated as Looming-Sensitive Neurons (LSNs). Examples of insects LSNs have been characterized in locusts (Rind and Simmons 1992, Gabbiani et al. 1999, Gray et al. 2010, Rosner and Homberg 2013), flies (Borst 1991), and praying mantis (Yamawaki 2009); and in vertebrates, LSNs were found in pigeons (Wang and Frost, 1992) and fish (Preuss et al. 2006, Dunn et al. 2016).

In crustaceans, the existence of MSNs (known as jittery motion detectors) with sensitivity to looming stimuli has been reported in lobsters (Glantz 1974). In the crab Neohelice granulata, four neuronal types of MSNs were identified in the lobula (third optic neuropil), and two monostratified lobula giant neurons (MLGs) show typical characteristics of LSNs (Oliva et al. 2017;Medan et al. 2007;Tomsic et al. 2017).

Neuroanatomical studies indicate that the visual nervous systems of insects and decapod crustaceans may be homologous (Strausfeld 2005). Nilsson and Osorio (1998) proposed important evidence supporting this hypothesis, including that insects and malacostracan crustaceans have: a) nearly identical compound eyes sharing the same cellular composition of the ommatidia, b) the same general layout of the optic ganglia, and c) important similarities of structural and physiological neuron types in the first optic ganglion. At the level of the lobula, MSNs are also elements common to insects and crustaceans, with large tangential processes collecting information from extensive parts of the retinotopic mosaic and with axons projecting to the midbrain (e.g., Sztarker et al. 2005;Medan et al. 2007).

Given this proposed homology in their visual system morphology, it is interesting to compare the looming stimuli processing in LSN neurons of insects and a decapod crustacean. To accomplish this, in the first part of this work, we characterized the visual response in a set of MSNs by extracellular recordings in the optic nerve of N. granulata crabs (also referred to in this publication as Neohelice).

Using this technique, we characterized the neuronal response against a wide range of optical flow patterns, showing that the measured MSNs were highly sensitive to looming stimuli, and therefore can be classified as LSNs. In the second part of the study, we proposed a biologically plausible computational model based on previous experimental results and computational models of the insect

LGMD neuron. We started from a previously proposed model for Neohelice's MLG neurons (Oliva and Tomsic 2014) and we incorporated two improvements to that model that allowed us to simulate the neuronal response to the wide set of stimuli applied in this work: the model's inputs were the videos observed by the animal during the electrophysiological experiments, and we incorporated the phenomenon of presynaptic lateral inhibition previously modeled in the LGMD (Rind andBramwell 1996, Rind et al. 2016). The model helped us analyze the spatio-temporal processing for the LSNs measured in this work showing that the computation performed by LSNs in a decapod crustacean appears to be based on similar physiological processing previously described for the LGMD in insects.

METHODS

Animals

Animals used were adult male Neohelice (previously Chasmagnathus) granulata crabs measuring 2.7-3.0 cm across the carapace and weighing approximately 17 g. The crabs were collected in the rías (narrow coastal inlets) of San Clemente del Tuyú, Argentina, and transported to the laboratory, where they were housed in plastic tanks (35 × 48 × 27 cm) that were filled to a depth of 2 cm with diluted seawater, to a density of 20 crabs per tank. The water used in the tanks and other containers during the experiments was prepared using hw-Marinex (Winex, Hamburg, Germany), at a salinity of 10-14%, pH 7.4-7.6, and maintained within a temperature range of 22-24°C. The holding and experimental rooms were maintained on a 12 h:12 h light:dark cycle (lights on from 07:00 to 19:00 h), and the experiments were performed between 08:00 and 19:00 h. Crabs were fed rabbit pellets (Nutrients, Buenos Aires, Argentina) every three days, and the water was changed after feeding.

Visual stimuli

Computer-generated visual stimuli were projected on a flat-screen monitor (LG 18.5"; horizontal and vertical screen dimensions were 41 cm by 23 cm, respectively, refreshing rate 60 Hz).

Irradiance on the monitor screen was 4 mW/m 2 (black) and 205 mW/m 2 (white background).

Changes in luminance:

These stimuli simulate the instantaneous appearance of dark objects. The sizes of the objects tested were: 0.5°, 1.9°, 3.9°, 7.3°, and 14.5°.

Moving stimuli that highlighted different components of OF:

The OF field seen by an animal can be split into two components: rotational and translational (Nelson and Aloimonos 1988). The following set of visual stimuli was designed to emphasize these two components (see Fig. 1).

A) Moving edges at constant angular velocity:

A relative turning about a fixed axis, between the animal and the objects, results in a rotational optical flow field (ROF). The ROF was produced by moving a dark edge in three different directions (denoted as ME(1-3)) over a white background with a constant angular velocity of θ' = 26 °/s (Fig. 1a). Since there is only a single edge moving on the screen, the ME(1-3) stimuli produced a sparse ROF. In order to detect the possible presence of lateral inhibition phenomena, we also stimulated with an optomotor pattern (denoted as OPTO), moving at constant angular velocity (θ' = 26 °/s, Δϕ = 12°), (Fig. 1a). This stimulus simulated the movement of many objects when the animal rotates around its own vertical axis and generated a dense ROF.

B) Looming and receding:

A relative approach between the animal and an object produces a translational optical flow (TOF) with an expansion in the direction of motion. The TOF of expansion was generated with looming stimuli (denoted as LOOM) which are simulated by dark squares of various sizes approaching at constant speeds on a direct collision course towards the animal (Fig. 1b).

Because a single object approaching on a white background was simulated, these stimuli produced a sparse TOF of expansion. The stimuli applied has been described in detail elsewhere (Oliva et al. 2007;Oliva and Tomsic 2014). Briefly, l denotes the object half-size. The distance between the animal eye and virtual object at time t is x(t) = L-v•t, and the object subtends an angle (t) on the eye. Thus, we can write:
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With the chosen coordinate system and time definitions, we have x(t)  0, t  0. Where v is the absolute value of the approach speed. Eq. 1 indicates that each stimulus is characterized by a value of l/v and of 0. Objects were simulated to start their approach from a distance L of 5 m. Due to the limits imposed by the screen's size and distance from the animal's eye, the maximum stimulus expansion was  = 60º. We used a total of six looming stimuli (Table 1). In addition to the looming stimulus, we also simulated a receding stimulus (denoted as RECED) which represented the object moving away at speed v. This stimulus presented the same angular size values as the looming stimulus, but with an inverted temporal sequence (Table 1, stimulus 2). Under these conditions, the receding stimulus generated a sparse TOF of contraction.

C) Looming and receding patterns:

These stimuli simulated a situation in which the animal runs while observing many fixed objects in the environment (Fig. 1c). We simulated the animal traveling at a speed v = 17 cm/s, within a quadrangular tube of height H = 2⋅l = 4 cm, therefore the stimulus produced a sequence of superimposed looming stimuli with an l/v = 0.117 s (similar to the value of stimulus 2 in Table 1). Looming and receding patterns correspond to a dense TOF of expansion and contraction and are denoted LOOM-P and RECED-P, respectively. The simulation was generated by the superposition of loomings or recedings; in which LOOM-P corresponds to the visual stimulus observed in the direction of movement and RECED-P to the visual stimuli observed in the opposite direction to the movement. It is important to note that the edge pattern was repeated with a spatial period λ = 17 cm; therefore, the temporal frequency of the passage of the edges was: f = v/λ = 1 Hz.

Electrophysiology

For dissection, the crab was sedated in a container (bowl) with ice and its chelae fixed with acrylic glue. The crab was positioned in the center of the arrangement of monitors within the Faraday cage. The clamp with the crab was held in position using a magnetic holding device (Fig. 2a). The eyestalks were immobilized with a piece of paper, maintaining the view at an angle of 40° ± 10 with the screen. Next, the animal's statocyte was removed under a magnifying glass and the optic nerve was found (which corresponds to the Protocerebral tract in Medan et al ( 2007)). Once the nerve was reached, it was contacted with a suction electrode (borosilicate glass; 1.2 mm outer diameter, 0.68 mm inner diameter) pulled with a Brown-Flaming micropipette puller (P-97; Sutter Instrument, Novato, CA, USA). Electrode resistance was approximately 40 KΩ. The suction electrode was positioned with a micromanipulator NARISHIGE (Japan). The electrode's signal steadily remained around 30 µV during the stimulation and the signal was amplified and digitized with the RHA2000 (Intantech) system. Two computers were used: PC1 was used to visually stimulate the crab by projecting images generated on the monitor with a frequency of 60 Hz (Psychotoolbox -Matlab, The MathWorks, Inc., Natick, MA, USA). PC2 recorded the electrophysiological activity through an Intan Amplifier software at a sampling frequency of 25 kHz. Finally, PC1 was connected to PC2 via an auxiliary wire, which allowed synchronization of the recordings.

Similar to methods used in a previous work (Oliva et al. 2007), we began stimulation after the animal had remained visually undisturbed for 3 min inside the setup, and the inter-trial interval was set to 1 min to minimize the effect of habituation on the neuronal response. A total of 15 neurons from 9 animals were studied. Only one neuron showed a directional response and was separated from the 14 non-directional neurons that were studied in this work. In the first phase of the experiment, the intensity of the neuronal response was measured by applying a looming stimulus (stimulus 2 from Table 1) alternately on three positions around the animal (Fig. 2a, right panel). The firing rate was maximal upon stimulation in the ipsilateral monitor (right screen), for this reason, the characterization of the neuronal processing for the wide set of stimuli was performed using this monitor (more details in Results section).

During the experiment, crabs intermittently moved their legs for a few seconds, but generally these movements did not affect the electrode seal. The technique of extracellular measurement with suction electrodes allowed prolonged recording lasting between 3 and 5 hours.

Data analysis

The spike sorting process consisted of the following steps (Quian Quiroga 2007): a) the continuous raw data was band-pass filtered between 300 Hz and 3000 Hz; b) the spikes were detected using an amplitude threshold (Thr) set to Thr = 5σn, where σn was an estimate of the standard deviation of the bandpass filtered background noise, c) the relevant features of the spike shapes were extracted, thus giving a dimensionality reduction, and finally d) the features were the input of a clustering algorithm that performs the classification. In this work, two basic approaches of spike sorting were tested. The first method applied was the WaveClus software (Quiroga et al. 2004;Wild et al. 2012). In the second method, we selected a 1-ms wide window around each detected spike, generating a vector of dimension (251). To extract the relevant characteristics of these vectors, the principal components analysis (PCA) method (first 5 components) was used. In addition, a K-means algorithm was used for clustering different neurons. The optimal number of clusters was determined according to the criteria of Calinski-Harabasz and Davies-Bouldin. The two methods detected 1 to 3 spike classes for all recordings (Fig. 2b-c). All data analysis procedures were written in Matlab (The MathWorks, Inc., Natick, MA, USA). Both methods produced similar spike sorting results. We estimated the instantaneous firing rate by convolving the spike trains with a square window (width of 200 ms) and normalizing the resulting waveform such that its integral was equal to the total number of spikes over the entire trial (Gabbiani et al. 1999). The Kruskal-Wallis test was used to compare the medians of samples across different stimuli (P-values were denoted as PKW). To compare two groups, a sign test was used (P-values were denoted as PSIGN). The parameters of the different proposed models were estimated by nonlinear least-squares error minimization (nlinfit and patternsearch algorithms in Matlab). The uncertainties (standard deviation) of the model parameters were estimated using the bootstrap method (Wasserman 2004). All data analysis procedures were written in Matlab (The MathWorks, Inc., Natick, MA, USA).

RESULTS

Neuronal response to changes in luminance

Figure 3a shows the neuronal responses to a local luminance change associated with the appearance of a dark square of angular size θ. Similarly to what was described in previous work for lobula giant neurons (Beron de Astrada and Tomsic 2002), responses to changes in luminance were phasic. In all of the measured neurons, responses were not detected for the stimulus with an angular size of 0.5° and the intensity of the phasic response increased with the angular size of the visual area stimulated. Figure 3b shows the number of spikes emitted as a function of the angular size of the square. This curve was adjusted as R(θ) = α(θ-β) γ , (for θ > β) where θ is the angular size of the square.

The values obtained by least-squares were: units α = 1.94 ± 0.8, β = 0.66° ± 0.57°, γ = 0.85 ± 0.15.

Interestingly, the value of the parameter β obtained by the fit was similar to estimates for ommatidial minimum size. In fact, in the lateral part of the eye, the interommatidial angles vary between 0.6° and 0.4°, respectively (Berón de Astrada et al. 2012).

Neuronal response to moving edges at constant angular velocity

Figure 4a shows a typical extracellular recording, a firing rate response from a typical neuron, and the average firing rate as a function of time in response to moving edges at constant angular velocity from 14 neurons from 9 different animals (one average response, per stimulus and per neuron were included in the analyses). The first three traces correspond to dark moving edges going through a white background in different directions ME (1-3), producing a sparse ROF. An initial phasic response was observed for the three stimuli. The fourth trace shows the response to OPTO stimulus (corresponding to a dense ROF), where we observed an initial intense response that abruptly decreased.

Figure 4b shows the maximum firing rate for each stimuli; no significant differences were found when using this parameter to compare between the stimuli (PKW = 0.32). However, we found significant differences between the mean firing rate during the stimulation (Fig. 4c). The stimulus OPTO produced a significantly lower response (PKW < 0.01).

Finally, to analyze the directionality of the neuronal response, we performed comparisons between the three stimuli ME (1-3) for individual neurons. We studied a set of 9 neurons for which it was possible to record more than five trials for each stimulus, and compared (for each neuron separately) the mean firing rate during stimulation. In 8 neurons, no significant differences for the three directions of movement were found and, therefore, we concluded that the measured neurons did not present a significant degree of directionality in their response. The neuron that showed a directional response was separated from the group of non-directional neurons and was not included in this analysis.

The neuronal response to looming and receding

Figure 5a shows the typical extracellular recordings, a firing rate response from a typical neuron, and the average firing rate versus time for the stimuli LOOM, RECED, LOOM-P, and RECED-P from 14 neurons from 9 different animals (one average response per stimulus and per neuron were included in the analyses). These four stimuli produced sparse (or dense) optical flow of expansion or contraction. Figure 5b shows the maximum firing rate produced by each stimulus. The looming stimulus produced the highest maximum firing rate for all stimuli (PKW < 0.01). The response to LOOM was significantly higher than the response to RECED (PSIGN < 0.05). Similarly, LOOM-P and RECED-P were compared and significant differences were detected in favor of stimulus LOOM-P (PSIGN < 0.05). Finally, LOOM and LOOM-P were also compared and significant differences were detected in favor of stimulus LOOM (PSIGN < 0.05). In summary, the measured MSNs were highly sensitive to looming stimuli (sparse and dense TOF of expansion), and therefore can be classified as LSNs.

LSN response to looming stimuli from different approaching directions

To study the sensitivity of the LSNs to looming stimuli from different approaching directions, the neuronal response was recorded by applying a looming stimulus (stimulus 2 from Table 1) alternately on the three screens around the animal (Fig. 2a, right panel). Figure 6a shows a typical peristimulus time histogram for one of the neurons detected in Fig. 2c. To quantify the intensity of the response to the stimulation from each screen, the standardized response r was defined as ), where n = {right: R, center: C, left: L} identifies the corresponding monitor, and Rmax is the maximum firing rate to looming stimulus (colored circles in Fig. 6a). Figure 6b shows the value of the response r for each monitor in the 14 neurons studied. It can be observed that the neurons responded intensely to the stimulus presented on each one of the screens surrounding the animal, suggesting that its receptive field encompasses the entire visual field of the animal and that the firing rate was maximum upon stimulus from the ipsilateral monitor (right).

r(n) = Rmax (n)/Rmax (R

LSN response to looming stimuli with different dynamics of expansion

In a previous section, we showed a preference of the recorded neurons for looming stimuli.

Figure 7 shows a typical extracellular recordings, a firing rate response from a typical neuron, and the average firing rate in response to the six looming stimuli described in Table 1, applied to each animal from the right monitor (14 neurons from 9 different animals, one average response per stimulus and per neuron were included in the analyses). For stimuli 1-4 (Table 1), we maintained an approaching speed of v = 142.5 cm/s and changed the size of the object l from 8.5 to 64 cm. For stimuli 5-6, we maintained l = 17 cm while varying the speed of the object v from 71.5 to 286 cm/s. The firing rate progressively increased as the image of the virtual dark object grew over the retina of the animal.

Another feature observed in different recordings to looming stimuli was the existence of a transient component of the response at the beginning of the expansion. This effect could be observed in stimulus 4 (θ0 = 14.5°, see arrow in Fig. 7).

Figure 8a shows the average firing rate R(t) as a function of the angular size of the expanding object θ(t-δn) and in Fig. 8b as a function of the angular velocity of expansion θ'(t-δn) for the six stimuli from Table 1. The neuronal delay δn was assumed to be 40 ms and this assumption was based on the minimum delays of neural phasic responses to changes in luminance (Fig. 3). Comparing Fig.

8a-b, we conclude that the spread of the firing rate given an angular size value θ(t-δn) (vertical dotted line in Fig. 8a) is much larger than the dispersion of the firing rate given the corresponding angular velocity value θ'(t-δn) (Fig. 8b). Therefore, we next describe the average neural firing rate as a function of the angular velocity using the following phenomenological model, which was adjusted by least squares:
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The mean absolute error of the fit was 8.1 Hz and the values of the model parameters estimated were: Rmax = 118 ± 5 Hz, θ'50% = 192 ± 4 º/s and R0 = 0.4 ± 0.1 Hz (uncertainty of each parameter was obtained using the bootstrap method).

It is important to note that the phasic response in the onset of stimulus 4 was only detected at the beginning of the expansion. Figure 8b shows that varying the parameter 0 did not have an appreciable influence in the later response to the looming stimulus.

Biologically plausible computational model for spatio-temporal processing and integration in the examined LSNs

In this section, we propose a biologically plausible computational model that aided us in analyzing the spatio-temporal processing and integration of the examined LSNs. To proposed the model, we used information from studies carried out for more than 40 years in the locust LGMD neuron showing that several biophysical processes operate in parallel to shape and tune the visual response of this LSN (Rowell et al. 1977, Rind and Bramwell 1996, Jones and Gabbiani 2012). To construct the model, we started from a previously proposed model for Neohelice's MLG neurons (Oliva and Tomsic 2016), but in this work, we incorporated two improvements: a) the model input was the videos observed by the animal during the electrophysiological experiments; and b) the phenomenon of presynaptic lateral inhibition was incorporated. Figure 9 shows the model for the proposed neural circuitry which is based on the previous models developed for Neohelice's MLG1-2 neurons (Oliva and Tomsic 2014, 2016) and the proposed circuit for presynaptic lateral inhibition in the LGMD neuron (Rowell et al. 1977).

Feed-forward Excitation (FFE) and Inhibition (FFI):

It is assumed that the circuit presynaptic to the neurons (Fig. 9a) uses as input the sequence of images I(t) having a range of values between 0 and 1.

Each photoreceptor senses the image intensity at the position (i,j) (which is discretized to an area of approximately 1.4  1.8) and columnar cells produce a signal proportional to the changes of intensity of the image Iij(t) in that region, according to:
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Where δ is the time interval between video frames. Depending on the visual stimuli, the intensity in each column can decrease or increase, and these changes (at position (i,j)) are signaled by two different pathways called off cij(t)=poslin (-ΔIij(t)) and on cij(t)=poslin(ΔIij(t)), where poslin represents the positive linear transfer function. In Neohelice, this assumption is based on previous observations (Medan et al. 2007), in which the intensity and the delay to OFF and ON stimulus were significantly different.

As shown in Fig. 6, looming sensitivity for LSNs was intense throughout their large receptive field. Additionally, the sensitivity variation on the stimulation screen (right monitor) was approximately 20%. Consequently, similar to our previous model for MLG2 neurons (Oliva and Tomsic 2016), we assume that the computational model for LSNs in this work does not require the introduction of a receptive field sensitivity function.

Similar to the LGMD model (Rowell et al. 1977, Rind andBramwell 1996), we assumed that the columnar excitatory channels (producing the FFE) are mutually inhibited through lateral inhibition processes presynaptic to the LSN. Thus, the signal preij(t) that descends through the downstream channel (i,j), produces a response that is proportional to the activation of ON/OFF channels (Beron de Astrada et al. 2013) and their response is assumed to be decreased proportionally to a delayed spatial average activity of the neighboring channels in a region of (8  8) channels that were called aij(t):
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Where preFFE is the total presynaptic excitation and the coefficient kpre,e is used to normalize the preFFE signal; γ1,2 are associated to the weight of ON signals and lateral inhibition, respectively; and δLI is the delay associated with the lateral inhibition process.

Similar to the LGMD model, it was assumed that the total FFI signal integrates the activity of all the columnar channels according to:
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Where the coefficient kpre,i is used for normalization and γ3 is a coefficient to be fitted that measures the relative intensity of ON channels with respect to OFF channels. Similar to previous models for MLG neurons (Oliva and Tomsic 2014; 2016), it is assumed that the release of excitatory neurotransmitters Texc (and inhibitory Tinh) from the columnar processes to the LSNs follows first-order dynamics with characteristic time constants τexc and τinh according to:
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where δe and δi are the excitatory and inhibitory synaptic latencies, respectively. The excitatory synaptic conductance gexc (and inhibitory ginh) associated with FFE and FFI are given by:
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where ge,max and gi,max are the maximum total excitatory and inhibitory conductances, respectively. The parameter Texc,50% corresponds to the value of Texc when gexc reaches 50% of ge,max. We approximated the filtered membrane potential Vmf(t) to its steady state as:
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where gL is the leak conductance and EL, Eexc, and Einh are the leak, excitatory, and inhibitory reversal potentials, respectively. Finally, we assumed a covariation between firing rate R(t) and Vmf(t)

(experimentally observed in Oliva and Tomsic 2014) according to:
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Now that the assumptions of the model have been described, we explain how the simulation is performed: From the videos I(t), the variables off cij(t) and on cij(t) were calculated (Eq 2). Then, the total presynaptic signal associated with the FFE and the FFI (preFFE(t) and preFFI(t)) were obtained using Eqs. 3 and 4. The integration of Eq. 5 was performed using the forward Euler method and the excitatory and inhibitory conductances (gexc and ginh) were calculated according to Eq. 6. Finally, the filtered membrane potential, Vmf, and the firing rate, R, were obtained using Eqs. 7-8, respectively.

Parameter selection and model fit

The model presented in the previous section determined a nonlinear spatio-temporal filter acting on the sequence of images I(t) seen by the animal during the electrophysiological experiments and had a wide set of parameters that must be fitted to reproduce the firing rate measured experimentally. As shown in Fig. 10 (red traces), through optimizing these parameters, a satisfactory fitting can be achieved throughout all stimuli (the mean absolute error of the fit was 2.3 Hz), showing that the biologically inspired model is useful for capturing the relevant aspects of the LSN response.

Next, we analyzed how the model responds to the same visual stimuli without the presence of presynaptic lateral inhibition (LI). For this, we compared the predictions of the model described above (with LI, red lines in Fig. 10) with the predictions of another model in which we set the parameter γ2 = 0 (canceling the inhibitory influence produced by the activity of the neighboring channels aij(t) in Eq.

3). Therefore, this second model is equivalent to the one proposed in Oliva and Tomsic 2016) where only FFE and FFI acted. Canceling only the parameter γ2 results in a generalized increase in the response. Therefore, to optimize the predictions of the model without lateral inhibition, the parameter (ginh,max/gL) was again adjusted to the value: (ginh,max/gL) = 11. The results of adjusting the model without lateral inhibition are shown in Fig. 10 (green traces). The mean absolute error of the fit was 4.1 Hz. In Fig. 10a, it is observed that the model without LI overestimates the neuronal activity to an OPTO stimulus. In Fig. 10b, it is observed that for the LOOM-P stimulus, readjusting the maximum conductance associated with the FFI compensates for the absence of the LI. For the case of the RECED-P stimulus, increasing the FFI does not compensate for the absence of the LI, and the model without LI overestimates the activity. Finally, for the looming stimuli (Fig. 10c) it is observed that the model without LI overestimates the response, mainly at the beginning of the expansion (when the angular velocities are low).

DISCUSSION

Spatio-temporal processing and integration in LSNs

Due to the biological relevance of collision avoidance behaviors, there is a great interest in understanding how visual sensory circuits encode looming stimuli and what is the spatio-temporal processing and integration that tune LSNs to these stimuli. To date, the most complete answers to these questions have been obtained in the LGMD neuron of the locust. The main conclusion has been that several biophysical processes operate in parallel to shape the visual response of the LSNs (reviewed in Oliva 2015). These processes include: A) the dynamic balance between feed-forward excitation and feed forward inhibition; in which both processes are fed by the activity of columnar information channels with non-directional information (Rind and Bramwell 1996, Jones and Gabbiani 2010); B) the lateral inhibition between neighboring columnar channels that would protect LSNs from habituation by the dense optical flow produced in the animal's eye by movement of the animal itself (O'Shea and Rowell 1975, Rind and Bramwell 1996, Gabbiani et al. 2002), and C) adaptation processes inhibiting their response to stimuli that are constant over time (Peron and Gabbiani 2009).

In the first part of this work, we used extracellular recordings to exhaustively characterize MSNs' response against a wide range of optical flow patterns, showing that they were highly sensitive to looming stimuli, and therefore could be classified as LSNs. The neuronal responses for the LSNs recorded in this work showed important similarities to those previously measured for the MLG2 neurons in Neohelice (Oliva and Tomsic 2016). These similarities were: a) a rather uniform looming sensitivity throughout a large receptive field, b) a higher response to looming, rather than to receding stimuli (Fig. 5b in this work) and (Oliva et al. 2007), c) the firing rate of the LSNs can be described as function of the angular velocity θ' (Fig. 8b), d) phasic responses to changes in luminance (Fig. 3) and also at the beginning of looming stimuli with θ0 greater that 14 (Oliva and Tomsic 2016), and e) a reduction of response to OPTO stimulus, (Fig. 4c in this work) and (Medan et al. 2007).

In the second part of this work, we proposed a computational model consistent with the previous results and models for Neohelice's lobula giant neurons and for the locust's LGMD neuron.

The model presented in this work represented a simplification in relation to the models with greater physiological realism for the LGMD (Rind and Bramwell 1996, Jones and Gabbiani 2012).

Nevertheless, this simplification allowed us to optimize the parameters by least squares to adjust the predictions of the model to the experimental measurements, and as we show in the next section, to analyze the physiological processing acting in parallel in the examined LSNs.

Neuronal response to changes in luminance

The first experiment studied the neuronal response to local changes in luminance (Fig. 3). A phasic response was observed, which is a characteristic property of Neohelice's MLGs neurons in crabs (Beron Astrada and Tomsic 2002, Oliva and Tomsic 2014, 2016) and in the locust LGMD neuron (Rowell et al. 1977). As shown in Fig. 3b, the neuronal response even showed a sensitivity to stimuli that activate no more than a dozen ommatidia. According to the model proposed in Fig. 9, the phasic response was a consequence of the action of fast feed-forward excitation (whose intensity was proportional to the number of activated columnar channels) and the delayed slow feed-forward inhibition that canceled subsequent neuronal activity. This response can be interpreted as a local estimation of the system's temporal impulse response, and according to the model, the dynamic balance between FFE and FFI produces a high-pass filtering mechanism. This effect (added to the rectification for the firing rate in Eq. 8) generates one of the mechanisms for the selectivity to the looming stimuli.

Moving stimuli that highlighted different components of the OF

The study of neuronal responses to moving stimuli comprised the analysis of two different components of the optical flow. First, optical flows associated with rotating edges movements (denoted as ROF). These flows would be generated if the animal revolved around its vertical axis and observed fixed edges, or conversely, if the animal was fixed with rotating edge movement around its vertical axis with constant angular velocity. Second, the translational optical flow of expansion or contraction (denoted as TOF) that would be generated if an object was approaching (or moving away from) the fixed animal. This flow may also occur if the animal approaches (or moves away from) from fixed objects in the environment. In addition, for ROF and TOF, two basic conditions were simulated: sparse optical flows (stimuli ME(1-3), LOOM, and RECED) that would be generated if the animal interacted with a single object, and also the dense optical flow that would appear if the animal interacted with many objects (OPTO, LOOM-P and RECED-P), see Fig. 1.

Neuronal response to ROF

Stimuli characteristic of an ROF were ME (1-3) and OPTO (Fig. 1a). Fig. 4a shows that the firing rate started with a peak and then decreased. Comparisons of responses throughout stimulation showed that the stimulus OPTO produced a significantly lower response, in which after the initial peak, the firing rate decreased toward the baseline near zero (Fig. 4c). In the case of ME (1-3), the firing rate remained constant at higher steady values (lower than the peak). According to the model proposed in Fig. 9, the drop in the firing rate was due to the action of two effects: the dynamic balance between feedforward excitation and a delayed inhibition (Fig. 9c); and also as a consequence of lateral inhibition between the excitatory columnar channels.

In relation to the response to OPTO stimulus, our model attributed the reduction of its initial peak response to the delayed lateral inhibition mechanism (O'Shea and Rowell 1975;Rind and Bramwell 1996;Gabbiani et al. 2002;Rind et al. 2016). Under this assumption, the moving dark and white bars of this stimulus would produce an inhibitory effect among the neighboring activated columnar channels presynaptic to LSNs, thereby decreasing the firing rate (Fig. 9b, panel (iv)).

Therefore, in contrast to neurons involved in optomotor response behaviors, such as those broadly studied LPNs in the fly (Borst and Haag 2002), the recorded neurons had a weak response to wide-field motion (Rind andSimmons 1992, Medan et al. 2007).

In relation to the directionality of neural responses, the studied LSNs showed no significant differences between ME (1-3) stimuli. This indicates that the measured neurons did not have a preferred direction in their response, which is in agreement with the type of response also measured in insect LSNs (Krapp and Gabbiani 2005, Yamawaki and Toh 2009, Jones and Gabbiani 2010).

According to the model (Eq. 2), this is a consequence of the FFE being fed by the activity of columnar information channels signaling the change in luminance without directional information (Rind andBramwell 1996, Jones andGabbiani 2010).

Neuronal response to TOF

The other group of visual stimuli analyzed in this work consisted of sparse (or dense) optical flows of expansion and contraction, corresponding to the stimuli LOOM, RECED, LOOM-P, and RECED-P (Fig. 1b-c). By comparing the maximum firing rates for these four stimuli, we found that the looming response was significantly greater (Fig. 5b). In particular, the LOOM response was significantly higher than that of RECED. This result indicates that the measured MSNs reflected the most relevant property of LSNs, which is their preferential response to looming stimuli, rather than to receding stimuli (Oliva et al. 2007).

Previous phenomenological studies to characterize LSNs have been carried out in different animal species using input-output functions of the type R(t)=g (z(t-δn)). Where z is an input optical variable, R(t) is the neuronal firing rate, δn is the delay time and g a nonlinear function. The most commonly used optical variables are the angular velocity θ'(t) and the angular size θ(t). Using this information, an animal could compute in parallel several other variables of interest, such as the time to collision τ=θ/θ'(t) and η= θ'•e -α•θ , which is called the η function (Laurent and Gabbiani 1998). These results show that animal's brain can reconstruct approaching objects using several computations in which each variable provides a different piece of information about the state of the environment, and the animal presumably makes an informed decision based on these different inputs. As shown in Fig. 8, the firing rate of the LSNs measured in this work can be described phenomenologically as a function of the angular velocity θ' and therefore can be classified as ρ-type neurons (Laurent and Gabbiani 1998).

In this way, the computation performed by these neurons only contemplates a part of the computation of the variable η= θ'•e -α•θ that the LGMD neuron performs.

Although the phenomenological model satisfactorily describes the response of LSNs to looming stimuli and is useful for correlating neuronal activity with behavior (Oliva and Tomsic 2016), there is interest in studying which physiological processes shape the responses of the LSNs, using detailed computational models such as those developed for the LGMD neuron (Rind andBramwell 1996, Jones andGabbiani 2012) to predict the neuronal response against more complex spatio-temporal patterns of activation in the ommatidia arrangement. A first effect not considered by the phenomenological model is related to the phasic responses observed at the beginning of the expansion in the looming stimulus 4 (indicated by an arrow in Fig. 7). According to the proposed model, the phasic response for looming stimuli is a consequence of fast feed-forward excitation and the delayed slow feed-forward inhibition that reduces subsequent neuronal activity. As size and angular velocity increase during the expansion, the excitation increases and the firing rate again grows until the expansion ends. According to the model, the transient effect at the beginning of the expansion has a similar cause to that observed for the beginning of the stimulus ME-1 in Fig. 9c and can be explained due to the same balance between excitatory and inhibitory conductance dynamics.

When comparing the neuronal maximum firing rate for the two stimuli of expansion (LOOM and LOOM-P), we found that there were significant differences in favor of LOOM. This result contrasts with results of studies in other crabs (Horseman et al. 2011), in which the visual sensitivity of a set of MSNs was locally measured and a typical response of a matched filter was found, that would imply a maximum response to the LOOM-P stimuli. According to the model presented in this work, the declining response to LOOM-P stimulus (relative to LOOM) observed in the measured LSNs was a consequence of feed-forward and lateral inhibition that would reduce the response to dense optical flow of expansion. Similar to what was found for the OPTO stimulus, lateral inhibition would protect the habituation of LSNs to the optical flow of expansion and contraction generated by the movement of the animal in a rich-textured environment.

Another important effect observed in responses to LOOM-P and RECED-P stimuli was an abrupt oscillation of the firing rate at a frequency of 1 Hz (Fig. 5a). These peaks of activity were synchronized with the expansion/contraction of the larger dark square border (Fig. 1c). The response peaks upon exposure to the LOOM-P stimulus were greater than those in response to RECED-P, because the LOOM-P stimulus comprised a sequence of looming stimuli, while the RECED-P was composed of a sequence of receding stimuli. However, it should be noted that although the model predicted the existence of peaks in the firing rate, the fitting of the activity slightly overestimated the response to the LOOM-P and RECED-P stimuli (Fig. 10b). We attribute this problem to the fact that the proposed model did not incorporate the aforementioned phenomenon of adaptation (Peron and Gabbiani 2009) and also the phenomenon of short-term habituation observed in presynaptic columnar channels to MSNs (Beron de Astrada et al. 2013).

Beyond the above, we consider that the model proposed in this work allows the capture of relevant aspects of the visual response in the context of collision avoidance for a group of LSNs in Neohelice, and also suggests that the computation performed by these neurons in a decapod crustacean appears to be based on similar physiological processing previously described for the LGMD in insects.

Usefulness of extracellular techniques for neuroethological studies

The use of the extracellular technique allowed us to obtain prolonged stable records of about 5 hours, aiding the characterization of the neuronal response to a broad set of visual stimuli to analyze the spatio-temporal processing and integration in LSNs. However, to identify each specific neuronal type in relation to previous identifications based on intracellular recordings and stains (Tomsic et al., 2017), further studies involving simultaneous intracellular and extracellular measurements of LSN responses are needed. Another technique that could be used for the identification of the recorded neurons is the one proposed by Kostarakos and Hedwig (2017), whose responses are recorded extracellularly and can be identified using the same suction electrodes to deliver fluorescent tracers into the nervous system by means of electrophoresis, allowing retrograde labeling. Finally, the last reason justifying the usefulness of extracellular techniques on the surface of the optic nerve is the interest of understanding how the LSNs regulate the visually guided collision avoidance behaviors. Two previous studies in freelybehaving insects that analyzed this point were performed in locusts using an experimental preparation that allowed the study of the relationship between the DCMD's activity by surface extracellular recordings with hook electrodes in the optic tract, the electromyographic activity measurements in muscles, and the behavioral response (Santer et al. 2008, Fotowat et al. 2011). As shown in this work, the possibility of making surface extracellular recordings of LSNs from Neohelice's optic nerve is an indication of the feasibility of further studies similar to those conducted in locusts.

-Berón de Astrada M, Tomsic D ( 2002 1) alternately applied on the three screens around the animal. Three spikes' classes were detected (for details of the spike sorting method, see the Data analysis section). The black curved line at the bottom of the panel represents the angular size, θ(t), of the looming stimulus. Vertical dashed lines signal the beginning of the stimulus. (c) Isolated spikes detected by spike sorting process. In this recording, the spike sorting algorithm found three neuronal classes model (Rowell et al. 1977), and the quantitative models proposed by Rind and Bramwell (1996) and Jones and Gabbiani (2012). Open circles and triangles represent excitatory and inhibitory synapses, respectively. Each columnar channel produced a signal proportional to the ON and OFF changes of intensity of the image through the on cij(t) and off cij(t) units, respectively. These signals go down through the excitatory columnar processes (vertical black lines) that are mutually inhibited by lateral inhibition (LI, horizontal gray lines). This information is spatially integrated to produce the excitatory synaptic conductance gexc(t) associated with FFE (see Eqs. 3,[5][6]. On the other hand, the FFI is generated from the spatial integration of the columnar information producing the inhibitory synaptic conductance ginh(t) (see Eqs. 4,[5][6]. The dynamic balance of synaptic excitation and inhibition determines the membrane potential Vmf(t) (Eq. 7), which co-vary with the firing rate R(t) (Eq. 8). ). (b) The model's fits of the firing rate dynamics for TOF stimuli: LOOM, RECED, LOOM-P, and RECED-P (see Fig. 5). (c) The model's fits of the firing rate dynamics for looming stimuli with different dynamics of expansion (see Table 1 and Fig. 7). The angular size, θ(t), of the looming object is represented by the gray curved line at the bottom of each panel 1b). Looming stimulus parameters (stimuli 1-6), where l is the half-size of the object, v is the approach speed, L is the initial distance, T is the travel time between the initial position to the collision, and θ is the angular size of the object in degrees. The parameter l/v and θ0 are used to describe the dynamics in terms of time to collision (see Eq. 1)
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  Similar to previous work (Oliva and Tomsic 2014), we assumed the resting membrane potential EL= 0 mV, the excitatory synaptic reversal potential Eexc= 60 mV, and inhibitory synaptic reversal potential Einh= -3 mV. The signals preFFE(t) and preFFI(t) were normalized to the maximum value reached for all stimuli. To meet this condition, the constants kpre,e= 0.0033 and kpre,i= 0.0011 were used. All the remaining parameters of the model were estimated by nonlinear square error minimization between the experimental average firing rate and the model prediction. For this, we used a nonlinear least squares method to fit the experimental measurements (patternsearch algorithm in Matlab). The values obtained for the estimated parameters were: firing rate constant kR= 4 Hz, excitatory and inhibitory time constants and delays τexc= 40 ms, τinh= 777 ms, δe= 40 ms, δi= 80 ms, and δLI= 40 ms. The parameters related to synaptic conductances were: (gexc,max/gL)= 8.3, (ginh,max/gL) = 7.5, Texc,50% = 0.48, Tinh,50%= 0.04. Because the 'maximum normalized excitatory and inhibitory conductance' were referred to the leak conductance, they are dimensionless. Finally, the adimensional parameters that measure the relative influence of the ON units were: γ1 = 0.5, γ3 = 2.78; and for the lateral inhibition influence γ2 = 1.69.
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 1 FIGURE LEGENDS:

Fig. 3

 3 Fig. 3 Neuronal response to changes in luminance. Dark square figures of different angular sizes θ were applied. (a) Upper traces: extracellular recording from a single animal illustrating the types of responses. In these recordings, the spike sorting algorithm found two neuronal classes. The gray horizontal line at the bottom of each panel represents the stimulation. Vertical dashed lines signal the beginning of the stimulus. (b) Average number of spikes emitted in a time window of 0.5 s after the luminance change (14 neurons from 9 different animals (one average response per stimulus and per neuron were included). The error bars represent mean ± SD. The black curve corresponds to the fit by least squares according to R(θ) = α.(θ-β) γ

Fig. 4

 4 Fig. 4 Neuronal response to dark moving edges and optomotor stimuli. (a) Upper traces: A typical extracellular recording from a single animal illustrating the type of responses. In these recordings, the spike sorting algorithm found three neuronal classes. Second traces: peristimulus time histograms (black thin trace) showing a typical response from a single neuron. Third traces: peristimulus time histograms showing the average spike rate (black trace) from 14 neurons from 9 different animals (one average response per stimulus and per neuron were included in the analyses). The gray bands represent the standard deviation around the mean. The horizontal gray line at the bottom of each panel represents the stimulation. (b) Mean maximum firing rate during stimulation. Error bars represent mean ± SD. No significant differences were observed. (c) The mean firing rate during stimulation showed that the response to the stimulus OPTO was significantly lower
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 5679 Fig. 5 Neuronal response to sparse (and dense) optical flow of expansion and contraction. (a) Upper traces: A typical extracellular recording from a single animal illustrating the type of responses. Second traces: peristimulus time histograms (black thin trace) showing a typical response from a single neuron. Third traces: peristimulus time histograms showing the average spike rate (black thin trace) from 14

  Fig. 10 Average data and model fits of the firing rate of LSNs. Peristimulus time histograms (black traces) show the average spike rate. The gray error bands represent mean ± SD. Dotted red lines represent the firing rate predicted by the model with the presence of presynaptic lateral inhibition (with LI). Dotted green lines represent the firing rate predicted by the model without the presence of LI. The arrows indicate the stimuli in which the model without LI overestimates the neuronal response. The horizontal gray lines represent stimulation time. Dashed vertical lines signal the beginning of the stimulus. (a) The model's fits of the firing rate dynamics for ROF stimuli: ME1-3 and OPTO (see Fig.
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