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Abstract

We present Svetlana (SuperVised sEgmenTation cLAs-
sifier for NapAri), an open-source Napari plugin dedi-
cated to the manual or automatic classification of seg-
mentation results. A few recent software tools have
made it possible to automatically segment complex 2D
and 3D objects such as cells in biology with unrivaled
performance. However, the subsequent analysis of the
results is oftentimes inaccessible to non-specialists. The
Svetlana plugin aims at going one step further, by al-
lowing end-users to label the segmented objects and to
pick, train and run arbitrary neural network classifiers.
The resulting network can then be used for the quan-
titative analysis of biophysical phenoma. We showcase
its performance through challenging problems in 2D
and 3D and provide a comprehensive discussion on its
strengths and limits.

Keywords— Software, Segmentation, Classification,
Convolutional Neural Networks, Biomedical imaging,
Image analysis, Microscopy, Efficient Al

1 Introduction

Recent years have witnessed spectacular progress in bi-
ological imaging. We can think of the improvement
and accessibility of high-resolution microscopes, the ex-
plosion in storage and computing resources, and the
advances in artificial intelligence. This offers exciting
prospects for better understanding life. These advances
however hinge on the ability to automatically analyze
large volumes of data and, in particular, to segment
and classify biological structures.

Specialized tools have emerged. For instance, the
HoVer-Net [15] yields excellent performance for the
quantification of histopathology images stained with
specific compounds. Unfortunately, even though it
effectively addresses an important and difficult issue,
its adaptation to different datasets (imaging modality,
staining, type of tissues, type of classification) is far
from being obvious. To the best of our knowledge, there
currently does not exist a general purpose classification
software tools that could be used for arbitrary studies.

The situation is quite different for segmentation
tasks. This is the result of concomitant facts includ-
ing advances in machine learning, the creation of open
training databases and the development of ergonomic
open-source software packages. Carefully designed neu-
ral networks architectures provide unprecedented seg-
mentation results. They make it possible to avoid set-
ting hyper-parameters which are often hard to tune
and interpret. Examples of powerful and popular tools
for segmentation in biology include Ilastik [4], CellPose
[27], Omnipose [II], StarDist [12], ZeroCostDL4Miic
[28], Deep-ImageJ [14] or Sketchpose [9]. Their perfor-
mance and ergonomics continue to improve at a fast
pace.

Our motivation Segmentation masks — as good as
they are — are rarely directly exploitable to answer bio-
logical questions. In particular, it is often necessary to
classify the detected objects in order to perform statis-
tical analyses that give a concrete meaning to the re-
sults. The precise cells boundary delineation can even
be less scientifically significant than the quantification
of its phenotypic characteristics. Despite the signif-
icant benefits of these segmentation tools, a difficult
part of the analysis therefore remains inaccessible to
most users.

Our contribution The goal of this work is to con-
tinue filling the gap between methodological advances
and end-users, by providing a convenient software tool
for the classification of segmentation results with a min-
imum amount of manual annotation.

2 Plugin description

We designed a user-friendly plugin called Svetlana.
This name is an acronym for SuperVised sEgmenTation
cLAssifier for NapAri [23]. At the end of a simple an-
notation and training process, the user is provided with
a neural network that automatically classifies large col-
lections of segmented images. For instance, we show in
fig. a) how it can automatically count and distinguish
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Figure 1: A schematic overview of the Svetlana plugin. a) A screenshot of the plugin in action. In
this example, Svetlana is able to separate the mesorderm (in green) and the neural tube (in red) nuclei of a
quail embryo [3] with a high accuracy after just a few clicks. b) Overview of the Svetlana’s three-step pipeline:
Annotation, Training and Prediction. Given pairs of images and segmentation masks, the user labels a few
connected components. This set is then used to train a neural network classifier. Once trained, it can be
used to classify one or multiple segmented images. ¢) Svetlana offers many neural network architectures with
increasing complexity. The minimalist architectures can be trained faster and are usually enough to lead to high
classification accuracies. d) The training can be enriched with a large variety of image augmentation techniques
available in Albumentations [8]. e€) Ounline resources are available to assist the user. f) All experiments can be
fine tuned and reproduced using a JSON configuration file.
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cells belonging to two different types in a developing
quail embryo after just a few clicks.

Our aim was to create a plugin that fulfills the ma-
jority of requirements for image analysis platforms. It’s
versatile, handling 2D, 3D, grayscale or multi-spectral
images, whether individual or in large collections. It
is well documented with a rather simple installation
procedure, see the hyperlinks in fig. [1] ).

The annotation module offers various labeling
modes, enabling the annotation of thousands of 2D or
3D objects in minutes. The training module supports
user-provided architectures as well as popular neural
network architectures, see fig. [If ¢). We have also de-
signed minimalist neural network, ideal for simple clas-
sification tasks with limited annotations.

Additionally, the plugin includes a wide range of im-
age augmentation techniques, see fig. [I{d). These tech-
niques enhance the classifier stability across different
image acquisition protocols and promote useful features
such as rotation invariance.

Understanding how the neural network makes deci-
sions can be crucial for some applications, such as deci-
phering biophysical phenomena or avoiding confound-
ing variables. To this end, we integrated a network
interpretation module named Grad-CAM [24]. Aug-
mentation techniques can also facilitate interpretation
through “augmentation” studies. By adding or remov-
ing augmentation types at training time and evaluating
the classification performance, the user can see which
features are essential. For instance if changing the im-
age colors randomly during the training implies a per-
formance drop for the classification, it means that a
color is probably important to distinguish between cell
populations.

Overall, Svetlana offers a complete solution to de-
sign robust, accurate and interpretable neural-network-
based classifiers.

2.1 Workflow of Svetlana

The principle of Svetlana is displayed in fig. [1|b). It re-
lies on an external segmentation module which outputs
a segmentation mask. Svetlana then takes the images
to be labeled and the segmentation masks as inputs. It
is separated in three different modules:

Annotation This module allows the user to label
some connected components of the segmentation
masks. For simple classification tasks in 2D or 3D,
we could label more than 1000 connected compo-
nents in about 15 minutes.

Training This module allows the user to pick an ar-
bitrary PyTorch [22] neural network architecture
(possibly pre-trained) and to further train it with
the annotations generated by the previous mod-
ule. A few seconds or minutes are usually enough
to provide high quality classification results (see

Table .

Prediction This module uses the trained network to
classify one or many segmentation masks.

The outputs of the plugin are: a set of manually anno-
tated patches, a trained neural network and prediction
masks. The results are stored in files under widely ac-
cessible formats for the forthcoming analyses.

2.2 Requirements

We decided to integrate Svetlana in the Napari environ-
ment [10], since it offers a rich interface to manipulate
images and a direct connection to PyTorch, a domi-
nant artificial intelligence Python package. The first
installation step is to install a proper Python environ-
ment. To do so, we advise the user to first install Ana-
conda, Mamba, or Pip. Installing Svetlana can then be
done simply by following the instructions on the [instal-
lation page. It will be available in the plugin manager
of Napari. Ideally, it should be used with a computer
equipped with an Nvidia GPU (Graphical Processing
Unit) for faster processing.

2.3 Main processing steps

In this section, we describe the main steps to design an
efficient classifier in Svetlana.

Annotation After organizing the images and seg-
mentation masks in the [right folders), the first step con-
sists in annotating a few regions of interest (ROI). Var-
ious annotation modes are available: the ROI can be
selected by clicking or picked randomly by the plugin.
This works using both the 2D and 3D visualization.
The label can be assigned by giving a number from 1
to 9, which is the maximum number of classes.
Depending on the complexity of the classification
task, the number of ROI to label to generate a good
classifier can vary from a few units to a few hundreds.
It is hard to anticipate this. A possible solution is to
start with few annotations and if the classifier is not ac-
curate enough, additional annotations can be provided
in a second stage. This active learning mecanism allows
the user to rapidly generate a satisfactory training set.

Choosing a CNN architecture We designed min-
imalist convolutional neural network (CNN) architec-
tures adpated to 2D or 3D images with arbitrary num-
ber of channels. They are defined by their width and
depth, see fig. [I|c). In all our experiments, these archi-
tectures which contain few trainable weights proved to
be sufficient to reach accurate classification results. We
therefore recommend using these first. As illustrated in
table 2] the depth and width of the architecture yield
minor differences in the final accuracy and a width of
32 and depth of 3 seems like a good compromise.

In addition, Svetlana offers a large number of popular
pre-defined architectures in 2D (ResNet [16], DenseNet
[I7], AlexNet [19] of various depths). They contain
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millions of parameters, which can be excessive for small
dataset. Pre-trained networks can also be loaded and
fine-tuned using Svetlana with additional data.

Optimization routine Svetlana uses Adam as an
optimization algorithm [I§]. It is widely accepted as
one of the most versatile method for training neural
networks. The main parameters are the number of it-
erations, the batch size, the learning rate and the mo-
mentum. They can all be set in the interface. Our
experiments revealed that a step decay stabilizes the
optimization process. If needed, additional options can
be specified in the Json configuration file.

Patch normalization In most situations, we advise
to rescale the patches in [0, 1] using the min-max scal-
ing available in the interface. If the intensity plays an
important role to distinguish cell types, other options
are available.

Data augmentation A quite useful feature of Svet-
lana is the possibility to use data augmentation during
the training step.

To avoid overloading the graphical interface, the aug-
mentation possibilities are limited to vertical and hori-
zontal flips and random rotations. It is however possi-
ble to use the much richer set of transformations avail-
able within the Albumentations library [8] by setting
the configuration file. The transformations are spec-
ified in the form of a dictionary, as indicated in the
documentation.

Loss functions We recommend using the cross-
entropy as a loss function even though other possibili-
ties are offered for more advanced users.

The batch mode Svetlana can be used on single
images or entire folders for the annotation, training and
prediction plugins. It is therefore possible to build a
large training dataset, possibly containing images from
different modalities.

Active learning / human-in-the-loop The anno-
tation interface offers the possibility to correct the pre-
dictions after training. The previous prediction mask
is loaded as an overlay and the user can correct or com-
plete his annotation, before restarting a training.

3 Validation of the method

To showcase the usefulness of Svetlana, we performed
three experiments on real biological problems.

3.1 Quail embryo nuclei classification

The first problem is provided as a demo in the plugin.
It does not have a particularly important biological rel-
evance, but illustrates the main plugin features. We use

a 624 x 158 x 232 voxels crop of a large quail embryo
image. It was taken with a two-photon microscope with
a resolution of 0.68 x 0.68 x 1 pm by B. Bénazéraf [3].
The cropped part contains two structures of interest:

e The neural tube: an axial tissue that will form the
spinal cord.

e The somites: round structures located on either
side of the neural tube that will form skeletal mus-
cles and vertebrae.

The classification task we are interested in is to distin-
guish between nuclei within the neural tube and those
within the mesoderm. They can be easily distinguished
by visual inspection, allowing the user to rapidly anno-
tate a few of them.

To classify the two cell types, we used the following
protocol:

1. segment the whole volume using the model Cyto2
in CellPose.

2. annotate the 3D image using Svetlana (169 anno-
tations in about 5 minutes).

3. train a two-layer 3D convolutional network (= 7
minutes).

4. predict all the nuclei types in the image (= 10 min-
utes).

We used patches of size 45 x 45 x 45 voxels from the
complete 3D image for the prediction. The classifica-
tion accuracy is more than 94% on both nuclear types,
see fig. |1l a). Obtaining such a result using only 169
annotations out of 26,214 is remarkable. Indeed, we
have already shown in fig. 4| g), that a 2D random for-
est classifier was unable to accomplish this task, based
on simple radiometric and morphometric features. We
performed a similar experiment in 3D, and again, the
classification were nearly random. We do not reproduce
it in this paper for conciseness.

3.2 Pathology dataset classification

In this section, we showcase that Svetlana’s minimalist
neural networks can solve complex classification prob-
lems, using a public dataset called PanNuke [13] (see
fig. [2[a). The dataset comprises 481 visual fields, with
312 selected randomly from over 20,000 whole slide im-
ages sourced from various data sources, captured at dif-
ferent magnifications. It is composed of 205,343 nuclei
categorized into 5 clinical classes (neoplastic, non-neo
epithelial, inflammatory, connective, dead) from 19 dif-
ferent tissues. Other factors of variability, such as the
diversity of patients from whom tissues are extracted,
or the difficulty of obtaining reproducible tissues stain-
ing, make this type of dataset challenging to classify
robustly.

We demonstrate Svetlana’s ability to produce accu-
rate classification results for this type of application
both for a small and a large dataset. We used a neural
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network of depth 3 and width 32 available in Svetlana.
It is composed of 14,500 parameters. This is about 1000
times smaller than a Resnet18 [16], which is among the
smallest classification models from the Torchvision li-
brary.

To quantify the classification results, we compute
standard precision metrics. Let n; denote the num-
ber of elements in the i-th class. We compute metrics
based on the numbers of True Positives (T'F;), False
Positives (F'P;), False Negatives (F'N;) and True Nega-
tives (T'N;) for each class. The metrics are then defined
as follows:

N
Precision = N ; <777><TPL+FPL>
N
1 n; X TP;
R - L A A
eca. Né(niXTPi+FNi>
PLSeore — 9 x Precision x Recall

Precision + Recall
N
1 TPZ‘ + TNi
A ==
ceuracy = ; <TP1- +FP; + TN; + FNi)

We assess Svetlana’s performance in two different
scenarios. First, we trained our custom minimalist ar-
chitecture on various subsets containing from 10 to 300
labels. For this experiment, we launch the training on
two classes: the neoplastic and inflammatory cells. Fig.
b) contains examples of neoplastic cells and Fig.
¢) contain examples of inflammatory cells. Fig. [2[ d)
demonstrates that with only 10 labels, we already reach
a classification accuracy of about 94%. Increasing the
dataset size to 300 yields high precision and accuracy
for both classes (99.70%).

In a second step, we trained Svetlana on a much
larger 5-class dataset containing 28,167 nuclei extracted
from PanNuke dataset as well as for the previous ex-
periment. In Fig. e), we computed the confusion
matrix for the 5 classes, as well as the weighted aver-
age precision, recall, Fl-score and accuracy, on a vali-
dation set of 15,218 nuclei. Again, high accuracies can
be reached with the minimalist CNN architectures that
we designed.

Overall this experiment shows that the Svetlana plu-
gin and the minimalist neural network architectures of-
fer a solid companion for tackling complex classification
tasks, whether in a data-limited or data-rich context.

3.3 Osteoclasts classification

Segmentation in bright-field microscopy can be chal-
lenging due to low contrasts, out-of-focus blur and dif-
ferences in staining across different samples for exam-
ple. To illustrate that Svetlana overcomes these issues,
we solved a cell classification problem used in medium
throughput screening on osteoclasts. Osteoclasts are
bone cells that go through different stages of differ-
entiation which gives rise to a wide diversity of cell
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Figure 2: A histopathology images classification
problem. a) A subset of 6 images taken from PanNuke
dataset. b) and c) Example of 137 x 137 pixels train-
ing patches showing neoplastic and inflammatory cells
respectively. The nucleus of interest has been circled in
green for visualization. We can see that the two classes
are difficult to distinguish visually for a non-expert. d)
Classification performance by training the model on in-
creasingly large 2-class (neoplastic/inflammatory cells)
small datasets. e) Classification performance on a 5-
class problem training with a large dataset.

morphologies as shown in fig. [3| c. They are the sub-
ject of many studies (see Labour et al. [20] for exam-
ple) as they can be the cause of various diseases when
dysfunctional. Indeed, a physiological unbalance be-
tween osteoclasts and osteoblasts (osteoclasts antago-
nistic cells), can lead to various forms of bone disease,
such as osteoporosis. That is why it is so important
to control their respective populations. In this experi-
ment, patient osteoclasts are isolated and grown in cul-
ture. They are then distributed in wells (see fig. [3 a))
and subjected to various molecules.

The |Atlantic Bone Screen (ABS) company assesses
the impact of each treatment by calculating the number
of activated osteoclasts, the cell version able to perform
bone resorption. Activated cells are differentiated from
others as they are typically large, with a dark violet
color and a large number of nuclei manifested as small
dots inside the cell (polynucleate). A few activated
osteoclasts are shown in fig. [3| f), while osteoclasts in
different states are shown in fig. |3| g).

A well can contain up to 20,000 cells. The classifi-
cation task is performed by specialists at ABS and in-
cludes a manual counting of activated osteoclasts. This
expert approach is accurate, but time consuming for
high cell density wells and may require the interven-
tion of several experts to multiply the counts, in or-
der to reduce inter-operator variability, and guarantee
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a high accuracy. Automating the classification process
allows contract research organizations to save time on
their projects, and analyze more data while reproduc-
ing their selection criteria.

The automatic classification task is really challenging
due to a wide variety of image appearances, see fig. [3]
¢). These differences can be explained by the biologi-
cal nature of the sample, but also by the diversity of
patients, staining protocols, drug types and concentra-
tions. To address this problem, we first improved the
Cyto2 neural network available in CellPose2 [26] using
its human-in-the-loop feature. This provided satisfac-
tory segmentation results. We then trained our classi-
fier on 5400 patches extracted from diverse images (=~
1 hour of manual labeling). We then turned to the pre-
diction mode and applied the neural network classifier
to the whole batch. Fig. [3| b) shows a prediction on
a whole well, while fig. [3| d) and fig. |3| e) show a crop
and its automated classification respectively. The pre-
diction on 63 images of size 8000 x 8000 pixels took
about 1.5h, i.e. 1.4 minute per image. This has to be
compared to the 20 to 45 minutes taken by a specialist
to process a portion of a single image by hand.

The graph in fig. h) shows that our classifier reaches
coefficient of determination R? of 96%, between the val-
ues measured manually by ABS experts and those pro-
duced by Svetlana classifier. For this application, Svet-
lana is a powerful ally for medium throughput screen-
ing. It makes it possible to quantify the effects of vari-
ous drugs with a good accuracy and with a remarkably
small need for human interactions.

4 Discussion

4.1 Efficiency

Svetlana requires little computational power, time re-
sources, training data and it uses minimalist CNN ar-
chitectures. We discuss these features below in more
detail.

Power consumption table [I| summarizes the com-
putational cost for three different training tasks. Com-
puting the energy footprint is a complex task [6] and
the numbers below are indicative. It is computed using
the thermal design power (TDP) given by the manufac-
turer. On a regular GPU card, we see that the cost is
proportional to the training time and not higher than
working on a laptop for a few hours.

e CPU is a 1.9 GHz Intel Xeon in a desktop (TDP:
165W).

e GPU1 is a Quadro T2000 with 4 GB RAM in a
laptop (TDP: 40W).

e GPU2 is an RTX4000 with 8 GB RAM in a desk-
top (TDP: 160W).

e Dataset 1 is the oriented textures presented in
fig. 4] e) (45 labels).

e Dataset 2 is the 3D neural tube image presented
in fig. [Ifa) (169 labels).

e Dataset 3 is the osteoclast dataset presented in
fig. 3] (5400 labels).

Dataset 1 Dataset 2 Dataset 3
CPU 10s-0.5 Wh  6h15-1kWh 5.8 days — 23 kWh
GPU1l 85s—-0.1 Wh 6h—-0.24 kWh 26h — 1 kWh
GPU2 43s-02Wh 45 - 0.1 kWh 18h — 2.9 kWh
Table 1: Computation time and energy consumption in

watt-hour (Wh) or kilowatt-hour (KWh) for different
hardware configurations.

Towards small data? Training a neural network
classifier with just a few annotations (10-1000) in a
few seconds goes against conventional wisdom. Indeed,
complex architectures are usually trained for days or
weeks with huge datasets. For instance, the data sci-
ence bowl used to train the CellPose models contains
37,333 segmented nuclei in 841 2D images from more
than 30 different imaging modalities. It is therefore le-
gitimate to question whether the training phase could
yield a good classifier. In practice, it turns out that this
approach provides remarkable results with an accuracy
sometimes higher than 90% for complex tasks. This
may not be on par with the best possible results, but
still sufficient for many quantitative analyses in biology.

Let us mention that a few recent works point out
that training with a minimal amount of data and over-
parameterized networks is a rich research avenue [2].
This is exactly the setting explored in Svetlana. As far
as we know, complete theoretical explanations are still
lacking. One possible way to interpret this is Ockham
razor’s principle. The neural network architecture to-
gether with the training algorithm favor the “simplest”
answer capable of explaining the observations. In our
experiments, elementary networks tend to perform bet-
ter than more complicated ones with many parameters.
This looks quite natural, since a neural network with
few parameters limits the expressiveness of the classi-
fier and acts as a regularizer for the problem.

When high accuracy is critical, it is very likely that
neural networks trained on large datasets would per-
form better. Unfortunately, such datasets are usually
just not accessible. Each biology laboratory explores
different tissues, at a different scale with a different
modality and focus. Each collected image and label-
ing can be costly both in terms of money, know-how
and time. Hence, Svetlana covers a crucial need which
seems yet unmet. In addition, if general purpose clas-
sifiers appears in the future, they could be easily inte-
grated and retrained within Svetlana.

Lightweight models Choosing the best neural net-
work architecture is a time consuming art, not acces-
sible to non-experienced users. A method that would
provide completely different scores depending on the
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Figure 3: The osteoclasts classification - (a-b) An example of an entire 8000 x 8000 pixels image and a
classification result using Svetlana. The green spots correspond to activated osteoclasts. The image was provided
by Atlantic Bone Screen company(ABS)| (c) 2000 x 2000 pixels crops of four different images illustrating the
diversity of the dataset. (d-e) 750 x 750 pixels crop and its classification result after training a neural network
with 600 annotations (out of 16,671). (f) Example of activated osteoclats. (g) Example of non-activated
osteoclasts. (h) This graph shows the excellent correlation (96% coefficient of determination) between Svetlana’s
counting and a human counting. Various conditions were tested. For the red dots, no drug was applied. For
the green diamonds, drugs inducing cell proliferation were tested. For the purple triangles, drugs inducing cell
death were introduced.
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architecture is therefore not acceptable. Hopefully, it
turns out that all the minimalist architectures we de-
signed provide fairly similar classification scores. To
illustrate this fact, we studied the influence of the ar-
chitecture in terms of the depth and width parameter
for the 3D experiment on the developing quail embryo.
Table [2] displays the accuracy scores for every archi-
tecture. As can be seen here, all of them provide a
fairly similar accuracy. Svetlana makes it easy to test
a few different architectures, and visually compare the
results. Overall, this experiment reveals that working
with a single architecture (e.g. depth 3, width 32) pro-
vides consistently good classification results.

depth width acc. 1 acc. 2 avg acc.
3 32 0,946 0,938 0,9419
3 64 0,921 0,959 0,9402
2 16 0,938 0,937 0,9374
3 16 0,916 0,948 0,9318
2 64 0,917 0,94 0,9304
2 8 0,906 0,951 0,928
2 32 0,914 0,936 0,9253
3 8 0,90 0,935 0,9170
3 4 0,865 0,961 0,9131
2 4 0,884 0,936 0,9100
3 2 0,894 0,91 0,9010
2 2 0,834 0,925 0,8795

Table 2: Classification accuracy for the quail embryo
classification problem, depending on the neural net-
work architecture. In this experiment, we varied the
depth and width of the proposed custom 3D convolu-
tional network. All the models have been trained for
600 epochs. The columns acc. 1 and acc. 2 repre-
sent the classification accuracy for the neural tube and
somites nuclei respectively. They are sorted from the
most to the least accurate. As can be seen, the clas-
sification rate depends only mildly on the architecture
defined through its width and depth.

4.2 CNN or random forests?

To the best of our knowledge, the software package of-
fering the closest functionality to Svetlana is Ilastik [4],
and especially its object classification module. It is an
excellent and powerful tool, which is widely adopted
in biology laboratories. Despite obvious similarities,
the backbones of the two applications are fundamen-
tally different: Ilastik’s classifier is currently based on
random forests [7] while Svetlana’s relies on neural net-
works.

Random forests require a pre-defined set of features,
such as geometrical properties of the segmentation
mask (volume, diameter, location, ...), or intensity
properties inside and outside the segmented zone (mean
intensity, variance, quantile, ...). These features are
then assembled to construct a set of random decision
trees. This process can be achieved through many dif-

ferent randomized techniques [B]. The final decision
taken by the random forest classifier is based on a ma-
jority vote using the output of each tree, see fig. |4 a).

Deep neural networks and especially the convolu-
tional neural networks used in this paper (see fig.
b)) work very differently. One of their main difference
is that they are able to infer automatically the features,
instead of having a fixed set of pre-defined image char-
acteristics. The features (here, convolution filters and
biases) are learned automatically from the labeled data
using stochastic gradient descents.

Both approaches have their pros and cons. Random
forests are typically easier to interpret than neural net-
works since their features have a clear meaning right
from the start. If the features are discriminant, they
can perform extremely well with few training examples
and little risk of over-fitting, see fig. 4| c) and fig. 4| d).

These assets can also turn to disadvantages for more
complex tasks. It is indeed possible that no feature
enables discriminating different categories, see fig. [4] e)
and fig. 4|f). On their side, neural networks are able to
learn the features automatically and therefore perform
more diverse and complex tasks than random forests.
Overall neural networks tend to perform better, see for
instance this comparison. However, this performance
may require more training data, especially for large
networks. This problem can be mitigated by choos-
ing minimalist architectures when little training data
is available or when the classification task is simple.

Finally, we illustrate a problem of confounding vari-
able in fig. 4 g). In this experiment, we attempt to
distinguish neural tube nuclei from somites nuclei in a
developing quail embryo [3]. In fig. 4| g), the random
forest classifier learned to distinguish the neural tube
nuclei using their position in space rather than mor-
phological or radiometric features. Hence, if the im-
age is rotated, the classification becomes catastrophic.
Similar issues may actually happen with convolutional
neural networks. This is why the data augmentation
mecanisms easily accessible in Svetlana are particularly
important. In fig. 4| h), we added random rotations
during the training phase to obtain a near rotation in-
variant classifier.

4.3 Results interpretability

Aside from the classification results, another output of
Svetlana is a trained neural network. Interpreting this
algorithm, i.e., understanding how the decision process
was made is a complicated task with many open re-
search avenues. Answering recurrent questions such as:
“What makes these populations different? Is it a differ-
ence of intensity, volume, ellipticity, or other things I
may have missed?” is not directly accessible. Without
further analysis, the neural network can therefore be
considered as a black-box model, which is unquestion-
ably a limitation of the approach. However, it is impor-
tant to note that many alternative artificial intelligence
models (including linear models or random forests) are
often not easier to interpret [2I]. In addition, the sole
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Figure 4: Comparing random forests and neural networks - (a) The principle of random forest classifiers:
a few (10-1000) random decision trees are constructed and a majority voting allows making a prediction. (b)
A convolutional neural network classifier makes a prediction by a sequence of convolutions, nonlinear activation
functions and pooling. (c)-(h) Various classification tasks performed by each classifier. In order to facilitate
the visualization, only small portions of the images are displayed. (c)-(d) Synthetic cell classification with
differences of average gray level. Both Ilastik and a simple neural network yields 100% accuracy with as little
as 10 labels. (e)-(f) Anisotropic texture classification. The two textures possess the same mean and variance,
but different orientations. The random forest yields unsatisfactory results (64%) whatever the number of labels.
The neural network yields 100% accuracy with only 45 labels. The reason for the failure of the random forest
is that no pre-defined feature allows discriminating the texture orientations. On their side, neural networks are
able to learn the right features with just a few annotations. (g)-(h) 2D slice of a two-photon microscope image
of a quail embryo [3] (courtesy of B. Bénazéraf). It shows a neural tube surrounded by somites. (g) From left to
right: the slice containing 854 nuclei — the classification result using 35 labels. Thanks to the use of spatialization
parameters, Ilastik provides excellent results for this task. However, if the classifier is applied to the rotated
image, it yields unsatisfactory results since the spatialization changed. If the spatialization features are removed
to construct the decision trees, Ilastik fails to classify the cells. (h) Svetlana result with 169 labels: it leads to a
few mis-classifications on the original image. Nevertheless, it remains effective when the image is rotated thanks
to the use of data augmentation during the training. This experiment overall shows the advantages of learning
the classification features and to use data augmentation to add desirable properties such as rotation invariance.

fact to know the existence of discriminating features [25] give the user an insight into the areas of the image
significantly eases their determination. that are prevalent in the classifier decision. We chose
to integrate them in the prediction module of Svet-
lana, based on their popularity. New routines might be
added in the future.

That is why the development of interpretation tools
has been an active area of research for some years now
. Algorithms Grad-CAM [24] or guided Grad-CAM



In addition to Grad-CAM, Svetlana offers the possi-
bility to explore simple hypotheses by using data aug-
mentation. Assessing whether the cell volume plays a
role can be determined by adding dilations or not at the
training time, and comparing the classification scores.
The same experiment can be conducted using different
types of intensity normalization, color changes,... to
assess which features are discriminant. This is a simple
approach to post hoc interpretation.

4.4 Conclusion

We presented the main features and explained the func-
tioning of a new plugin called Svetlana for the classifi-
cation of segmentation results within the Napari envi-
ronment. We showed through a few applications that
Svetlana is a handful tool for challenging cell classifi-
cation tasks. Neural networks are at the core of the
program. To the best of our knowledge, Svetlana is
the first open-source plugin offering such a large vari-
ety of learning mecanisms and tackles problems that
would not be solvable with more elementary artificial
intelligence tools such as random forests. Svetlana is
open-source with a modular architecture allowing to
integrate further features, following the most promis-
ing technological progress and user feedback. Through
this paper, we wish to advertise this tool which should
prove valuable to the biomedical community and be-
yond.

Code availability

The source code is provided on BitBucket
(https://bitbucket.org/koopa3l/napari_
svetlana/src/main/).

A documentation is available at: https:
//svetlana-documentation.readthedocs.io/
en/latest/.

The plugin homepage is available at: https://www.
napari-hub.org/plugins/napari-svetlanal

Data availability

The synthetic texture image and the 3D quail
embryo one are directly accessible from the plu-
gin as test images. Also, they are freely avail-
able on Zenodo at the following url: https://
zenodo.org/records/7999871 and https://zenodo.
org/records/7999871. PanNuke dataset is also open
access. All the other datasets used and/or analysed
during the current study are available from the corre-
sponding author on reasonable request.
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