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Abstract

We present Svetlana (SuperVised sEgmenTation cLAs-
sifier for NapAri), an open-source Napari plugin dedi-
cated to the manual or automatic classification of seg-
mentation results. A few recent software have made it
possible to automatically segment complex 2D and 3D
objects such as cells in biology with unrivaled perfor-
mance. However, the subsequent analysis of the results
is oftentimes inaccessible to non-specialists. The Svet-
lana plugin aims at going one step further, by allowing
end-users to label the segmented objects and to pick,
train and run arbitrary neural network classifiers. The
resulting network can then be used for the quantita-
tive analysis of biophysical phenoma. We showcase its
performance through challenging problems in 2D and
3D. Comparisons with random forest classifiers, which
are the only easily available alternative to date, show
significant advantages for the proposed approach.
Keywords– Software, Segmentation, Classification,

Convolutional Neural Networks, Biomedical imaging,
Image analysis, Microscopy, Frugal AI

1 Introduction

Recent years have witnessed spectacular progress in bi-
ological imaging. We can think of the improvement
and accessibility of high-resolution microscopes, the ex-
plosion in storage and computing resources, and the
advances in artificial intelligence. This offers exciting
prospects for better understanding life. These advances
however hinge on the ability to automatically analyze
large volumes of data and, in particular, to segment
and classify biological structures.

Specialized tools have emerged (e.g. the HoVer-Net
[11]) and yield excellent performance for the quantifi-
cation of histopathology images stained with a specific
compound. Unfortunately, even though it effectively
addresses an important and difficult issue, its adapta-
tion to different datasets (imaging modality, staining,
type of tissues, type of classification) is far from being
obvious. To the best of our knowledge, there currently
does not exist a general purpose classification software.

The situation is quite different for segmentation
tasks. This is the result of concomitant facts in-
cluding advances in machine learning, the creation of

open training databases and the development of er-
gonomic open-source software. Technologies such as
neural networks provide unprecedented segmentation
results. They make it possible to avoid setting hyper-
parameters which are often hard to tune and inter-
pret. Examples of powerful and popular tools for seg-
mentation in biology include Ilastik [4], CellPose [22],
StarDist [9], ZeroCostDL4Miic [23] or Deep-ImageJ
[10]. Their performance and ergonomics continue to
improve at a fast pace.

Our motivation Unfortunately, segmentation
masks – as good as they are – are rarely directly ex-
ploitable to answer biological questions. In particular,
it is often necessary to classify the detected objects
in order to perform statistical analyses that give a
concrete meaning to the results. Despite the significant
benefits of these segmentation tools, a difficult part
of the analysis therefore remains inaccessible to most
users.

Our contribution The goal of this work is to con-
tinue filling the gap between methodological advances
and end-users, by providing a convenient software for
the classification of segmentation results with a min-
imum amount of manual annotation. We designed a
user-friendly plugin called Svetlana (see Fig. 1) within
the newborn Napari environment [18].

2 Results

2.1 Workflow of Svetlana

The principle of Svetlana is displayed in Fig. 2. A
tutorial video is available. It relies on an external seg-
mentation module which outputs a segmentation mask.
Svetlana then takes the images to be labeled and the seg-
mentation masks as inputs (see Fig. 2 a)). It is then
separated in three different modules depicted in Fig. 2
b):

Annotation This module allows the user to label
some connected components of the segmentation
masks. For simple classification tasks in 2D or 3D,
we could label more than 1000 connected compo-
nents in about 15 minutes.
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Training This module allows the user to pick an ar-
bitrary PyTorch [17] neural network architecture
(possibly pre-trained) and to further train it with
the annotations generated by the previous module.

Prediction This module uses the trained network to
classify the connected components of the whole
segmentation mask.

The outputs of the plugin are: a set of manually an-
notated patches, a trained neural network and predic-
tion masks. The results are stored in files under widely
accessible formats for the forthcoming analyses. This
plugin overall meets a need to further enhance the ex-
cellent results obtained with recent, wide purpose seg-
mentation tools.

Figure 1: The Svetlana plugin under Napari. The
image shows nuclei of a quail embryo classified by Svet-
lana (see Section 2.5).

2.2 Ilastik VS Svetlana

To the best of our knowledge, the software offering the
closest functionality to Svetlana is Ilastik [4], and espe-
cially its object classification module. It is an excellent
and powerful tool, which is widely adopted in biology
laboratories. In this section, we discuss the differences,
strengths and limitations of both applications.

The classifier Despite obvious similarities, the back-
bones of the two software are fundamentally different:
Ilastik’s classifier is currently based on random forests
[6] while Svetlana’s relies on neural networks.

Random forests require a pre-defined set of features,
such as geometrical properties of the segmentation
mask (volume, diameter, location, ...), or intensity
properties inside and outside the segmented zone (mean
intensity, variance, quantile, ...). These features are
then assembled to construct a set of random decision
trees. This process can be achieved through many dif-
ferent randomized techniques [5]. The final decision
taken by the random forest classifier is based on a ma-
jority vote using the output of each tree, see Fig. 3
a).

Deep neural networks and especially the convolu-
tional neural networks used in this paper work very

differently. One of their main difference is that they
are able to infer automatically the features, instead
of having a fixed set of pre-defined image characteris-
tics. The features (here, convolution filters and biases)
are learned automatically from the labeled data using
stochastic gradient descents.

Both approaches have their pros and cons. Random
forests are typically easier to interpret than neural net-
works since their features have a clear meaning right
from the start. If the features are discriminant, they
can perform extremely well with few training examples
and little risk of over-fitting, see Fig. 3 c).

These assets can also turn to disadvantages for more
complex tasks. It is indeed possible that no feature en-
ables discriminating different categories, see Fig. 3 e).
On their side, neural networks are able to learn the fea-
tures automatically and therefore perform more diverse
and complex tasks than random forests. Overall neural
networks tend to perform better, see for instance this
comparison. However, this performance may require
more training data, especially for large networks. This
problem can be mitigated by choosing minimalist archi-
tectures when little training data is available or when
the classification task is simple. This is why Svetlana
offers the possibility to use networks with various num-
ber of layers and filter sizes (see Section 4.1).

Finally, we illustrate a problem of confounding vari-
able in Fig. 3 g). In this experiment, we attempt to
distinguish neural tube nuclei from somites nuclei in a
developing quail embryo [3]. In Fig. 3 g), the random
forest classifier learned to distinguish the neural tube
nuclei using their position in space rather than morpho-
logical or radiometric features. Hence, if the image is
rotated, the classification becomes catastrophic. Sim-
ilar issues may happen with convolutional neural net-
works, but they can be mitigated using the data aug-
mentation mechanism [7] available in Svetlana. In Fig.
3 h), we added random rotations during the training
phase to obtain a near rotation invariant classifier.

The interface differences Svetlana was developed
under Napari, which offers many advantages for multi-
dimensional image processing. First, the environment
is supported by a large team and is fast evolving. It
is developed in Python and already includes state-of-
the-art segmentation tools such as Cellpose of Stardist.
It allows using parallel programming (multi-CPU and
GPU) in a stable and seamless way. It also makes inter-
actions with PyTorch or TensorFlow easy and therefore
benefits from the latest developments in machine learn-
ing.

A valuable feature of Napari is its ability to handle
large 2D or 3D images. The pyramid image represen-
tation indeed enables to interact with them smoothly,
while nearly all competitors we tried failed to treat such
large datasets. The overall visualization experience un-
der Napari is already excellent for 2D and 3D image
processing and can be expected to continue improving.

Svetlana shares many of Ilastik object classification
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Figure 2: A schematic overview of the Svetlana plugin. (a) First, an external segmentation software is
used (e.g. Cellpose, Stardist), then Svetlana classifies the resulting masks. (b) Overview of the Svetlana’s three-
step pipeline: Annotation, Training and Prediction. Given pairs of images and segmentation masks, the user
labels a few connected components. This first allows training set a neural network classifier and then predicting
batches of images.

features. Both interfaces have the same input: an im-
age (or a batch of images) and the associated segmen-
tation mask(s). The trained classifiers can be applied
on an individual image or on a batch of images. For the
annotation, the user can click on the connected compo-
nents of the mask or let Svetlana draw connected com-
ponents uniformly at random. Svetlana does not offer
the “live-update” mechanism provided by Ilastik. The
main reason is a higher computational cost for training
the neural networks.

2.3 Requirements

Once Napari has been set up, Svetlana should be easy
to install by following the instructions on the installa-
tion page, . It is then available in the plugin manager
or through the command line:

pip i n s t a l l n a p a r i s v e t l a n a

Ideally, it should be used with a computer equipped
with an Nvidia GPU (Graphical Processing Unit) for
faster processing. Remarkably, Svetlana requires little
training data (as illustrated in Fig. 3), but also com-
putational power and time resources for the training
step. Table 1 summarizes this fact using three different
datasets. The energy footprint given below is just in-
dicative. It is computed using the thermal design power

(TDP) given by the manufacturer.

• CPU is a 1.9 GHz Intel Xeon in a desktop (TDP:
165W).

• GPU1 is a Quadro T2000 with 4 GB RAM in a
laptop (TDP: 40W).

• GPU2 is an RTX4000 with 8 GB RAM in a desk-
top (TDP: 160W).

• Dataset 1 is the oriented textures presented in Fig.
3 e) (45 labels).

• Dataset 2 is the 3D neural tube image presented
in Fig. 5 (169 labels).

• Dataset 3 is the osteoclast dataset presented in
Fig. 4 (5400 labels).

Dataset 1 Dataset 2 Dataset 3

CPU 10 s – 0.5 Wh 6h15 – 1 kWh 5.8 days – 23 kWh
GPU1 8.5 s – 0.1 Wh 6h – 0.24 kWh 26h – 1 kWh
GPU2 4.3 s – 0.2 Wh 45’ – 0.1 kWh 18h – 2.9 kWh

Table 1: Computation time and energy consumption in
watt-hour (Wh) or kilowatt-hour (KWh) for different
hardware configurations.
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Figure 3: Random forests (e.g. Ilastik) vs neural networks (Svetlana) - (a) The principle of random
forest classifiers: a few (10-1000) random decision trees are constructed and a majority voting allows making
a prediction. (b) A convolutional neural network classifier makes a prediction by a sequence of convolutions,
nonlinear activation functions and pooling. (c)-(h) Various classification tasks performed by each classifier.
In order to facilitate the visualization, only small portions of the images are displayed. (c)-(d) Synthetic
cell classification with differences of average gray level. Both Ilastik and a simple neural network yields 100%
accuracy with as little as 10 labels. (e)-(f) Anisotropic texture classification. The two textures possess the same
mean and variance, but different orientations. The random forest yields unsatisfactory results (64%) whatever
the number of labels. The neural network yields 100% accuracy with only 45 labels. The reason for the failure
of the random forest is that no pre-defined feature allows discriminating the texture orientations. On their
side, neural networks are able to learn the right features with just a few annotations. (g)-(h) 2D slice of a
two-photon confocal microscope image of a quail embryo [3] (courtesy of B. Bénazéraf). It shows a neural tube
surrounded by somites. (g) From left to right: the slice containing 854 nuclei – the classification result using 35
labels. Thanks to the use of spatialization parameters, Ilastik provides excellent results for this task. However,
if the classifier is applied to the rotated image, it yields unsatisfactory results since the spatialization changed.
If the spatialization features are removed to construct the decision trees, Ilastik fails to classify the cells. (h)
Svetlana result with 169 labels: it leads to a few mis-classifications on the original image. Nevertheless, it
remains effective when the image is rotated thanks to the use of data augmentation during the training. This
experiment overall shows the advantages of learning the classification features and to use data augmentation to
add desirable properties such as rotation invariance.

2.4 2D bright-field microscopy

Segmentation in bright-field microscopy can be chal-
lenging due to low contrasts, out-of-focus blur and dif-
ferences in staining across different samples for exam-

ple. To illustrate that Svetlana overcomes these issues,
we solved a cell classification problem used in medium
throughput screening on osteoclasts. Osteoclasts are
bone cells that go through different stages of differen-
tiation. This gives rise to a wide diversity of cell mor-
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phologies as shown in Fig. 4 c. In this experiment,
patient osteoclasts are isolated and grown in culture.
They are then distributed in wells and subjected to
various molecules.

The impact of each treatment is assessed by the ac-
tivation of osteoclasts, also called osteoclastogenesis.
Activated cells are differentiated from others as they
are typically large, with a dark violet color and more
spots (nuclei) on the inside than the others cells. A
few activated osteoclasts are shown in Fig. 4 f), while
osteoclasts in different states are shown in Fig. 4 g).

A well contains about 10,000 cells. The classifica-
tion task is performed by specialists at Atlantic Bone
Screen (ABS) and includes a manual counting of ac-
tivated osteoclasts. This expert approach is accurate,
but time consuming for high cell density wells and may
require the intervention of several experts to multiply
the counts, in order to reduce inter-operator variability,
and guarantee a high accuracy. Automating the classi-
fication process allows contract research organizations
to save time on their projects, and analyze more data
while reproducing their selection criteria.

The automatic classification task is really challeng-
ing due to a wide variety of image appearances, see Fig.
4 c). These differences can be explained by the biolog-
ical nature of the sample, but also by the diversity of
patients, staining protocols, drug types and concentra-
tions. To address this problem, we first improved the
Cyto2 neural network available in CellPose2 [21] using
its human-in-the-loop feature. This provided satisfac-
tory segmentation results. We then trained our classi-
fier on 5400 patches extracted from diverse images (≈
1 hour of manual labeling). We then turned to the pre-
diction mode and applied the neural network classifier
to the whole batch. The prediction on 63 images of
size 8000× 8000 pixels took about 1.5h, i.e. 1.4 minute
per image. This has to be compared to the 20 minutes
taken by a specialist to process a portion of a single
image by hand.

Fig. 4 g) shows that our classifier reaches coefficient
of determination R2 of 96%, between the values mea-
sured manually and those produced by Svetlana clas-
sifier. For this application, Svetlana is a powerful ally
for medium throughput screening. It makes it possi-
ble to quantify the effects of various drugs with a good
accuracy and with a remarkably small need for human
interactions.

2.5 3D fluorescence microscopy

In this paragraph, we aim at illustrating that Svetlana
trains efficient classifiers in 3D fluorescence microscopy
as well. To this end, we use a 624 × 158 × 232 voxels
crop of a large quail embryo image. It was taken with
a confocal two-photon microscope with a resolution of
0.68 × 0.68 × 1µm. The cropped part contains two
structures of interest:

• The neural tube, the axial tissue that will form the
spinal cord.

• The somites, the round structures located on ei-
ther side of the neural tube that will form skeletal
muscles and vertebrae.

The classification task we are interested in is to dis-
tinguish between nuclei within the neural tube and
those within the mesoderm. It is a relatively easy seg-
mentation task since the neural tube is clearly identified
by its position in space. This feature allows generating
a gold standard by hand to assess Svetlana’s accuracy.
The segmentation task can arise from two different bi-
ological problems:

• Problem a): can we get a rapid and accurate clas-
sification of both nuclear types to further quantify
biological traits?

• Problem b): can we distinguish both cell types us-
ing only the image contents within the immediate
neighborhood of the nuclei? This would indicate
that nuclei possess photometric or morphometric
features allowing to distinguish their class.

The second problem is obviously significantly harder.
A quick human inspection at the different nuclei types
leads to a negative answer. However, it may have far-
reaching consequences. One can think of better under-
standing the cell migration in development biology or
the detection of circulating cancer cells in oncology.

In this work, we used the same approach to tackle
both problems:

1. segment the whole volume using the model Cyto2
in CellPose.

2. annotate the 3D image using Svetlana (169 anno-
tations in about 5 minutes).

3. train a two-layer 3D convolutional network (≈ 7
minutes).

4. predict all the nuclei types in the image (≈ 10 min-
utes).

The only difference lies in the way the patches are
treated before training. For Problem a), we directly
crop patches of size 45× 45× 45 voxels from the com-
plete 3D image. For Problem b), we use the same
patches, but multiply them by a dilated mask of the
nuclei. This is illustrated on the right of Fig. 5, where
a dilation radius of 6 voxels was used. Svetlana offers
this pre-processing feature.

The classification accuracy for Problem a) is more
than 94% on both nuclear types. Obtaining such a re-
sult using only 169 annotations out of 26, 214 is nothing
short of remarkable. The average classification rate for
Problem b) is about 79%. A visual inspection at the
result on Fig. 5 b) might be disappointing. However,
this has to be qualified by the fact that this problem
seems hopeless at first sight. Notice that, for this ex-
ample, the image could not be processed by the other
software we tested (e.g. Ilastik), since the loading la-
tency is considerable on such a large 3D sample.
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Figure 4: The osteoclasts classification - (a-b) An example of an entire 8000 × 8000 pixels image and a
classification result using Svetlana. The green spots correspond to activated osteoclasts. The image was provided
by Atlantic Bone Screen company(ABS) (c) 2000 × 2000 pixels crops of four different images illustrating the
diversity of the dataset. (d-e) 750× 750 pixels crop and its classification result after training a neural network
with 600 annotations (out of 16,671). (f) Example of activated osteoclats. (g) Example of non-activated
osteoclasts. (h) This graph shows the excellent correlation (96% coefficient of determination) between Svetlana’s
counting and a human counting. Various conditions were tested. For the red dots, no drug was applied. For
the green diamonds, drugs inducing cell proliferation were tested. For the purple triangles, drugs inducing cell
death were introduced.
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a)

b)

label 1 label 2

label 1 label 2

Accuracy = 79%

Accuracy = 94%

Figure 5: Classification of 3D nuclei in a quail embryo - (a) In this experiment, a 45 × 45 × 45 voxels
patch with the whole contextual information is extracted around each segmented nuclei. The first column on
the right shows 4 nuclei belonging to the neural tube and the right column 4 nuclei from the somites. The
image on the left is a 3D volume rendering of the raw image. The classification result is shown on the right.
The neural tube is represented in green, and the somites in red. An accuracy of more than 94% is reached for
each nuclear type with only 169 annotations in ≈ 7 minutes. (b) This experiment is the same as the first one
except the patches are pre-processed by multiplying them with a dilated segmentation mask. The contextual
information is therefore removed to a large extent. Here, we wish to evaluate to what extent the information
contained in a single nucleus and its immediate surrounding is enough to classify it. This challenging problem is
still solved with an accuracy of 79%, suggesting that nuclei contain subtle morphometric or optical differences
not accessible to the human eye, but distinguishable by a trained computer.
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3 Discussion

We presented a new plugin called Svetlana for the clas-
sification of segmentation results within the Napari en-
vironment. We showed through two applications that
Svetlana is a handful tool for challenging cell classifi-
cation tasks. Neural networks are at the core of the
software and tackle problems that would not be solv-
able with more elementary artificial intelligence tools
such as random forests. Svetlana is open-source with
a modular architecture allowing to integrate further
features, following the most promising technological
progress and user feedback. Through this paper, we
wish to advertise this tool which should prove valuable
to the biomedical community and beyond.

Training with scarce data Training a neural net-
work classifier with just a few annotations (10-1000)
in a few seconds goes against conventional wisdom. In-
deed, complex architectures are usually trained for days
or weeks with huge datasets. For instance, the data sci-
ence bowl used to train the CellPose models contains
37,333 segmented nuclei in 841 2D images from more
than 30 different imaging modalities. It is therefore le-
gitimate to question whether the training phase could
yield a good classifier. In practice, it turns out that this
approach provides remarkable results with an accuracy
sometimes higher than 90% for complex tasks. This
may not be on par with the best possible results, but
still sufficient for many quantitative analyses in biology.

Let us mention that a few recent works point out
that training with a minimal amount of data and over-
parameterized networks is a rich research avenue [2].
This is exactly the setting explored in Svetlana. As far
as we know, complete theoretical explanations are still
lacking. One possible way to interpret this is Ockham
razor’s principle. The neural network architecture to-
gether with the training algorithm favor the “simplest”
answer capable of explaining the observations. In our
experiments, elementary networks tend to perform bet-
ter than more complicated ones with many parameters.
This looks quite natural, since a neural network with
few parameters limits the expressiveness of the classi-
fier and acts as a regularizer for the problem.

When high precision is critical, it is very likely that
neural networks trained on large datasets would per-
form better. Unfortunately, such datasets are usually
just not accessible. Each biology laboratory explores
different tissues, at a different scale with a different
modality and focus. Each collected image and labeling
can be costly both in terms of money, know-how and
time. To address this issue, new initiatives emerge to
collect large heterogeneous training databases. For in-
stance the Data Science Bowl [8] allowed training a sin-
gle neural network, which is now capable of segmenting
cells of nearly any type. This tool, embedded in neat
graphical interfaces (e.g. CellPose [22] or StarDist [9])
is a huge asset for biology. Unfortunately, as of now,
it does not provide classification tools. Hence, Svet-
lana covers a crucial need which seems yet unmet. In

addition, if general purpose classifiers appears in the
future, they could be easily integrated and retrained
within Svetlana.

Results interpretability Aside from the classifica-
tion results, another output of Svetlana is a trained
neural network. Interpreting this algorithm, i.e., under-
standing how the decision process was made is a compli-
cated task with many open research avenues. Answer-
ing recurrent questions such as: “What makes these
populations different? Is it a difference of intensity, vol-
ume, ellipticity, or other things I may have missed?” is
not directly accessible. Without further analysis, the
neural network can therefore be considered as a black-
box model, which is unquestionably a limitation of the
approach. However, it is important to note that many
alternative artificial intelligence models (including lin-
ear models or random forests) are often not easier to
interpret [16]. In addition, the sole fact to know the
existence of discriminating features significantly eases
their determination.

That is why the development of interpretation tools
has been an active area of research for some years now
[1]. Algorithms Grad-CAM [19] or guided Grad-CAM
[20] give the user an insight into the areas of the image
that are prevalent in the classifier decision. We chose
to integrate them in the prediction module of Svet-
lana, based on their popularity. New routines might be
added in the future. Fig. 6 illustrates how Grad-CAM
allows the user interpreting how the network might take
its decisions on a cancer cell problem.

In addition to Grad-CAM, Svetlana offers the possi-
bility to explore simple hypotheses by using data aug-
mentation. Assessing whether the cell volume plays a
role can be determined by adding dilations or not at the
training time, and comparing the classification scores.
The same experiment can be conducted using differ-
ent types of intensity normalization, to assess whether
intensities and contrasts are discriminant. This is a
simple approach to post hoc interpretation.

4 Methods

4.1 The training options

Svetlana provides many options in the training mode.
Many of them can be set using the interface, but the
most advanced ones should be set using a JSON con-
figuration file. A default version of this file is created
when launching the plugin. It can then be modified us-
ing any text editor to use more advanced settings. Let
us describe the most important ones below.

Available neural network architectures Py-
Torch provides a large number of popular pre-defined
architectures (ResNet [12], DenseNet [13], AlexNet [15]
of various depths). They are all available within Svet-
lana. However, these networks are only implemented in
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Figure 6: Computation of Grad-CAM on a MCF-
7 cells’ image acquired by a light-sheet micro-
scope - (a) The image shows MCF-7 cells (breast can-
cer cell line) stained with Ki67 (nuclear protein asso-
ciated with cell proliferation). The proliferating cells
have bright spots, while the other ones are darker and
more uniform. (b) The result of Grad-CAM compu-
tation on a proliferating cell: the network focuses on
the bright spots. (c) The result of Grad-CAM compu-
tation on a negative cell. As there are no spots, the
network did not focus on any particular region of the
cell.

2D. Furthermore, they contain millions of parameters,
which seems excessive for small datasets.

We therefore designed light-weight 2D and 3D en-
coder architectures defined through their width and
depth. See Fig. 7. They all possess the same ele-
mentary blocks of the form Convolution → ReLU ac-
tivation function → Batch normalization (BN) → Max
pooling (MP). Every block reduces the patch size by a
factor two with the max-pooling layer, while the width
is multiplied by two. After these steps, the output is
transformed as a vector of fixed size using an adaptive
average pooling layer. To obtain a result of size nlabels,
we use a fully connected layer followed by a SoftMax.
The output can be interpreted as the probability for a
patch to belong to each of the classes.

Finally, it is possible to load custom pre-trained Py-
Torch models and to adapt them to specific datasets
using transfer learning.

Optimization routine Currently, Svetlana only
provides Adam as an optimization algorithm [14]. It

16 40

conv

ReLu
BN
MP

32 20

conv
ReLu
BN
MP

64 10

conv
ReLu
BN
MP

64 1

Adapt.
av. pool.

1 2
Fully
con-
nected

Figure 7: A light-weight architecture proposed in
Svetlana - This networks contains 3 blocks (depth =
3) and has a width parameter of 16 since the initial
image is first duplicated in 16 using the convolutional
layer.

is widely accepted as one of the most versatile method
for training neural networks. Its parameters (learning
rate and momentum) can be tuned as well as the num-
ber of epochs and the batch size.

Our experiments revealed that it is critical to use
a step decay during the optimization process. It sta-
bilizes the optimization process significantly. Thus, by
default, the models are trained using a decreasing learn-
ing rate. It is multiplied by γ = 0.1 every 100 epochs.
Those default parameters can be changed in the con-
figuration file.

Patch pre-processing Svetlana offers various pre-
processing steps. The first one is intensity normaliza-
tion. Different modes are available within the interface:

• No normalization

• Min-max scaling:

x =
x−min(x)

max(x)−min(x)

• Division by the maximum value:

x =
x

max(x)

Depending whether the pixel intensity value is mean-
ingful or not to discriminate the classes, the user should
pick “no normalization” or one of the other two modes.

By default, the input of the network is the image as
well as the mask. As illustrated in Fig. 5 b), it might
me meaningful to use a different strategy and reduce
the impact of contextual information around the ob-
ject to classify. We therefore added the possibility to
multiply the patch by a dilated version of the segmen-
tation mask. This possibility is available only through
the configuration file.
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Data augmentation A quite unique and useful fea-
ture of Svetlana is the possibility to use data augmen-
tation during the training step. This has significant
assets. First, it allows a consequent enrichment of the
set labeled by the user. Second, it offers desirable prop-
erties. For instance, using random patch rotations en-
sures an approximately rotation invariant response of
the network.

To avoid overloading the graphical interface, the aug-
mentation possibilities are limited to vertical and hori-
zontal flips and random rotations. It is however possi-
ble to use the much richer set of transformations avail-
able within the Albumentations library [7] by setting
the configuration file. The transformations are spec-
ified in the form of a dictionary, as indicated in the
documentation.

Loss functions Svetlana provides a number of loss
functions (cross entropy, binary cross entropy, L1
smooth, L1, mean squared error). In practice, for all
the experiments presented above, we used a cross en-
tropy loss.

4.2 The influence of the neural network
architecture

Choosing the best neural network architecture is a
time consuming art, not accessible to non-experienced
users. A method that would provide completely dif-
ferent scores depending on the architecture is therefore
not acceptable. Hopefully, it turns out that all the min-
imalist architectures we designed provide fairly similar
classification scores. To illustrate this fact, we studied
the influence of the architecture in terms of the depth
and width parameter for the 3D experiment on the de-
veloping quail embryo. Table 2 displays the accuracy
scores for every architecture. As can be seen here, all of
them provide a fairly similar accuracy. Svetlana makes
it easy to test a few different architectures, and visually
compare the results. Overall, this experiment reveals
that working with a single architecture (e.g. depth 3,
width 32) provides consistently good classification re-
sults.

4.3 The choice of Napari

The objective of Svetlana as a whole is to provide a
user-friendly tool to label and classify segmentation re-
sults, either manually or automatically. The specifica-
tions are:

• Use highly parallel architectures for run-time effi-
ciency.

• Easiness to integrate new classifiers.

• Embed in an environment providing efficient seg-
mentation tools.

• Embed in an environment allowing to visualize the
results efficiently.

• Easiness to use other analysis tools.

depth width acc. 1 acc. 2 avg acc.

3 32 0,946 0,938 0,9419
3 64 0,921 0,959 0,9402
2 16 0,938 0,937 0,9374
3 16 0,916 0,948 0,9318
2 64 0,917 0,94 0,9304

a) 2 8 0,906 0,951 0,928
2 32 0,914 0,936 0,9253
3 8 0,90 0,935 0,9170
3 4 0,865 0,961 0,9131
2 4 0,884 0,936 0,9100
3 2 0,894 0,91 0,9010
2 2 0,834 0,925 0,8795

2 4 0,809 0,766 0,7877
3 32 0,774 0,778 0,776
3 8 0,786 0,763 0,7743
3 4 0,709 0,84 0,7738
3 64 0,71 0,835 0,7709

b) 3 2 0,691 0,834 0,7624
3 16 0,706 0,817 0,7614
2 16 0,7 0,839 0,750
2 32 0,710 0,776 0,7430
2 64 0,673 0,783 0,7282
2 2 0,686 0,747 0,7162
2 8 0,634 0,698 0,6658

Table 2: Classification accuracy for Problem a) and
Problem b) depending on the neural network archi-
tecture. In this experiment, we varied the depth and
width of the proposed custom 3D convolutional net-
work. All the models have been trained for 600 epochs.
The columns acc. 1 and acc. 2 represent the classifi-
cation accuracy for the neural tube and somites nuclei
respectively. They are sorted from the most to the least
accurate. As can be seen, the classification rate de-
pends only mildly on the architecture defined through
its width and depth.

Those considerations led us to choose the Napari en-
vironment. It is developed in Python and already in-
cludes state-of-the-art segmentation tools such as Cell-
pose [22]. In addition, the development is currently
very fast with new plugins being issued on a weekly
basis. It allows interactions with PyTorch or Tensor-
Flow in a limpid manner, and therefore use the latest
developments in machine learning.

4.4 The batch mode

Svetlana allows the treatment of a single image or of
an entire folder of images for the annotation, training
and prediction plugins. It is therefore possible to build
a training dataset using several images, possibly from
different imaging modalities. Furthermore, it is possi-
ble to predict only one image, or to process a whole
folder directly. It has been shown on the osteoclasts
example (see Section 2.4) that Svetlana has the ability
to be trained only on a few images and to generalize
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to other ones quite well despite the image acquisition
variability.

4.5 The human-in-the-loop feature

The annotation interface offers the possibility to correct
the predictions after training. The previous prediction
mask is loaded as an overlay and the user can correct
or complete his annotation, before restarting a training
(online learning). This iterative approach makes it pos-
sible – as experienced in Cellpose 2.0 [21] – to quickly
improve the classification scores.

Code availability

The source code is provided on BitBucket
(https://bitbucket.org/koopa31/napari_
svetlana/src/main/).

A documentation is available at : https:

//svetlana-documentation.readthedocs.io/

en/latest/.
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