)) tried to reproduce his results but found a discrepancy between the experimental results and the expected theoretical drag. Using Direct Numerical Simulation we study the axisymmetric, steady motion of a rising sphere in a rotating fluid and measure the drag force on the particle for a large range Rossby numbers (10 -2 ≤ Ro ≤ 10) and moderate Reynolds numbers (1 ≤ Re ≤ 300). We find that the drag indeed follows the theoretical formula, but at high rotation rates the influence of the domain boundary is felt up to a thousand radii away. We also study the effect of a sudden acceleration of the flow in a rotating setup and show that the added mass coefficient does not depend on the Rossby number and equals 1/2 for all tested cases.

Institute of Fluid Mechanics of Toulouse

This internship took place in the Institute of Fluid Mechanics of Toulouse (IMFT), it is a public research lab located on an island of the Garonne. It depends of three organisms : the CNRS, the National Polytechnic Institute of Toulouse (INP-ENSEEIHT) and the Paul Sabatier university. The lab is the biggest fluid mechanics lab in Europe with over 200 members (of which there are 70 researchers, 80 PhD students and 15 post-doc) and welcomes around 50 interns in spring. The wide range of topics covered includes many academic topics as well as various applications in sectors such as transport, energy conversion and transport, biomedicine, industrial processes or geophysical predictions. The lab has many industrial partnerships that account for around a third of its own funds with regional or national groups such as Airbus, EDF, Air Liquide, Naval Group etc. There are around 95 articles from researchers in the lab and thirty PhD thesis published each year.

The lab is organised in six groups:

• the Fluid and Particles group studies various academic topics ranging from particle suspensions and transport to wakes and instabilities around bubbles and is where the internship took place.

• The Aerodynamics, Wakes, Interactions group that focuses on monophasic flows in studies such as fluid-structure coupling, turbulence modelling or flow control with many industrial partners in the transport sector.

• Reactive Environments with many energy industry related, complex flows with combustion or chemical reactions.

• The Porous and Biological Environments group with applications in geological flows as well as healthcare problems that require a precise description of the flow in tight spaces.

• The Interfaces group focuses on two or more phases flows where the interface between them is in the center of the problem, such as bubble shape or mixing problems.

• The Waves, Hydrology and Eco-Hydraulics group is interested in problems where fluid mechanics is applied to natural or living environments, for instance river beds or fish schools.

All of these groups are supported by five experimental or numerical support groups that allow efficient research. These teams allow the creation of complex experiments in the lab such as water flumes or wind tunnels as big as 2.4 m in diameter for the historic Banlève wind tunnel built in 1937. They also provide measuring tools like high speed cameras or high precision scales. On the numerical side, several tools were developed

to have an open-source, easily tunable code to run simulations of the Navier-Stokes equations. For instance the code used in this internship (JADIM) has been updated for thirty years and has a great number of tools around it that allow the easy creation of new setups such as meshers or post-processing scripts. The details of this code will be described in section 3.1. The Fluid and Particles group is a new one that gathered researchers working on particle related subjects that were previously separated in two groups by the type of application : industrial or environmental. This new group created two years ago contains 11 permanent researchers that articulate around three main axis :

• Fundamental mechanisms of particular flow : this axis focuses on homogenous flows, laminar or turbulent in which there are spherical particles. This type of flow is found in applications such as dunes or barkhanes displacement or pneumatic transport.

• Complex particle dynamics in simple fluids : in almost every application be it environmental or industrial, particles come in different shapes and sizes, rarely are spherical and can be charged. The goal here is to investigate how these properties modify simpler theories

• Simple particles dynamics in complex flows : the flow complexity can come from stratification, non-newtonian rheology or an interface between two fluids. These situations have applications in oceanic phenomena such as plastic dispersion or tsunami generation.

It's in this latter axis that the internship took place since the rotating motion of the fluid adds complexity to the resulting flow. Our setup has applications in the understanding of the particle behaviour in a centrifuge, since as we will show below, the rotating motion limits the movement of the particles along the axis of rotation which modifies the rheology of the suspension.

Working conditions

This internship focused on a numerical approach and was thus as well fitted as can be for the confinement that took place from the month of March 2020 : all the simulation were run on a Linux computer in the lab and full remote access to this type of computer had been deployed well before the crisis. This means that the internship started on time as planned and I could start working from home as if I were in lab : a remote connection software combined with the lab VPN allowed me to have the Linux computer screen directly on my personal computer and thus to work almost in the same conditions as in the lab. Weekly meetings with my supervisors were planned to get their input on the advancement of the internship and the direction to follow next; and a regular exchange via mail also allowed us to compensate the distance. A group seminar was organized in the middle of the internship and I had the chance to present my first results to the group. The last month, from the 15th of July was done at the lab.
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Historical background

The study of particle motion in rotating flows has been of great academic interest over the last fifty years. The problem is rich and features many complex phenomena that challenge our understanding of, in appearance, simple flows. It also has practical interests since it can help us to better model the rheology of rotating suspensions and shares similarities with stratified or magnetized fluids. The problem of a particle rising parallel to the axis of rotation in a viscous fluid was initially studied by [START_REF] Taylor | Experiments on the motion of solid bodies in rotating fluids[END_REF]. He discovered that when a particle is set in motion in such a flow a region of recirculating, still, fluid appears in front and behind the particle hence known as Taylor columns thus greatly increasing its drag. Experiments were performed by Maxworthy at low (Maxworthy, 1965) and high (1968[START_REF] Maxworthy | The flow created by a sphere moving along the axis of a rotating, slightly-viscous fluid[END_REF] Reynolds numbers (Re = U R/ν were U is the velocity of the rising sphere, R its radius and ν the kinematic viscosity of the fluid). He measured the drag using the rise time of the sphere in a rotating tank and also captured flow data using hydrogen bubbles and colorization. Around the same time [START_REF] Moore | The structure of free vertical shear layers in a rotating fluid and the motion produced by a slowly rising body[END_REF] described the main flow features and estimated a theoretical drag value in a small container using the geostrophic equation [START_REF] Moore | The rise of a body through a rotating fluid in a container of finite length[END_REF], valid inside the Taylor column. The Rossby number, describing the relative importance of inertial versus Coriolis effects Ro = U/ΩR is of great interest in the problem. Many simulations have attempted to reproduce the experiments of Maxworthy ever since : in 1982, Dennis et al. used a series-truncation method as well as finite differences at low Reynolds numbers and found good agreement with experimental values. In 1994, Vedensky and Ungarish found an analytical solution for the problem of a rising disk in a rotating fluid, in the linear case (i.e. in the limit Ro → 0) and studied the effect of the size of the container on the drag. Tanzosh et al. in 1994 used a boundary integral method to compute the Stokes flow and drag of a rising sphere in an infinite domain. A new formula for the particle drag was found for the whole range of Re and Ro by grouping theoretical results from [START_REF] Childress | The slow motion of a sphere in a rotating, viscous fluid[END_REF] and [START_REF] Stewartson | On slow transverse motion of a sphere through a rotating fluid[END_REF] No simulations have thus been performed that at the same time take into account the particle shape in experiments and include all Navier Stokes terms in an almost infinite setup. Such a study, comparing theoretical and experimental results could help explaining the above-mentioned drag discrepancy.

Figure 2: Sketch of the structure of the flow at sufficiently high rotation speed so that recirculation appears. Extracted from [START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF], Figure 9 2

.2 Flow structure

The main regions of the flow can be seen in Fig. 2, extracted from [START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF], for sufficiently high rotation speed. The flow can be considered approximately symmetric relative to the particle equator so the upstream and downstream regions are the same, but counter rotating.

In this regime, the main feature of the flow in the recirculation zone upstream of the particle. This recirculation is shown to appear when the Taylor number T = Re/Ro = ΩR 2 /ν is greater than 50 [START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF] and [START_REF] Vedensky | The motion generated by a slowly rising disk in an unbounded rotating fluid for arbitrary Taylor number[END_REF]). This region then spreads upstream and away from the particle as the Taylor number is increased (see Fig. 3). The flow in this region is slowly recirculating and exchanges almost nothing with the exterior flow : this is the region visible in experiments by coloration.

The second region of interest is the geostrophic region, described in detail by [START_REF] Moore | The rise of a body through a rotating fluid in a container of finite length[END_REF] : in this region viscous effects are negligible and for Stokes flow, we have the geostrophic equation in the dimensional form

2ρΩ × u = -∇p, ( 1 
)
where Ω is the rotation vector of the flow, oriented in the same direction as the particle 

that states that the velocity component parallel to the rotation axis must be uniform. The geostrophic region is thus a region where the flow rotates in the same way as a solid body, slower than the mean flow in front of the particle and faster behind it. The radial and axial velocities are almost zero in the frame of reference that moves with the particle and only a very small flux is transmitted by the Ekman layer (boundary layer with a rotation normal to the wall) on the particle from the upstream geostrophic region to the downstream one. Finally, the Stewartson layer that wraps around the other fluid regions connects the outer flow to the Taylor column : in this region the fluid is accelerated in the axial direction and the swirl velocities vary rapidly. [START_REF] Moore | The structure of free vertical shear layers in a rotating fluid and the motion produced by a slowly rising body[END_REF] described in detail this region for a rising disk or sphere by considering the Reynolds number to be about unity in this region. They have shown that this region has actually a sandwich structure with two layers that scale as E 1/4 where E is the Ekman number E = Ro/Re = 1/T and one central layer of thickness E 1/3 . All these layers evolve when the parameters are changed and Fig. 3 shows the evolution of their relative size and position with the Taylor number. We see that they all appear from T = 50 and have a power law scaling with the Taylor number. The height of the Ekman layer scales as 2.5T -1/2 , the geostrophic region scales as 0.006T and the recirculation zone as 0.052T .

Drag measurements

There are two main campaigns of experiments measuring the drag force that have been performed : the low Reynolds (Re < 1) experiments of [START_REF] Maxworthy | An experimental determination of the slow motion of a sphere in a rotating, viscous fluid[END_REF] and the high Reynolds (1 < Re < 500) of 1970. In the low Reynolds case, experiments were directly found to agree well with pre-existing theories. However, in the high Reynolds case, many new feature arose (Fig. 4). For very small Rossby and high Reynolds numbers, the experimental results collapse on a line, depending only on Ro and described by

C D ∼ Ro -1.07 .
(3)

This features appears if, for a given Reynolds number, the Rossby number verifies :

Ro < 0.162 Re 4/7 . ( 4 
)
The experiments of Maxworthy were performed in a finite container (height to radius ratio of 80) with a suspicion from this author that end effects would influence the Taylor columns and hence the drag. These results were thus extrapolated using experiments in a different container with a smaller axial extension of around 5 [START_REF] Maxworthy | The observed motion of a sphere through a short, rotating cylinder of fluid[END_REF] and some unpublished results to find,

C D = 5.12Ro -1 . ( 5 
)
Maxworthy also noticed, for small rotation speeds (Ro ∼ 1), that the drag is less important to that of a sphere in a flow not rotating. Finally, in the intermediate range 0.5 < Ro < 1.4 and for very high Reynolds numbers, the drag is also found to collapse on the line,

C D = 2.05Ro -2 . ( 6 
)
Numerical and theoretical studies have attempted to reproduce the experiments and results described here. They have found good agreement with the low Reynolds values obtained by Maxworthy but have reported discrepancies with the high Reynolds values. [START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF] have plotted the graph in Fig. 5 were we can see the good agreement at low Taylor numbers but and approximately 25% discrepancy for all high Reynolds values. The results from Tanzosh can be summed up with the formula

F D 6πµRU = C T S D × Re 12 = 1 + 4 7
Re Ro

1/2 + 8 9π Re Ro + O Re Ro 3/2 (7)
where µ is the dynamic viscosity of the fluid. This formula regroups results obtained by [START_REF] Childress | The slow motion of a sphere in a rotating, viscous fluid[END_REF] and [START_REF] Stewartson | On slow transverse motion of a sphere through a rotating fluid[END_REF] respectively for low and high Taylor numbers.

There is a good agreement between numerical and theoretical results over the whole range of Taylor numbers. This study however used a linear approach, neglecting time variations and advection (Stokes flow). In 2000 and 2002 Minkov et al. studied numerically the problem of a rising disk in a finite container with a finite difference approach, computing every term of the Navier-Stokes equation. They also found some discrepancy with Maxworthy's results although not a quantitative one since the shape of the particle is different. They showed however that adding the non-linear advection terms in the problem reduces the numerical drag and thus further increases the gap.

In this study, we try to get a better understanding of the flow around a sphere rising in an infinite rotating fluid through direct numerical simulation. We look into the discrepancy between the experiments and theory or previous simulation by solving the complete system only assuming an axisymmetric, steady result. We know that for a sphere rising in a fluid at rest, from Re = 105 the most stable wake isn't symmetric and from Re = 135 it isn't steady anymore [START_REF] Fabre | Bifurcations and symmetry breaking in the wake of axisymmetric bodies[END_REF]. To get a better understanding of the flow properties with rotation, we go beyond these limits while preserving the steadiness of the flow to match the range of experiments performed by Maxworthy. In order to compare our results with theoretical results we try as much as possible to increase the size of the computational domain, so that no confinements effects are visible.

The report is organized as follows : the next (third) part describes the approach and setup used to perform the simulations (the JADIM code as well as the mesh definition), then we present the results obtained in steady configurations and compare them to previous results. Finally in a fifth part, we investigate the effect of the sphere acceleration, in particular on the added mass force when the flow is rotating.

Numerical setup

In this section we will discuss the numerical tools that are used in this project and their properties and validation.

JADIM

The main software used to run simulations of the full non-linear Navier-Stokes equations is called JADIM, a tool developed in the IMFT lab by several teams since 1991 and validated on several cases [START_REF] Rivero | Etude par simulation numérique des forces exercées sur une inclusion sphérique par un écoulement accéléré[END_REF], [START_REF] Calmet | Analyse par simulation des grandes échelles des mouvements turbulents et du transfert de masse sous une interface plane[END_REF] or [START_REF] Legendre | Quelques aspects des forces hydrodynamiques et des transferts de chaleur sur une bulle sphérique[END_REF] ). We recall here its main properties used in our case :

• This solver computes the full, non-linear, time dependent Navier-Stokes equations, written in a curvilinear and orthogonal coordinate system. This simplifies the system to solve but requires the mesh used to be orthogonal in every point.

• The equations are written using pressure and velocity variables using a staggered mesh, which means that the boundary conditions can be written in a straight forward manner.

• The solver uses a semi-implicit algorithm with a fractional time step : it separates the linear terms solved implicitly using a Crank-Nicholson scheme and the nonlinear terms solved explicitly by a 3 rd order Range-Kutta scheme. This allows the solver to achieve an overall precision of order two both in space and time.

• The solver is precise enough so that wake instabilities have to be started manually : a steady set of boundary conditions will lead to a steady solution in the parameter range considered.

• The fluid is assumed incompressible and a projection method is used to solve pressure and satisfy incompressiblity.

To compute the flow around the sphere we thus use JADIM in 2.5D, meaning that we perform a direct numerical simulation in 2D with 3 velocity components : the out-ofplane component of the fluid velocity being non zero and invariant by rotation around the axis of symmetry. The coordinate system used is defined by a cylindrical system with e x and e y respectively parallel and perpendicular to the axis of rotation and e φ in the azimuthal direction completing the direct system. The boundary conditions and axis definitions are shown in Fig. 6. We could either perform simulations in the reference frame of the "laboratory" or that of the sphere (rotating at Ω and translating at U along e x ). The first solution is simpler from an implementation point of view but implies that cells far from the axis of rotation have a very important azimuthal velocity while also being roughly refined. To respect the CFL condition (here dt √ 3dx/U ) this means that the cell size must increase more rapidly than the velocity to avoid stability issues. We instead choose to use the rotating frame of reference and thus to implement the Coriolis force 2ρΩ × U in the code, which has the benefit that the flow velocity far from the sphere decays to the mean flow U ∞ e x instead of increasing radially.

We simulate a rotating container with an inlet of constant velocity U ∞ e x , a side wall where the velocity is set to the same value and a pressure outlet in the downstream region where the following conditions are applied :

∂ 2 U x ∂x 2 = 0, ∂U y ∂x = 0, ∂U φ ∂x = 0, ∂ 2 P ∂x∂y = 0 (8)
Note that this type of outlet boundary is not physical and the conditions (8) are arbitrary. In the case of JADIM, the following reasoning allows the deduction of (8) : the main feature of the flow at the outlet is advection and it means that equations can be approximated to be parabolic, hence the second derivative normal to the boundary (∂ 2 U x /∂x 2 ) must be zero. The mass conservation equation then requires the cross derivatives of tangential terms ∂ 2 U y /∂x∂y to also be zero, but the fact that ∂U y /∂x is zero on the axis of symmetry of the boundary then imposes that is must be zero on the whole boundary (same goes for the azimuthal term). Finally the pressure term ∂ 2 P /∂x∂y is more arbitrary but has the benefit of being correct for every linear flow configuration and can be justified using the conservation of momentum and the assumption that third derivatives and viscous terms are small on the boundary. This set of equations presents the advantage of not requiring a very high orders of derivatives while also having good performance at evacuating the flow while not generating nonphysical features inside the domain. The axis of symmetry is defined by :

U y = U φ = 0 and ∂U x ∂y = 0 (9)
The sphere boundary condition is defined by assuming that the sphere rotates with the same angular velocity as the mean flow. This assumption is true in the case of a perfectly symmetrical, viscous flow and in previous studies [START_REF] Minkov | The motion generated by a rising particle in a rotating fluid -numerical solutions. Part 1. A short container[END_REF] it has been shown that the particle rotates a bit slower than the mean flow due to non-linear effects, but that it does not have a major effect on the drag or on the flow itself. The condition is thus U = 0 in the rotating frame of reference.

Since we wanted to reproduce the flow in an unbounded situation we extended the domain of calculation over more than a hundred radii upstream and downstream of the sphere to insure that the Taylor column is allowed to form freely. The radial direction requires less extension since we expect the main features of the flow to appear only above and below the obstacle.

Sponge layers

At high rotational velocities the inviscid Navier-Stokes equations simplifies to :

∂ ∂t [∇ × U] = 2 (Ω.∇) U (10) 
The solutions to this equation are inertial (or Rossby) waves that appear as soon as the Rossby number is small enough. These waves are transverse and have a wavelength proportional to the rotation rate of the flow. In our case they are emitted by the sphere and propagated downstream and outwards. Because they are transverse, these waves are not properly evacuated from the computational domain and their energy accumulates near the outlet. If nothing is done, this means the simulation will diverge before reaching a steady state. To prevent this issue we implemented sponge layers that aim at absorbing progressively these waves without creating any reflection inside the domain. We placed these layers on the outlet and side wall boundaries of our domain since the inertial waves are propagating downstream see (Fig. 6). We used a technique called Rayleigh damping [START_REF] Slinn | A Model for the Simulation of Turbulent Boundary Layers in an Incompressible Stratified Flow[END_REF] to absorb the energy of the waves, this means adding a virtual force in these layers that writes :

U = U -σ (U -U 0 ) ( 11 
)
where U is the damped value of the velocity, U 0 is the relaxed value that the flow should get to before reaching the actual boundary and σ is the relaxation parameter. In our case we chose U 0 = U ∞ e x everywhere, meaning that we expect the wake of the sphere to be attenuated before reaching the sponge layer, and

σ(z) = exp -(3.5z/L d ) 2 /2
with L d the thickness of the sponge layer and z the x or y coordinate, going from -L d on the inner boundary of the layer, to 0 on the actual boundary of the domain. The important parameter to make sure the sponge layers absorbs any incoming wave is the number of cells over which it will damp the flow : if there are not enough cells the value
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Figure 7: Close-up of the mesh used in the simulations of the relaxation parameter σ jumps too abruptly from 0 to 1 and the waves bounces back, but we don't want to use too many cells because for a given cell size, the thicker the sponge layer is, the more computational domain we lose, since it is not a physical region. In the following, we make sure that the sponge layer is at least 5 cells thick.

Mesh

As mentioned above, JADIM uses exclusively orthogonal meshes and thus we can't chose any mesh we want around the sphere. There are mainly two options in this situation : a polar mesh and a LC type mesh. The first one uses iso radii from the sphere and straight lines from the center as mesh lines, geometrically insuring that every intersection is orthogonal. The second one uses streamlines and equipotentials around the sphere from the creeping flow problem insuring the orthogonality from the definitions of these objects. We chose the second one in our problem because we want to resolve the wake and the upstream region well, and the polar mesh has diverging grid lines in these regions. The downsides of this choice is that the resolution of the boundary layer is decreasing when moving towards the poles of the sphere and that there is a singular point at each pole, generating excessively close grid lines in regions where we don't necessarily need them (see Fig. 7).

We used a block mesher, generating a geometrically progressing cell size close to the sphere in both directions and with a constant size mesh far from the sphere. This allowed us to control the size of the cells far from the sphere, which is important to properly define the sponge layer thickness of more than 5 cells. The first cell size is 10 -3 radii which is enough to properly resolve the boundary or Ekman layers of thickness respectively 1/ √ Re and 1/ √ T in the range tested. One particular region to keep a eye on is near the poles where the first cell size increases a lot, when compared to the equator, but in our case the gradients are not too important in this regions.

After a mesh convergence study (see Appendix A), insuring that the result did not change with cell size and a variation of the domain size in the radial direction, we ended up with a domain of size 60 radii radially and 180 radii upstream and downstream of the sphere. More detail will be given on the choice of the axial boundary position in section 4.2. The mesh size is in this situation 248x129 and a computation until a steady state from the initial condition equal in this case to U = U ∞ e x takes about 2 hours. Re = 8.9 Re = 51.9

Re = 167 

T = 23.2 T = 117 T = 445 (a) (b) (c) (d) (e) (f) (g) (h) (i)

Steady Computations

We perform simulations in the range Re from 1 to 300 and Ro from 1 to 10 -2 . This allows us to reproduce the full range of experiments performed by Maxworthy and previous numerical studies but did not permit any further extension. We are limited, at low Reynolds numbers, by the fact that solving the creeping flow problem requires large computational domains to ensure that the boundaries do not influence the flow around the sphere. At high Reynolds numbers, namely from Re = 105 [START_REF] Fabre | Bifurcations and symmetry breaking in the wake of axisymmetric bodies[END_REF] the most stable flow solution around the sphere is not axisymmetric anymore.

We can still perform axisymmetric simulation beyond this point but their physical relevance is somewhat questionable.

Flow observations

The flow around the sphere for various values of T and Re is presented in Fig. 8. The colors represent the axial velocity; the left side lines show isovalues of the angular velocity of the fluid ω = U φ /r and the right side lines are the streamlines in the sphere frame of reference. We can see the Taylor columns forming and extending outwards in Fig. 8 (a), (d) and (e), and (g) to (i), as well as the streamlines becoming straighter as the Taylor number increases. Regarding the angular velocity, it is smaller than the mean flow in the upstream column and the greater downstream. [START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF] state that the upstream recirculation bubble appears from T = 50 (Fig. 8 (d) to (i)). However, this holds only if the Reynolds number is small enough : for T = 117 and Re 10 2 (Fig. 8 (d) and (e)) the recirculation is visible but not for Re > 10 2 (Fig. 8 (f)). This effect is due to a competition between inertial and Coriolis effects. Note that in Fig. 8 (f) we can also see a concentration of the isovalues of the angular velocity in the wake that is here rotating much faster than the mean flow. This effect will be discussed in more details in section 4.3. For rotation rates below T = 50 the flow is still influenced by rotation. In Fig. 8 (b), there is no downstream recirculation in the wake whereas there is one in a non-rotating case at this Reynolds number. When increasing the Taylor number, we can see the flow becoming more and more one-dimensional with the Taylor column extending far upstream in Fig. 8 (g) to (i) and the flow in the Stewartson layer around the column concentrating around the obstacle. In these figures, the upstream recirculation bubble extends far upstream, moves away from the sphere and is almost out of the frame here. One can notice the difference of the color scales : at T = 445, the velocity near the equator is 2.6 times as large as the axial sphere velocity.

By measuring the axial velocity along the symmetry axis, we can define the limits of the recirculation bubble by the points where the axial velocity becomes negative. The point closest to the sphere defines the limit between geostrophic and recirculating regions, while the point far from the sphere is the tip of the bubble, which corresponds to the point measured by Maxworthy in experiments using dye. Maxworthy showed that the length of the recirculation bubble depends a priori of both the Reynolds and Rossby numbers but that for each value of the Taylor number T = Re/Ro, the length of the [START_REF] Maxworthy | The flow created by a sphere moving along the axis of a rotating, slightly-viscous fluid[END_REF] and [START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF] for Ro → 0 are included on the left side (triangles).

recirculation bubble reaches a plateau for small enough values of the Rossby number i.e. when the flow is rotating fast enough. in Fig. 9 we notice a similar behaviour : for each value of the Taylor number greater than 50, the length approaches a value independent of the Rossby number. We added the final values obtained by Maxworthy, that allowed him to propose the scaling L/R = 0.059 × T and the values obtained by Tanzosh and Stone : L/R = 0.052 × T . These scalings agree with our results for moderate Taylor numbers but start to deviate for higher rotation rates. For instance at T = 445 and Ro = 10 -2, we find L slug /R ≈ 21 while [START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF] and [START_REF] Maxworthy | The flow created by a sphere moving along the axis of a rotating, slightly-viscous fluid[END_REF] find 23 and 26 respectively. This discrepancy may be attributed to confinement effects since for high Taylor numbers the tip of the column approaches the inlet of our simulation, even with 180 radii of empty fluid upstream of the bubble. This effect will be discussed into details in the following section.

Confinement effects

In some preliminary simulations using relatively small domains (L x /R ≈ 40), and high Taylor, low Reynolds numbers (e.g. Re = 8.9, T = 445), we notice that the drag measured in our simulations deviates from the theory by up to 50%. When looking at the flow over the whole domain we identify that the Taylor column reaches both the inlet upstream and the sponge zone downstream. The upstream and downstream recirculating regions extend for as much as 15% of the whole domain and the axial velocity reattaches abruptly to its prescribed value when approaching the boundary. The effect of a too close boundary are a compressed flow around the sphere where it would normally expand further up and downstream and an increased drag coefficient. Wondering what domain size we need to reach an unbounded configuration, we perform a sensitivity study on one of our most critical cases at Re = 8.9 and Ro = 2×10 -2 . With the sphere staying centered in the domain, we vary the distance from the center of the sphere to each of the boundaries L x from 40 to 1000 radii. To measure the confinement effects, we compare the upstream slug tip position L slug to the prediction by [START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF] : L slug /R = 0.052T and the drag coefficient to the one obtained by the formula (7). The results are shown in Fig. 10. The recirculating region is indeed given in (7), and the black lines are 1% above and below the theoretical value. The blue line is the best fit of our data that reaches the expected value as L x → ∞. Note that for comparison we plot the drag experimentally measured by [START_REF] Maxworthy | The flow created by a sphere moving along the axis of a rotating, slightly-viscous fluid[END_REF] at the same Reynolds and Taylor numbers (extrapolated between two experiments at T = 445 and respectively Re = 7.8 and 10.4) where the confinement was L x /R = 80, as well as the corresponding extrapolation following (5).

10 2 10 3 L x /R
compressed in our initial domain of 180 radii and in order to agree within 1% with the theoretical value, we need a domain of at least 700 radii. For extremely confined setups (60 radii or less) there isn't even a recirculating bubble upstream (the axial velocity never becomes negative upstream). For the drag coefficient the situation is even more dramatic : the domain size required to accurately predict the drag is about 10 4 radii ! When placing the corresponding experimental result from [START_REF] Maxworthy | The flow created by a sphere moving along the axis of a rotating, slightly-viscous fluid[END_REF] (black square) we can understand better the discrepancy between his experimental points and the theoretical drag which is overestimated by roughly 55%. Note that the "corrected" results obtained by extrapolation, namely (5) (also shown in Fig. 10), still overestimated C D by about 35%. This suggests that this correction may be questionable (not to say misleading).

We repeated the sensitivity study for Re = 8.9 and Ro = 4.6 10 -2 (in Appendix B, Fig. 22) and found similar results but accuracy is reached with a smaller domain.

In the following, we discarded cases which were too confined to extract quantitative results more specifically, we removed those where the axial velocity in the wake did not relax at least to 0.9U ∞ before entering the sponge layer. We found that excluding cases with T > 150 and Ro < 0.125 worked well in our setup. We still kept the two cases mentioned previously computed with a 10 3 radii domain size. For the sufficiently unconfined cases we found good agreement between the numerical length of the upstream slug and the formula given by Tanzosh and Stone (see star shaped dots in Fig. 9). A map of the simulation points in the (Re, Ro) plane is shown in Appendix C and Fig. 23 where we can see precisely which cases have been discarded.

Drag measurements

Results in this section were obtained using a domain size of L x /R = 180. For the full range of Reynolds numbers (5 ≤ Re ≤ 300) and Rossby numbers (10 -2 ≤ Ro ≤ 10), we measured the drag coefficient C D = F D /0.5ρπR 2 U 2 and compared it with previous studies. For each case we ran the computation until the relative time variation of the drag force was less than 0.1% Fig. 11 presents the dimensionless drag force as a function of the Reynolds number and various Taylor numbers for our present DNS and Maxworthy (1970)'s experiments. For comparison, we plot the drag force on a sphere without rotation, using Schiller & Nauman's correlation [START_REF] Clift | Bubbles, drops and particles[END_REF]. At low Reynolds numbers the drag is greatly increased compared to the case without rotation. Our results agree well with Maxworthy's at low Taylor numbers i.e. when the Coriolis effects are not too strong. However for the highest Taylor numbers (high Ro, low Re), we can clearly see that our results deviate from experiments. The right side of this figure where the agreement is better corresponds to situations like Fig. 8 (f) where the inertial effects are large enough to take over the Coriolis force. We can also observe in the bottom right part of the figure, that in some cases the drag with rotation is even less than the one in the non-rotating case. This result was also noticed by Maxworthy and appears when there is a large recirculation bubble in the wake of the sphere. In this situation the rotation of the flow around sphere and the bubble reduces its axial speed. This means that the forcing outside the bubble is smaller and thus that the recirculation inside is less intense, increasing the pressure in its core as can be seen in Fig. 12 where the large pressure reduction behind the sphere observed in the non rotating case, completely disappears in the rotating case. The overall effect of rotation is then to reduce the pressure difference between the front and the back of the sphere, reducing the pressure drag. This effect is fairly important : between 10 and 20% in the range 100 < Re < 300.

In Fig. 13 we plot our results as a function of the theoretical drag coefficient (7) given by [START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF] which can be written as :

C T S D = 12 Re + 32 3π 1 Ro + 48 7 1 √ ReRo . ( 12 
)
No rotation Ro = 5.4 12)). Blue dots correspond to [START_REF] Maxworthy | The flow created by a sphere moving along the axis of a rotating, slightly-viscous fluid[END_REF]'s experiments; red diamonds to the present DNS using a domain such that L x /R = 180, except for the star shaped points where we used a domain L x /R = 10 3 . Darker points correspond to higher Taylor numbers. Doing this, we can simultaneously compare our results with Maxworthy's and the theoretical value. We can first notice at low values of C T S D (bottom left), that the scaling does not hold anymore and we are once again in a situation such as the one in Fig. 8 (f) were inertia is significant. At large C T S D Maxworthy's results have a drag coefficient too important compared to the theoretical prediction in cases where the rotation is important. His extrapolation used to correct end effects is not able to recover C T S D and C D is overestimated by up to 50% in cases with very high rotation rates.

Our numerical results are in good agreement with the theoretical prediction on most of the parameter space, even in extreme cases, after we extended the computational domain (far top right). This result refutes the possibility that there is an axisymmetric, steady effect (non-linear or shape related) at play that would explain the discrepancy between the experiments and the theory. This could mean, added to the confinement study above, that the extrapolation performed in [START_REF] Maxworthy | The flow created by a sphere moving along the axis of a rotating, slightly-viscous fluid[END_REF] is not sufficient to recover the solution of an infinite problem : the experimental setup corresponds to L x /R = 80 in our notation and is extrapolated using the setup from [START_REF] Maxworthy | The observed motion of a sphere through a short, rotating cylinder of fluid[END_REF], an extremely confined study with L x /R = 4.65 and "unpublished results of Fultz". Ungarish and [START_REF] Ungarish | The motion of a rising disk in a rotating axially bounded fluid for large Taylor number[END_REF] have studied a rising disk in an extremely confined setup and shown that the flow qualitatively changes when L x /T < 0.08 : the recirculation bubble cannot appear and the drag is greatly modified. This relation holds for most of the 1968 experiments. The above points and the importance of confinement effects shown in Fig. 10 support the idea that the main reason for the discrepancy between [START_REF] Maxworthy | The flow created by a sphere moving along the axis of a rotating, slightly-viscous fluid[END_REF]'s experiments and the theory (here C T S D ) is confinement.

Torque measurements

In our simulations we impose a rotation to the particle (in the rotating frame of reference the sphere is fixed). This corresponds to an hypothetical experiment where instead of releasing a freely rotating particle in the flow it is forced to rotate at Ω as the mean flow. In 2000 and 2002 Minkov et al. performed simulations of a disk in confined (container heights of 1 to 10 radii) and relatively free setups (container heights from 10 to 80 radii) respectively.They included the resolution for each time step of the disk angular velocity by imposing a torque free boundary equation. They found that, in the very confined setup, the relative angular velocity of the particle ω p scales as ω p /0.5Ω √ T = -0.2Ro √ T (L x /R) -1/3 in our notation. This means that in our almost infinite setup, we expect the angular velocity of a freely rotating particle to be extremely close to zero in the rotating frame. In addition, Minkov et al. compared the drag of the disk with L x = 1 for a torque free and a rotation free particle as the Rossby number is increased. They found, even in this extremely confined configuration, that the discrepancy between the two stayed relatively small in comparison with the evolution of the drag linked with the Rossby number variation. This is due to the fact that the additional rotation of the particle influences the drag only via non-linear effects since in the case of a linear setup (Ro → 0) the drag is not affected by the addition of rotation to the particle. In our simulations we measure the dimensionless torque : C = M x /0.5ρπR 3 U 2 , where M x is the torque in the x direction (note that the rotation rate does not appear in the scaling). The torque applied on the particle is always negative as the viscous interactions between Ekman layers and Taylor columns tends to slow down the particle compared to the mean flow. The the torque coefficient it thus plotted in Fig. 14. The scaling Re 1/3 Ro is obtained through a linear, viscous computation from Moore and Saffman (1968) (details in Appendix D). We find that the scaling Re 1/2 Ro (inset) works better with the present DNS points but we do not have a theoretical justification for it. At low rotation rates (or high Reynolds) C scales as 1/Ro, meaning that the azimuthal shear on the particle increases in par with the angular velocity of the flow. Surprisingly, at low Re 1/3 Ro where the Taylor columns have developed (high rotation rates) the torque saturates at a value -C = 0.56 ± 0.06.

To get a better insight on this striking phenomenon, we measured the angular velocities in the core of the Taylor columns. We noticed that the gap between the rotation rate in the core and outside of the columns remains roughly constant in a given region : for instance the angular velocity in the geostrophic region right up or downstream of the particle is around ω geo = 0.69 ± 0.12 rad.s -1 in the rotating frame of reference (in the laboratory reference frame, we have ω up ≈ Ω -ω geo and ω down ≈ Ω + ω geo in the upstream and downstream Taylor columns, respectively) for all the cases where the Taylor columns are fully developed and with an upstream recirculating region. The maximum angular velocity is located inside the recirculating region and is close to twice the velocity in the geostrophic region at 1.03 ± 0.22 rad.s -1 .

We also compare the absolute values between up and downstream regions, the absolute value of the angular velocity in the slug was found to be larger below than above the particle). We then measure this positive velocity gap ∆ω = |ω down | -|ω up | in rad/s (see Fig. 15) and found that the gap reduces as the Rossby number gets smaller, which means that as the rotation rate of the flow increases relatively to the translation motion of the sphere, the asymmetry of the flow around the particle reduces. This property of the flow (more symmetric for small Rossby numbers) could explain the plateau seen in Fig 14 : as the difference between the rotation rates above and below the sphere reduces, the azimuthal forces acting of the sphere approach a limit and do not evolve anymore.

Inertial waves

In this section, we consider the inertial waves produced by the motion of the sphere in the rotating flow. Their signature is somewhat difficult to capture in experiments since the amplitude of these waves is small compared with that of the mean flow. The relative amplitude in velocity fluctuations is typically a few percent. These waves have only recently been described by numerical simulations [START_REF] Wang | Numerical analysis of the rotating viscous flow approaching a solid sphere[END_REF]. As described in 3.2, these waves appear when the Rossby number is small enough. They propagate outwards and downstream, past the sphere. The solution to (10) can be shown to be a wave with frequency ω = 2Ω cos θ where θ is the angle between the wave direction of propagation and the rotation axis. This means that the wavelength λ of the expected waves should be proportional to the Rossby number, namely we expect λ/R ∼ Ro.

To visualize the inertial waves, we plot the streamlines of the flow perturbation (U pert = U -U ∞ e x ) in the sphere reference frame. In order to do this in a satisfactory manner, avoiding the accumulation of lines in one spot or empty zones, we used a technique called Line Integral Convolution (LIC) [START_REF] Cabral | Imaging vector fields using line integral convolution[END_REF]. Instead of defining a source and integrating while following a vector field, LIC achieves the representation of streamlines by generating a random, noisy pattern and then blurring this pattern with local information from the vector field. This may be viewed as dipping paint in a flow : as the flow passes over the paint, it picks up some color, averaging it with the color it has already acquired. This technique presents the advantage of not needing to define a source and to display all the flow structural features.

Visualization of streamlines of the perturbed flow around a sphere at Re = 167 and Ro = 1.43 using LIC is shown in Fig. 16 where the pressure field is also displayed in the background. We can clearly see the waves emitted at an angle and propagating towards the outer boundary of the computational domain. A striking pattern of standing waves is also visible downstream and goes on for several periods. We test the properties for several couples of Reynolds and Rossby numbers (other examples can be found in Appendix E) and the main parameter was found to be as expected the Rossby number : the waves are emitted only for Rossby smaller than 5 (at this value the wavelength is reaches a half of the radial size of the computational domain) and greater than 0.2. The angle at which the waves are emitted can be measured and is found to be approximately 60 degrees for the whole range of Rossby number tested. The wavelength however varies linearly with the Rossby number and does not depend on the Reynolds number as can be seen in the inset of Fig. 16 with the prefactor 3.60 ± 0.23.

Unsteady computations

In this section, we investigate the effect of acceleration on the flow around the sphere. This configuration with both rotation and acceleration has not yet been studied to the best of our knowledge. Particles in accelerated flows undergo specific forces that are not described by steady models such as added mass or a history related force. Gaining a better understanding of these forces is essential to accurately predict the trajectory of particles in complex flows. Here, we first describe results previously obtained for a constant acceleration of the sphere without rotation and then present new results in the case of rotating motion.

Bibliography

Measures in experimental, accelerated flows are very hard to perform, so that most of the literature on the subject is either analytical or numerical. [START_REF] Rivero | Quelques résultats nouveaux concernant les forces exercées sur une inclusion sphérique par un écoulement accéléré[END_REF] described the components of the total force applied on a spherical particle in a uniformly accelerated flow both analytically for small Reynolds numbers and accelerations and numerically in the general case. The acceleration number comparing convection effects to the temporal acceleration of the particle a(t) = dU ∞ /dt is defined by

Ac(t) = U 2 ∞ (t) a(t)R .
When this number and the Reynolds are small at the same time, the Navier-Stokes equation in dimensionless quantities reduce to :

1 Ac ∂U ∂t = -∇P + 1 Re ∇ 2 U, (13) 
In this situation, the force felt by the particle is :

-

F (t) = 1 2 C D ρπR 2 U 2 ∞ (t) + (1 + C M )ρ 4 3 πR 3 a(t) + F H (t). (14) 
The first term corresponds to the steady drag in which C D is equal to 12/Re in the Stokes case or the Schiller & Nauman's correlation in general :

C SN D = 12 Re 1 + 0.241Re 0.687 , .
and to the formula (12) for our problem. The last two terms appear in unsteady situations and are namely the added mass and the history force. The second term regroups the inertial force due to the acceleration of the fluid and the added mass felt by the sphere due to the fact that it has to displace a fluid volume C M × 4/3πR 3 with the acceleration a(t). The added mass coefficient is analytically solved in the Stokes regime and is constant equal to 1/2. The last term takes into account the history of the movement and traduces the delay due to viscous diffusion of momentum in the boundary layer of the sphere. When Re 1 and Ac 1 this contribution is equal to :

F H (t) = 6ρR 2 √ πν t -∞ a(τ ) √ t -τ dτ, (15) 
In general, this term takes an unknown form but for small times after the acceleration, viscous diffusion dominates the flow and it is possible to recover a progression of this force as the square root of the viscous time : t ν = t×ν/R 2 . Simulations performed by [START_REF] Rivero | Etude par simulation numérique des forces exercées sur une inclusion sphérique par un écoulement accéléré[END_REF] extended the result C M = 1/2 to all Reynolds and acceleration numbers tested (0.1 < Re < 100 and 10 -3 < Ac < 50). This result is not modified by the presence or not of a recirculation bubble downstream, showing that the volume that appears in the expression of the added mass force is indeed the particle volume and not the particle plus the detached zone. They showed however that the history force depends on the full history of the particle both in terms of Reynolds and acceleration.

Methodology

We follow the same methodology described by [START_REF] Rivero | Etude par simulation numérique des forces exercées sur une inclusion sphérique par un écoulement accéléré[END_REF] : a constant acceleration flow taking as initial condition, the steady flow solution that we simulate. At the time t 0 the Reynolds number is Re(t 0 ) and the Rossby number is Ro(t 0 ), the Taylor number is independent of U ∞ (t) and thus will not vary during the simulation. For t < t 0 the steady solution is computed exactly in the same manner as in section 4 until it is fully converged. For t > t 0 the inlet velocity is modified at each timestep according to

U ∞ (t) = U ∞ (t 0 ) + a × (t -t 0 ).
Since we are performing a computation of an incompressible flow, the modification of the inlet velocity propagates instantaneously in the whole domain and the drag begins to increase. Therefore, at the same instant t 0 we need to turn off the side wall sponge layer otherwise it would create an over accelerated flow : since we are interested in the short time evolution of forces and of the flow around the sphere, the accumulation of wave energy described in section 3.2 is not a problem here. We tested several cases to ensure that suddenly turning off the sponge layer did not create artificial artifacts. Note that we keep the outlet sponge layer active since we observed that it did not perturb the accelerated flow.

In order to correctly interpret the obtained results, we need to separate the terms of the total force that we measure in the simulation in the three parts described above. The easiest component to extract is the added mass : when looking at the terms in ( 14), a sudden change in acceleration leads to an instantaneous change of the added mass force that becomes non zero while the other two terms are continuous at t 0 . By comparing the force at t 0 and t 0 + ∆t we can thus compute the added mass as ∆t → 0. The steady drag term is theoretically computed at any given time t 1 > t 0 by using (12) for the drag coefficient as a function of Re(t 1 ) and Ro(t 1 ), or by interpolating between our steady simulation points when ( 12) is not valid. The last term is computed by substracting to the measured force the other component, namely the added mass computed using the first timesteps and constant over time afterwards and the steady drag theoretically computed.

Added mass

Our main result is that we are able to extend the results of Rivero et al. to all Rossby number tested (see Fig. 17). From Rossby numbers of 10 -2 up to the cases without rotation and for any Reynolds (from 1 to 300) or acceleration numbers (from 0.1 to 10, and for negative accelerations) the added mass coefficient is found to equal 1/2. With time steps as small as ∆t = 10 -7 the relative uncertainty on the result is less than to 6×10 -5 . This results supports the idea that the added mass effect felt by a particle in an accelerated flow is only a linear potential correction to the mean flow and thus does not depend of its properties, even in extremely unusual situations such as flows with Taylor columns.

Components of the hydrodynamic force

The decomposition of the force (see Eq. 14) is shown in Fig. 18 as a function of the dimensionless time t × a/U (t 0 ). The forces are scaled using the initial speed U (t 0 ), so the increase of the steady drag force is mainly due to the term U (t) 2 . In this example we can see that the added mass accounts for a significant part of the total force, even in the rotating case. The history force displays the expected (t -t 0 ) 1/2 scaling at early times. 1. In all cases the rotating case exhibits an eventually lower force than the non rotating one. The times where the curves separate is ≈ 1 (Ac = 1) and ≈ 3 (Ac = 0.1). This corresponds to an instantaneous Reynolds number of 10 and 20 respectively. Here, the chosen initial parameters are Re(t 0 ) = 5 and Ro(t 0 ) = 1 and the acceleration is at a constant Taylor number (T = 5).We can see in Fig. 11 that when the instantaneous Reynolds number reaches 15, the "rotating" steady drag force is lower than the nonrotating one. For both accelerations, the critical Reynolds is reached at the same time, however the acceleration force dominates the Ac = 0.1 case and we don't see the curves separating as seen in the case Ac = 1. In Fig. 20, we plot the azimuthal vorticity (ω z scaled by U ∞ (t 0 )/R) distribution on the sphere surface. We can see that, in the first instants the rotating case (dashed lines) tends to be more symmetrical as it has a vorticity maximum around π/2 while for the non rotating case it is around π/3. However in both cases the acceleration overwhelms rotation effects and the vorticity distributions become similar. We can also notice that when the acceleration is more important (Ac = 0.1) the vorticity distributions seem to be closer. The main difference between the two accelerations is the fact that for the same Reynolds number of approximately 30 the slowly accelerating cases exhibits a recirculating region (ω z becomes negative) while the faster one does not, which may explain the delay observed on the separation of the curves in Fig. 19; recall that situations where the steady drag force is lower in the rotating case, were associated to the presence of a recirculating region (see Fig. 12). 

Conclusion

Using Direct Numerical Simulation with the code JADIM, we show that prediction (12) proposed by [START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF] accurately predicts the drag of a sphere rising in a infinite, rotating viscous fluid. This formula is however only valid for flows with sufficiently high rotation rates : a criterion for the validity of this formula is that the drag coefficient must be greater than 6. Below this value, inertial effects influence the Taylor columns so that the flow resembles a typical viscous flow around a sphere, (although the wake is quickly rotating). We show that the spatial expansion of the Taylor columns (i.e. confinement effects) is extremely important in the axial direction. To properly solve this problem, the domain size or container height must be increased up to at least thousand radii in some cases. This explains the discrepancy between Maxworthy's results (1970), analytical result (12) and our or previous numerical results. We show that in the range of parameters where the theoretical drag is valid, the torque coefficient does not depend on the rotation rate and equals -0.56 ± 0.06. As the rotation gets more intense, the flow becomes increasingly symmetrical above and below the sphere. Finally we study the acceleration of the flow in a rotating configuration and show that the added mass coefficient C M is equal to 1/2 for all Rossby, Reynolds and acceleration numbers tested (10 -2 ≤ Ro ≤ 10; 1 ≤ Re ≤ 300; Ac = -1, 0.1, 1, 10). 

A Mesh convergence

We perform a mesh convergence study on an intermediate case (Re = 40 and Ro = 10) as the Taylor columns are not too extended far up and downstream. As described in Section 3.3 the mesh is defined by a geometric progression of the cell size from the axis of symmetry in on the direction and from the sphere equator on the other direction. The main controls parameters of the mesh are thus the sizes of the cells close to the sphere and the size of the domain. The study on the axial extension of the mesh is treated in Section 4.2, here we focus the radial extension L y /R and on the first cell size. The radial smallest cell dy min is defined along the axis of symmetry (or on the sphere equator). In the mesher used we specify the number of cells in a quarter of the sphere and can then compute the approximate arc size of the cells, which at the equator corresponds to the axial minimal cell size dx min . In Fig. 21, we can see that the most critical parameter to control is the radial cell size : it completely defines the refinement of the Ekman layer around the sphere and needs to be small enough to capture the big variations of velocity near the equator. The final mesh we use has the following parameters :

• 129 radial cells (of which 75 are in the geometrically progressing block).

• dy min = 10 -3 R.

• 124 cells above the equator and as many below, decomposed as 28 in a quarter of the sphere, 86 geometrically progressing and 10 with constant size.

• the axial minimal cell size is thus dx min = 5.6×10 -2 R. The dots are the numerical results, the orange line is the theoretical value predicted by [START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF], using namely L slug /R = 0.052T and the value of C T S D given in (7), and the black lines are 1% above and below the theoretical value. The blue line is the best fit of our data that reaches the expected value as L x → ∞.

B Confinement effects C Simulation points

The simulation points are mainly chosen in order to mimic Maxworthy's experiments. He performed 11 series of constant Taylor number parametric sweeps from 13.7 ≤ T ≤ 445 from Re ≈ 2 to Re ≈ 300. We also perform constant Taylor parametric sweeps (diagonals alignments in Fig 23) in the same range of Taylor numbers but compute only half of those presented by Maxworthy since we noticed the results were clear enough. We add a few more points to clarify some details such as constant Rossby sweeps at Ro = 1 and Ro = 0.1. There are several domains presented in Fig. 23 that define the container. On the lower container boundary of the disk the azimuthal component of stress is, from the Ekman layer solution,

τ θ = µ Ω/νv -, ( 16 
)
where ν/Ω is typical length of the Ekman layer and v -is the angular velocity in the lower Taylor column, constant in this case. We then have, adding the top and bottom contributions and neglecting contributions from outside the columns :

T = -µ Ω/ν R 0 2πr 3 (v -+ v + )dr. ( 17 
)
Using the solutions obtained in this case for the top and bottom angular velocities v ± , Moore and Saffman obtain :

T = -4µΩπ Ω/ν R 0 r 3 (1 + f 2 ) 1 + (1 + f 2 ) 1/4 dr, ( 18 
)
where f is the function describing the particle shape (f (r) = ± 1 -r 2 /R 2 in our case). Since our setup is different from the hypothesis made by Moore and Saffman, we only extracted the scaling and not the actual numerical coefficient. Computing the torque coefficient, we obtain :

C = T 1/2ρπR 2 U 2 ∼ 1 Re 1/2 Ro 3/2 (19) 
We first plotted Fig. 14 with the above scaling and found that the slope measured was exactly 2/3 and thus plotted the graph as function of Re 1/3 Ro.

E Inertial waves

Figure 1 :

 1 Figure 1: Streamlines of the flow around a sphere translating at Re = 93 in a fluid rotating at Ro = 0.48. The up and downstream Taylor columns are visible through the presence of recirculation bubbles. The axis of rotation is here horizontal and passes through the sphere center, the sphere is translated from right to left

Figure 3 :

 3 Figure 3: Location of the various flow regions displayed in Fig. 2 as a function of the Taylor number T = Re/Ro. Extracted from Tanzosh and Stone (1994), Figure 12.

Figure 4 :

 4 Figure 4: Dimensionless drag as a function of the inverse Rossby number for various Taylor numbers. Extracted from Maxworthy (1970), Figure 6

Figure 5 :

 5 Figure 5: Dimensionless drag force versus Taylor number for both series of experiments from Maxworthy, theories for high and low Taylor numbers, and the boundary integral method described in the article. Extracted from Tanzosh and Stone (1994), Figure 5

Figure 6 :

 6 Figure 6: Sketch of the numerical setup and boundary conditions used (not to scale, the actual domain size is 2L x = 360R and L y = 60R)

Figure 8 :

 8 Figure 8: Examples of the flow structure in the parameter space (Re, T ) in the range 9 ≤ Re ≤ 170 and 23 ≤ T ≤ 450 (i.e. 0.02 ≤ Ro = Re/T ≤ 7.3). Flow is coming from the top. Colors represent axial velocity (note the different scales between configurations). Left side lines are isovalues of the angular velocity ω = U φ /r. Right side lines are streamlines. Note that in (c) the flow resembles that of a non rotating flow, in (g) Taylor columns are visible upstream and downstream.

Figure 9 :

 9 Figure 9: Length of upstream recirculation cell scaled by R, versus the Rossby number Ro = U/ΩR. Results from[START_REF] Maxworthy | The flow created by a sphere moving along the axis of a rotating, slightly-viscous fluid[END_REF] and[START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF] for Ro → 0 are included on the left side (triangles).

LFigure 10 :

 10 Figure10: Effects of axial confinement for a case exhibiting long Taylor columns (Re = 8.9, Ro = 0.02, T = 445). Top : position of the tip of the recirculating region as a function of the domain size. Bottom : drag coefficient as a function of the domain size. The dots are the numerical results, the orange line is the theoretical value predicted by[START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF], using namely L slug /R = 0.052T and the value of C T S D

Figure 11 :

 11 Figure 11: Dimensionless drag force versus Reynolds number. Experiments from Maxworthy (1970). Note that circles with dark edge color correspond to experiments in good agreement with their scaling C D = 5.20/Ro.

Figure 12 :Figure 13 :

 1213 Figure 12: Comparison between a non rotating case at Re = 300 (top) and the corresponding rotating setup at Ro = 4.5 (bottom) with a lower drag. Left side shows axial velocity and right side shows the pressure

Figure 14 :

 14 Figure 14: Dimensionless torque as a function of Re 1/3 Ro. The simulation points in blue correspond to those for which the theoretical drag formula did not apply in Fig 13 (C D < 6), the two star shaped points correspond to those computed in an unconfined setup. The inset shows the same plot but with the scaling Re 1/2 Ro.

Figure 15 :

 15 Figure 15: Asymmetry of the Taylor columns ∆ω = |ω down | -|ω up | where ω up and ω down in rad.s -1 are the maximum angular velocities in the up and downstream Taylor columns respectively, as a function of the Rossby number. Green, empty diamonds correspond to either too confined cases or cases where the scaling C D = C T S D (see Fig. 13) does not hold.

Figure 16 :

 16 Figure 16: Visualization of the inertial waves around the sphere at Re = 167 and Ro = 1.43. (background) pressure scaled by ρU 2 ∞ , (lines) streamlines of the flow perturbation in the sphere reference frame. Inset : wavelength as a function of the Rossby number

Figure 17 :

 17 Figure 17: Added mass coefficient as a function of the Rossby number. The symbols show the acceleration number, while the color represents the Reynolds number tested.

Figure 18 :

 18 Figure18: Forces on the sphere in the accelerated flow in the case (left) without rotation (right) with rotation at Ro(t 0 ) = 1 (Re(t 0 ) = 5, Ac = 1.0). The steady drag is theoretically computed, the added mass coefficient is obtained through the first timesteps of the acceleration and the history force is the remainder. Note the larger steady drag in the rotating case.

Figure 19 :Figure 20 :

 1920 Figure 19: Time evolution of the total hydrodynamic force on the sphere in the accelerating flow.

Figure 21 :

 21 Figure21: Mesh convergence study at Re = 40 and Ro = 10 on three parameters of the mesh : from left to right, the radial extension of the mesh L y /R, the radial size of the first cell on the axis of symmetry dy min and the axial size of the cell at the equator of the sphere dx min . Both cell sizes are scaled by R.

Figure 22 :

 22 Figure22: Effects of axial confinement for a case exhibiting long Taylor columns (Re = 8.9, Ro = 0.046, T = 193). Top : position of the tip of the recirculating region as a function of the domain size. Bottom : drag coefficient as a function of the domain size. The dots are the numerical results, the orange line is the theoretical value predicted by[START_REF] Tanzosh | Motion of a rigid particle in a rotating viscous flow: an integral equation approach[END_REF], using namely L slug /R = 0.052T and the value of C T S D given in (7), and the black lines are 1% above and below the theoretical value. The blue line is the best fit of our data that reaches the expected value as L x → ∞.

  

  

  

Limit of Tanzosh and Stone scaling, (black dashed line) limit of strong confinement effects, (blue dot-dashed line) limit of Maxworthy scaling, (green dotted line) limit of axisymmetry in the non rotating case.

• the rightmost vertical dotted line corresponds to the physical transition between axisymmetric solutions and 3D ones for the non rotating flow at Re = 105.

• the dashed lines in the bottom define below them a region where our typical setup (L x /R = 180) is not enough to fully resolve the flow around the sphere. It is defined by T > 150 and Ro < 0.125. The points were we extended the domain to 10 3 R are represented with stars.

• The limit Maxworthy defined from which his scaling applies is represented by the blue dot-dashed line and is defined by Ro < 2.91×10 6 Re -4 .

• Finally our limit between cases were Tanzosh and Stone's scaling applies is represented by the solid line and defined by C T S D < 6 (see Eq. 12).

D Torque scaling

To obtain a theoretical scaling of the torque coefficient, we use results from [START_REF] Moore | The rise of a body through a rotating fluid in a container of finite length[END_REF] in the case of a rising particle through a very confined, viscous flow. In this situation, the torque on the particle is equal to the one on the boundary of the