N

N

Discrete Morse Functions and Watersheds

Gilles Bertrand, Nicolas Boutry, Laurent Najman

» To cite this version:

Gilles Bertrand, Nicolas Boutry, Laurent Najman. Discrete Morse Functions and Watersheds. 2023.
hal-03928064v1

HAL Id: hal-03928064
https://hal.science/hal-03928064v1

Preprint submitted on 9 Jan 2023 (v1), last revised 4 Jul 2023 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03928064v1
https://hal.archives-ouvertes.fr

Springer Nature 2021 BTEX template

Discrete Morse Functions and Watersheds

Gilles Bertrand!, Nicolas Boutry? and Laurent Najman®

Univ Gustave Eiffel, CNRS, LIGM, F-77454 Marne-la-Vallée, France.
2EPITA, Research and Development Laboratory (LRDE), France.

Contributing authors: gilles.bertrand@esiee.fr; nicolas.boutry@Irde.epita.fr;
laurent.najman@esiee. fr;

Abstract
Any watershed, when defined on a stack on a normal pseudomanifold of dimension d, is a
pure (d — 1)-subcomplex that satisfies a drop-of-water principle. In this paper, we introduce

Morse stacks, a class of functions that are equivalent to discrete Morse functions. We show
that the watershed of a Morse stack on a normal pseudomanifold is uniquely defined, and
can be obtained with a linear-time algorithm relying on a sequence of collapses. Last, but
not the least, we prove that such a watershed is the cut of the unique minimum spanning
forest, rooted in the minima of the Morse stack, of the facet graph of the pseudomanifold.

Keywords: Topological Data Analysis, Mathematical Morphology, Discrete Morse Theory, Simplicial Stacks,

Minimum Spanning Forest.

1 Introduction

Watershed is a fundamental tool in computer
vision, since its inception as an algorithm by the
school of mathematical morphology [1, 2]. It is
still true in this era of deep learning, where it is
used as a post-processing tool [3]. From a discrete,
theoretical point of view, the first topologically-
sound approach was proposed in [4, 5]. Building
on those results, in [6-8], it is demonstrated that
watersheds are included in skeletons on pseudo-
manifolds of arbitrary dimension.

In this paper, we continue exploring the link
between watershed and topology, in the frame-
work of discrete Morse theory [9, 10]. Indeed,
mathematical morphology [11] and discrete Morse
theory, although they pursue different objec-
tives, share many similar ideas. In particular, as
demonstrated in [12-14], filtering minima using
morphological dynamics [15] in watershed-based

image-segmentation, is equivalent to filtering the
minima by persistence, a fundamental tool from
Persistent Homology [16] used for topological data
analysis [17, 18].

Although the main ideas of the present paper
originate in [19], we have worked towards a
simpler, unifying framework for exposing these
ideas. This leads us to introduce Morse stacks:
these functions correspond to the inverse of flat
Witten-Morse functions that, according to R. For-
man [20], seem to have shown themselves to be
the appropriate combinatorial analogue of smooth
non-degenerate Morse functions. We also propose
a new definition for normal pseudomanifolds, a
class of manifolds on which path-connectivities are
all equivalent. Relying on these notions, we prove
that a watershed, a pure (d — 1)-subcomplex of
a normal pseudomanifold, has several interesting
properties when defined on a Morse stack F. In
particular, in this setting, a watershed is uniquely
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defined, and can be obtained thanks to a linear-
time algorithm, relying on a sequence of collapses.
Furthermore, a watershed is the cut of the unique
minimum spanning forest of the facet graph of
the normal pseudomanifold weighted by F', rooted
in the minima of F. Relations between water-
sheds and Morse theory have long been informally
known [21], but this is the first time that a link is
presented in the discrete setting, relying on a pre-
cise definition of the watershed. Furthermore, as
far as we know, this is the first time that a concept
from Discrete Morse Theory is linked to a classical
combinatorial optimization problem.

The plan of this paper is the following. Section
2 provides some basic definitions of simplicial com-
plexes. We introduce here the notion of a covering
pair, that is fundamental for the definition of
Morse stacks. Section 3 recalls some definitions
of simplicial stacks, which are a class of weighted
simplicial complexes whose upper threshold sets
are also complexes. Section 4 proposes a new
definition for normal pseudomanifolds. Section 5
provides the necessary definitions for watersheds
on stacks defined on normal pseudomanifolds.
We propose here an algorithm for computing
watershed relying on the collapse operation. In
section 6, we introduce Morse stacks. Section 7
studies the properties of watersheds on Morse
stacks. Section 8 links watershed and the mini-
mum spanning forest. We conclude the paper with
a discussion in section 9, in which we highlight the
importance of our results, both from a theoreti-
cal and a practical point of views, and we propose
some perspective for future work.

Finally, appendix A shows that our defini-
tion of normal pseudomanifold is equivalent to the
classical one, and appendix B demonstrates that
Morse stacks are equivalent to classical discrete
Morse functions.

2 Simplicial complexes

A simplex x is a non-empty finite set; the dimen-
sion of x, written dim(z), is the number of its
elements minus one. We also say that x is a
p-simplez if dim(zx) = p.

Let S be a finite set of simplexes. A p-simplex
in S is a (p-)face of S. A (p-)facet of S is a p-face
of S that is maximal for inclusion. If  and y are
two distinct faces of S such that x C y, we say
that x is a face of y (in S). The simplicial closure

of Sistheset ST={yCz | y# 0 and z € S}.
The set S is a (simplicial) complex if S =S5".

Let X be a complex. The dimension of X,
written dim(X), is the largest dimension of its
simplices, the dimension of () being defined to be
—1.

A 0-face of X is a vertex of X and a 1-face of X
is an edge of X.

A complex X is a graph if the dimension of X is
at most 1.

Let X be a complex and let S C X. If S is a
complex, we say that S is closed for X or that S
is a subcomplex of X. We say that S is open for X
or that S is an open subset of X if, for any = € S,
we have y € S whenever £ C y and y € X. If X is
a complex and S C X, we note that S is closed for
X if and only if X'\ S is open for X. In particular,
¢ and X are both closed and open for X.

Let S be a finite set of simplexes. Let m =
(xo,...,2x) be a sequence of elements of S. The
sequence 7 is a path in S (from xg to xy) if, for
any i € [0, k—1], either x; C 2,41 or 2,41 C x;. We
say that S is connected if, for any x,y € S, there
exists a path from z to y in S. We say that T C S
is a connected component of S if T is connected
and maximal, with respect to set inclusion, for this

property.

Remark 1 We observe that:

- If X is a complex, then X is connected if and
only if, for any vertices x,y € X, there ezists a
sequence {(x = xo,...,x = y) of vertices of X
such that, for any i € [0,k — 1], x; # ;11 and
x; Uz is an edge of X.

— If S is an open subset of a complex X, then S
1s connected if and only if, for any facets x,y of
S, there exists a sequence (x = xg,..., T = Y)
of facets of S such that, for any i € [0,k — 1],
T;Nxiyg isin S.

The following simple definition of a covering
pair (or a p-pair) will play an important role in
the sequel of the paper:

— It will first allow us to define a free pair (Def-
inition 3). This corresponds to the operation
of collapse of a simplicial complex introduced
by J.H.C. Whitehead [22], which is a discrete
analogue of a retraction, that is, a continuous
(homotopic) deformation of an object onto one
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of its subsets. In Section 3, free pairs for a sim-
plicial complex will be extended to free pairs on
stacks, which are maps on simplicial complexes
(Definition 4).

— In Section 6, we introduce the notion of a flat
pair, which is a special case of a covering pair.
This permits us to have a very simple and con-
cise presentation of a Morse stack (Definition
16). Indeed, a basic link between Morse stacks
and the collapse operation is straightforward
(Proposition 17). Furthermore, the notions of a
gradient vector field and a gradient path follow
immediately from covering and flat pairs.

Definition 2 (Covering pair) Let X be a complex and
z,y € X, with dim(y) = p. We say that (z,y) is a
covering pair of X or a p-pair of X if x is a face of y
and dim(z) =p— 1.

Definition 3 (Free pair) Let X be a complex and let
(z,y) be a p-pair of X. We say that (x,y) is a free
(p-)pair of X if y is the only face of X that contains x.

Thus, if (z,y) is a free pair of X, we have nec-
essarily dim(x) = dim(y) — 1. Furthermore, we
observe that y is necessarily a facet of X.

If (z,y) is a free p-pair of a complex X, then
Y = X \{z,y} is an elementary (p-)collapse of X.
We say that X collapses (resp. p-collapses) onto
Y, if there exists a sequence (X = Xj,..., Xy =
Y) such that X; is an elementary collapse (resp.
elementary p-collapse) of X;_1, i € [1,k]. If, fur-
thermore, Y has no free pair (resp. free p-pair),
then Y is an ultimate collapse (resp. ultimate p-
collapse) of X. A complex X is collapsible if X
collapses onto a single vertex.

3 Simplicial stacks

Let X be a simplicial complex, and let F' be a map
from X to Z. If x is a face of X, the value F(x)
is called the altitude of F' at x. For any A € Z, we
write F[\| ={zx € X | F(z) > A}, F[)] is the A-
section of F'. We say that F is a (simplicial) stack
on X if any A-section of F' is a simplicial complex.
In other words, any A-section of F' is a closed set
for X.

Let F be a map from a complex X to Z. It may
be easily seen that F' is a simplicial stack if and
only if, for any z,y € X such that z C y, we have

F(z) > F(y). Also, a map F is a simplicial stack
if and only if, for any covering pair (z,y) in X, we
have F(x) > F(y).

Now, we extend the notion of free pairs of sim-
plicial complexes to simplicial stacks. This exten-
sion allows us to introduce some fundamental
discrete homotopic transforms of these maps.

Definition 4 Let F' be a simplicial stack on X. We
set Am = min{F(z) | « € X}. Let (z,y) be a p-pair
of X. We say that (z,y) is a free (p-)pair of F if (x,y)
is a free (p-)pair of F[\], with A = F(x) and A > Am.

If (z,y) is a free pair of F, then both z and y
are in F[\], with A = F(z). Thus F(y) > F(x).
Also, we have x C y. Then, since F is a stack, we
have F(y) < F(z). Thus, we have F(z) = F(y)
whenever (x,y) is a free pair of F'.

Let F' be a simplicial stack on a complex X.

1. Let (z,y) be a free (p-)pair of F. Let G be the
map such that G(z) = F(z)—lif z =z or z =
y,and G(z) = F(z)if z € X\{z, y}. We can see
that G is a simplicial stack on X, the map G is
called an elementary (p-)collapse of F' through
(x,y) or simply an elementary (p-)collapse of
F.

2. If G is the result of a sequence of elementary
collapses (resp. p-collapses) of F, then we say
that F collapses (resp. p-collapses) onto G.

3. If F collapses (resp. p-collapses) onto a stack
G that has no free pair (resp. no free p-pair),
then G is an ultimate collapse (resp. ultimate
p-collapse) of F.

We conclude this section by giving a definition
of a (regional) minimum of a stack, which plays a
crucial role for the notion of a watershed.

Let F' be a simplicial stack on a complex X
and let A € Z. A subset A of X is a minimum of
F (at altitude \) if A is a connected component
of X\ FIA+1] and AN (X \ F[A]) = 0. The divide
of F is the set composed of all faces of X that are
not in a minimum of F. Note that any minimum
of F' is an open set for X, and the divide of F' is
a simplicial complex.

4 Normal pseudomanifolds

The results of this paper hold true in a large fam-
ily of n-dimensional discrete spaces, namely the
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normal pseudomanifolds. This section provides a
presentation of these spaces.

Let S be a finite set of simplexes. A strong
p-path in S (from g to xy) is a path (xq, ..., zx)
such that, for each i € [0, k—1], either (z;,x;41) is
a p-pair, or (x;41,x;) is a p-pair. The set S is (d-
)pure if all facets of S have the same dimension d.
If S is d-pure, we say that a strong d-path in S is
a strong path in S. Also, we say that S is strongly
connected if, for any two facets x,y in S, there
exists a strong path in S from z to y. A subset T
of S is a strong connected component of S if T is
strongly connected and maximal, with respect to
set inclusion, for this property.

Definition 5 (Normal pseudomanifold) A connected
and d-pure complex X, with d > 1, is a normal
pseudomanifold (or a normal d-pseudomanifold) if:

1. The complex X is non-branching, that is, each
(d — 1)—face of X is included in exactly two
d-faces of X.

2. The complex X is strictly connected, that is,
each connected open subset of X is strongly
connected.

Recall that a pure complex X is a pseudoman-

ifold if it is non-branching and strongly connected
[23]. Since the very set X is open for a complex X,
we see that any normal pseudomanifold is a pseu-
domanifold.
In fact, the above definition is a new definition
for a normal pseudomanifold. In Appendix A, we
show that it is equivalent to the classical definition
[24], [25], [26], which consists of a local condition
together with the conditions that must be satisfied
by a pseudomanifold.

Let us consider Fig. 1. The triangulated torus
(a) is a normal pseudomanifold. The triangulated
pinched torus (b) is a pseudomanifold that is not
normal: the set of all faces containing the pinch
vertex is a connected open subset of the com-
plex, but this set is not strongly connected. The
triangulated pinched torus (c) is not a pseudo-
manifold: the pinch segment does not satisfy the
non-branching condition.

Let X be a proper subcomplex of a d-
pseudomanifold M. We can see that, if dim(X) =
d, the complex X has necessarily a boundary, that
is, there exists a free d-pair for X. By induction,

it means that the dimension of an ultimate d-
collapse of X is necessarily d — 1. See [7] for a
formal proof.

Important notations. In the sequel of the
paper:

— We denote by S the collection of all simplicial
complexes.

- If X € S, we write Y < X whenever Y C X and
Y €S, that is, whenever Y is a subcomplex of
X.

- IfX €8S,and S C X, we write S C X whenever
S is an open subset of X.

— We denote by M (resp. M) the collection of
all normal pseudomanifolds (resp. all normal d-
pseudomanifolds).

— If F is a stack on M € M, the notation min(F’)
stands for the union of all minima of F, and
we write 0iv(F) for the divide of F. Thus, we
have div(F) = M \ min(F), d0iv(F) < M, and
min(F) C M.

We are now ready to introduce the notion of a
watershed in the context of simplicial complexes.
We will consider a normal pseudomanifold M € M
and a simplicial stack F' on M, the map F' may be
seen as a “topographical relief” on the space M.
A simplicial complex W < M may be a watershed
of F if W “separates the minima of F”. It means
that if A C M is a connected component of M\W,
then A contains one and only one set B C M
that is a minimum of F. Furthermore, the com-
plex W must satisfy a “drop of water principle”:
from each face of W, we may reach two distinct
minima of F' by following a descending path. Each
connected component A of M\ W will correspond
to a “catchment basin” of the map F.

5 Watersheds

Let X €S, and let A C X, with A # (). We say
that B C X is an extension of A if A C B, and if
each connected component of B includes exactly
one connected component of A. We also say that
B is an extension of A if A= B = ).

Proposition 6 Let M € M and let AC M.

1. A subset S of A is a connected component of A
if and only if S is a strong connected component

of A.
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(a)

Fig. 1 (a): A normal pseudomanifold, which is a torus, (b): A pseudomanifold, which is a pinched torus, and where the
pinch face is a vertex, (c): A pinched torus where the pinch face is a segment. This is not a pseudomanifold.

2. Let B T M, with A C B. The set B is an
extension of A if and only if each strong con-
nected component of B includes exactly one
strong connected component of A.

Proof 1) It may be seen that, if S is a connected com-
ponent of the open set A, then S is necessarily an
open set for M. Since M is a normal pseudomanifold,
we deduce that S is strongly connected. Furthermore,
S is a strong connected component of A, otherwise S
would not be a maximal connected subset of A. Now,
if S is a strong connected component of A, then S is
a connected subset of A. Again, we see that S is a
connected component of A. Otherwise, S would be a
proper subset of a connected open subset T of A. Since
M is a normal pseudomanifold, this subset T would
be strongly connected, and S would not be a maximal
strongly connected subset of A.

2) is a direct consequence of 1). O

Let X € Sand Y < X. Let A C X, with
A # (. We say that Y is a cut for A, if X \Y
is an extension of A, and if Y is minimal for this
property. That is, if Z <Y, and if X \ Z is an
extension of A, then we have necessarily Z =Y.

Proposition 7 (from [7]) Let M € M, AC M and
X X M, with A # 0. If X is a cut for A, then the
complex X 1is either empty or a pure (n — 1)-complex.

Remark 8 It could be seen that the previous result
no longer holds if we consider arbitrary pseudomani-
folds instead of normal pseudomanifolds. For example,
the pinched vertex of the pinched torus of Figure 1.(b)
could be in a cut.

In fact, it is possible to bypass this situation by con-
sidering only strong paths between faces, as it is done
in [7]. In this paper, in order to handle general con-
nectedness and arbitrary paths, we have made the
choice to settle our results in normal pseudomanifolds.

Let F beastackon M € M. If 7 = (zo, ..., zx)
is a path in M, we say that 7 is ascending for F

(c)

(resp. descending for F) if, for any i € [0, k], we
have F(z;) < F(x;11) (resp. F(x;) > F(ziy1)).

Definition 9 (Cut) Let F be a stack on M € M and
let X = M be a cut for min(F). We say that X is
a watershed of F' if, for each x € X, there exist two
strong paths m1 = (xg,...,zE) and T2 = (Yo,...,Y;)
in M\ X, such that:

- x Cuxg and x C yp;

— m and my are descending paths for F'; and

— x and y; are simplices of two distinct minima
of F.

Let M € M, F be a stack on M, and let W be
a watershed for F'. We say that B C M is a (catch-
ment) basin of W if B is a connected component
of W =M\ W. Since W is a cut for min(F),

— any catchment basin B of W contains a unique
minimum A of F', we say that A is the minimum
of B;

— any minimum A of F' is included in a unique
basin B of W, we say that B is the catchment
basin of A.

Proposition 10 (from [7]) Let M € My, F be a stack
on M, and W be a watershed of F'. Then, for any d-
face x in M, there exists a strong path in M \W from
x to a d-face of a minimum of F, that is descending
for F.

From the previous result, we easily derive the
following proposition.

Proposition 11 Let M € M, F be a stack on M, and
W be a watershed of F. Let B be the catchment basin
of a minimum A of F. Then, for any x € B, there
erists a descending path in B from x to a face of A.

The two following results are crucial for linking
a watershed of a stack F' and the homotopy of F'.
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Proposition 12 (from [7]) Let M € My. If F is a
stack on M and H is a collapse of F', then:

1. min(H) is an extension of min(F).
2. 9iv(H) is a collapse of div(F).

It should be noted that the previous prop-
erty is no longer true if we consider a stack on
an arbitrary complex X € S rather than a com-
plex M € M. See Fig 2 which provides a simple
counter-example.

Proposition 13 (from [7]) Let M € My and F be a
stack on M.

1. F contains a free d-pair if and only if div(F)
contains a free d-pair.

2. If dim(div(F)) = d, then there exists a free d-
pair for F.

Let F be a stack on M € M and z be a (d—1)-
face of M. Let y, z be the two d-faces containing
x. We say that z is (locally) separating for F if
F(y) < F(z) and F(z) < F(z). We say that =
is biconnected for F if y and z belong to distinct
minima of F.

Definition 14 Let F' be a stack on M € My. Let
X X M. We say that X is a cut by collapse of F,
or a C-watershed of F, if there exists an ultimate d-
collapse H of F' such that X is the simplicial closure
of the set of all faces of M that are biconnected for H.

Theorem 15 (from [7]) Let M € M and let F be a
stack on M. A complex X < M is a watershed of F' if
and only if X is a C-watershed of F'.

Theorem 15 is illustrated in Fig. 3.

From Theorem 15 we may derive the procedure
WatershedCollapse(F, M) (Fig. 4) for obtaining
a watershed of a stack F' on M € M.

The result W depends on the choices of the
free pairs that are made at step 1. In any case,
any watershed of F' may be obtained by this
procedure.

As explained hereafter, a direct implementa-
tion of the algorithm WatershedCollapse(F, M)
can be slow.

— Step 1 is the more complex one. A naive imple-
mentation of this step is in the order of n? x h,
where n is the number of d-faces, and h is the
number of different altitudes of F'. However, this
step can be done in quasi-linear time, relying
on a straightforward adaptation to simplicial
complexes of the algorithm presented in [27].
This algorithm relies on a tree structure, where
the nodes of the tree are the connected com-
ponents of all the level sets of F', and where
the edges of the tree correspond to the par-
enthood relationships between those connected
components.

— Step 2 is a simple labelling, and may be done
in linear time with respect to the number of d-
faces. By using such a labelling, checking if a
d-face is biconnected can be done in constant
time.

— Finally, step 3 may be implemented in linear
time, with respect to the number of incidence
relations of M, that is the cardinal of the set
{(z,y9) | z,y € M and x C y}.

6 Morse stacks

In this section, we transpose some basic notions
of discrete Morse theory to stacks. We proceed by
defining a Morse stack, which is the counterpart of
a classical discrete Morse function. Morse stacks
simply correspond to the inverse of flat discrete
Morse functions. See Appendix B, which provides
the few facts linking these two notions.

Let F be a map from a complex X to Z. We
say that a covering pair (z,y) of X is a flat pair
of F whenever we have F(z) = F(y).

Definition 16 (Morse stack) Let F' be a simplicial
stack on a complexr X. We say that F is a Morse stack
(on X) if any face of X is in at most one flat pair
of F.

Let F' be an arbitrary simplicial stack, and let
(x,y) be a covering pair of F. We have seen that, if
(x,y) is a free pair of F, then necessarily (z,y) is a
flat pair of F. Suppose now that (z,y) is a flat pair
of F. Then, there may exist another covering pair
(x, z) that is also a flat pair of F. In this case, we
see that (x,y) is not a free pair of F. By the very
definition of a Morse stack, this situation cannot
occur. In fact, we have the following result.
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Fig. 2 Two stacks F' and H with two levels: altitude 0 (faces in light grey) and altitude 1 (faces in black). The stack H
is an elementary collapse of F' (at altitude 1). But F has three minima whereas H has only two. Thus, min(H) is not an

extension of min(F).
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Fig. 3
of F. The pair (y,x) in (a) is a free-pair for F.

Proposition 17 Let F' be a Morse stack on a complex
X. A covering pair (z,y) of X is a free pair of F if
and only if (z,y) is a ﬂat pair of F.

Definition 18 (Regular and critical simplex) Let F
be a Morse stack on a complex X and let x € X with
dim(z) = p.

— We say that x is regular or p-regular for F if x
18 in a flat pair of F.

— We say that x is critical or p-critical for F' if x
s not reqular for F.

AVAVAVANV

03 3 03—2— e2—2— O3

VATATATA
ATATAVAY

'A\'A'A'A
(b)

(a) A simplicial stack F' on a subset of a normal 2-pseudomanifold. (b) An ultimate 2-collapse of F'. (¢) A watershed

A Morse stack defined on a normal pseudo-
manifold, together with its critical and regular
simplexes, can be seen on Fig. 5.

Let F be a Morse stack on a complex X.
The gradient vector field of F, written §E>1(F)7 is
the set of all flat pairs of F.
If (z,y) is a covering pair of F such that F(x) >
F(y), we say that (y,x) is a differential pair of F.
We write cﬁ}fF for the set of all differential pairs
for F.
We also set:
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WatershedCollapse(F, M)

1. Set H = F. Until H has no free d-pair, select arbitrarily a free d-pair (x,y) of H
and replace H by the elementary collapse of H through (x,y);

2. Label all d-faces of distinct minima of H with distinct labels;

3. Extract from H the complex W that is the simplicial closure of the set of all d-
faces of M which are biconnected for H.

Fig. 4 The procedure WatershedCollapse(F, M) computes a watershed W of a stack F defined on a normal

pseudomanifold M.

- grady(F) = {(z,) € grad(F) | dim(y) = p},
an
N ﬁp(
A Ap-path in F (from xo to x1) is a sequence
m = (xg, 1, ..., xk) composed of faces of X such
that, for all ¢ € [0,k — 1], the pair (z;,%;+1) is
either in @p(F) or in diff ,(F). A sequence 7 is
a gradient path for F' if w is a A,-path for F' for
some p.

Let m = (xo, %1, ..., Tk
observe that:

) = {(y,2) € &iff(F) | dim(y) = p}.

) be a Ap-path in F. We

— For any i € [1,k — 1], the pair (x;,2;41) is in
gﬁp(F) (resp. diff,,(F')) whenever (z;_1,x;) is
in diff,(F) (resp. grad,(F)).

— Each face of 7 is either a p-face or a (p—1)-face.
For any ¢ € [0,k — 1], if x; is a p-face, then x;11
is a (p— 1)-face, and if z; is a (p — 1)-face, then
xiy1 is a p-face.

— The path 7 is a strong p-path.

— If w is not trivial, then 7 cannot be closed, that
is, we have necessarily k£ = 0 whenever z; = zg.

— The path 7 is an ascending path, that is, we
have F(x;) < F(z;41) for any ¢ € [0,k — 1].
Furthermore, we have F(x;) < F(z;42) for any
1€[0,k—2].

The following result is a basic fact about Morse
functions.

Proposition 19 Let F' be a Morse stack on a complex
X €8S, and let S be a subset of X. If S is a minimum
of F, then S is composed of a single facet of X.

In the sequel, we will say that a face z € X
is a minimum (of F') whenever the set {z} is a
minimum of F.

7 Morse stacks and
watersheds

Let F be a Morse stack on a complex X € S. Let
x, y be two faces of X. We say that x is Ap-linked
to y if there is a Ap-path in F' from z to y. Let
T = (x =zg,...,x; = y) be a A,-path in F from =
to y. We write # = (y = zy, ..., zg = x) and we say
that 7 is a Ap—path in F' from y to x. We say that a
face z € X is an extension of 7 if (x = xg, ..., vk =
y,z) is a Ap-path in F from z to z. We say that z
is an extension of T if (y = xp,...,x0 = x,2) is a
/N\p—path in F' from y to z.

Proposition 20 Let F' be a Morse stack on M € My,
and let z be a facet of X. Let 7 be a Ag-path in F from
the facet x to a face y € X. Then one and only one of
the following statements is true:

1. The face y is a minimum.
2. There exists a unique face that is an extension

of 7.

Proof We set # = (xz = xq, ..., T = y).

i) Suppose y is a (d — 1)-face. In this case, y cannot
be a minimum. Furthermore, we have k > 1 (since x
is a d-face), and the face t = xp_1 is necessarily a d-
face. By the definition of a IN\p-path, the pair (y,t) is a
flat pair. Since X is a pseudomanifold, there exists a
unique d-face z € X such that tNz = y. We must have
F(z) < F(y), otherwise y would belong to more than
one flat pair. Therefore, the pair (z,y) is a differential
pair and z is an extension of 7. Since (y,t) and (y, 2)
are the only covering pairs that contain y, the face z
is the unique extension of 7.

ii) Suppose y is a d-face. By the definition of a [\p—
path, a face z is an extension of 7 if and only if (z,y)
is a flat pair. Now we observe that y is not a minimum
if and only if there is a face z such that (z,y) is a flat
pair. But y belongs to at most one flat pair. Thus, 7
has a unique extension whenever y is not a minimum.

d
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Let F be a Morse stack on M € M. It should
be noted that, if 7 is a Ag-path in F' from a facet
z to a face y, then 7 may have more than one
extension. Nevertheless, by induction, we obtain
the following result from Prop. 20.

Proposition 21 Let F' be a Morse stack on M € My,
and let © be a facet of X. There exists a unique
mintmum m of F such that m is Ag-linked to x. Fur-
thermore, there exists a unique Ag-path in F' from m
to .

We now consider the case where a Ay-path has
no extension. Recall that a (d — 1)-face x is sepa-
rating for F' if the two d-faces y, z which contain
x, are such that F(y) < F(x) and F(z) < F(x).

Proposition 22 Let F' be a Morse stack on M € M.
Let x be a facet of X, and let m be a Ag-path in F
from x to a face y € M. If m has no extension, then
the face y is necessarily separating for F.

Proof Let m = (z = g, ...,z = y) be a Ag-path in F’
from z toy € M.

If dim(y) = d, then 7w has necessarily an extension.
Now suppose dim(y) = d — 1, thus k > 1. The face y
is a face of two d-faces, the face z = x;_1 and another
face t. Since 7 has no extension, we have F'(t) < F(y).
Furthermore, by the very definition of a Agz-path, the
pair (z,y) is a differential pair, thus we have F(z) <
F(y). Therefore, y is separating for F. a

Let F' be a Morse stack on a complex X € S.
Let m be a A,-path in F'. We say that 7 is mazimal
if neither 7 nor 7 has an extension. The following
result is a direct consequence of Prop. 20 and 22.

Corollary 23 Let F be a Morse stack on M € My.
Let w be a Ag-path in F' from x to y. If w is maximal,

then x is a minimum of F' and y is a separating face
for F.

Let F' be a Morse stack on M € M. Let x be
a (d — 1)-face of X, and let y, z be the two dis-
tinct d-faces containing . According to Prop. 21,
each of these faces is Ag-linked to a single mini-
mum. We say that the face x is A-biconnected (for
F) if these two minima are distinct. Observe that
a face is mnecessarily separating whenever it is
A-biconnected.

Definition 24 (Morse watershed) Let F' be a Morse
stack on M € M. The Morse watershed of F is
the complex that is the simplicial closure of the set
composed of all faces that are A-biconnected for F.

Theorem 25 Let F' be a Morse stack on M € M.
The Morse watershed of F' is a watershed of F'. Fur-
thermore, the Morse watershed of F is the unique
watershed of F'.

Th. 25 is illustrated in Fig. 5.
Proof Let W be the Morse watershed of F'.

1. Let A be a connected component of M \ W. By
Prop. 6, the set A is a strong connected com-
ponent of M \ W. Let f be a facet of A. By
Prop. 21, there exists a Ag-path 7 from a min-
imum m of F to f. By the very definition of a
Ag-path, it may be seen that m does not con-
tain any separating face. Thus 7 is included in
M\ W, and m is in A. Therefore, A contains a
minimum m.

Now let = be an arbitrary facet of A. Since A is
strongly connected, there exists a strong path
m = {(m = xg,...,xx = ) in A from m to x. By
Prop. 21, for each facet of m, there is a unique
minimum of F' that is Ag4-linked to this facet.
Let x; be a facet of m, with ¢« < k — 2. Thus
xit1 is a (d—1)-face and z;42 is a facet. Let m;
(resp. m;t2) be the unique minimum of F' that
is Ag-linked to xz; (resp. to x;y2). Since ;41
is not A-biconnected for F', it may be checked
that we have necessarily m; = m;42. By induc-
tion, it follows that m is Ag4-linked to the facet
x. Since this result holds for any facet of A, this
clearly implies that m is the unique minimum
of F which is in A. Thus, any connected com-
ponent of M \W contains exactly one minimum
of F. But any minimum of F' is included in
M\W (since a minimum is a d-face). It follows
that M\ W is an extension of min(F"). Further-
more, by the definition of a A-biconnected face,
W is minimal for this last property. Therefore,
W is a cut for min(F). Since any Ag-path is a
descending strong path, it may be checked that
W fulfills all the conditions of Definition 9: W
is a watershed.

2. Let W’ be a watershed of F. Let  be a (d—1)-
face of M that is A-biconnected for F', and let
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Fig. 5 The Morse watershed (in red) on a Morse stack defined on a normal pseudomanifold, a 2d-torus. In black, critical
simplexes: those of dimension 2 are minima, those of dimension 1 are saddle, and those of dimension 0 are maxima. Arrows
represent gradient/collapse of dimension 2. We observe that the critical simplex 20 do not belong to the watershed.

1y, z be the two distinct d-faces containing x. By
Prop. 10 there exist a descending strong path in
MA\W’ from y to a minimum m and a descend-
ing strong path in M\ W' from z to a minimum
m'/. We observe that any descending strong
path in M is also a Ag-path in M. Thus, by the
very definition of a A-biconnected face, we must
have m # m’. Therefore, the face x must be in
W' otherwise y, z, m, and m’, would belong to
the same connected component of M\W’. Thus
W C W’. Since M\ W/ C M \ W, each con-
nected component of M\ W' is included in one
connected component of M \ W. But M \ W’
must be maximal for this last property, oth-
erwise W’ would not be a cut for min(F). It
follows that we have W' = W.

g

By Theorem 15, the Morse water-
shed may be obtained by the algorithm
WatershedCollapse(F, M). In this case we have
a greedy procedure since the result W does not
depend on the choice of the free pair of H that is
made at each iteration.

In fact, since F is a Morse stack, we
can simplify this procedure. The algorithm
MorseWatershed(F, M) (Fig. 6) extracts the
Morse watershed W of a Morse stack F' on M €
My. Also, it gives the catchment basin B of each
minimum of F.

The soundness of this algorithm is a direct
consequence of the above results. It may be imple-
mented in linear time, with respect to the number
of incidence relations of M, that is the cardinal of
the set {(z,y) | =,y € M and = C y}.
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MorseWatershed(F, M)

3) Until L is empty, do:
3.1) Extract a face = from L;

1) Label all d-faces © € M with the label B(z) = 0;

Label all faces x € M with the label W (x) = False;

Label all d-faces © € M of distinct minima of F' with distinct labels B(x) > 0;
2) Insert all d-faces x such that B(z) > 0 in a list L;

3.2) For all y such that z =2 Ny is a (d — 1)-face do:
3.2.1) If F(y) = F(z) insert y in L and do B(y) := B(x);
3.2.2) If B(y) > 0 and B(y) # B(x) do W(z) := True;
4) For all (d — 1)-faces x € M with W(z) = True and all y C z, do W(y) := True;
5) For all d-faces x € M and all y C x with W(y) = False, do B(y) = B(x).

Fig. 6 The MorseWatershed(F, M) algorithm computes the Morse watershed W of a Morse stack F defined on a

normal pseudomanifold M.

8 Morse watersheds and
minimum spanning forests

In [7], an equivalence result which links the notion
of a watershed in an arbitrary stack with the one
of a minimum spanning forest is given. In this
section, we refine this result in the case of Morse
stacks.

Recall that we have defined a graph as a com-
plex X € S such that the dimension of X is at
most 1.

Let X € S with dim(X) = 0, that is X is a
non-empty set of vertices. Let Y be a graph such
that X < Y. We say that Y is a forest rooted by
X if:

— we have X =Y, or

— there exists a free pair {z,y} of Y such that
Y\ {z,y} is a forest rooted by X. If {z,y} is a
free pair for Y, we say that z is a leaf for Y.

If X is made of a single vertex, then it may be
seen that the previous definition is an inductive
definition, which is equivalent to the notion of a
rooted tree in the sense of graph theory. If X is
made of k vertices, then Y has k connected com-
ponents. Each of these connected components is a
rooted tree for some vertex of X.

Let M € My. The facet graph of M is the
graph, denoted by T s, such that:

— A vertex {z} is in Ty if and only if z is a d-face
of M;

— An edge {z,y} isin Tps ifand only if z Ny is a
(d — 1)-face of M.

Let F' be a Morse stack on M € M, and let
X = {{z} | z € min(F)}. By Prop. 19, each
{z} € X is a vertex of Tys. Let Y < YTj; be a
forest rooted by X. We say that Y is a spanning
forest for min(F) if all vertices of Y s arein Y. We
define the weight of Y as the sum of all numbers
F(z Nvy), where {x,y} is an edge of Y. We say
that Y is a minimum spanning forest for min(F),
if Y is a spanning forest for min(F') whose weight
is minimum.

Let F' be a Morse stack on M € M;. We denote
by S the set of all couples of d-faces (z,y) in M
such that (z,z Ny) is a differential pair of F', and
(zNy,y) is a flat pair of F. Thus, 7 = (x,zNy,y)
is a Ag-path in F' from x to y.
The watershed forest of F' is the graph G < Ty
such that:

— All vertices of T s are in G
— An edge {z,y} is in G if and only if (z,y) or
(y,x) is a couple in S.

From Proposition 21, we can check that the
watershed forest is indeed a forest. More precisely,
we can derive the following result.

Proposition 26 If ' is a Morse stack on M € My,
then the watershed forest of F' is a spanning forest for
min(F).

Theorem 27 Let F' be a Morse stack on M € M. The
watershed forest of F' is a minimum spanning forest
for min(F'). Furthermore, the watershed forest of F' is
the unique minimum spanning forest for min(F).
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Fig. 7 The Morse watershed (in red) on a Morse stack F' defined on a 2d-torus. In blue, the watershed forest, which is

the minimum spanning forest for min(F).

This theorem is illustrated in Fig. 7.

Proof Let G be a minimum spanning forest for
min(F). By a minimum spanning tree lemma [28], [29],
if {x} is a vertex of G, then G must contain an edge
{z,y} that is a minimum weighted edge containing
{z}. Now let W be the watershed forest of F' and let
{z,y} be an edge of W. By the very definition of W,
either (x Ny, z) or (xNy,y) is a flat pair. By the defi-
nition of a Morse stack, if (x Ny, z) is a flat pair, then
{z,y} is the only minimum weighted edge containing
{z}. Similarly, if (z Ny,y) is a flat pair, then {z,y}
is the only minimum weighted edge containing {y}. It
follows that, if e is an edge of W, then e is the only
minimum weighted edge containing some vertex v of
W. Since v is necessarily in G, we deduce by the above
lemma that e € G. Therefore, we have W C . Since
both G and W are spanning forests, we must have
G = W. This shows that W is the unique minimum
spanning forest for min(F). O

9 Discussion, future work and
conclusion

In this paper, we propose, for the first time, a def-
inition of watersheds for discrete Morse functions,
and we study its properties. We are working in
this paper on normal pseudomanifolds. This allows
us in particular to exhibit a link between water-
shed and minimum spanning tree, that relies on
gradient paths.

While a watershed definition have been pro-
posed in the continuous Morse setting [30], the
watershed notion was only a source of inspiration
in discrete Morse theory. We mention in particular
the following.

— A watershed algorithm was used as a prepro-
cessing in [31] for computing a gradient vector



13

Springer Nature 2021 ETEX template

field, but without proof that watershed basins
were related to any topological notion. Our
approach directly provides watershed basins
that are defined with gradient paths.

— In [32], watershed ideas were used as a moti-
vation for obtaining Morse cells similar to
catchment basins, with application to image
segmentation. Our framework allows clarifying
the difference between Morse cells and water-
shed basins. For example, in Fig. 5, the critical
1-simplex 20 is not part of the watershed cut,
while it is part of the boundary of the Morse
cell. We intend to explore in more details those
differences in future work. We also envision
studying the Morse-Smale decomposition.

One important difference between Morse
stacks and discrete Morse functions is that min-
ima are d-dimensional simplices in our framework,
while they are O-dimensional ones in Morse the-
ory. Although this might appear minor, such a
difference has important consequences. In partic-
ular, the watershed is a pure (d — 1)-subcomplex,
while a similar property is not possible with the
boundary of Morse cells as classically defined (see
[32] for example). Our approach allows for easily
extracting topological features linking two regions,
following the seminal paper [33]: indeed, we can
for instance weight any simplex of the water-
shed cut with the persistence/dynamics [14] at
which it disappears in a filtering. Such a repre-
sentation, illustrated in Fig. 8, is called a geodesic
saliency map in mathematical morphology, and is
widely used (under the name ultrametric contour
map [3]) as a post-processing behind deep-learning
approaches. See [34, 35] for theoretical studies of
this notion, and [36] for a toolbox implementing
many variations around it.

Data analysis heavily relies on data simplifica-
tion and data visualization. We advocate that the
watershed, together with filtering operators such
as morphological dynamics, is a cornerstone for
data analysis [37]. We aim at controlling the topo-
logical simplification, and understanding what is
discarded in the simplification. The results of this
paper is a first step in this direction. We envi-
sion using skeleton algorithms such as [38], and
tools from cross-section topology [39], that, up to
now, have been used mainly for image analysis.
Indeed, these tools can be applied to general data.
In this regard, an important perspective of the

current paper is to bring together the persistence
homology framework with the morphological one,
reaching an audience as large as possible.
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Appendix A Normal pseudo-
manifolds

A normal pseudomanifold is usually defined as a
pseudomanifold that satisfies a certain link condi-
tion, which corresponds to a local property [24],
[25], [26]. In this section, we show that this defi-
nition is equivalent to the one given in Definition
5.

Let S be a finite set of simplexes. If x and y
are facets of S, a p-chain (in S) from x to y is a
sequence (r = xg,...,xx = y) of facets of S such
that, for each i € [0,k — 1], x; Nz;11 is a ¢-face of
S, with ¢ > p. The set S is p-connected if, for any
two facets z,y in S, there is a p-chain in S from z
to y.

We observe that:

— A complex is connected if and only if it is O-
connected.

— A d-pure complex is strongly connected if and
only if it is (d — 1)-connected.

Let X be a complex. Two faces x,y € X are
adjacent if t Uy € X. The link of z € X in X is
the complex lk(z, X) ={y e X | Ny =0 and
zUy e X}

The star of x € X in X is the set st(z,X) = {y €
X | zCy}

Let X be a d-pseudomanifold. We say that X
satisfies the link condition if lk(z, X) is connected
whenever x is a p-face of X and p < d — 2.

Let X be a complex and = be a p-face of X. Let
st*(x, X) = st(z, X) \ {z}. We have lk(z, X) =
{y\z | y€st(z,X)} and st*(z,X) ={zUz |
z € lk(z,X)}.

We note that there is a set isomorphism between
lk(z, X) and st*(x, X), which preserves set inclu-
sion. If y € st*(x, X), the corresponding face y \ =
of lk(x,X) is such that dim(y \ z) = dim(y) —
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Fig. 8 Top: an image (left), together with a geodesic saliency map (right) where the darker a contour is, the more
persistent it is. Bottom: two different views of a triangular mesh, superimposed with a geodesic saliency map where the

whiter a contour is, the more persistent it is.

(p+1). Thus, dim(y \ ) = dim(y) — p*, where
pt = p+ 1 is the number of elements in z.

Let X be a d-pseudomanifold and x be a p-face
of X. Let pt = p+1and d = d — pT. The fol-
lowing facts are a direct consequence of the above
isomorphism:

— The complex lk(x, X) is d’-pure.

— The complex lk(z, X) is non-branching.

— The set st*(z, X) is g-connected if and only if
lk(x, X) is ¢’-connected, with ¢’ = ¢ — p™T.

Proposition 28 A pseudomanifold is normal if and
only if it satisfies the link condition.

Proof Let X be a d-pseudomanifold.

1. Suppose X satisfies the link condition and let
S be a connected open subset of X.
Let = and y be two d-faces of S. By Remark 1,
there exists a p-chain 7 in S from z to y. Thus
7 = (x = xg, ..., = y) is a sequence of facets
of S such that, for each i € [0,k — 1], 2; N @41
is a g-face of S, with ¢ > p. We choose 7 such
that p is maximal and, if p is maximal, such
that the number K (7) of p-faces x; Na; 41, with
i € [0,k — 1], is minimal. If p = d — 1, it means
that S is strongly connected; then we are done.
Suppose p < d — 1 and let x;,z;41 such that
z =x; Na;41 is a p-face.

Since X satisfies the link condition, lk(z, X)
is connected. By the isomorphism between
lk(z, X) and st*(z, X), it follows there is a ¢-
chain (x; = wp,...,w; = ;1) in st*(z, X)
with ¢ > p. Therefore, 7’ = (x = xg,...,x; =
WO,y ooy W] = Xijg1, -, Tk = Y) is a p-chain in S
from x to y. But we have K(n') < K (), a con-
tradiction. Thus, each connected open subset
of X is strongly connected.

2. Suppose X is strictly connected. That is,
any connected open subset of X is (d — 1)-
connected. Let x be a p-face of X withp < d—2.
The set st(z, X) is a connected open subset of
X, thus it is (d — 1)-connected. Since p < d—1,
it means that st*(z,X) is (d — 1)-connected.
By the isomorphism between [k(z,X) and
st*(z, X), it follows that lk(x, X) is strongly
connected. Thus lk(x, X) is connected.

O

In the second part of the proof of Prop. 28, we
showed that lk(z, X) is strongly connected. Con-
sequently, we have the following characterization
of a normal pseudomanifold.

Proposition 29 A pseudomanifold X is normal if
and only if, for each p-face x of X, with p < d—2, the
complex lk(x, X) is a pseudomanifold.



Springer Nature 2021 ETEX template

Appendix B discrete Morse
fonctions

Let us consider the following definition of a dis-
crete Morse function:

Definition 30 (Morse function) Let X be a complex
and let F be a map from X to Z. We say that F is
a discrete Morse function on X if any face of X is
in at most one covering pair (x,y) in X such that
F(z) > F(y). If F is a discrete Morse function, we
say that such a pair is a regular pair of F.

It may be checked that this definition is equiv-
alent to the classical one given by Forman (See
Def. 2.1 and Lemma 2.5 of [40]).

In this way, the gradient vector field of a dis-
crete Morse function F, written grad(F'), is the
set composed of all regular pairs of F'.

The following restriction of a discrete Morse
function will lead us to Morse stacks.

We say that a discrete Morse function F' on X
is flat if we have F(x) = F(y) whenever (z,y) is
a regular pair of F', that is, if each regular pair of
F is a flat pair of F'.

We can check that a map F from X to Z is a
flat discrete Morse function if and only if:

1. Each covering pair (x,y) in X is such that
F(x) < F(y);
2. Each face of X is in at most one flat pair of F.

Therefore, if we consider the function —F, we
obtain the following:

Proposition 31 Let X be a complex and let F' be a
map from X to Z. The map F is a Morse stack on
X if and only if the map —F is a flat discrete Morse
function on X.

The following proposition claims that, up to
an equivalence, we may assume that any discrete
Morse function is flat (see Def. 2.27 and Prop. 4.16
of [10]).

Proposition 32 (from [10]) If F' is a discrete Morse
function on X, then there exists a flat discrete Morse
function G on X such that, for every covering pair
(z,y) in X, we have F(z) > F(y) if and only if

G(z) > G(y). In other words, the function G is such
that grad(G) = grad(F).
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