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In this paper, we study the relationship between the Dirac-Fock model and the electronpositron Hartree-Fock model. We justify the Dirac-Fock model as a variational approximation of QED when the vacuum polarization is neglected and when the fine structure constant α is small and the velocity of light c is large. As a byproduct, we also prove, when α is small or c is large, the no-unfilled shells theory in the Dirac-Fock theory for atoms and molecules. The proof is based on some new properties of the Dirac-Fock model.

Introduction

Electrons in heavy atoms experience significant relativistic effects. It is widely believed that QED yields such a description. This paper addresses a conjecture due to Mittleman [START_REF] Mittleman | Theory of relativistic effects on atoms: Configuration-space hamiltonian[END_REF]: the Dirac-Fock model can be interpreted as a mean-filed approximation of Quantum Electrodynamics (QED) when the vacuum polarization is neglected and when the fine structure constant α is small and the velocity of light c is large. More precisely, we prove that the error bound between the Dirac-Fock ground state energy and a max-min problem coming from the electron-positron Hartree-Fock model is of the size Op α 2 c 4 q. In computational chemistry, the DF model firstly introduced in [START_REF] Swirles | The relativistic self-consistent field[END_REF] is frequently used. It is a variant of the Hartree-Fock model in which the kinetic energy operator ´1 2 ∆ is replaced by the free Dirac operator D. Even though in principle it is not physically meaningful, this approach gives better results that are in excellent agreement with experience data (see, e.g., [START_REF] Desclaux | Relativistic dirac-fock expectation values for atoms with z = 1 to z = 120[END_REF][START_REF] Gorceix | Multiconfiguration dirac-fock studies of two-electron ions. i. electron-electron interaction[END_REF]). Contrary to the models in QED, the DF functional is not bounded from below. The rigorous definition of ground state energy is thus delicate. Based on the critical point theory, rigorous existence results for solutions to the DF equations can be found in [START_REF] Esteban | Solutions of the Dirac-Fock equations for atoms and molecules[END_REF][START_REF] Paturel | Solutions of the Dirac-Fock equations without projector[END_REF]. Then in [START_REF] Esteban | Nonrelativistic limit of the Dirac-Fock equations[END_REF], a definition of the ground state energy based on the wavefunctions is proposed:

(1) E w,q " min ΦPGqpH 1{2 q Φ solution of DF equations Epγ Φ q.

Here E is the DF functional defined by (4), γ Φ is the density matrix associated with Φ :" pu 1 , ¨¨¨, u q q P G q defined by (2), and D γΦ is the DF operator defined by [START_REF] Volker | There are no unfilled shells in unrestricted hartree-fock theory[END_REF]. The space G q is the functional space presenting the wavefunctions of q electrons and is a Grassmannian manifold defined by G q pH 1{2 q :" tG subspace of H 1{2 pR 3 ; C 4 q; dim C pGq " qu where q is the number of electrons, and the solutions of DF equation take the form D γΦ u j " ǫ j u j , ǫ j P p0, c 2 q.

In addition, the deficiency that the DF Hamiltonian is not bounded from below also raises questions about its physical derivation: one would like to show that the DF model or its refined variants can be interpreted as an approximation of QED (c.f., [START_REF] Chaix | From quantum electrodynamics to mean-field theory. i. the bogoliubov-dirac-fock formalism[END_REF][START_REF] Mittleman | Theory of relativistic effects on atoms: Configuration-space hamiltonian[END_REF][START_REF] Sucher | Foundations of the relativistic theory of many-electron atoms[END_REF] and the references therein). However, this theory leads to divergence problems: it is not easy to give meaning to the quantities (energy of the vacuum, charge density of the vacuum) appearing in QED. Steps in the direction of a rigorous justification are presently undertaken by considering the electron-positron Hartree-Fock model (ep-HF). This model is an approximation of QED with the vacuum polarization being neglected (see e.g., [START_REF] Esteban | Variational methods in relativistic quantum mechanics[END_REF]Section 4.5]). Indeed, the vacuum polarization is of the size Op 1 c 3 q which is small compared with the relativistic effect (of the size Op 1 c 2 q).

In the spirit of Mittleman [START_REF] Mittleman | Theory of relativistic effects on atoms: Configuration-space hamiltonian[END_REF], when the vacuum polarization is neglected, the real physical ground state energy e q should be obtained by maximizing the ground state energy of the ep-HF model over all allowed one-particle electron subspace (see Formula [START_REF] Esteban | Nonrelativistic limit of the Dirac-Fock equations[END_REF]). A version of the so-called Mittleman's conjecture says that the corresponding ground state energy is equal to the ground state energy of the DF model. From a mathematical viewpoint, Mittleman's conjecture has been investigated. When the atomic shells are filled and the electron-electron interaction is weak [START_REF] Barbaroux | Some connections between Dirac-Fock and electron-positron Hartree-Fock[END_REF][START_REF] Huber | Solutions of the Dirac-Fock equations and the energy of the electron-positron field[END_REF] or in the case of hydrogen [START_REF] Barbaroux | Remarks on the Mittleman max-min variational method for the electron-positron field[END_REF], it works very well. However, all other cases are unknown.

The main result of this work (Theorem 2.11) is to answer this question in any case: when α is small and c is large and when the vacuum polarisation is neglected, the DF ground state energy is an approximation of the physical ground state energy e q with a difference of the size Op α 2 c 4 q. In addition, the DF model is also a good approximation of QED even though the vacuum polarization is taken into account (see Remark 2.8).

Our strategy of proof involves some insight into the properties of the DF model. Recently Séré [START_REF] Séré | A new definition of the dirac-fock ground state[END_REF] redefined the DF ground state energy in the density matrix' framework (see Formula ( 4) and ( 5)). The state of electrons in the DF theory is located in a subset Γ q of the density matrix in which any density matrix γ satisfies P γ γP γ " γ with P γ " ½ p0,`8q pD γ q. Séré's proof is based on a new retraction technique: he builds a retraction map θ that maps a subset of the density matrix into Γ q . Thus, the difficulty of the nonlinear constraint γ " P γ γP γ is converted into the complexity of the structure of a new functional Epθp¨qq. Before going further, we review in Section 2 the basic definitions and results of the DF model, the ep-HF model, and Mittleman's definition of the ground state energy.

With the retraction map θ in hand, we show that for any pure electronic state γ in ep-HF, the functional Epθpγqq is an approximation of the functional Epγq when α is small or c is large (i.e., Theorem 3.1). Thus the DF model is expected to have the same properties as the ep-HF model when α is small or c is large: ' The functional Epθp¨qq has a second-order expansion (i.e., Proposition 3.2); ' There are no unfilled shells in the DF theory (i.e., Theorem 2.9). Therefore, any ground state energy of the DF model in the framework of density matrix (i.e., [START_REF] Barbaroux | On the Hartree-Fock equations of the electron-positron field[END_REF]) is equivalent to the one in the framework of the wavefunction (i.e., (1)) when α is small or c is large (i.e., Corollary 2.10).

Thanks to the equivalence of these two definitions of the DF ground state energy, the DF model is justified in Section 4: the DF ground state energy is an approximation of the ground state energy in QED when α is small and c is large and when the vacuum polarisation is neglected Finally, we give the technical proof of the error bound estimate between Ep¨q and Epθp¨qq (i.e., Theorem 3.1) in Section 5. In Appendix, we recall some basic inequalities used in [START_REF] Séré | A new definition of the dirac-fock ground state[END_REF] and prove the boundedness of the eigenfunctions of the DF operator and the DF type operator associated with the ep-HF model.

Models, Mittleman's conjecture and main results

For a particle of mass m " 1, the free Dirac operator is defined by

D " ´ic 3 ÿ k"1 α k B k `c2 β
with the velocity of light c and 4 ˆ4 complex matrix α 1 , α 2 , α 3 and β, whose standard forms are:

β " ˆ½2 0 0 ´½2 ˙, α " ˆ0 σ k σ k 0 ˙,
where ½ 2 is the 2 ˆ2 identity matrix and the σ k 's, for k P t1, 2, 3u, are the well-known 2 ˆ2 Pauli matrix

σ 1 " ˆ0 1 1 0 ˙, σ 2 " ˆ0 ´i i 0 ˙, σ 3 " ˆ1 0 0 ´1˙.
The operator D acts on 4´spinors; that is, on functions from R 3 to C 4 . It is self-adjoint in H :" L 2 pR 3 ; C 4 q, with domain H 1 pR 3 ; C 4 q and form domain H 1{2 pR 3 ; C 4 q (denoted by H 1 and H 1{2 in the following, when there is no ambiguity). Its spectrum is σpDq " p´8, ´c2 s Y r`c 2 , `8q. Following the notation in [11, 19], we denote by Λ `and Λ ´" ½ H ´Λ`r espectively the two orthogonal projectors on H corresponding to the positive and negative eigenspaces of D; that is

# DΛ `" Λ `D " Λ `?c 4 ´c2 ∆ " ? c 4 ´c2 ∆ Λ `;
DΛ ´" Λ ´D " ´Λ´? c 4 ´c2 ∆ " ´?c 4 ´c2 ∆ Λ

´.

Throughout the paper, BpW, Y q is the space of bounded linear maps from a Banach space W to a Banach space Y , equipped with the norm }A} BpW,Y q :" sup uPW, }u}W "1 }Au} Y .

We denote BpW q :" BpW, W q. The functional space σ 1 :" σ 1 pHq is defined by σ 1 :" tγ P BpHq; Trp|γ|q ă `8u, endowed with the norm }γ} σ1 :" Trp|γ|q.

We also define X s :" tγ P BpHq; γ " γ ˚, p1 ´∆q s{4 γp1 ´∆q s{4 P σ 1 u, endowed with the norm }γ} X s :" }p1 ´∆q s{4 γp1 ´∆q s{4 } σ1 .

In particular, we denote X :" X 1 and Y :" X 2 . For any γ P X, we also introduce the following c-dependent norm:

}γ} Xc :" }|D| 1{2 γ|D| 1{2 } σ1 " }pc 4 ´c2 ∆q 1{4 γpc 4 ´c2 ∆q 1{4 } σ1 .
For every density matrix γ P X, there exists a complete set of eigenfunctions pu n q ně1 of γ in H, corresponding to the non-decreasing sequence of eigenvalues pλ n q ně1 (counted with their multiplicity) such that γ can be rewritten as γ " ÿ The one-particle density associated with γ is

ρ γ pxq :" Tr C 4 rγpx, xqs " ÿ ně1 λ n |u n pxq| 2 ,
where the notation Tr 4 stands for the trace of a 4 ˆ4 matrix. The density matrix γ Φ corresponding to the wavefunctions of q electrons Φ :" pu 1 , ¨¨¨, u q q P G q pH 1{2 q can be written as

(2) γ Φ :"

q ÿ n"1 |u n y xu n |.
For any γ P X, the self-consistent DF operator is defined by

D γ :" D ´V `αW γ (3)
where for any ψ P H 1{2 , W γ ψpxq " pρ γ ˚W qψpxq ´żR 3 W px ´yqγpx, yqψpyqdy.

Here V is the attractive potential between the nuclei and the electrons, and W is the repulsive potential between the electrons. We consider the electrostatic case W " Remark 2.1. Note that, for standard DF theory and in the system of units " c " 1, the so-called fine-structure constant is α « 1 137 , and Z should be replaced by αZ. Here we are rather interested in the case where α is small or c is large.

For future convenience, we denote α c :" α c and Z c :" Z c . 2.1. The Dirac-Fock ground state energy. Let q be the number of electrons and let Γ :" tγ P X; 0 ď γ ď ½ H u, Γ q ": tγ P Γ; Trpγq ď qu.

Let

P γ " ½ p0,`8q pD γ q, P γ " ½ p´8,0q pD γ q. In the DF theory, the relevant set of electronic states is defined by Γ q :" tγ P Γ q ; P γ γP γ " γu.

According to [START_REF] Séré | A new definition of the dirac-fock ground state[END_REF], the ground state energy of the DF model can be redefined by

E q :" min γPΓ q Epγq. ( 5 
)
The existence of a ground state is guaranteed by the following.

Theorem 2.1 (Existence of a ground state in the DF theory; Theorem 1.2 in [START_REF] Séré | A new definition of the dirac-fock ground state[END_REF]). Let αq ď Z. Under Assumption 2.2 below, the minimum problem (5) admits a minimizer γ ˚P Γ q . In addition, Trpγ ˚q " q, and any such minimizer can be written as γ ˚" ½ p0,νq pD γ˚q `δ [START_REF] Barbaroux | Remarks on the Mittleman max-min variational method for the electron-positron field[END_REF] with 0 ă δ ď ½ tνu pD γ˚q for some ν P p0, c 2 s. When αq ă Z, ν P p0, c 2 q. Remark 2.2. In fact δ " 0 is possible. But for future convenience, in this paper, we set δ ą 0. If δ " 0, then there is a value ν 1 ă ν such that γ ˚" ½ p0,ν 1 s pD γ˚q .

Otherwise, ½ p0,ν 1 s pD γ˚q ă γ ˚for any ν 1 ă ν. Then, for any 0 ă ν 1 ă ν, there is a value ν 2 P pν 1 , νq such that ν 2 is an eigenvalue of the operator D γ˚. This implies that ν is an accumulation point of the spectrum and there are infinitely many positive eigenvalues of D γ˚i n p0, νq. Thus, Trpγ ˚q ě Trr½ p0,νq pD γ˚q s " `8 which contradicts with the fact Trpγ ˚q ď q. Assumption 2.2. [20, Theorem 1.2 and Remark 1.3] Let κpα, cq :" 2pα c q `Zc q. Assume that (1) κpα, cq ă 1 ´π 4 α c q;

(2) there exists R ą 0 such that :

p1 ´κpα, cq ´π 4 α c qq ´1{2 q ă R ă 2 a
p1 ´κpα, cqqλ 0 pα, cq πα c where λ 0 pα, cq :" p1 ´maxpα c q, Z c qq.

The proof of Theorem 2.1 is based on a retraction θpγq which is defined by θpγq :" lim nÑ`8

T n pγq with T n pγq " T pT n´1 pγqq, T pγq " P γ γP γ . The existence of the retraction θ is based on the following. Lemma 2.3 (Existence of the retraction; Proposition 2.1 and Proposition 2.9 in [START_REF] Séré | A new definition of the dirac-fock ground state[END_REF]). Assume that κpα, cq ă 1 and apα, cq :"

παc 4 ? p1´κpα,cqqλ0pα,cq . Given R ă 1 2apα,cq , let Apα, cq :" maxp 1 1´2apα,cqR , 2`apα,cqq 2 q,
and let U R :" tγ P Γ q ; 1 c }γ|D| 1{2 } σ1 `Apα, cq c 2 }T pγq ´γ} Xc ă Ru. Then, T maps U R into U R , and for any γ P U R the sequence pT n pγqq ně0 converges to a limit θpγq P Γ q . Moreover for any γ P U R , [START_REF] Chaix | From quantum electrodynamics to mean-field theory. i. the bogoliubov-dirac-fock formalism[END_REF] }T n`1 pγq ´T n pγq} Xc ď Lpα, cq}T n pγq ´T n´1 pγq} Xc , }θpγq ´T n pγq} Xc ď Lpα, cq n 1 ´Lpα, cq }T pγq ´γ} Xc with Lpα, cq " 2apα, cqR.

In particular, the property that

T pU R q Ă U R is shown in [20, Proposition 2.9].
Remark 2.3. Let q, R, Z be fixed. If α is small or c is large, it is easy to see that apα, cq ! 1. Thus, the condition R ă 1 2apα,cq is automatically fulfilled in this case. Therefore, one can define the DF energy: Definition 2.4 (DF energy). Let κpα, cq, apα, cq, R and U R be given as in Lemma 2.3. For any γ P U R , the DF energy of γ is defined by

Epγq " Epθpγqq. (8) 
According to [20, Corollary 2.12], any minimizer γ ˚of (5) is located in U R whenever Assumption 2.2 is satisfied under Assumption 2.2 on α, c and R. As a result, under Assumption 2.2, E q " min γPUR Epγq.

Electron-positron

Hartree-Fock theory. The so-called electron-positron Hartree-Fock variational problem was introduced in the work of Bach et al. and Barbaroux et al. [START_REF] Volker | Stability of matter for the Hartree-Fock functional of the relativistic electron-positron field[END_REF][START_REF] Volker | On the stability of the relativistic electron-positron field[END_REF][START_REF] Barbaroux | On the Hartree-Fock equations of the electron-positron field[END_REF]: for any given Dirac sea P ǵ :" 1 ´P g " ½ p´8,0q pD g q with g P X, the set of electronic states in the ep-HF theory associated with the Dirac sea P ǵ is defined by Γ pgq q :" tγ P X; ´P ǵ ď γ ď P g , P g γP ǵ " 0, 0 ď Trpγq ď qu. According to [START_REF] Barbaroux | On the Hartree-Fock equations of the electron-positron field[END_REF]Lemma 3.7], for any g P X, the ep-HF ground state energy associated with the Dirac sea P ǵ can be defined by [START_REF] Dyall | Introduction to Relativistic Quantum Chemistry[END_REF] e pgq q :" min γPΓ pgq q

Epγq.

The existence of the ground state in the ep-HF theory is proved in [5, Theorem 3.9, Theorem 4.3 and Theorem 4.6].

Theorem 2.5 (Existence of the ground state in the ep-HF theory). Assume g P X, q P N, αq ď Z ă Here µ Zc is a non-negative constant for any Z c P r0, ?

2 q defined in Remark 2.4 below. Then the problem (9) has a minimizer γ pgq P Γ pgq q satisfying Trpγ pgq q " q. In addition, there is no unfilled shell, i.e., for some 0 ă ν ă c 2 , [START_REF] Esteban | Solutions of the Dirac-Fock equations for atoms and molecules[END_REF] γ pgq " ½ p0,νs pP g D γ pgq P g q.

Remark 2.4. In [5, Lemma A.2] For any a P p´? 3 2 ,

? 3 2 q, µ a is the maximal value of µ's in r0, C 2 a s such that µ `C2 a a 2 pC 2 a ´µq ď 1 with C a :" 1 3 ´´4|a| `a9 `4a 2 ¯ą 0.
2.3. Mittleman's ground state energy and relativistic effect. The set of Dirac seas in the ep-HF theory is defined by P " tP ǵ ; g P Xu.

According to Mittleman [START_REF] Mittleman | Theory of relativistic effects on atoms: Configuration-space hamiltonian[END_REF], if the vacuum polarization is neglected, the physical ground state energy is defined by [START_REF] Esteban | Nonrelativistic limit of the Dirac-Fock equations[END_REF] e q :" sup

P ǵ PP e pgq q .
One justification of the DF model relies on Mittleman's conjecture. A version is the following.

Conjecture 2.6 (Mittleman's conjecture). For α small and c large, E q " e q .

Let σ i pD ´V q be the i-th eigenvalue (counted with multiplicity) of the operator D ´V . It is shown in [START_REF] Barbaroux | Some connections between Dirac-Fock and electron-positron Hartree-Fock[END_REF][START_REF] Barbaroux | Remarks on the Mittleman max-min variational method for the electron-positron field[END_REF] that, Mittleman's conjecture 2.6 is true if q " 1 or σ q pD ´V q ă σ q`1 pD ´V q while it may be wrong for any other cases. Thus, we instead study the following weaker problem.

Conjecture 2.7 (Weak Mittleman's conjecture). The DF model is an approximation of the ep-HF model. More precisely, for α small and c large, e q ď E q ď e q `oαcÑ0 pc ´2q.

In relativistic quantum chemistry, the relativistic effects are of the order of 1 c 2 ; that is the error bound between the relativistic models (e.g., Dirac-Fock) and the corresponding non-relativistic model (e.g., Hartree-Fock), see e.g., [START_REF] Kutzelnigg | Relativistic hartree-fock by means of stationary direct perturbation theory. ii. ground states of rare gas atoms[END_REF][START_REF] Kutzelnigg | Relativistic hartree-fock by means of stationary direct perturbation theory. i. general theory[END_REF]. Mathematically, in [START_REF] Fournais | The Scott correction in Dirac-Fock theory[END_REF] the error bound between the reduced Dirac-Fock model and the non-relativistic Thomas-Fermi model has been studied when q is large enough and αq " κ is fixed. More precisely,

E rDF q " e TF α 2 q 7 3 `Z2 2 `Crela pcq `oqÑ8 p1q with C rela pcq :" ÿ ně1 tσ n pD ´Z |x| ´c2 q ´σn p´∆ 2 ´Z |x| qu.
The term e TF is a Thomas-Fermi ground energy, the term Z 2 2 is the Scott correction, and C rela is the corresponding relativistic effect. It is easy to see that C rela is of the order 1 c 2 . The conjecture 2.7 expresses that the DF model indeed captures all relativistic effects of the order 1 c 2 taken into account in the ground state energy e q .

2.4. Main results. In this paper, we mainly focus on the non-relativistic regime (i.e., c " 1) and the weak electron-electron interaction regime (i.e., α ! 1). In the non-relativistic limit (i.e., c Ñ `8), we have κpα, cq Ñ 0, λ 0 pα, cq Ñ 1 and, according to Remark 2.4, µ Zc Ñ µ 0 " 1. Therefore, Assumption 2.2 and the condition (10) ( for any g P Γ q ) will be automatically satisfied as long as c is large enough.

Analogously, in the weak electron-electron interaction limit, if c ą 2Z, then we have κpα, cq Ñ 2Z c ă 1 and λ 0 pα, cq Ñ 1 ´Zc ą 0 when α Ñ 0, and µ Zc ą 0. Thus it is not difficult to see that Assumption 2.2 and the condition (10) ( for any g P Γ q ) will also be satisfied as long as α is sufficiently small.

As a consequence, we assume the following.

Assumption 2.8. Let Z P R `and q P N `be fixed. We assume that α, c P R `are chosen such that α ă Z q and c ą 2Z and one of the following conditions are satisfied: (1) (Non-relativistic regime) c is large enough;

(2) (Weak electron-electron interaction regime) α is small enough.

Remark 2.5. The case αq " Z is out of reach as explained in Remark 3.2.

Remark 2.6. Under Assumption 2.8, it is easy to see that there is a constant C ą 0 independent of α and c such that C ă 1 ´κpα, cq ď λ 0 pα, cq ď 1. Furthermore, when R is fixed, then R ă 1 2apα,cq and Lpα, cq ă 1 ´C where apα, cq and Lpα, cq are given in Lemma 2.3.

Recall that E w,q is the DF ground state energy based on the wavefunctions given in ( 1) and E q is the DF ground state energy in the framework of the density matrix given in [START_REF] Barbaroux | On the Hartree-Fock equations of the electron-positron field[END_REF]. Our first result concerns the relationship between these two definitions of the DF ground state energy. Theorem 2.9 (There are no unfilled shells in the DF theory). Let q P N `. Then under Assumption 2.8, the no-unfilled shells property holds: any minimizer γ ˚of E q satisfies γ ˚" ½ p0,νs pD γ˚q .

As a result, Corollary 2.10. Under Assumption 2.8, E q " E w,q .

The proof of Theorem 2.9 and Corollary 2.10 are postponed to the end of Section 3.2. According to [START_REF] Barbaroux | Some connections between Dirac-Fock and electron-positron Hartree-Fock[END_REF]Formula (13)], e q ď E w,q holds true for α sufficiently small and c sufficiently large. Hence,

e q ď E q . ( 13 
)
By definition, for any g P P, e pgq q ď e q . To prove Mittleman's conjecture, we investigate the relationship between E q and e pgq q in Section 4. The other main result of this paper is the following. Theorem 2.11 (Weak Mittleman's conjecture). Let Z P R `and q P N `. For α sufficiently small and c sufficiently large, there exists a constant C ą 0 such that [START_REF] Gorceix | Multiconfiguration dirac-fock studies of two-electron ions. i. electron-electron interaction[END_REF] e q ď E q ď e q `C α 2 c 4 , where γ ˚minimizes E q and γ pγ˚q minimizes e pγ˚q .

The proof is provided in Section 4. As explained in the introduction, this error bound is much smaller than the relativistic effects and thus provides a justification of the DF model. Remark 2.7. Actually, according to [4, Definition 2], any orthogonal projector in H is ǫ-close to Λ ẁhen c is large enough. Thus, (13) and Theorem 2.11 remain true if we only assume that c is large enough.

Remark 2.8 (Justification of the DF model with vacuum polarization). In the full QED theory, typical QED effects such as vacuum polarization is of the size Op 1 c 3 q (see, e.g., [9, Ch. 5.5]). Then the ground state energy e q due to Mittleman and the DF ground state energy describe the full QED model up to an error bound of the size Op 1 c 3 q.

Properties of the DF model

Before studying Mittleman's conjecture, we need a better understanding of the properties of the DF model. The key ingredient in the proof of our weak Mittleman's conjecture is the following. Theorem 3.1 (Error bound between the DF functional and the DF energy). Let R, Z P R `and q P N `be fixed. Let κpα, zq ă 1 and Lpα, cq " 2apα, cqR ă 1 be given as in Lemma 2.3. Then for any γ P U R satisfying P g γP g " γ with g P Γ q , |Epγq ´Epγq| ď 5π 2 p6 `πqpR `qq

4p1 ´κpα, cqq 4 λ 5{2 0 pα, cqp1 ´Lpα, cqq 2 α 2 c 2 }g ´γ} 2 X . (15) If moreover g, γ P Y , |Epγq ´Epγq| ď 5p6 `πqpR `qq p1 ´κpα, cqq 4 λ 9{2 0 pα, cqp1 ´Lpα, cqq 2 α 2 c 4 `32}g ´γ} Y `c}rW g´γ , βs} BpHq ˘2 . ( 16 
)
The proof is postponed until Section 5. Before going further, let us roughly explain the implications of this theorem :

(1) For any pure electronic quantum state in the ep-HF model (i.e., any γ P Γ pgq q with P ǵ γP ǵ " 0), the DF energy of γ is an approximation of the corresponding ep-HF energy. More precisely, if γ P U R for some R ą 0, then

|Epγq ´Epγq| ď Cpα, cqα 2 c . (2)
The DF model is an approximation of the ep-HF model associated with the Dirac sea P γ˚.

This result will be proved in Section 4. Consequently, one can deduce that some properties of the ep-HF model can translate to the DF model as mentioned in the introduction.

3.1. Second-order expansion for the DF energy. It is easy to see that for any γ and h in Γ pgq q and t P R such that γ `th P Γ pgq q , we have the following expansion for the ep-HF energy

E pgq pγ `thq " E pgq pγq `tTrrpD γ ´c2 qhs `αt 2 2
TrrW h hs.

Here E pgq " E| Γ paq q represents the energy of the electronic state in ep-HF theory. As a result of Theorem 2.11, we have the following expansion for the DF energy. Proposition 3.2 (Second-order expansion for the DF energy). Let R, Z P R `and q P N `be fixed. Let κpα, zq " 2pα c q `Zc q ă 1 and R ă 1 2apα,cq . Given any γ P U R X Γ q and any h P X such that P γ hP γ " h, then for any t P R satisfying γ `th P U R , we have [START_REF] Kutzelnigg | Relativistic hartree-fock by means of stationary direct perturbation theory. i. general theory[END_REF] Epγ Hence [START_REF] Kutzelnigg | Relativistic hartree-fock by means of stationary direct perturbation theory. i. general theory[END_REF]. The boundedness of Error γ ph, tq follows from Theorem 3.1 directly as γ `th " P γ pγ thqP γ .

Remark 3.1. It is shown in [START_REF] Séré | A new definition of the dirac-fock ground state[END_REF]Theorem 2.10] that the retraction θ is differentiable and its differential is bounded and uniformly continuous on U R . Moreover, dθpγqh " P γ hP γ `bγ phq `bγ phq ˚, [START_REF] Mittleman | Theory of relativistic effects on atoms: Configuration-space hamiltonian[END_REF] where b γ phq " P γ b γ phqP γ . As a result, if h " P γ hP γ , Epγ `thq ´Epγq " tTrrpD γ ´c2 qhs `te γ ph, tq where e γ ph, tq is equicontinuous with respect to t P r0, t 0 s for some t 0 small enough. Compared to [START_REF] Séré | A new definition of the dirac-fock ground state[END_REF], we can get the second differentiability of the DF energy Ep¨q w.r.t. t.

Actually, according to (18), provided h P X such that h " P γ hP γ , one can prove

}P γ d 2 θpγqrh, hsP γ } X `}P γ d 2 θpγqrh, hsP γ } X ă Cpα, cqα 2 c }h} 2
X , from which we can also deduce Proposition 3.2 for t P r0, t 0 s for some t 0 small enough.

3.2.

There are no unfilled shells in the Dirac-Fock theory. In [START_REF] Barbaroux | On the Hartree-Fock equations of the electron-positron field[END_REF]Theorem 4.6], it has been proved that there are no unfilled shells in the ep-HF model. The proof is based on the second-order expansion of the ep-HF functional. Here we are going to use Proposition 3.2 to study the same property for the DF theory for α is small enough or c is large enough: we turn to the Proof of Theorem 2.9. To prove the no-unfilled shell property, we only consider the non-relativistic regime: αq ă Z, and c ą 2Z is large enough. The weak electron-electron interaction regime can be treated in the same manner and we only need to replace [START_REF] Esteban | Nonrelativistic limit of the Dirac-Fock equations[END_REF]Theorem 3] by [START_REF] Esteban | Solutions of the Dirac-Fock equations for atoms and molecules[END_REF]Lemma 2.1] in the proof.

For clarity, we add the superscript c to the quantities depending on c. We argue by contradiction and assume that there is a sequence c n Ñ `8 such that γ cn ˚‰ ½ p0,ν cn s pD cn γ cn ˚q.

The idea of the proof is essentially the same as in [START_REF] Volker | There are no unfilled shells in unrestricted hartree-fock theory[END_REF][START_REF] Barbaroux | On the Hartree-Fock equations of the electron-positron field[END_REF]: we shall find a sequence of density matrix ph cn q n such that up to subsequences and for t P p0, t 0 s with t 0 ą 0 small enough, 0 ď E cn pγ cn ˚`th cn q ´Ecn q ă 0. However, compared to [START_REF] Volker | There are no unfilled shells in unrestricted hartree-fock theory[END_REF][START_REF] Barbaroux | On the Hartree-Fock equations of the electron-positron field[END_REF], the dependence on c n complicates the proof. As the velocity of light c n varies, the minimizers γ cn ˚will change as well. To reach the contradiction, we first need to check the existence of the sequences ph cn q n and pγ cn ˚`th cn q n for any t P p0, t 0 s. To do so, we need the spectral analysis of D cn γ cn ˚.

Thus the proof is separated into 3 steps. In Step 1, we summarize the spectral properties of the DF operator D cn γ cn ˚. In Step 2, we construct the sequence ph cn q n . To use Proposition 3.2, we will find a constant R ą 0 such that under Assumption 2.8, γ cn ˚P U R and γ cn ˚`th cn P U R . Finally in Step 3, we reach the contradiction.

Step 1. Spectral analysis of D cn γ cn ˚. Here we use the following. Lemma 3.3. [20, Lemma 3.4] Under Assumption 2.8, there are constant τ ă 0 independent of c n and integer M ą q independent of c n such that, for any γ P Γ q , the mean-filed operator D cn γ has at least q eigenvalues (counted with multiplicity) in the interval r0, c 2 ´τ s and has at most M eigenvalues in r0, 1 ´τ 2 s.

As a result of this lemma,

Rankpγ cn ˚q ď Rankp½ p0,1´τ 2 s pD cn γ cn ˚qq ď M. ( 19 
)
Then γ cn ˚can be written as

γ cn ˚" M ÿ k"1 µ c k |ψ c k ψ c k | , 0 ď µ cn k ď 1,
where ψ cn 1 , ¨¨¨, ψ cn M are the first M eigenfunctions of the operator D cn γ cn ˚with the eigenvalues ν cn k such that ν cn 1 ď ν cn 2 ¨¨¨ď ν cn M .

Step 2. Construction of h cn . Recall that γ cn ˚" ½ p0,ν cn q pD cn γ cn ˚q`δ cn with 0 ă δ cn ď ½ tν cn u pD cn γ cn ˚q.

As γ cn ˚‰ ½ p0,ν cn s pD cn γ cn ˚q, then 0 ă δ cn ă ½ tν cn u pD cn γ cn ˚q.

Thus, it follows from [START_REF] Paturel | Solutions of the Dirac-Fock equations without projector[END_REF] and the fact Trpδ cn q P N that 2 ď Rankp½ tν cn u pD cn γ cn ˚qq ď M, and 1 ď Trpδ cn q ď Trp½ tν cn u pD cn γ cn ˚qq ´1 " Rankp½ tν cn u pD cn γ cn ˚qq ´1. Therefore, for some index 0 ď a cn , b cn ď M and a cn ‰ b cn , there are two eigenvalues µ cn a cn and µ cn b cn of δ cn associated with the eigenfunctions ψ cn a cn , ψ cn b cn P kerpD cn γ cn ˚´ν cn q such that 0 ď µ cn a cn ď Trpδ cn q Rankp½ tν cn u pD cn

γ cn ˚qq ď M ´1 M and 1 M ď Trpδ cn q Rankp½ tν cn u pD cn γ cn ˚qq ď µ cn b cn ď 1. ( 20 
)
Here we use the fact that, for any non-negative number f 1 , ¨¨¨, f J , there is always a constant f j1 and f j2 with j 1 , j 2 P t1, ¨¨¨, Ju such that

f j1 ď 1 J J ÿ j"1 f j ď f j2 . Let h cn " |ψ cn a cn ψ cn a cn |´|ψ cn b cn
ψ cn b cn |, and we take t 0 " 1 M . Then for t P p0, 1 M s, we have γ cn ˚`th cn P Γ q . We are going to fix a constant R ą 0 independent of c n such that γ cn ˚P U cn R and γ cn ˚`th

cn P U cn R . According to Lemma B.1, }γ cn ˚}X ď K 2 q. It is easy to see that when R ą Kq, we have γ cn ˚P U cn R since T cn pγ cn ˚q " γ cn ˚and 1 c n }γ cn ˚|D cn | 1{2 } σ1 ď }γ cn ˚p1 ´∆q 1{4 } σ1 ď q 1{2 }γ cn ˚}1{2 X ď qK ă R.
We are going to find the constant R such that γ cn ˚`th cn P U cn R . For simplicity, let γ cn t :" γ cn ˚`th cn . As 0 ď γ cn t ď ½ p0,c 2 n q pD cn γ cn ˚q and γ cn t P Γ q , by Lemma B.1 again,

1 c n }γ cn t |D cn | 1{2 } σ1 ď Kq.
Then by Lemma 5.4 below and under Assumption 2.8, there exists a constant C such that

Apα, c n q c 2 }T cn pγ cn t q ´γcn t } Xc n ď CApα, c n qR α cn c 2 n t}h cn } X ď CqK 2 Apα, c n qR α cn c 2 n .
We choose R " 2p1 `K2 qq. Then for c n large enough, according to Remark 2.6, π 4 α cn ď apα, c n q ď Cα cn , and Apα, c n q ď 2. Thus for c n sufficiently large, we infer

Apα, c n q c 2 }T cn pγ cn t q ´γcn t } Xc n ď Cqα c 3 n R ď R 2 .
Therefore,

1 c n }γ cn t |D cn | 1{2 } σ1 `Apα, c n q c 2 n }T cn pγ cn t q ´γcn t } Xc n ď R 2 `p1 `K2 qq 2 ă R.
Thus there is a constant R ą 0 independent of c n such that under Assumption 2.8, γ pγ˚q P U cn R .

Step 3. Contradiction. Denoting ψ cn j :" pf n j,α q qďαď4 for any 1 ď j ď M . Thanks to Proposition 3.2, we have

0 ď E cn pγ cn ˚`th cn q ´Ecn q " E cn pγ cn ˚`th cn q ´Ecn pγ cn ˚q " pν cn ´νcn qt `αt 2 2 TrrW h cn h cn s `t2 α 2 cn Error cn γ cn ˚ph cn q ď Cpα, cqt 2 pR `qqα 2 cn ´αt 2 2 ż R 3 ˆR3 ÿ α,β ˇˇˇd et ˆf n a cn ,α pxq f n b cn ,β pxq f n a cn ,β pyq f n b cn ,β pyq ˙ˇˇˇ2 |x ´y| dxdy ď C α 2 t 2 c n 2 ´αt 2 2 min 1ďjăkďM ż R 3 ˆR3 ÿ α,β ˇˇˇd et ˆf n j,α pxq f n k,β pxq f n j,β pyq f n k,β pyq ˙ˇˇˇ2 |x ´y| dxdy. ( 21 
)
According to the properties of σ cn k , we also have lim nÑ`8 ν cn ´cn 2 ď lim nÑ`8 σ cn M ´cn 2 ă 0. At this point, arguing as for [START_REF] Esteban | Nonrelativistic limit of the Dirac-Fock equations[END_REF]Theorem 3], up to subsequences, there is a sequence of functions pψ k q 1ďkďM such that ppψ cn k q 1ďkďM q n Ñ pψ k q 1ďkďM in H 1 pR 3 ; C 4 q. Thanks to the positive definiteness of 1 |x| , up to subsequences, for c 1 large enough, there is a constant C 1 such that

inf cnąc 1 min 1ďiăjďM ż R 3 ˆR3 ÿ α,β ˇˇˇd et ˆf n j,α pxq f n k,β pxq f n j,β pyq f n k,β pyq ˙ˇˇˇ2 |x ´y| dxdy ě C 1 ą 0. ( 22 
)
Inserting ( 22) into ( 21), we get that up to subsequences, for c n large enough,

0 ď C α 2 t 2 c 2 n ´C1 αt 2 2 ă 0,
reaching a contradiction. As a consequence, for any c large enough (i.e., c ą c 1 ), the minimizer can be rewritten as

γ c ˚" ½ p0,ν c s pD c γ c ˚q.
This ends the proof.

Remark 3.2. Unfortunately, due to Lemma 3.3, we can not reach the case αq " Z. According to Theorem 2.1, when αq " Z, the case ν " c 2 may occur. In this case, if Theorem 2.9 still holds (i.e., γ c ˚" ½ p0,c 2 s pD c γ c ˚q), then Trpγ c ˚q " `8 which is impossible. However, once we have shown that ν ă c 2 strictly when αq " Z, the no-unfilled shell property can be reached.

We now use the no-unfilled shells property to prove the following.

Proof of Corollary 2.10. Let γ ˚be a minimizer of E q . Actually, γ ˚" ½ p0,νs pD γ˚q is a projector and Trpγ ˚q " q. Then the minimizer γ ˚can be rewritten as

γ ˚:" q ÿ n"1 |u n u n | .
Then Φ ˚" pu 1 , ¨¨¨, u n q P G q pH 1{2 q and Φ ˚solves the DF equations. Consequently, E q " Epγ ˚q ď E w,q .

On the other hand, let Φ ˚:" pu 1 , ¨¨¨, u q q be a minimizer of E w,q . Then Φ ˚is a solution of the DF equation. Thus P γΦ ˚γΦ˚P γΦ ˚" γ Φ˚. Hence γ Φ˚P Γ q , and E w,q " Epγ Φ˚q ď E q . As a result, we know that E q " E w,q under Assumption 2.8.

DF model is an approximation of the ep-HF model

We are in the position to prove Theorem 2.11. It is an immediate consequence of (13) and the following proposition. Proposition 4.1 (DF model is an approximation of the ep-HF model). Let γ ˚P Γ q be a minimizer of E q and γ pγ˚q be a minimizer of e pγ˚q . Under Assumption 2.8, there exists a constant C ą 0 such that e pγ˚q q ď E q ď e pγ˚q `C α 2 c 4 . (23) Proof. By the definition of E q and e pγ˚q q and as γ ˚P Γ pγ˚q q , it is easy to see that for any γ pγ˚q P Spγ ˚q, e pγ˚q q " Epγ pγ˚q q ď Epγ ˚q " E q .

Thus we just need to prove the second inequality in (23).

We are going to find a constant R ą 0 independent of α and c such that for α sufficiently small and c sufficiently large, γ pγ˚q P U R . Once R ą 0 is chosen, the second inequality follows from Theorem 3.1: as P γ˚γ pγ˚q P γ˚" γ pγ˚q , |Epγ pγ˚q q ´Epγ pgq q| ď C α 2 c 4 ´}γ ˚´γ pγ˚q } Y `c}rW γ˚´γ pγ ˚q , βs} BpHq ¯2 . According to Lemma B.1 and Lemma B.2, we have

}γ pγ˚q ´γ˚}Y ď }γ pγ˚q } Y `}γ ˚}Y ď 2K 2 q.
On the other hand, notice that for any function u P H, rW γ˚´γ pγ ˚q , βsu " ´żR 3 rpγ ˚´γ pγ˚q qpx, yq, βsupyq |x ´y| dy (24)

We rewrite γ ˚as γ ˚" `8 ÿ j"1 µ j |ψ j ψ j | where µ j ě 0, ř `8 j"1 µ j " q and ψ j is the normalized eigenfunctions of D γ˚w ith eigenvalues 0 ď λ j ď c 2 .

We split ψ j in blocks of upper and lower components: According to (58), it is easy to see that c}rW γ˚, βs} BpHq ď 8c

ψ j " ˜ψp1q j ψ p2q j ¸, with ψ p1q j , ψ
8 ÿ j"1 µ j }ψ p1q j } H 1 }ψ p2q j } H ď 8KK 1 q.
Analogously, according to (62), we also have

c}rW γ pγ ˚q , βs} BpHq ď 8KK 1 q.
Consequently, E q ď Epγ pγ˚q q ´Epγ pγ˚q `Epγ pγ˚q q ď e pγ˚q q `|Epγ pγ˚q q ´Epγ pγ˚q q| ď e pγ˚q q `C α 2 c 4 . Hence (23).

The method to find the constant R ą 0 is the same as in the proof of Theorem 2.9. By using Lemma B.2, it is not difficult to see that

1 c }γ pγ˚q |D| 1{2 } σ1 ď }γp1 ´∆q 1{4 } σ1 ď q 1{2 }γ} 1{2 X ď Kq.

By Lemma 5.4 below, we have

Apα, cq c 2 }T pγ pγ˚q q ´γpγ˚q } Xc ď CK 2 R α c 3 q. We choose R " 2p1 `K2 qq. Thus under Assumption 2.8, we have

Apα, cq c 2 }T pγ pγ˚q q ´γpγ˚q } Xc ď Cqα c 3 R ď R 2 .
Therefore,

1 c }γ|D| 1{2 } σ1 `Apα, cq c 2 }T pγ pγ˚q q ´γpγ˚q } Xc ď R 2 `p1 `K2 qq 2 ă R,
which means there is a constant R ą 0 such that for α sufficiently small and c sufficiently large, γ pgq P U R .

We turn now to the Proof of Theorem 2.11. Notice that e pγ˚q q ď e q . Then thanks to Proposition 4.1, we conclude that E q ď e q `C α 2 c 4 . This gives the second inequality of ( 14). Combining with (13), we get the theorem.

Error bound of the DF functional and energy

This section is devoted to the proof of Theorem 3.1 which will be separated into two parts: estimate on (15) and estimate on [START_REF] Kutzelnigg | Relativistic hartree-fock by means of stationary direct perturbation theory. ii. ground states of rare gas atoms[END_REF]. For future convenience, we denote L :" Lpα, cq, κ :" κpα, cq and λ 0 :" λ 0 pα, cq when there is no ambiguity.

We first consider the error bound for any γ P U R .

Lemma 5.1. Let R, Z P R `and q P N `be fixed. Assume that κ ă 1 and L ă 1 as in Lemma 2.3. Let C κ,L :"

5π 2 4p1´κq 2 λ 3{2 0 p1´Lq 2 . Then for any γ P U R , |Epγq ´Epγq| ď C κ,L p3Rα c `3qα c `1q α c c 2 }T pγq ´γ} 2 Xc `3}P γ γP γ } Xc (26)
This is an immediate result of the following. To end the proof, it suffices to calculate each term on the right-hand side separately.

Estimate on TrrD γ pθpγq ´γqs. We consider the first term on the right-hand side of (29). As T pγq " P γ γP γ , we have TrrD γ pθpγq ´γqs " TrrpP γ `P γ qD γ pθpγq ´γqpP γ `P γ qs " Trr|D γ |P γ pθpγq ´T pγqqP γ s ´Trr|D γ |P γ pθpγq ´γqP γ s.

Then by (51) and the fact that 0 ď κ ď 1, we have

ˇˇTrr|D γ |P γ pθpγq ´γqP γ s ˇˇď }|D γ | 1{2 P γ pθpγq ´T pγqqP γ D γ | 1{2 } σ1 ď 2}P γ pθpγq ´γqP γ } Xc ď 2C κ,L Rα 2 c c 2 }T pγq ´γ} 2 Xc .
On the other hand, by (51), (39), we have

ˇˇTrr|D γ |P γ pθpγq ´γqP γ s ˇˇď }|D γ | 1{2 P γ θpγqP γ D γ | 1{2 } σ1 `}|D γ | 1{2 P γ γP γ D γ | 1{2 } σ1 ď 2 `}P γ θpγqP γ } Xc `}P γ γP γ } Xc ď 2 ˆCκ,L qα 2 c c 2 }T pγq ´γ} 2 Xc `}P γ γP γ } Xc ˙.
Then we conclude that

|TrrD γ pθpγq ´γqs| ď 2C κ,L pR `qq α 2 c c 2 }T pγq ´γ} 2 Xc `2}P γ γP γ } Xc . (30)
Estimate on c 2 Trpθpγq ´γq. The term c 2 Trpθpγq ´γq can be treated analogously. Actually, c 2 |Trrpθpγq ´γq| ď c 2 ˇˇTrr|P γ pθpγq ´γqP γ s `TrrP γ pθpγq ´γqP γ s ˇď

}P γ pθpγq ´γqP γ } Xc `}P γ θpγqP γ } Xc `}P γ γP γ } Xc .
Then proceeding as for the term TrrD γ pθpγq ´γqs, we obtain

c 2 |Trrpθpγq ´γq| ď C κ,L pR `qq α 2 c c 2 }T pγq ´γ} 2 Xc `}P γ γP γ } Xc . (31) 
Estimate on αTrrW θpγq´γ pθpγq ´γqs. Using ( 7) and (48), we deduce

α ˇˇTrrW θpγq´γ pθpγq ´γqs ˇˇď π 2c 2 α c }θpγq ´γ} 2 Xc ď π 2p1 ´Lq 2 α c c 2 }T pγq ´γ} 2 Xc ď C κ,L α c c 2 }T pγq ´γ} 2 Xc . (32) 
Conclusion. Gathering together (29)-(32), we conclude that

|Epγq ´Epγq| ď C κ,L p3Rα c `3qα c `1q α c c 2 }T pγq ´γ} 2 Xc `3}P γ γP γ } Xc .
This gives [START_REF] Huber | Solutions of the Dirac-Fock equations and the energy of the electron-positron field[END_REF].

It remains to prove Lemma 5.2. Before going further, we need the following.

Proposition 5.3. Let γ, γ 1 P Γ q and h P X. Then P γ pdP γ hqP γ " 0, P γ pdP γ hqP γ " 0 (33)

where dP γ h is the Gateaux derivative which is defined by

dP γ h :" lim tÑ0 P γ`th ´P γ t .
Besides, we have

}|D| 1{2 rP γ ´P γ1 ´dP γ1 pγ ´γ1 qs} BpHq ď π 2 α 2 c 8c 3 p1 ´κq ´1{2 λ ´3{2 0 }γ ´γ1 } 2 Xc . (34) 
Proof. As P γ`th " pP γ`th q 2 , for any h P X we have dP γ h " P γ pdP γ hq `pdP γ hqP γ . Thus, P γ pdP γ hqP γ " 0, and P γ pdP γ hqP γ " 2P γ pdP γ hqP γ , hence (33).

We turn now to prove (34). We recall that

P γ ´P γ1 " α 2π ż `8
´8 pD γ ´izq ´1W γ 1 ´γ pD γ 1 ´izq ´1dz and dP γ pγ ´γ1 q " α 2π ż `8

´8 pD γ ´izq ´1W γ 1 ´γ pD γ ´izq ´1dz. Then,

P γ ´P γ1 ´dP γ pγ ´γ1 q " ´α2 2π 
ż `8
´8 pD γ ´izq ´1W γ 1 ´γ pD γ 1 ´izq ´1W γ 1 ´γ pD γ ´izq ´1dz.

From Lemma A.1 for any φ, ψ P H, we deduce ´φ, |D| 1{2 rP γ ´P γ1 ´dP γ pγ ´γ1 qsψ ď

α 2 2π }W γ 1 ´γ } 2 BpHq }|D γ 1 | ´1} BpHq ˆż `8 ´8 }pD γ ´izq ´1|D| 1{2 φ} 2 H dz ˙1{2 ˆż `8 ´8 }pD γ ´izq ´1ψ} 2 H dz ˙1{2 ď π 2 α 2 c 8c 2 λ ´1 0 }γ ´γ1 } 2 Xc }|D γ | ´1{2 |D| 1{2 φ} H }|D γ | ´1{2 ψ} H ď π 2 α 2 c 8c 3 p1 ´κq ´1{2 λ ´3{2 0 }γ ´γ1 } 2 Xc }φ} H }ψ} H . (35) 
This proves (34).

We now turn to the We turn to prove (36). Let γ n " T n pγq and γ 0 " γ. Then for n ě 2, γ n " P γn´1 γ n´1 P γn´1 and γ n´1 " P γn´2 γ n´1 P γn´2 . Hence, for n ě 2 (37) P γ pγ n ´γn´1 qP γ " P γ pP γn´1 ´P γn´2 qP γn´2 γ n´1 P γn´1 P γ `P γ γ n´1 P γn´2 pP γn´1 ´P γn´2 qP γ .

For the first term on the right-hand side of (37), we have

P γ pP γn´1 ´P γn´2 qP γn´2 γ n´1 P γn´1 P γ " I 1 `I2
where thanks to (33), I 1 :" P γn´2 pP γn´1 ´P γn´2 ´dP γn´2 pγ n´1 ´γn´2 qqP γn´2 γ n´1 P γn´1 P γ , I 2 :" pP γ ´P γn´2 qpP γn´1 ´P γn´2 qP γn´2 γ n´1 P γn´1 P γ .

Then from (34) and (52), we infer

}I 1 } Xc ď p1 `κq 1{2 p1 ´κq 1{2 }γ n´1 P γn´1 P γ |D| 1{2 } σ1 }|D| 1{2 pP γn´1 ´P γn´2 ´dP γn´2 pγ n´1 ´γn´2 qq} BpHq ď π 2 p1 `κq 3{2 8p1 ´κq 2 λ 3{2 0 α 2 c c 3 }γ n´1 ´γn´2 } 2 Xc }γ n´1 |D| 1{2 } σ1 .
According to Lemma 2.3, γ n´1 P U R since γ P U R and T maps U R into U R , and for any n ě 2,

}γ n´1 ´γn´2 } Xc ď }γ ´T pγq} Xc , }γ n´1 |D| 1{2 } σ1 ď cR.
Thus as κ ă 1,

}I 1 } Xc ď C 1 κ,L Rα 2 c c 2 }T pγq ´γ} Xc }γ n´1 ´γn´2 } X with C 1 κ,L :" π 2 2p1´κq 2 λ 3{2 0
. According to [START_REF] Chaix | From quantum electrodynamics to mean-field theory. i. the bogoliubov-dirac-fock formalism[END_REF] ´P γn´2 qP γ in (37) can be treated analogously:

}P γ γ n´1 P γn´2 pP γn´1 ´P γn´2 qP γ } Xc ď pC 1 κ,L `C2 κ,L q Rα 2 c c 2 }T pγq ´γ} Xc }γ n´1 ´γn´2 } Xc .
Hence (36). Then (27) follows with C κ,L :"

5π 2 4p1´κq 2 λ 3{2 0 p1´Lq 2 ě 2p1 ´Lq ´1pC 1 κ,L `C2
κ,L q. We consider now the term P γ θpγqP γ . As θpγq " P θpγq θpγqP θpγq , we have P γ θpγqP γ " P γ pP θpγq ´P γ qθpγqpP θpγq ´P γ qP γ .

Thanks to ( 7), ( 52) and (54),

}P γ θpγqP γ } Xc ď 1 `κ 1 ´κ }|D| 1{2 pP θpγq ´P γ q} 2 BpHq }θpγq} σ1 ď π 2 p1 `κq 16p1 ´κq 2 λ 0 p1 ´Lq 2 qα 2 c c 2 }T pγq ´γ} 2 Xc ď C κ,L qα 2 c c 2 }T pγq ´γ} 2 Xc .
This ends the proof.

5.1. Estimate on [START_REF] Huber | Solutions of the Dirac-Fock equations and the energy of the electron-positron field[END_REF]. We consider now the term T pγq ´γ and P γ γP γ .

Lemma 5.4. Let g P Γ q and γ P U R . If P g γP g " γ, we have

}T pγq ´γ} Xc ď ? 2π 2p1 ´κqλ 1{2 0 Rα}γ ´g} X (38) and }P γ γP γ } Xc ď π 2 8p1 ´κq 2 λ 0 qα 2 c }g ´γ} 2 X . (39) 
Proof. Indeed, we have T pγq ´γ " pP γ ´P g qγP γ `P g γpP γ ´P g q.

Using (52) and (54) again, as κ ă 1,

}T pγq ´γ}

Xc ď 2p1 `κq 1{2 p1 ´κq ´1{2 }|D| 1{2 pP γ ´P g q} BpHq }γ|D| 1{2 } σ1 ď ? 2π 2p1 ´κqλ 1{2 0 Rα}γ ´g} X .
Concerning the second one, we have

P γ γP γ " P γ pP g ´P γ qγpP g ´P γ qP γ . Then }P γ pT pγq ´γqP γ } Xc ď 1 `κ 1 ´κ }|D| 1{2 pP g ´P γ q} 2 BpHq }γ} σ1 ď π 2 8p1 ´κq 2 λ 0 qα 2 c }g ´γ} 2 X .
This ends the proof.

Inserting this lemma into Lemma 5.1, we can get immediately

|Epγq ´Epγq| ď C κ,L p48 `8πqR `p48 `3π 2 C ´1 κ,L qq 8p1 ´κq 2 λ 0 α 2 c }g ´γ} 2 X ď C κ,L p6 `πqpR `qqα 2 c p1 ´κq 2 λ 0 }g ´γ} 2 X ď 5π 2 p6 `πq 4p1 ´κq 4 λ 5{2 0 p1 ´Lq 2 pR `qqα 2 c }g ´γ} 2 X .
Here we use the fact that R ă In order to get a better estimate on the error bound of the DF energy and the DF functional, we study the estimate on }|D| 1{2 pP γ ´P γ1 q} BpHq more delicately under the condition g, γ P Y . Before going further, we need the following. Lemma 5.5. Let h P Y and γ P Γ q , then for any u P H,

}rW h , D γ ´c2 βsu} H ď 16cp1 `κq}h} Y }u} H . (40) 
Proof. As h P Y , the term p1 ´∆q 1{2 hp1 ´∆q 1{2 can be written as

p1 ´∆q 1{2 hp1 ´∆q 1{2 " 8 ÿ k"1 µ k |φ k φ k |
where pφ k q kě1 is an orthonormal basis on H, µ k P R and ř

8 j"1 |µ n | " }h} Y . Then h " 8 ÿ k"1 µ k ˇˇr φ k r φ k ˇˇ, with r φ k " p1 ´∆q ´1{2 φ k . It suffices to show that for any k ě 1, }rW | r φ k r φ k | , D γ su} H ď 10p1 `2κq}u} H . We write W γ " W 1,γ `W2,γ where for any u P H, W 1,γ u " ρ γ ˚W u " ż R 3 ρ γ px ´yqupxq |y| dy, W 2,γ u " ż R 3 γpx, yqupyq |x ´y| dy. Then rW | r φ k r φ k | , D γ ´c2 βs " rW 1,| r φ k r φ k | , D γ ´c2 βs `rW 2,| r φ k r φ k | , D γ ´c2 βs.
We study them separately. For the term rW 1,| r

φ k r φ k | , D γ s, we have rW 1,| r φ k r φ k | , D γ ´c2 βsu " icr 3 ÿ j"1 α j B j , W 1,| r φ k r φ k | su `αrW 1,| r φ k r φ k | , W 2,γ su.
By Hardy inequality,

}r 3 ÿ j"1 α j B j , W 1,| r φ k r φ k | su} H " } ż r ř 3 j"1 α j B j | r φ k | 2 spx ´yqupxq |y| dy} H ď 2}∇ r φ k } H › › › › › ˆż |y| ´2| r φ k | 2 p¨´yqdy ˙1{2 u › › › › › H ď 4}∇ r φ k } 2 H }u} H ď 4}u} H .
On the other hand, we also have

ˇˇ v, rW 1,| r φ k r φ k | , W 2,γ su ˇˇ" ˇˇˇˇˇˇ¡ R 3ˆ3 ż tPr0,1s ∇| r φ k | 2 py `tpx ´yq ´zq ¨px ´yq |z| v ˚pxqγpx, yqupyq |x ´y| dtdxdydz ˇˇˇˇˇď 4}∇ r φ k } 2 H ij R 3ˆ2 p|v|pxqρ 1{2 γ pyqqp|u|pyqρ 1{2 γ pxqqdxdy ď 4q}u} H }v} H . Thus, }rW 1,| r φ k r φ k | , D γ ´c2 βsu} H ď 4cp1 `αc qq}u} H ď 4cp1 `κq}u} H . (41) 
Now we turn to the term rW 2,| r

φ k r φ k | , D γ
´c2 βs. As }A} BpHq " }A ˚}BpHq and using (49) and the Hardy inequality, we have Lemma B.1. Let γ P Γ q . Let ψ be a normalized eigenfunction of operator D γ with eigenvalue ´c2 ď λ ď c 2 . Under Assumption 2.8, there are constants K and K 1 independent of α and c such that

}rW 2,| r φ k r φ k | , D γ ´c2 βs} BpHq ď 2cp1 `κq}∇W 2,| r φ k r φ k | } BpHq `c2 }rW 2,| r φ k r φ k | , βs} BpHq . Notice that ∇pW 2,| r φ k r φ k | uq " ż px
}ψ} H 1 ď K, }ψ p2q } H ď K 1 c . (58)
Furthermore, for any γ 1 P Γ q satisfying 0 ď γ 1 ď ½ p0,c 2 q pD γ q, }γ 1 } Y ď K 2 q.

Proof. The proof is essentially the same as in [START_REF] Esteban | Nonrelativistic limit of the Dirac-Fock equations[END_REF]Lemma 7 For the second estimate, according to (6), we rewrite γ 1 as γ 1 " `8 ÿ j"1 µ j |ψ j ψ j | where µ j ě 0, ř `8 j"1 µ j " q and ψ j is the normalized eigenfunctions of D γ with eigenvalues 0 ď λ j ď c 2 .

Thus,

}γ 1 } Y ď `8 ÿ j"1 µ j }ψ j } 2 H 1 ď K 2 q.
This ends the proof.

We turn to prove the boundedness of the eigenfunctions of the DF type operator P g D γ P g .

Lemma B.2. Let γ, g P Γ q . Let ψ be a normalized eigenfunction of operator P g D γ P g with eigenvalue ´c2 ď λ ď c 2 . Under Assumption 2.8, there are constants K and K 1 independent of α and c such that

}ψ} H 1 ď K, }ψ p2q } H ď K 1 c . ( 62 
)
Furthermore, let γ 1 P Γ pgq q satisfying 0 ď γ 1 ď ½ p0,c 2 q pP g D γ P g q, then }γ 1 } Y ď K 2 q.

Proof. It is easy to see that P g ψ " ψ. As P g D γ P g " D g P g `P g W γ´g P g , we have P g D γ P g ψ " D g ψ `P g W γ´g ψ " λψ. (63) By Lemma A. 

ně1 λ n

  |u n y xu n | where |uy xu| denotes the projector onto the vector space spanned by the function u. The kernel γpx, yq of γ reads as γpx, yq " ÿ ně1 λ n u n pxq b u npyq

  πα c p1{4 `maxtTrpgq, quq `4α c Trpgq ă µ Zc .[START_REF] Esteban | Variational methods in relativistic quantum mechanics[END_REF] 

: R 3 Ñ C 2 .
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 5222222 Let C κ,L be given in Lemma 5.1. With the same assumptions as in Lemma 5.1, for any γ P U R we have }P γ pθpγq ´T pγqqP γ } Xc ď C κ,L Rα and }P γ θpγqP γ } Xc ď C κ,L qα }T pγq ´γ} 2 Xc . (28) We first use it to prove Lemma 5.1. Proof of Lemma 5.1. Notice that (29) Epγq ´Epγq " TrrD γ pθpγq ´γqs `α 2 TrrW θpγq´γ pθpγq ´γqs ´c2 Trpθpγq ´γq.

  Proof. Let Error γ ph, tq :" 1 α 2 c t 2 rEpγ `thq ´Epγ `thqs. Notice that γ P U R X Γ q implies that θpγq " γ and Epγq " Epγq. Then Epγ `thq " Epγq `Epγ `thq ´Epγq `t2 α 2 c Error γ ph, tq. On the other hand,

	Epγ `thq ´Epγq " tTrrpD γ	´c2 qhs	`αt 2 2	TrrW h hs.

`thq " Epγq `tTrrpD γ ´c2 qhs `αt 2 2 TrrW h hs `t2 α 2 c Error γ ph, tq, where |Error γ ph, tq| ď 5π 2 p6 `πqpR `qq 4p1 ´κpα, cqq 4 λ 5{2 0 pα, cqp1 ´Lpα, cqq 2 }h} 2 X .

  Proof of Lemma 5.2. We first prove (27). Indeed, it suffices to prove (36)}P γ pT n pγq ´T n´1 pγqqP γ } Xc ď C κ,L p1 ´Lq Rα 2 cc 2 }T pγq ´γ} Xc }T n´1 pγq ´T n´2 pγq} Xc . Then thanks to[START_REF] Chaix | From quantum electrodynamics to mean-field theory. i. the bogoliubov-dirac-fock formalism[END_REF],}P γ pθpγq ´T pγqqP γ } Xc ď }P γ pT n pγq ´T n´1 pγqqP γ } Xc ď C κ,L

	`8 ÿ n"2	Rα 2 c c 2 }T pγq ´γ} 2 Xc .

  , we have }γ n ´γ} X ď 1 1´L }T pγq ´γ} Xc . ´P γn´2 q} BpHq }|D| ´1{2 } BpHq }|D| 1{2 pP γn´1 ´P γn´2 q} BpHq }γ n´1 |D| 1{2 } σ1 }P γ pP γn´1 ´P γn´2 qP γn´2 γ n´1 P γn´1 P γ } Xc ď pC 1 }T pγq ´γ} Xc }γ n´1 ´γn´2 } Xc . The term P γ γ n´1 P γn´2 pP γn´1

	with C 2 κ,L :"	π 2 8p1´κq 2 λ 3{2 0 p1´Lq	. Thus,
			κ,L	`C2 κ,L q	Rα 2 c c 2
				Thus, by (52) and
	(54),		
	}I 2 } Xc ď }|D| 1{2 pP γ ď p1 `κq p1 ´κq π 2 p1 `κq 3{2 0 Rα 2 c c 2 }γ n´2 ´γ} Xc }γ n´1 ´γn´2 } Xc 16p1 ´κq 2 λ ď C 2 κ,L Rα 2 c c 2 }T pγq ´γ} Xc }γ n´1 ´γn´2 } Xc

  Estimate on[START_REF] Kutzelnigg | Relativistic hartree-fock by means of stationary direct perturbation theory. ii. ground states of rare gas atoms[END_REF]. In the above proof of[START_REF] Huber | Solutions of the Dirac-Fock equations and the energy of the electron-positron field[END_REF], one of the most important ingredients is Eqn. (54), i.e., }|D| 1{2 pP γ ´P γ1 q} BpHq ď apα, cq}γ ´γ1 } X ď apα, cq c }γ ´γ1 } Xc .

	5.2.
	1 2apα,cq ď 2 παc and C ´1 κ,L ď 4 5π 2 . This gives (15).

  | uq} H " }p∇W 2,| r φ k r φ k | qu} H ď 6}u} H from which we infer }rW 2,| r φ k r φ k | , D γ ´c2 βs} BpHq ď 12cp1 `κq.Lemma 5.6. Assume that κ ă 1. Then for any γ, γ 1 P Γ q ,}|D| 1{2 pP γ ´P γ1 q} BpHq ď α c `16p1 `κq}g ´γ} Y `c}rW g´γ , βs} BpHq ˘.´8 pD γ ´izq ´1W h pD γ ´izq ´1dz. As σp|D γ |q ą 0, from the following identity´8 pD γ ´izq ´1rW h , pD γ ´izq ´1sdz ´8 pD γ ´izq ´1pD γ ´izq ´1rW h , D γ spD γ ´izq ´1dz `16p1 `κq}h} Y `c}rW h , βs} BpHq ˘. (45)To end the proof, it is easy to see that Replacing Eqn. (54) by Eqn. (43) in the proof of Lemma 5.4, we obtain Lemma 5.7. Assume that κ ă 1. Let g P Γ q , γ P U R and g, γ P Y . Then if P g γP g " γ, we have `32}g ´γ} Y `c}rW g´γ , βs} BpHq (46) and }P γ γP γ } Xc ď α 2 c q 2c 2 p1 ´κq 2 λ 3 0 `32}g ´γ} Y `c}rW g´γ , βs} BpHq ˘2 .

	Then we have ˇˇˇˇż v ˚pxq∇ r φ k pxq r φ k pyqupyq |x ´y| and ˇˇˇˇż px ´yqv ˚pxq r φ k pxq r dxdy φ k pyqupyq ˇˇˇˇď ˆż |∇ r φ k pxq| 2 |upyq| 2 dxdy ď 2}u} H }v} H ˇˇˇď ˙1{2 ˜ż | r φ k pyq| 2 |vpxq| 2 |x ´y| 2 dxdy |x ´y| 3 ˜ż | r φ k pxq| 2 |upyq| 2 |x ´y| 2 dxdy ¸1{2 ˜ż | r ¸1{2 φ k pyq| 2 |vpxq| 2 |x ´y| 2 dxdy ď 4}u} H }v} H . dxdy	¸1{2
	Thus,				
	}∇pW 2,| r φ k r φ k (42)
	This and (41) gives (40).			
	3{2 0 2cp1 ´κq 1{2 λ 2π dP γ h " Proof. First of all, we recall that (43) α ż `8
	we infer (44)	dP γ h " "	α 2π α 2π	ż `8 ż `8		ż `8 ´8 pD γ ´izq ´2dz " 0,
	Proceeding as for (35) and using (44), we can get
		}|D| 1{2 dP γ h} BpHq ď ď	α c 2c 2 p1 ´κq 1{2 λ 3{2 0 α c 3{2 2cp1 ´κq 1{2 λ 0	}rW h , D γ s} BpHq
						ż 1
				P γ ´P	γ1 "	0	dP γ1 `tpγ´γ 1 q pγ ´γ1 qdt.
	This and (45) give (43).			
		}T pγq ´γ} Xc ď	? 2α c R 3{2 p1 ´κqλ 0
	(47)					´yq r φ k pxq r φ k pyqupyq |x ´y| 3	dy	´ż ∇ r φ k pxq r φ k pyqupyq |x ´y|	dy.

  and Theorem 3]. As D γ ψ " λψ, (59) we have }Dψ} H " }pλ `αV ´αW γ qψ} H . Thus according to the Hardy inequality and |λ| ď c 2 ,c 4 }ψ} 2 H `c2 }∇ψ} 2 H ď c 4 }ψ} 2 H `4αpZ `qqc 2 }∇ψ} H }ψ} H `4α 2 pZ `qq 2 }∇ψ} 2 H .As }ψ} H " 1 and according to Remark 2.6, we know there is a constant K ą 0 such that}ψ} H 1 ď K.Let L :" ´ipσ ¨∇q. Then (59) can be rewritten ascLψ p2q ´V ψ p1q `ˆρ γ ˚1 |x| ˙ψp1q ´żR 3 γ 1,1 px, yqψ p1q pyq `γ1,2 px, yqψ p2q pyq |x ´y| dy " pλ ´c2 qψ p1q , cLψ p1q ´V ψ p2q `ˆρ γ ˚1 |x| ˙ψp2q ´żR 3 γ 2,1 px, yqψ p1q pyq `γ2,2 px, yqψ p2q pyq |x ´y| dy " pλ `c2 qψ p2q . (60) Dividing by λ `c2 the second equation of (60), we get

	Thus,	}∇ψ} H ď	ˆ4αpZ `qq 1 ´κpα, cq 2	˙1{2	}ψ} H .
	(61)	}ψ p2q } H ď	c λ `c2 }Lψ p1q } H	`C λ `c2 }ψ} H 1 ď	K 1 c

  1, }P g W γ´g ψ} H ď }W γ´g ψ} H ď 4q}∇ψ} H . Then, }Dψ} H " }pλ `αV ´αW γ ´P g W γ´g qψ} H .
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LONG MENG

Inserting these two inequalities into Lemma This gives [START_REF] Kutzelnigg | Relativistic hartree-fock by means of stationary direct perturbation theory. ii. ground states of rare gas atoms[END_REF].

Appendix A. Some technical estimates

In this section, we list some basic estimates used in this paper taken from [START_REF] Séré | A new definition of the dirac-fock ground state[END_REF]. The difference is only because of the change of units for Z, α and c.

Lemma A.1. [20, Lemma 2.6] Let γ P X.

(1)

(3) Let γ P Γ q and κpα, cq ă 1. Then

(5) Let γ P Γ q and maxpq, Zq ă (2) For any γ P Γ q , we have T pγq P Γ q and In this paper, we also need a priori estimates on H 1 norms for the eigenfunctions of the DF operators D γ and the ep-HF operator P g D γ P g . For any wave function ψ : R 3 Ñ C 4 , we split it in blocks of upper and lower components:

For any density matrix γ P X, we also split its kernel γpx, yq in the blocks:

We have the followings.

LONG MENG

Proceeding as in the proof of Lemma B.1 for (63), we know that under Assumption 2.8, there is a constant K ą 0 such that }ψ} H 1 ď K, }ψ p2q } H ď K 1 c , and }γ 1 } Y ď K 2 q.