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Abstract

We study the variational inference problem of minimizing a regularized Rényi divergence over an
exponential family, and propose a relaxed moment-matching algorithm, which includes a proximal-like
step. Using the information-geometric link between Bregman divergences and the Kullback-Leibler di-
vergence, this algorithm is shown to be equivalent to a Bregman proximal gradient algorithm. This novel
perspective allows us to exploit the geometry of our approximate model while using stochastic black-box
updates. We use this point of view to prove strong convergence guarantees including monotonic decrease
of the objective, convergence to a stationary point or to the minimizer, and convergence rates. These
new theoretical insights lead to a versatile, robust, and competitive method, as illustrated by numerical
experiments.

Keywords. Variational inference, Rényi divergence, Kullback-Leibler divergence, Exponential family, Breg-
man proximal gradient algorithm.
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1 Introduction

1.1 Variational inference

Probability distributions of interest in statistical problems are often intractable. In Bayesian statistics
for instance, the targeted posterior distributions often cannot be obtained in closed-form due to intractable
normalization constants. The construction of efficient approximating distributions is thus a core issue in these
cases. Variational inference (VI) methods aim at finding good approximations by minimizing a divergence
to the target over a family of parametric distributions [14, 92]. Such procedures can be summarized by the
choice of approximating densities, the choice of divergence, and the algorithm used to solve the resulting
optimization problem. As an example, the standard VI algorithm uses mean-field approximating densities
and minimizes the exclusive Kullback-Leibler (KL) divergence [14]. Assuming that the complete conditionals
of the true model are in an exponential family, the optimal mean-field approximation can then be found by
a deterministic coordinate-ascent algorithm [49].
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The research on VI methods has been very active in the last years (see [92] for a review). Majorization
techniques have been proposed to cope with large scale models not satisfying conjugacy hypotheses [65, 93,
51]. Another approach in such challenging context is to run stochastic gradient descent, which leads to the
so-called black-box VI methods [87, 60, 47, 5, 32]. Black-box methods allow a broad choice of divergence, like
the α-divergences [47, 32, 30] and Rényi divergences [82, 60], which are generalizations of the KL divergence
depending on a scalar parameter α > 0. This parameter can be chosen in order to enforce a mode-seeking
or a mass-covering behavior in the approximations. On the contrary, the exclusive KL divergence tends to
produce approximations that under-estimate the variance of the target [70, 14].

VI algorithms have also benefited from advances in information geometry, a field that studies statistical
models through a differential-geometric lens. Among other results from this field, it has been shown that
the Fisher information matrix can play the role of a metric tensor such that the square of the induced
Riemannian distance is locally equivalent to the KL divergence [2]. Another useful insight when exponential
families are considered is the relation between the KL divergence, Bregman divergences, and dual geometry
[4, 76]. These ideas can be leveraged by using the natural gradient [3], which amounts to a preconditioning
of the standard gradient by the inverse Fisher information matrix. In the VI algorithms investigated in
[50, 46, 49, 61], the standard gradient of the evidence lower bound is thus adjusted to take into account the
Riemannian geometry of the approximating distributions, leading to simpler updates and improved behavior.

Despite those advances, there are still shortcomings in the development and understanding of VI algo-
rithms, and as such, we identify below two main limitations.

First, to the best of our knowledge, there are still few links between black-box VI algorithms and natural
gradient VI algorithms in the literature. On the one hand, the former methods allow to tackle a broad range
of targets using various divergence measures but are usually restricted to the use of standard stochastic
gradients. On the other hand, the latter methods use the more efficient and robust natural gradients, but
are often limited to certain class of divergence, target, and approximating family. In this direction, let
us however mention that information-geometric procedures have been deployed along black-box updates in
[55, 54, 53], but these works remain restricted to the minimization of the exclusive KL divergence. One can
also mention [83] where the minimization of an α-divergence over a mean-field family is studied using the
Fisher Riemannian geometry.

Second, convergence studies of VI schemes are mostly empirical for black-box VI schemes [87, 60, 47, 5, 32],
and the same arises for schemes based on natural gradients [50, 46, 49, 61]. Indeed, the considered optimiza-
tion problems are non-convex, making the algorithms hard to analyze (see however [30] for a study in a convex
setting). This is in stark contrast with MCMC methods, which can be used alternatively to VI, or optimiza-
tion procedures, upon which many VI methods are based. MCMC methods are guaranteed to asymptotically
produce samples from the target [81] but also benefit from non-asymptotic convergence guarantees [34, 63].
Convergence results in the optimization literature include monotonic decrease of the objective, which has
been proven for some VI schemes, but also convergence to a minimizer, or a stationary point for non-convex
problems, and rates of convergence, even for composite objectives with one non-differentiable term [9].

1.2 Contributions and outline

In this paper, we propose a novel VI algorithm that links black-box VI methods and VI methods based on
natural gradients, while benefiting from solid convergence guarantees. Our algorithm minimizes a versatile
composite objective, which is the sum of a Rényi divergence between the target and an exponential family,
and a possible regularization term.

In order to solve the minimization problem, we introduce the so-called proximal relaxed moment-matching
algorithm, whose iterations are composed of a relaxed moment-matching step, followed by a proximal-like
step. A stochastic implementation based on sampling is also provided to cover the black-box setting. The
convergence of our new algorithm is then studied using the theory of Bregman proximal gradient algorithms.
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In particular, it exploits an equivalence relationship between Bregman divergences and the KL divergence
arising when doing VI within the space of exponential families.

Bregman proximal gradient algorithms [10, 11, 86, 73, 74] are recent optimization methods arising from
the generalization of the powerful proximal minimization schemes from the Euclidean setting [25]. Bregman-
based algorithms allow to choose a Bregman divergence that tailors the intrinsic geometry of an optimization
problem, more suitably than the standard Euclidean one [11, 86]. Note that stochastic methods have also
been generalized in this fashion [44, 90]. Also related are proximal methods on perspective functions [26, 36],
where divergences (typically, φ-divergence) are directly processed through their proximity operator on the
Euclidean metric.

We show in this paper that the connection between VI algorithms and proximal optimization algorithms
written in Bregman geometry yields many theoretical and practical insights. To summarize, our main
contributions are the following:

• We propose a deterministic VI algorithm for exponential approximation family. We show that our
method can be written as a Bregman proximal gradient algorithm whose Bregman divergence is in-
duced by the KL divergence, and exploits per se the geometry of the approximating family. We propose
a stochastic implementation for our method. We show that it can be seen as a stochastic Bregman prox-
imal gradient algorithm in the same geometry, thus bridging the gap between information-geometric
and black-box VI methods.

• Our deterministic algorithm is shown to achieve a monotonic decrease of the composite objective, with
its fixed points being stationary points of the objective function. Convergence to these stationary
points is established. When the Rényi divergence recovers the inclusive KL divergence, convergence to
the global minimizer, shown to exist and be unique, is proven with a linear rate.

• We explain through a simple counter-example how the convergence of equivalent schemes written in
the Euclidean geometry may fail. This theoretical insight is backed by numerical studies highlighting
the superior performance and robustness of our scheme over its Euclidean counterpart.

• Our algorithm generalizes many existing moment-matching algorithms. We show through numerical
experiments in the Gaussian case how our additional parameters allow to create mass-covering or
mode-seeking approximations and compensate high approximation errors.

• Our framework allows a possibly non-smooth regularization term that is handled in our algorithm
through a proximal update. We explicit the proximal operators of two regularizers that promote the
good conditioning of the covariance matrix or the sparsity of the means of the approximating densities.

The paper is organized as follows. In Section 2, we recall basic facts about Rényi divergences and
exponential families, before presenting the optimization problem we propose to solve. Then, in Section 3, we
outline our algorithm, before providing an alternative black-box implementation for it. In Section 4, we show
how these algorithms can be interpreted as Bregman proximal gradient algorithms in the geometry induced
by the KL divergence, and state our working assumptions. Theoretical analysis is provided in Section 5.
Finally, numerical experiments with Gaussian proposals are presented in Section 6. We discuss our results
and possible future research lines in Section 7.

The supplementary material [43] contains four appendices. The proofs of our results are deferred to
Appendices A and B, while the computations of the proximal operators are conducted in Appendix C.
Additional numerical experiments are presented in Appendix D.

1.3 Notation

The discrete set {n1, n1 + 1, . . . , n2} defined for n1, n2 ∈ N, n1 < n2 is denoted by Jn1, n2K. Throughout this
work, H is a real Hilbert space of finite dimension n with scalar product 〈·, ·〉 and norm ‖ · ‖. The interior
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of a set C is denoted by intC. Consider the set of matrices of Rd×d. Then, the set of symmetric matrices
is denoted by Sd, the set of positive semidefinite matrices is denoted by Sd+, and the set of positive definite
matrices is denoted by Sd++. The identity matrix is denoted by I, det(·) denotes the determinant operator
on matrices and ‖ · ‖F the Frobenius norm. Convex analysis notations are those from [9]. In particular, we
denote by Γ0(H) the set of proper convex lower-semicontinuous functions from H to R∪{+∞}. The domain
of a function f : H → [−∞,+∞] is dom f := {θ ∈ H, f(θ) < +∞}. The indicator function function ιC of a
set C ⊂ H is defined for every θ ∈ H by

ιC(θ) =

{
0 if θ ∈ C,
+∞ else.

We adopt measure theory notations following [23]. In particular, the Borel algebra of a set X is denoted
by B(X ). M(X ) is the set of measures on (X ,B(X )), and P(X ) is the set of probability measures on
(X ,B(X )). Given m1,m2 ∈ M(X ), we write m1 � m2 when m1 is absolutely continuous with respect to
m2. For a given m ∈ M(X ) and a measurable function h : X → H, we denote by m(h) the vector of H
defined by (m(h))i =

∫
X hi(x)m(dx) for i ∈ J1, nK. Finally, N (· ;µ,Σ) denotes the density of a Gaussian

probability measure with mean µ ∈ Rd and covariance Σ ∈ Sd++.

2 Problem of interest

We propose to reformulate the problem of approximating a target π by a parametric distribution qθ as
a variational minimization problem. In this context, the optimal parameters θ are defined to minimize a
divergence to the target. Specifically, we focus here on the case when qθ lies in an exponential family, and
we propose to optimize its parameters θ through the minimization of a Rényi divergence between π and qθ
with a regularization term. In this section, we first recall important definitions regarding Rényi divergences
(including the Kullback-Leibler divergence as a special case) and exponential families. We then introduce
our variational inference (VI) problem.

Let (X ,B(X )) be a measurable space. Let us consider a measure ν ∈ M(X ), with the sets M(X , ν) :=
{m ∈ M(X ), m � ν} and P(X , ν) := {p ∈ P(X ), p � ν}. We are interested in approximating the target
probability distribution π ∈ P(X , ν).

2.1 Rényi and Kullback-Leibler divergences

Rényi divergences [82] and Kullback-Leibler (KL) divergence [59] are widely used in statistics as discrepancy
measures between probability distributions. To define them, let us consider two probability densities p1, p2 ∈
P(X , ν). We can then define the Rényi and KL divergences between p1 and p2 as follows.

Definition 1. The Rényi divergence with parameter α > 0, α 6= 1, between p1 and p2 is defined by

RDα(p1, p2) =
1

α− 1
log

(∫
p1(x)αp2(x)1−αν(dx)

)
.

When the above integral is not well-defined, then RDα(p1, p2) = +∞.

Definition 2. The KL divergence between p1 and p2 is defined by

KL(p1, p2) =

∫
log

(
p1(x)

p2(x)

)
p1(x)ν(dx).

When the above integral is not well-defined, then KL(p1, p2) = +∞.
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The KL divergence is a limiting case of Rényi divergence [88], since

lim
α→1, α≤1

RDα(p1, p2) = KL(p1, p2).

Note that the same result also holds by taking the limit from above α = 1 under some additional conditions
[88].

Let us recall the important following property, that explains the term divergence:

Proposition 1 ([88]). For any α > 0, α 6= 1,

RDα(p1, p2) ≥ 0, and RDα(p1, p2) = 0 if and only if p1 = p2.

Moreover,

KL(p1, p2) ≥ 0, and KL(p1, p2) = 0 if and only if p1 = p2.

2.2 Exponential families

In this work, we propose to approximate the target π ∈ P(X , ν) by a parametric distribution taken from an
exponential family [16, 7].

Definition 3. Let Γ : X → H be a Borel-measurable function. The exponential family with base measure ν
and sufficient statistics Γ is the family Q = {qθ ∈ P(X , ν), θ ∈ Θ} such that

qθ(x) = exp (〈θ,Γ(x)〉 −A(θ)) , ∀x ∈ X , (1)

with A being the log-partition function, such that Θ = domA ⊂ H, and which reads:

A(θ) = log

(∫
exp (〈θ,Γ(x)〉) ν(dx)

)
, ∀θ ∈ Θ. (2)

In the following, for the sake of conciseness, we will say that some family Q is an exponential family,
without stating explicitly the base measure and the sufficient statistics Q is associated to.

Remark 1. We work here with parameters in the finite-dimensional Hilbert space H, which is slightly more
general than considering parameters in Rn. This allows to consider vectors, matrices, or Cartesian products
in a unified way. In particular, when symmetric matrices are considered, we work directly with Sd rather
than with its vectorized counterpart Rd(d+1)/2.

The goal of our approximation method is thus to find θ ∈ Θ such that qθ is an optimal approximation of
π, in a sense that remains to be precised. Before going further, let us provide an important example of an
exponential family.

Example 1. Let d ≥ 1. Consider the family of Gaussian distributions with mean µ ∈ Rd and covariance

Σ ∈ Sd++. This is an exponential family [7], with sufficient statistics Γ : x 7−→
(
x, xx>

)>
and Lebesgue

base measure that we denote by G in the following. Its corresponding parameters are θ = (θ1, θ2)> with
θ1 = Σ−1µ, and θ2 = − 1

2Σ−1, while A(θ) = d
2 log(2π) − 1

4θ
>
1 θ
−1
2 θ1 − 1

2 log det(−2θ2). The domain of A is
Θ = Rd ×

(
−Sd++

)
, which is included in H = Rd × Sd. The scalar product of H is taken as the sum of the

scalar product of Rd and the one of Sd. Under such parametrization, for any x ∈ Rd and θ ∈ Θ,

qθ(x) = exp
(
〈θ1, x〉+ 〈θ2, xx

>〉 −A(θ)
)

= exp

(
µ>Σ−1x− 1

2
x>Σ−1x− 1

2
µ>Σ−1µ− 1

2
log((2π)d det(Σ))

)
= N (x;µ,Σ).
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Exponential families recover many other continuous distributions, such as the inverse Gaussian and
Wishart distributions, among others. Discrete distributions can also be put under the form (1) when ν is
chosen as a discrete measure. Exponential families benefit from a rich geometric structure [2, 76] and have
been used as approximating families in many contexts such as VI algorithms [46, 49, 14, 61], expectation-
propagation schemes [84], or adaptive importance sampling (AIS) procedures [1].

2.3 Proposed approximation approach

We seek to approximate π by a parametric distribution qθ from an exponential family Q with base measure
ν, such that the domain Θ ⊂ H is non-empty. To measure the quality of our approximations, we define the

following family of functions f
(α)
π for α > 0:

f (α)
π (θ) :=

{
RDα(π, qθ), if α 6= 1,

KL(π, qθ), if α = 1,
∀θ ∈ Θ. (3)

Consider now a regularizing term r, which promotes desirable properties on the sought parameters θ. We
now define our objective function for some α > 0:

F (α)
π (θ) := f (α)

π (θ) + r(θ), ∀θ ∈ Θ. (4)

We propose to resolve our approximation problem by minimizing (4) over an exponential family Q, i.e., by
considering the following optimization problem:

minimize
θ∈Θ

F (α)
π (θ). (P

(α)
π )

Problem (P
(α)
π ) consists in minimizing F

(α)
π , which is the sum of the Rényi divergence RDα(π, ·) and a

regularizing function r. This allows to capture or generalize many settings.
Choosing the Rényi divergence as a discrepancy measure allows to generalize the widely-used KL diver-

gence [58, 84, 33, 21], recovered when α = 1. This allows to choose the right value of α for the application
[60] by fine-tuning the algorithm’s behavior. This is in contrast with the use of one fixed divergence, which
creates a fixed behavior. For instance, minimizing KL(π, ·) induces a mass-covering behavior and minimizing
KL(·, π) induces a mode-fitting behavior [70, 14]. Moreover, the Rényi divergence with parameter α can be
monotonically transformed [88] into the corresponding α-divergence [69, 47, 30], including in particular the
Hellinger distance [20] and the χ2 divergence [32, 1].

Adding a regularization term gives even more possibilities. When r is null or an indicator function, then

Problem (P
(α)
π ) relates to the computation of the so-called reverse information projection [28, 35, 29] when

α = 1, which has later been generalized in [62] for α 6= 1. A similar setting is used in sparse precision
matrix estimation, relying on the KL divergence and a sparsity-inducing regularizer [91, 6]. The problem of
computing Bayesian core-sets has also been formulated as a KL minimization problem over a set of sparse
parameters [19]. Let us also cite [85], that performs VI with an added graph regularization term, used to
enforce special geometric structure. Finally, the minimization of problems composed of a divergence and an
additional term is at the core of the generalized view on variational inference proposed in [56].

3 A proximal relaxed moment-matching algorithm

In this section, we detail our proposed algorithm and its behavior, and discuss its connections with existing

works. Our algorithm solves Problem (P
(α)
π ) by adapting the parameters θ iteratively. Each iteration is

composed of two steps: (i) a relaxed moment-matching step, and (ii) a proximal step, both described in
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Section 3.1. Then, we provide a black-box implementation of our method based on non-linear importance
sampling in Section 3.2. Finally, we discuss in Section 3.3 how our method generalizes existing moment-
matching algorithms.

3.1 A proximal relaxed moment-matching algorithm

In order to state our algorithm, we first introduce the notion of geometric average between our target π and
the parametric density qθ.

Definition 4. Consider θ ∈ Θ and α > 0. We introduce, whenever it is well-defined, the geometric average

with parameter α between π and qθ, denoted by π
(α)
θ , which is the probability distribution of P(X , ν) defined

by

π
(α)
θ (x) =

1∫
π(y)αqθ(y)1−αν(dy)

(
π(x)αqθ(x)1−α) , ∀x ∈ X . (5)

Probability densities akin to π
(α)
θ have been used for instance in annealing importance sampling [75],

in sequential Monte-Carlo schemes [71], or in adaptive importance sampling [17]. The integral in (5) is
well-defined if α ≤ 1 and the supports of π and qθ have non-empty intersection. Since π and every qθ ∈ Q
are absolutely continuous with respect to ν, and qθ(x) > 0 for every x ∈ X , the latter condition is always
satisfied within the setting of our study.

Remark 2. If one does not have access to π but only to an unnormalized density π̃ such that π(x) = 1
Zπ
π̃(x),

the geometric average between π and qθ can be still computed using

π
(α)
θ (x) =

1∫
π̃(y)αqθ(y)1−αν(dy)

(
π̃(x)αqθ(x)1−α) , ∀x ∈ X .

We are now ready to introduce our proximal relaxed moment-matching algorithm, described in Algorithm
1. At iteration k, the first step, Eq. (6) can be viewed as a relaxed form of a moment-matching step, with
relaxation step-size τk+1 chosen such that τk+1 ∈ (0, 1]. The parameter α arises from the Rényi divergence

f
(α)
π . The second step, Eq. (7), is a so-called proximal step on the regularization term r (see Section 4.1)

that involves again the step-size τk+1.

Algorithm 1: Proposed proximal relaxed matching algorithm

Choose the step-sizes {τk}k∈N, such that τk ∈ (0, 1] for any k ∈ N.
Set the Rényi parameter α > 0.
Initialize the algorithm with θ0 ∈ int Θ.
for k = 0, ... do

Compute θk+ 1
2

such that

qθ
k+1

2

(Γ) = τk+1π
(α)
θk

(Γ) + (1− τk+1)qθk(Γ). (6)

Update θk+1 following

θk+1 = arg min
θ′∈Θ

(
r(θ′) +

1

τk+1
KL(qθ

k+1
2

, qθ′)

)
. (7)

end

The following example explicits the relaxed moment-matching step of Algorithm 1 when the exponential
family is Gaussian.
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Example 2. In the case when Q = G, the update (6) readsqθk+1
2

(x) = τk+1π
(α)
θk

(x) + (1− τk+1)qθk(x),

qθ
k+1

2

(xx>) = τk+1π
(α)
θk

(xx>) + (1− τk+1)qθk(xx>).
(8)

This shows that (6) consists in matching the first and second order moments of the new distribution qθ
k+1

2

with a convex combination between the moments of π
(α)
θk

and those of the previous distribution qθk . We

recall that, for qθ ∈ G, qθ(x) = µ and qθ(xx
>) = Σ + µµ>. Thus, we can further write that (8) is equivalent

to {
µk+ 1

2
= τk+1π

(α)
θk

(x) + (1− τk+1)µk,

Σk+ 1
2

= τk+1π
(α)
θk

(xx>) + (1− τk+1)
(
Σk + µkµ

>
k

)
− µk+ 1

2
µ>
k+ 1

2

.

We now give an example in order to illustrate the second step of Algorithm 1. This example is rather
general and links Eq. (7) with reverse information projections [28, 35, 29]. A list of comprehensive examples
of this step is provided in Appendix C.

Example 3. The proximal step (7) encompasses the notion of projection if the function r is the indicator ιC
of a non-empty closed convex set C ⊂ H [9, Example 12.25]. We obtain, for α = 1,

θk+1 = arg min
θ′∈Θ

ιC(θ′) +KL(qθ
k+1

2

, qθ′)

= arg min
θ′∈Θ∩C

KL(qθ
k+1

2

, qθ′).

We recognize that in this case, (7) is the reversed information projection of qθ
k+1

2

on the set {qθ ∈ Q, θ ∈
C ∩Θ}, as described in [29, Section 3] for instance.

3.2 A black-box implementation based on non-linear importance sampling

Implementing directly Algorithm 1 might not be possible in practice. In many situations, π
(α)
θ (Γ) cannot be

expressed analytically, and must be approximated. We thus propose a stochastic implementation of Algo-
rithm 1 based on non-linear importance sampling. This new scheme only requires that samples distributed
following qθ are available for any θ ∈ Θ, and that an unnormalized version of π can be evaluated. This
means that there exists π̃ ∈ M(X , ν) and Zπ > 0 such that for any x ∈ X , π(x) = 1

Zπ
π̃(x) with π̃(x) being

easy to compute.
This setting is standard in importance sampling as well as in black-box VI [79] for instance. The proposed

stochastic form of Algorithm 1 is motivated by the following alternative form of π
(α)
θ (Γ):

π
(α)
θ (Γ) =

1∫ ( π̃(y)
qθ(y)

)α
qθ(y)ν(dy)

∫ (
π̃(x)

qθ(x)

)α
Γ(x)qθ(x)ν(dx). (9)

We see here that both integrals in Eq. (9) are expectations with respect to qθ, with the ratios
(
π̃(x)
qθ(x)

)α
evoking exponentiated importance weights. Therefore, our approximate implementation of Algorithm 1
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consists in approximating these integrals with weighted samples from qθ, which yields Algorithm 2.

Algorithm 2: Proposed Monte Carlo proximal relaxed moment-matching algorithm

Choose the step-sizes {τk}k∈N, such that τk ∈ (0, 1] for any k ∈ N.
Choose the sample sizes {Nk}k∈N, such that Nk ∈ N \ {0} for any k ∈ N.
Set the Rényi parameter α > 0.
Initialize the algorithm with θ0 ∈ int Θ.
for k = 0, ... do

Sample xl ∼ qθk for l ∈ J1, Nk+1K.
For l ∈ J1, Nk+1K, compute the non-linear importance weights

w
(α)
l =

(
π̃(xl)

qθk(xl)

)α
, (10)

and the normalized non-linear importance weights

w̄
(α)
l =

w
(α)
l∑Nk+1

l=1 w
(α)
l

. (11)

Compute θk+ 1
2

such that

qθ
k+1

2

(Γ) = τk+1

Nk+1∑
l=1

w̄
(α)
l Γ(xl)

+ (1− τk+1)qθk(Γ). (12)

Update θk+1 following

θk+1 = arg min
θ′∈Θ

(
r(θ′) +

1

τk+1
KL(qθ

k+1
2

, qθ′)

)
. (13)

end

Algorithms 1 and 2 are both written assuming that the proximal step can be computed exactly. Examples
of such computations are provided in Appendix C. However, it may not be the case, depending on r and Q.
In such situations, one may use an optimization algorithm as a subroutine to approximate this step. Specific
cases have been investigated in the literature. For instance, the proximal algorithm proposed in [12] can be
used in the case of Gaussian densities with fixed mean. A graphical lasso solver such as [91, 6] can also be
employed for computation of this step for Gaussian densities with fixed mean and `1 regularizer.

3.3 Comparison with existing moment-matching algorithms

Let us now discuss the main features of our algorithms, and their positioning with respect to existing
moment-matching algorithms. First, note that a strict moment-matching update of θk+1,

qθk+1
(Γ) = π(Γ), (14)

is recovered in Algorithm 1 when τk+1 = 1, α = 1 and r ≡ 0. Therefore, each update of Algorithm 1 can
be viewed as a generalized version of the strict moment-matching update of Eq. (14) with supplementary
degrees of freedom, hence its name.

Many algorithms in statistics resort to moment-matching updates. In AIS, the AMIS scheme [27, 64] and
the M-PMC scheme [21] rely on updates similar to (14). The idea of moment-matching updates with τ > 0
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as in (6) can also be found in many contexts, such as VI [54], covariance learning in adaptive importance
sampling [37] or in the cross-entropy method [58], although π is not used directly in the latter. However, all
the aforementioned works consider KL-based updates, that is with α = 1 and no regularization term (i.e.,
r ≡ 0).

Moment-matching updates are often approximated through IS, as we do in Algorithm 2. Importance

sampling estimation of π(Γ) or π
(α)
θ (Γ) is for instance used in the AMIS scheme of [27, 64, 38] for adaptive

importance sampling, where proposals are constructed by matching the moments of the target. AMIS is
recovered when α = 1, τk ≡ 1 and r ≡ 0. However, note that in AMIS, all the past samples are used at each
iteration and re-weighted (interpreting that samples are simulated in a multiple IS setting [39]), which is not
the case here. In that respect, the APIS algorithm [66] bears some similarity, since it performs adaptation
via moment matching with only the samples at each given iteration. Let us also mention the algorithm in
[54], where deterministic and stochastic updates are combined to exploit the structure of the target.

When α = 1, the weights of Algorithm 2 reduce to standard importance sampling weights, with qθk
as a proposal distribution. However, for α 6= 1, then each weight comes from a non-linear transformation
applied to the standard importance sampling weights. A particular type of non-linearity has been studied
in [57], where cropped weights have been shown to decrease the variance of the estimator. Some related
methodologies for a non-linear transformation of the importance weights can be found in [52, 89] (see also
[67] for a review). Note that similarly to cropping the weights, raising them at a power α ≤ 1, is also a
concave transformation of the weights, which may improve the estimators too. This intuition is confirmed
by our theoretical analysis in Section 5 and by our numerical experiments in Section 6.

In a different context, moment-matching updates have been used in [42] to construct a path between two
exponential distributions by averaging their moments, corresponding to α = 1. Similarly, geometric paths

using distributions similar to π
(α)
θ have been used in [75, 71], corresponding to τk ≡ 0. This means that

our updates in Algorithm 1 use both techniques simultaneously. This is linked to the more general paths
between probability distributions proposed in [18], or to the q-paths of [68]. Actually, moment-matching
and geometric averages both are barycenters between π and qθ in the sense of the inclusive or exclusive KL
divergence [42], indicating that Eq. (6) may have a similar interpretation.

4 Geometric interpretation as a Bregman proximal gradient scheme

Let us show now that Algorithm 1 can be interpreted as a special case of a Bregman proximal gradient
algorithm [11, 86]. This perspective will be a key element of our convergence analysis in Section 5. We show
hereafter that Algorithms 1 and 2 lie within this framework and detail our working assumptions. The proofs
are deferred to the supplementary material [43] in Appendix A. Then, we discuss how our algorithms relate
with natural gradient methods and black-box schemes.

4.1 Geometric interpretation as a Bregman proximal gradient scheme

In this section, we first recall some notions about Bregman proximal optimization schemes (more details can
be found in [10, 11, 86]). We then identify the Bregman geometry leading to our algorithms. Finally, we
show the equivalence between Algorithm 1 and a Bregman proximal gradient algorithm within this particular
geometry under some assumptions that we also explain here.

An essential tool of our analysis is the notion of Bregman divergence, that generalizes the standard
Euclidean distance. The Bregman divergence paradigm allows to propose new optimization algorithms by
relying on other geometries, with the aim to yield better convergence results and/or simpler updates for a
given problem. Each Bregman divergence is constructed from a function satisfying the so-called Legendre
property.
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Definition 5. A Legendre function is a function B ∈ Γ0(H) that is strictly convex on the interior of its
domain int domB, and essentially smooth. B is essentially smooth if it is differentiable on int domB and
such that ||∇B(θk)|| −−−−−→

k→+∞
+∞ for every sequence {θk}k∈N converging to a boundary point of domB with

θk ∈ int domB for every k ∈ N.
Given a Legendre function B, we define the Bregman divergence dB as

dB(θ, θ′) := B(θ)−B(θ′)− 〈∇B(θ′), θ − θ′〉, ∀(θ, θ′) ∈ (domB)× (int domB).

We now define the notion of conjugate function (sometimes called the Fenchel conjugate) [9], which allows
to state some useful properties of Legendre functions.

Definition 6. The conjugate of a function f : H → [−∞,+∞] is the function f∗ : H → [−∞,+∞] such that

f∗(θ) = sup
θ′∈H
〈θ′, θ〉 − f(θ′).

Proposition 2 (Section 2.2 in [86]). Let B be a Legendre function. Then we have that

(i) ∇B is a bijection from int domB to int domB∗, and (∇B)−1 = ∇B∗,

(ii) dom ∂B = int domB and ∂B(θ) = {∇B(θ)}, ∀θ ∈ int domB.

Finally, B is a Legendre function if and only if B∗ is a Legendre function.

The Bregman divergence dB(θ, θ′) measures the gap between the value of the function B and its linear
approximation at θ′, when both are evaluated at θ. B is strictly convex, meaning that its curve is strictly
above its tangent linear approximations. Thus, dB satisfies the following distance-like property. Note however
that dB is not symmetric nor does it satisfy the triangular inequality in general.

Proposition 3 (Section 2.2 in [86]). Consider a Legendre function B with the associated Bregman divergence
dB. Then, for every θ ∈ domB, θ′ ∈ int domB,

dB(θ, θ′) ≥ 0,

dB(θ, θ′) = 0 if and only if θ = θ′.

Each choice for the Legendre function B yields a specific divergence dB . In particular, Bregman di-
vergences generalize the Euclidean norm, since the latter is recovered for B(θ) = 1

2‖θ‖
2 [11]. Given these

notions, we can now explicit the geometry that will be useful to provide a new interpretation of our Algo-
rithm 1. The following proposition shows that the log-partition function defined in (2) is a natural choice to
generate a Bregman divergence.

We first make an assumption ensuring that the choice of Q, given the target π, makes the function f
(α)
π

well-posed.

Assumption 1. The exponential family Q and the target π are such that

(i) int Θ 6= ∅ and int Θ ⊂ dom f
(α)
π ,

(ii) Q is minimal and steep (following the definitions of [7, Chapter 8]).

Minimality implies in particular that for each distribution inQ, there is a unique vector θ that parametrizes
it. Most exponential families are steep. In particular, if Θ is open (in this case, Q is called regular), then

Q is steep [7, Theorem 8.2]. Note that when α ∈ (0, 1), then dom f
(α)
π = Θ so that Assumption 1 (i) holds.
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Indeed, qθ(x) > 0 for every x ∈ X and, in particular, qθ(x) is positive as soon as π(x) > 0. This means that
the quantity in the logarithm is positive. When α = 1, we have

KL(π, qθ) =

∫
log(π(x))π(x)ν(dx)− 〈θ, π(Γ)〉+A(θ), ∀θ ∈ Θ.

Thus dom f
(α)
π = Θ, and Assumption 1 (i) holds if

∫
log(π(x))π(x)ν(dx) and π(Γ) are finite. However,

Assumption 1 (i) may not be satisfied when α > 1.

Proposition 4. Under Assumption 1 (i), the log-partition A, defined in Eq. (2), is proper, lower semicon-
tinuous and strictly convex. In addition, all the partial derivatives of A exist on int Θ. In particular, its
gradient reads

∇A(θ) = qθ(Γ), ∀θ ∈ int Θ. (15)

If Assumption 1 (i)-(ii) is satisfied, then the log-partition function is a Legendre function.

Proof. See Appendix A.1

The Bregman divergence induced by the Legendre function A admits a statistical interpretation that has
been well-studied in the information geometry community [4, 76]. Indeed, the KL divergence between two
distributions from Q is equivalent to the Bregman divergence dA between their parameters, as we recall in
the next proposition.

Proposition 5 ([76]). Consider θ, θ′ ∈ int Θ and A the log-partition function defined in (2). Then,

KL(qθ, qθ′) = dA(θ′, θ).

This proposition links the KL divergence with the notion of Bregman divergence, which is also central
to many new algorithms in optimization. We now exploit this connection to analyze Algorithm 1 as an
optimization algorithm written with the divergence dA. We first give an intermediate proposition that shows

the differentiability of f
(α)
π , and thus properly justifies the use of the gradients of f

(α)
π in our following study.

Proposition 6. Let α > 0. The map f
(α)
π is of class C2 on int Θ ∩ dom f

(α)
π . In particular, for any

θ ∈ int Θ ∩ dom f
(α)
π ,

∇f (α)
π (θ) =

{
qθ(Γ)− π(Γ) if α = 1,

qθ(Γ)− π(α)
θ (Γ) if α 6= 1.

Similarly, for any θ ∈ int Θ ∩ dom f
(α)
π ,

∇2f (α)
π (θ) =

{
∇2A(θ) if α = 1,

∇2A(θ) + (α− 1)
(
π

(α)
θ (ΓΓ>)− π(α)

θ (Γ)(π
(α)
θ (Γ))>

)
if α 6= 1.

Proof. See Appendix A.2

We now give the definitions of the gradient descent operator for f
(α)
π , of the proximal operator for r,

and of the proximal gradient operator for F
(α)
π = f

(α)
π + r, all within the Bregman metric induced by the

log-partition function A. Interested readers can go to [10, 86] for a study of iterative schemes relying on
these operators in a general setting.

Definition 7. Consider a positive step-size τ > 0.
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(i) The Bregman proximal operator of τr is defined as

proxAτr(θ) := arg min
θ′∈domA

(
r(θ′) +

1

τ
dA(θ′, θ)

)
, ∀θ ∈ int domA.

(ii) When ∇A(θ)− τ∇f (α)
π (θ) ∈ dom∇A∗ for every θ ∈ int domA, the Bregman gradient descent operator

of τf
(α)
π is well-defined and reads

γA
τf

(α)
π

(θ) := ∇A∗
(
∇A(θ)− τ∇f (α)

π (θ)
)
, ∀θ ∈ int domA.

(iii) The Bregman proximal gradient operator of τF
(α)
π is defined by

TA
τF

(α)
π

(θ) := arg min
θ′∈domA

(
r(θ′) + 〈∇f (α)

π (θ), θ′ − θ〉+
1

τ
dA(θ′, θ)

)
, ∀θ ∈ int domA.

Next, we show that Algorithm 1 is a Bregman proximal gradient algorithm relying on the divergence dA
and that it is well-posed, which brings useful links between statistics, Bregman divergences, and optimization.
To do so, let us introduce technical assumptions under which the operators γA

τf
(α)
π

and proxAτr from Definition

7 are well-defined, single-valued, and mapping the set int Θ to itself.

Assumption 2. For any θ ∈ int domA, π
(α)
θ (Γ) ∈ int domA∗. Equivalently, there exists θ(α) ∈ int Θ such

that π
(α)
θ (Γ) = qθ(α)(Γ).

In the case where α = 1 and Q = G, Assumption 2 is equivalent to the target π having finite first and
second order moments.

Assumption 3. The regularizer r is in Γ0(H), is bounded from below, and is such that int Θ ∩ dom r 6= ∅.
This assumption is standard in the Bregman optimization literature [10], and allows in particular non-

smooth regularizers. For instance, Assumption 3 is satisfied by the `1 norm often used to enforce sparsity
[45, Section 3.4], or by indicator functions of non-empty closed convex sets, to impose constraints on the
parameters.

We now show how Assumptions 1, 2, and 3 ensure the well-posedness of the operators introduced in

Definition 7. We also define the stationary points of F
(α)
π and show that they coincide with the fixed points

of the operators of Definition 7.

Definition 8. Under Assumption 3, we introduce for α > 0 the set of stationary points of F
(α)
π as

S(α)
π := {θ ∈ int Θ ∩ dom f (α)

π , 0 ∈ ∇f (α)
π (θ) + ∂r(θ)}.

Remark 3. Points in S
(α)
π are stationary points of F

(α)
π in the sense of the limiting subdifferential ∂L [78,

Chapter 6], which generalizes the subdifferential to non-convex functions. In particular, for f ∈ Γ0(H),

∂Lf = ∂f [78, Proposition 6.17]. For every θ ∈ int Θ ∩ dom f
(α)
π , ∂LF

(α)
π = ∇f (α)

π + ∂r, by convexity of r,

differentiability of f
(α)
π , and [78, Proposition 6.17], meaning that θ ∈ S(α)

π if and only if 0 ∈ ∂LF (α)
π (θ). This

notion of stationary point is for instance used in [15].

Proposition 7.

(i) Under Assumptions 1 and 2, if τ ∈ (0, 1], the operator γA
τf

(α)
π

is well-defined on int Θ and γA
τf

(α)
π

(θ) ∈
int Θ for every θ ∈ int Θ.
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(ii) Under Assumptions 1 and 3, the domain of proxAτr is int Θ. On int Θ, proxAτr is single-valued, and
proxAτr(θ) ∈ int Θ for every θ ∈ int Θ.

(iii) If Assumptions 1, 2, and 3 are satisfied, and τ ∈ (0, 1], TA
τF

(α)
π

= proxAτr ◦ γAτf(α)
π

, and a point θ ∈ int Θ

is a fixed point of TA
τF

(α)
π

if and only if it is a stationary point of F
(α)
π .

Proof. See Appendix A.3

We now state our main proposition, that provides an optimization-based interpretation for our Algorithm

1. Specifically, we show that Algorithm 1 consists first in a Bregman gradient descent step on f
(α)
π and then

in a Bregman proximal step on the regularization function r, both within the Bregman geometry induced
by log-partition function A.

Proposition 8. Consider a sequence {θk}k∈N generated by Algorithm 1 starting from θ0 ∈ int Θ. Under
Assumptions 1, 2, and 3, for every k ∈ N, θk, θk+ 1

2
∈ int Θ, and we can define equivalently the updates (6)

and (7) as

θk+ 1
2

= γA
τk+1f

(α)
π

(θk), (16)

θk+1 = proxAτk+1r

(
θk+ 1

2

)
. (17)

Furthermore,
θk+1 = TA

τk+1F
(α)
π

(θk). (18)

Proof. See Appendix A.4

Remark 4. Contrary to Algorithm 1, each iteration k ∈ N of Algorithm 2 resorts to an approximation of

π
(α)
θk

(Γ). Recall from Proposition 6 that this quantity appears in ∇f (α)
π (θk) = qθk(Γ) − π(α)

θk
(Γ). Therefore,

Algorithm 2 uses a noisy approximation of ∇f (α)
π (Γ), that we denote by G̃

(α)
π (θk). Following the result of

Proposition 8, which shows that Algorithm 1 is a Bregman proximal gradient algorithm, we can interpret
Algorithm 2 as a stochastic Bregman proximal gradient algorithm [90], where

θk+1 = proxAτk+1r

(
∇A∗

(
∇A(θk)− τk+1G̃

(α)
π (θk)

))
.

Note however that we do not guarantee here the well-posedness of this stochastic step.

4.2 Comparison with existing gradient descent algorithms

In the previous section, we interpret Algorithms 1 and 2 under the framework of Bregman proximal gradient
algorithms. Let us use this perspective to explain the links between our algorithms, natural gradients
methods, and black-box VI algorithms.

4.2.1 Comparison with information-geometric gradient descent algorithms

Proposition 8 shows that Algorithm 1 can be interpreted as a Bregman proximal gradient algorithm, whose
geometry is given by the KL divergence between distributions of the approximating family. This result
is similar to the approach taken in [54], which considers the minimization of the KL divergence with a
regularization term. In the existing literature, the link between moment-matching steps and KL minimization
is well-known [21, 27], while the interpretation of the KL divergence as a Bregman divergence in the case of
an exponential family is for instance presented in [76].
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Methods using the so-called natural gradients also exploit the geometry of their statistical models [3, 50,
46, 49, 61], as the gradients are multiplied by the inverse of the Fisher information matrix of the statistical
model. This pre-conditioned gradient is the steepest descent direction in the Riemannian manifold whose
metric tensor is the Fisher information matrix [3]. In the previously mentioned works, turning to natural
gradients is shown to improve algorithms performance.

Bregman gradient descent shares close ties with natural gradient methods as shown in [80]. More explic-
itly, for exponential families, a Bregman gradient descent step in the variable θ is equivalent to a natural
gradient descent step in the variable ∇A(θ), with the metric tensor being ∇2A∗ instead of ∇2A, the latter
being equal to the Fisher information matrix [2].

However, while natural gradient methods in variational inference are often restricted to minimizing the KL
divergence, our methods allow to consider Rényi divergences with a possible regularization term. This creates
more flexibility in the choice of the divergence since α can be tuned. The additional regularization term allows
to enforce features on the sought parameters θ, such as sparsity for better compressibility/interpretability,
which is usually done with non-smooth regularizer [45]. The Rényi divergence is handled with a Bregman
gradient step which writes as a relaxed moment-matching step, while adding a non-smooth regularizer simply
translates in a Bregman proximal step in Algorithm 1.

Note that Algorithm 2 is a black-box implementation of Algorithm 1. This setting allows to consider tar-
gets which can only be evaluated up to a multiplicative constant. On the contrary, the previously mentioned
natural gradients methods are often restricted to conjugacy hypotheses linking the target and the proposals.

4.2.2 Comparison with the variational Rényi bound algorithm of [60]

Algorithm 2 works in the black-box setting, meaning that samples from qθ are available for any θ ∈ Θ and
that π = 1

Zπ
π̃, where Zπ is unknown and π̃(x) can be evaluated for any x ∈ X . However, most of the

black-box VI algorithms use standard gradients, meaning that they are implicitly written in the Euclidean
metric. In this section, we compare our Algorithms 1 and 2 with the method of [60], which also addresses
the minimization of θ 7−→ RDα(qθ, π) through stochastic gradient descent in the black-box setting. Namely,
we show that the method in [60] can be seen as an Euclidean counterpart of Algorithm 2 when r ≡ 0, while
our method leverages information-geometric ideas.

In [60], an alternative objective that does not involve the unknown normalization constant Zπ is con-
structed from θ 7−→ RDα(qθ, π). It is called the variational Rényi bound and plays a role akin to the evidence
lower bound for KL divergence minimization. This objective is then minimized using a stochastic gradient
descent algorithm using samples from the proposals. We now explicit this algorithm when an exponential
family is used for the proposals. Consider in the following α ∈ (0, 1), and θ ∈ int Θ. Then,

RD1−α(qθ, π) =
1− α
α

RDα(π, qθ)

= − 1

α
log

(∫
π(x)αqθ(x)1−αν(dx)

)
= − 1

α
log

(∫
π̃(x)αqθ(x)1−αν(dx)

)
+ logZπ,

where the first equality comes from [88, Proposition 2]. Therefore, minimizing θ 7−→ RD1−α(qθ, π) is
equivalent to maximizing

L(α)
π (θ) :=

1

α
log

(∫
π̃(x)αqθ(x)1−αν(dx)

)
. (19)

Note that, as pointed in [60, Theorem 1], L(α)
π (θ) −−−→

α→1
logZπ, and L(α)

π ≤ logZπ for α ≤ 1, meaning that

the marginal likelihood is recovered for α = 1.
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Now, following computations very similar to those of Proposition 6, we obtain

∇L(α)
π (θ) =

1− α
α

(
π

(α)
θ (Γ)− qθ(Γ)

)
= −1− α

α
∇f (α)

π .

Therefore, the gradient ascent algorithm to maximize L(α)
π on Θ reads

θk+1 = θk + τk+1∇L(α)
π (θk)

= θk − τk+1∇f (α)
π (θk).

where the factor 1−α
α is absorbed by the step-size.

Hence, the exact implementation of the VRB algorithm appears as an Euclidean analogue of Algorithm

1. In the black-box setting, the quantities π
(α)
θ (Γ) are approximated at iteration k ∈ N using samples from

qθk , as it is done for Algorithm 2, leading to Algorithm 3.

Algorithm 3: Variational Rényi bound algorithm on Q
Choose the step-sizes {τk}k∈N, such that τk > 0 for any k ∈ N.
Choose the sample sizes {Nk}k∈N, such that Nk ∈ N \ {0} for any k ∈ N.
Set the Rényi parameter α > 0.
Initialize the algorithm with θ0 ∈ int Θ.
for k = 0, ... do

Sample xl ∼ qθk for l ∈ J1, Nk+1K.
Compute the weights {w̄(α)

l }
Nk+1

l=1 as in Algorithm 2.
Compute θk+1 such that

θk+1 = θk + τk+1

Nk+1∑
l=1

w̄
(α)
l Γ(xl)− qθk(Γ)

 . (20)

end

5 Convergence analysis

In this section, we analyze the convergence of Algorithm 1. We rely on its interpretation as a Bregman
proximal gradient algorithm from Section 4.1. We explain in Section 5.1 in which sense the Bregman

geometry induced by the KL divergence is well-adapted to handle Problem (P
(α)
π ). Convergence results are

given in Section 5.2 and are compared with existing results in Section 5.3. The proofs can be found in the
supplementary material [43] in Appendices A-B.

5.1 Properties of Problem (P
(α)
π )

We start by introducing the notions of relative smoothness and relative strong convexity, which generalize
the Euclidean notions of smoothness and strong convexity to the Bregman setting. In the Euclidean setting,
having an objective function that satisfies these two notions is desirable to construct efficient algorithms.
When these properties are not satisfied, this may indicate that the Euclidean metric is not the best metric
to handle the problem and encourages a switch to more adapted Bregman divergences.

Definition 9. Consider a Legendre function B and a differentiable function f .
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(i) We say that f is L-relatively smooth with respect to B if there exists L ≥ 0 such that

f(θ)− f(θ′)− 〈∇f(θ′), θ − θ′〉 ≤ LdB(θ, θ′), ∀(θ, θ′) ∈ (domB)× (int domB).

(ii) Similarly, we say that f is ρ-relatively strongly convex with respect to B is there exists ρ ≥ 0 such that

ρdB(θ, θ′) ≤ f(θ)− f(θ′)− 〈∇f(θ′), θ − θ′〉, ∀(θ, θ′) ∈ (domB)× (int domB).

These properties give indications about the relation between f and its tangent approximation at θ′, defined
by θ 7−→ f(θ′) + 〈∇f(θ′), θ − θ′〉 + LdB(θ, θ′), where L can be changed for ρ. This tangent approximation
majorizes f in the case of relative smoothness, while it minorizes f in the case of relative strong convexity,
as illustrated in Fig. 1. In both cases, f and its tangent approximation coincide at θ′.

In the Euclidean case B(·) = 1
2‖ · ‖

2, the relative smoothness property is equivalent to the standard
smoothness property, i.e. the Lipschitz continuity of the gradient, and relative strong convexity is equivalent
to the strong convexity property [11, 44]. Note also that relative strong convexity implies convexity (which
corresponds to ρ = 0 in the above). We explain now the interplay between the parameter α of the Rényi
divergence and the above notions.

Proposition 9. Let Assumption 1 be satisfied. The function f
(α)
π , defined in (3), is 1-relatively smooth with

respect to A, defined in (2), when α ∈ (0, 1]. Similarly, the function f
(α)
π is 1-relatively strongly convex with

respect to A when α ∈ [1,+∞).

Proof. See Appendix A.5

In Proposition 9, the case α = 1 plays a special role, as it is the only value for which we have both relative

smoothness and relative strong convexity. Indeed, f
(1)
π (θ) = KL(π, qθ) and dA(θ, θ′) = KL(qθ′ , qθ), which

gives the intuition that f
(1)
π and dA are functions with similar mathematical behaviors, leading to improved

properties.

We now give a result about potential failures of the Euclidean smoothness of f
(α)
π . This suggests that

the Euclidean metric is not well-suited to minimize f
(α)
π .

Proposition 10. There exist targets π and exponential families Q such that the gradient of f
(α)
π is not

Lipschitz on dom f
(α)
π , for α > 0.

Proof. See Appendix A.6

Remark 5. The complete proof is in Appendix A in the supplementary material [43]. We exhibit counter-
examples built from the family of one-dimensional centered Gaussian distributions with variance σ2, that we
denote by G1

0 in the following. It is an exponential family, with parameter θ = − 1
2σ2 and sufficient statistics

Γ(x) = x2. Its log-partition function is A(θ) = 1
2 log(2π)− 1

2 log(−2θ), whose domain is Θ = R−−. Consider

also a target qθπ ∈ G1
0 . Recall that (f

(α)
π )′ is Lipschitz continuous on its domain if and only if (f

(α)
π )′′ is

bounded on its domain.
We have

dom f (α)
π =

{
Θ if α ≤ 1,

( α
α−1θπ, 0) if α > 1,

and |(f (α)
π )′′(θ)| → +∞ when θ → 0, and also when θ → α

α−1θπ for the case α > 1.
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The counter-example used in the proof of Proposition 10 illustrates why choosing to work in the Bregman
geometry induced by A can be beneficial. Indeed, when α ∈ (0, 1], we have relative smoothness from
Proposition 9, while Euclidean smoothness fails. Note that in this case, Euclidean smoothness could be

recovered if we restricted f
(α)
π to some set of the form [ε,+∞). However, this creates a risk of excluding the

target value θπ by choosing ε too large.

This counter-example is also a case where Assumption 1 (i) fails for α > 1 since dom f
(α)
π is strictly

included in Θ. One could also restrict the search to a smaller set, but the upper bound of dom f
(α)
π depends

on the target true parameters. This makes it hard to restrict the values of θ in a meaningful way without
knowledge of the target.

(a) Relative smoothness illustrated in the case α = 0.5
(b) Relative strong convexity illustrated in the case α =
2.0

Figure 1: Plots of f
(α)
π and the tangent approximations described in Definition 9, obtained following the

setting decribed in the proof of Proposition 10.

Figure 1 illustrates the results of Proposition 9 when the exponential family is the family of centered
one-dimensional Gaussians G1

0 and the target belongs to this family too. This setting is used to provide the

counter-example of Proposition 10. We can see that when α ≤ 1, relative smoothness is satisfied and f
(α)
π is

above its tangent approximation. On the contrary, α ≥ 1 leads to relative strong convexity, ensuring that

f
(α)
π is above its tangent approximation.

We now give a result about the existence of minimizers to Problem (P
(α)
π ). Again, this result highlights

different behaviors depending on the value of α (i.e., if it is lower, equal or higher than one).

Proposition 11. Let α > 0.

(i) Under Assumptions 1 and 3, the objective function F
(α)
π is proper (i.e., with nonempty domain), lower

semicontinuous, and bounded from below, that is

−∞ < ϑ(α)
π := inf

θ∈Θ
F (α)
π (θ).

(ii) If α ≥ 1 and Assumptions 1, 2, and 3 are satisfied, then F
(α)
π is coercive and there exists θ∗ ∈ Θ such

that F
(α)
π (θ∗) = ϑ

(α)
π . Further, it is unique and in int Θ.

Proof. See Appendix A.7
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5.2 Convergence analysis of Algorithm 1

We are now ready to present our convergence results for Algorithm 1. We give a first set of results for
values of α in (0, 1], and then stronger results when α = 1. Results for α ∈ (0, 1] only exploit the relative
smoothness, while the results for α = 1 rely on the relative smoothness and the relative strong convexity of

f
(1)
π .

We now give our convergence results for Algorithm 1 for α ∈ (0, 1].

Proposition 12. Consider a sequence {θk}k∈N generated by Algorithm 1 from θ0 ∈ int Θ, with α ∈ (0, 1]
and a sequence of step-sizes {τk}k∈N such that τk ∈ [ε, 1] for some ε > 0. Under Assumptions 1, 2, and 3,
then

(i) the sequence {F (α)
π (θk)}k∈N is non-increasing,

(ii) if F
(α)
π (θK+1) = F

(α)
π (θK) for some K ∈ N, then θk = θK for every k ≥ K and θK is a stationary

point of F
(α)
π ,

(iii)
∑
k≥0KL(qθk , qθk+1

) < +∞,

(iv) if in addition, there exists a non-empty compact set C ⊂ int Θ such that θk ∈ C for every k ∈ N and r

is continuous on C, then every converging subsequence of {θk}k∈N converges to a point in S
(α)
π .

Proof. See Appendix B.1

The additional assumption used for point (iv) is satisfied for instance if r = ιC , for a compact C ⊂ int Θ.
The continuity assumption on r is also satisfied by the `1 norm. In this case, r is also coercive, ensuring
that the iterates stay in a compact set. However, this does not ensure that the iterates do not approach the
boundary of Θ.

We now refine the result of Proposition 12 in the case α = 1. In this case, the function f
(α)
π is also

relatively strongly convex and coercive, two properties that are used to give stronger results, including rates
of convergence.

Proposition 13. Consider a sequence {θk}k∈N generated by Algorithm 1 from θ0 ∈ int Θ, with α = 1 and
a sequence of step-sizes {τk}k∈N such that τk ∈ [ε, 1] for some ε > 0. Consider the point θ∗ defined in
Proposition 11. Under Assumptions 1, 2, and 3,

(i) the sequence {KL(qθk , qθ∗)}k∈N is non-increasing and

KL(qθk , qθ∗) ≤ (1− ε)kKL(qθ0 , qθ∗), ∀k ∈ N,

(ii) we have that F
(1)
π (θk) −−−−−→

k→+∞
F

(1)
π (θ∗) = ϑ

(1)
π and that

F (1)
π (θk)− F (1)

π (θ∗) ≤
(1− ε)k

ε
KL(qθ0 , qθ∗), ∀k ∈ N,

(iii) the iterates converge to the solution, θk −−−−−→
k→+∞

θ∗.

Proof. See Appendix B.2

Remark 6. We can see in the above result that if ε = 1, then KL(qθ1 , qθ∗) = 0, meaning that the optimal
value is reached in one iteration. This is because of the particular structure of the Bregman gradient operator
/ moment-matching update when α, τ = 1. Under Assumption 2, there exists θ(1) ∈ int Θ such that π(Γ) =
qθ(1)(Γ), so for every θ ∈ int Θ, γA

f
(1)
π

(θ) = θ(1) (using Eq. (6) and Proposition 8) and TA
F

(α)
π

(θ) = proxAr (θ(1)).

So proxAr (θ(1)) is a stationary point of F
(1)
π , hence equal to θ∗, using Proposition 12 (ii) and Proposition 11.

Note that this phenomenon does not happen for Algorithm 2, where π(Γ) is approximated.
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5.3 Discussion

We now relate our convergence results with existing works in the optimization and statistics literature.
Note that our study leverages techniques from the literature on optimization schemes based on Bregman
divergences [11, 86, 15, 40, 44].

In some of these works, the Legendre function B is assumed to be β-strongly convex for some β > 0.
This ensures that dB(θ, θ′) ≥ β

2 ‖θ− θ
′‖2, and allows to work with the Euclidean norm directly. Similarly, it

may be assumed that domA is closed, or even equal to the full space, alleviating problems that may happen
at the boundary. These two assumptions may not hold in our setting. Indeed, consider the family G1

0 of
one-dimensional Gaussians distributions with zero mean. Its log-partition function, presented in the proof
of Proposition 10, is not strongly convex and its domain is open. This counter-example is also exploited
in Proposition 10 to show that smoothness with respect to the Euclidean norm may fail. We thus have to
reconsider previous works whose theoretical results leverage these assumptions.

In [55], approximating distributions are considered in an exponential family, and the strong convexity of
the log-partition function as well as the Lipschitz continuity of the gradients of the objective are needed. Our
counter-example shows that these properties do not hold in general. In [1], the χ2 divergence is minimized
over an exponential family and the Lipschitz continuity of the gradient is assumed, which may fail due to
Proposition 10. The authors have circumvented this problem by restricting the search to a compact space and
using a projected gradient algorithm, but this creates a risk of excluding interesting values of the parameters.
Similarly, the VRB method of [60] aims at minimizing the Rényi divergence and can be seen as a Euclidean
counterpart to Algorithm 2 (see Section 4.2.2). In all those methods, since Euclidean smoothness is not
satisfied in general, the tuning of the step-size cannot be done using the Lipschitz constant of the gradients.
We show in Section 6 that this creates instabilities and poor performance, in contrast to our methods where
the step-sizes can be chosen following the results presented in Propositions 12 and 13.

Proposition 12 implies a monotonic decrease of F
(α)
π along iterations. This kind of result appears in many

statistical procedures [33, 21, 30, 31]. Note that these works allow more general approximating families, but
do not consider an additional regularization term. In our setting, we are able to give results that are novel

and more precise on the convergence of the sequence of iterates. For α = 1, we prove that f
(1)
π admits an

unique minimizer located in int Θ. We also leverage the relative strong convexity of f
(1)
π to prove a linear

convergence rates of the objective values and the strong convergence of the iterates to the global minimizer.
In the non-convex case α ∈ (0, 1), we use an additional assumption ensuring that the iterates are bounded and
do not tend to the boundary. We then prove the subsequential convergence of the iterates to the stationary
points.

The result of Proposition 12 (iii), which is a type of finite length property of the sequence of iterates,
is not common for a statistical procedure, to our knowledge. This type of result can be used to assess the
convergence of our algorithms. Indeed, the KL divergence between distributions from the same exponential
family can often be computed explicitly, so the condition KL(qθk , qθk+1

) ≤ ε can be used as a stopping
criterion in Algorithms 1 and 2.

Note that our convergence analysis is restricted to α ∈ (0, 1]. This is also the case in [31], which considers
the minimization of the α-divergence Dα over wider families. The techniques used in this work also share

some common points with ours. In particular, because of the 1-relative smoothness of f
(α)
π with respect to

A, we have from Definition 9 that

f (α)
π (θ)− f (α)

π (θ′) ≤ 〈qθ′(Γ)− π(α)
θ′ (Γ), θ − θ′〉+KL(qθ′ , qθ). (21)

Compare this with [31, Proposition 1] that we adapt to our setting as

Ψ(α)
π (θ)−Ψ(α)

π (θ′) ≤ − 1

α

∫
π(x)αqθ′(x)1−α log

(
qθ(x)

qθ′(x)

)
ν(dx). (22)
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Note that here, qθ, qθ′ are not necessarily from an exponential family and that we used Ψ
(α)
π (θ) = Dα(π, qθ),

while Dα(qθ, π) was considered in [31] (this does not affect the results as Dα(π, qθ) = D1−α(qθ, π) for
α ∈ [0, 1]). When qθ and qθ′ are in an exponential family Q, Eq. (22) can be further rewritten as

Ψ(α)
π (θ)−Ψ(α)

π (θ′) ≤
Z
π
(α)

θ′

α

(
〈qθ′(Γ)− π(α)

θ′ (Γ), θ − θ′〉+KL(qθ′ , qθ)
)
, (23)

with Z
π
(α)

θ′
=
∫
π(x)αqθ′(x)1−αν(dx). We recognize now that the right-hand side of Eq. (23) is equal to

the one of (21) up to a positive multiplicative constant. Even if the result of [31, Proposition 1] is derived
directly without using Bregman divergences, our analysis gives a geometric interpretation to it.

In another context, it is often not straightforward to choose the most adapted statistical divergence for
a given application. Indeed, there are many types of statistical divergences that are indexed by a scalar
parameter, for some value of which the KL divergence is recovered [24]. There exist some comparative
studies [41], but they are restricted to particular contexts. The notions of relative smoothness and relative
strong convexity allow us to show that the KL divergence can be used to construct tangent majorizations or
minorization of the Rényi divergences, which seems to be a new insight and may help guide the choice of a
divergence.

6 Numerical experiments

In this section, we investigate the performance of our methods through numerical simulations in a black-
box setting and compare them with existing algorithms. We focus our study on Algorithm 2, that we call
the relaxed moment-matching (RMM) algorithm when r ≡ 0 and the proximal relaxed moment-matching
(PRMM) otherwise. We also consider VRB algorithm from [60], whose implementation for an exponential
family is described in Algorithm 3. It is shown in Section 4.2.2 that the VRB algorithm can be interpreted as

an Euclidean version of our novel RMM algorithm. However, when α ∈ (0, 1], f
(α)
π is not smooth relatively

to the Euclidean distance (see Proposition 10) while it is smooth relatively to the Bregman divergence dA
(see Proposition 9). Therefore, the comparison between the RMM and PRMM algorithms with the VRB
method might allow to assess the use of the Bregman divergence instead of the Euclidean distance on a
numerical basis. We also use this comparison to assess the role of the regularizer, which is a feature of our
approach, but not of [60].

Additional numerical experiments are presented in Appendix D in the supplementary material [43]. In
particular, the influence of the parameters α and τ and of the regularizer r is studied in Appendix D.1 using a
Gaussian toy example. In Appendix D.2, we provide additional comparison between the RMM and the VRB
algorithms. We now turn to a Bayesian regression task, which allows us to compare the RMM, PRMM and
VRB algorithms on a realistic problem and understand better the interest of using the Bregman geometry.
We also use this example to show how our PRMM algorithm allows to compensate for a misspecified prior
by adding a regularizer.

We consider a problem of non-linear regression, where we try to infer a regression vector β ∈ Rd+1 from
J measurements y ∈ RJ , X ∈ RJ×d under Gaussian noise. The non-linearity mimics the effect of a neural
network with one single hidden layer,

Φβ(x) = φ

(
d∑
i=1

βixi + β0

)
, ∀x ∈ Rd,

where β = (βi)0≤i≤d+1 ∈ Rd+1 is the regression vector, with the component β0 playing the role of the bias.
The function φ is the activation function and is taken here as the sigmoid function

φ(s) =
1

1 + e−s
, ∀s ∈ R.
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Given a ground truth vector β ∈ Rd+1, and a feature set X, we assume, for every j ∈ {1, . . . , J},

yj ∼ N
(
yj ; Φβ(Xj), σ

2
)
,

with Xj,: the j-th line of X, and Xj = X>j,: ∈ Rd. Assuming i.i.d. realizations, this leads to the likelihood

expression for a given β ∈ Rd+1,

p(y|β) =

J∏
j=1

N
(
yj ; Φβ(Xj), σ

2
)
.

Our goal is to explore the posterior distribution on β,

p(β|y) =
p(y|β)p(β)

p(y)
,

where knowledge on the regression vector β is encoded in a prior density p(β). In the following, we drop the
dependence on the data, so that our target reads

π(β) := p(β|y) and π̃(β) := p(β|y)p(β).

The RMM, PRMM, and VRB algorithm are tested on synthetic data. First, a regression vector β is
sampled from a spike-and-slab distribution

p0(β) = N (β0; 0.0, 1.0)

d∏
i=1

(ρδ0(βi) + (1− ρ)N (βi; 0.0, 1.0)) .

which places a non-zero probability on βi being zero, for i ∈ J1, dK. This type of distribution is called a
Gaussian-zero model in [77] and is linked with Bernoulli-Gaussian models. Regression vectors are sampled
until we find β̄ ∼ p0 with at least one zero and one non-zero component.

Then, for every j ∈ J1, JK, we sample vectors Xj uniformly in the square [−s, s]d and draw the observation
yj as stated before. Test data ytest ∈ RJtest and X ∈ RJtest×d are also generated in this manner. We consider
a Gaussian prior on β, p(β) = N (β; 0, I).

Since β is not sampled from the prior p(β), there is a mismatch between the data we feed the algorithms
and the posterior model. In the following, we show that the choice of a suitable regularizer in our VI method
can allow to cope with this issue.

We run experiments using the VRB and RMM algorithms, as well as the PRMM algorithm, using the
family of Gaussian densities with diagonal covariance matrix, whose parametrization is detailed in Appendix
C. For the PRMM algorith, we use the regularizer

r(θ) = η‖θ1‖1,

with η ≥ 0. This can be understood as the Lagrangian relaxation [48] with multiplier η ≥ 0 of the constraint

d∑
i=1

‖θ1‖1 ≤ c,

for c ≥ 0 such that the constrained set is non empty.
Our `1-like regularizer enforces sparsity on all the components of the mean µ, except the component

µ0. The aim is to mimic the sparse structure of β that was simulated from p0. The computation of the
corresponding Bregman proximal operator for this choice of r is detailed in Appendix C.
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The algorithms are run for K = 100 iterations, with a constant number of samples N = 500. Two values
of α are tested, namely, α = 1.0 and α = 0.5. The VRB algorithm is run with τ = 10−3 while the PRMM
algorithm is run with τ = 10−1. These choices correspond to the most favorable step-size for each algorithm,
as indicated by our experiments in Appendix D. The algorithms are run 103 times. We choose η = 1.0 in
the following. In the subsequent experiments, we set d = 5, J = 100, J test = 50, σ2 = 0.5, and s = 5.0.

In order to asses the performance of the algorithm, we track the variational Rényi bound, defined Eq.
(19), that is estimated at each iteration k ∈ N through

L(α)
π (θk) ≈ 1

α
log

 1

Nk+1

Nk+1∑
l=1

w
(α)
l

 . (24)

We also consider the F1 score that each algorithm achieves in the prediction of the zeros of the true regression
vector β. It is computed at each iteration k ∈ N, by seeing how the zeros of µk match those of β.

Additionally, since we provide not only a pointwise estimate of β, but an approximation of the full target
π, we also test the quality of the distributional approximation by sampling a regression vector β from the
final proposal qθK . This is done by computing

MSEtest(β) :=

Jtest∑
j=1

(
ytest
j − Φβ(Xtest

j )
)2
.

By sampling N test
β vectors β ∼ qθK and analyzing the distribution of the values {MSEtest(βl)}

Ntest
β

l=1 , we can
get a sense of the quality of the approximated density qθK in terms of both location and scale. At each run,
the final distribution qθK is tested by sampling N test

β = 100 values of β to assess the test error.

(a) α = 0.5 (b) α = 1.0

Figure 2: Approximated Rényi bound, averaged over 103 runs with N = 500 samples per iteration.

Figure 2 shows the increase of the approximated variational Rényi bound described in Eq. (24). As

discussed in Section 4.2.2, an increase in the Rényi bound L(α)
π (θ) shows a decrease in the Rényi divergence

RDα(π, qθ), so these plots show that the three method decrease the Rényi divergence. However, our methods
are able to reach higher values at a faster rate than the VRB method, illustrating the improvement coming
from using the Bregman geometry rather than the Euclidean one.

Figure 3 shows the F1 score achieved by each algorithm in the retrieval of the zeros of the true regression
vector. The RMM and VRB algorithms are not able to recover any zeros, which is to be expected since they
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(a) α = 0.5 (b) α = 1.0

Figure 3: F1 score in the prediction of the zeros of β by the zeros of {µk}Kk=0, averaged over 103 runs with
500 samples per iteration.

do not include any sparsity-inducing mechanisms. However, the PRMM algorithm is able to recover in this
example the zero components of the regression vector in a few number of iterations and in most of the runs.
Note also that it does not create false positives neither. This illustrates that adding a regularizer in the VI
method itself can enforce sparsity although the prior of our model did not enforce it.

(a) α = 0.5 (b) α = 1.0

Figure 4: Box plots of the values MSEtest, showing the reconstruction errors on the test data.

The box plots of Fig. 4 assess the quality of the variational approximation of the posterior obtained by
each method, by evaluating how regression vectors sampled from the approximations are able to reconstruct
the test data. We see that the PRMM and RMM algorithms yields reconstruction errors that are less spread
and at a lower level than the ones coming from the VRB algorithm. This is in accordance with the plots of
Fig. 2. This shows the higher performance coming from using a more adapted geometry. Note that errors
are more spread for the PRMM algorithm than for the RMM algorithm. This may be due to the proximal
step, which creates bigger eigenvalues for the covariance matrix (see Appendix C for details).

In this section, we observed that the RMM and PRMM are able to obtain better performance than the
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VRB algorithm in terms of Rényi bound and reconstruction errors, while recovering all the correct zeros of
the regression vector using a regularizer. This shows the interest of using the geometry induced by the KL
divergence and additional regularizer terms.

7 Conclusion and perspectives

We introduced in this work the proximal relaxed moment-matching algorithm, which is a novel VI algorithm
minimizing the sum of a Rényi divergence and a regularizing function over an exponential family. We provided
a black-box implementation which allows to bridge the gap between information-geometric VI methods and
black-box VI algorithms, while generalizing several existing moment-matching algorithms. We also rewrote
our algorithm as a Bregman proximal gradient algorithm whose Bregman divergence is equivalent to the
Kullback-Leibler divergence.

Using this novel perspective, we established strong convergence guarantees for our exact algorithm. For
α ∈ (0, 1], we established the monotonic decrease of the objective function, a finite-length property of the
sequence of iterates, and subsequential convergence to a stationary point. In the particular case α = 1, we
also established the linear convergence of the iterates towards the optimal parameters. We also exhibited a
simple counter-example for which the corresponding Euclidean schemes may fail to converge, showing the
necessity of resorting to an adapted geometry. These findings are backed by numerical results showing the
versatility of our methods compared to more restricted moment-matching updates. Indeed, our parameters
allow to tune the algorithms speed and robustness but also the features of the approximating densities.
Comparison of our algorithms with their Euclidean counterparts also showed their robustness and good
performance.

This confirmed the benefits of using a regularized Rényi divergence and the underlying geometry of
exponential families, but also opened several research avenues.

First, although we proved the convergence of Algorithm 1, work remains to be done to establish the
convergence of Algorithm 2. In particular, it would be interesting to understand the interplay between α,
the step-sizes {τk}k∈N and the sample sizes {Nk}k∈N. Then, another venue of improvement would be the use
of more complex optimization schemes, such as block updates or accelerated schemes. Variance reduction
techniques as used in some black-box VI algorithms could also be used to improve our Algorithms. Finally,
studying optimization schemes over mixtures of distributions from an exponential family could be a natural
extension in order to tackle multimodal targets. Similarly, extending our analysis to values α > 1 would allow
to use the χ2 divergence, which plays an important role for the analysis of importance sampling schemes.
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Supplementary material (Appendices A-D)

The supplementary material [43] contains four appendices. Appendices A and B contain the proofs of our
theoretical results. Appendix C contains the computations of two Bregman proximal operators. Appendix
D includes additional numerical experiments.
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A Results about F
(α)
π

A.1 Proof of Proposition 4

Proof of Proposition 4. The domain of A is non-empty by Assumption 1. Also, since
∫

exp(〈θ,Γ(x)〉)ν(dx) >
0 for any θ ∈ Θ, we have that A(θ) > −∞ for every θ in its domain, so A is proper. The set Θ = domA is
convex, and the function A is lower semi-continuous on H and strictly convex on Θ by [16, Theorem 1.13].
The derivability property comes from [16, Theorem 2.2], and the expression of the gradient follows from
simple computations.

Because of the steepness assumption on Q, A is steep. With the differentiability properties of the above,
this means that A is essentially smooth, showing that A is Legendre.

A.2 Proof of Proposition 6

Proof of Proposition 6. For the case α = 1, note that f
(1)
π can be written as

f (1)
π (θ) =

∫
log(π(x))π(x)ν(dx)− 〈θ, π(Γ)〉+A(θ), ∀θ ∈ Θ ∩ dom f (α)

π , (25)

where Θ = domA, and A defined in Eq. (2). The results come from the properties of A, given Proposition
4.

We now turn to the case α 6= 1. For every θ ∈ Θ, it is possible to decompose f
(α)
π as in

f (α)
π (θ) = A(θ) +

1

α− 1
log

(∫
π(x)α exp(〈θ,Γ(x)〉)1−αν(dx)

)
.

where the functions h̃ and p̃ defined such that h̃(θ) =
∫
π(x)α exp(〈θ,Γ(x)〉)1−αν(dx) and p̃(x, θ) = π(x)α exp(〈θ,Γ(x)〉)1−α

for any θ ∈ int Θ ∩ dom f
(α)
π and x ∈ X .

For any θ ∈ int Θ ∩ dom f
(α)
π , x 7−→ p̃(x, θ) is integrable. Since θ 7−→ p̃(x, θ) is continuous on int Θ, we

also have that (x, θ) 7−→ p̃(x, θ) is measurable on X × int Θ. Furthermore, for any x ∈ X , θ 7−→ p̃(x, θ)
admits continuous partial derivatives of first and second order on int Θ. Finally, for any x ∈ X , the partial
derivatives of first and second order of θ 7−→ p̃(x, θ) are continuous on int Θ, so the functions

θ 7−→
∫
X

∣∣∣∣ ∂p̃∂θi (x, θ)
∣∣∣∣ ν(dx), θ 7−→

∫
X

∣∣∣∣ ∂2p̃

∂θi∂θj
(x, θ)

∣∣∣∣ ν(dx),

are locally integrable for any 1 ≤ i, j ≤ n.
Therefore, at any θ ∈ int Θ, the partial derivatives of h̃ of first and second order exist, are continuous

and can be obtained by derivating under the integral sign. Since h̃(θ) > 0 for all θ ∈ Θ ∩ dom f
(α)
π ,

and f
(α)
π = A + 1

α−1 log ◦h̃, these results with those of Proposition 4 about A give the following. On

int Θ ∩ dom f
(α)
π , the map f

(α)
π admits continuous first and second order partial derivatives that can be

obtained by differentiating under the integral sign.

We now turn to the explicit derivation of the gradient ∇f (α)
π and the Hessian ∇2f

(α)
π , whose components

are respectively the first and second order partial derivatives. Consider θ ∈ int Θ ∩ dom f
(α)
π . For i ∈ J1, nK,

we first compute
∂h̃

∂θi
(θ) = (1− α)

∫
Γi(x)π(x)αqθ(x)1−αν(dx).
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From there, we obtain

∂f
(α)
π

∂θi
(θ) =

∂A

∂θi
(θ)−

∫
Γi(x)π(x)α exp(〈θ,Γ(x)〉)1−αν(dx)∫
π(x)α exp(〈θ,Γ(x)〉)1−αν(dx)

. (26)

Since qθ(x) = exp(〈θ,Γ(x)〉) exp(−A(θ)), we finally obtain that

∂f
(α)
π

∂θi
(θ) =

∂A

∂θi
(θ)− π(α)

θ (Γi).

Because
(
∇f (α)

π (θ)
)
i

=
∂f(α)
π (θ)
∂θi

, this concludes the computations about the gradient of f
(α)
π .

Before computing the second order partial derivatives, we introduce another intermediate quantity. De-

note g̃i : θ 7−→
∫

Γi(x)π(x)α exp(〈θ,Γ(x)〉)1−αν(dx) for i ∈ J1, nK. In fact, g̃i(θ) = 1
1−α

∂h̃
∂θi

(θ), and from Eq.
(26), we have

∂f
(α)
π

∂θi
(θ) =

∂A

∂θi
(θ)− g̃i(θ)

h̃(θ)
.

We also compute for any j ∈ J1, nK

∂g̃i
∂θj

(θ) = (1− α)

∫
Γj(x)Γi(x)π(x)α exp(〈θ,Γ(x)〉)1−αν(dx).

Using those intermediate results, we obtain for i, j ∈ J1, nK that

∂2f
(α)
π

∂θj∂θi
(θ) =

∂2A

∂θj∂θj
(θ)− 1

h̃(θ)2

(
∂g̃i
∂θj

(θ)h̃(θ)− g̃i(θ)
∂h̃

∂θj
(θ)

)

=
∂2A

∂θj∂θj
(θ) + (α− 1)

(∫
Γi(x)Γj(x)π(x)αqθ(x)1−αν(dx)

h̃(θ)
− g̃i(θ)g̃j(θ)

h̃(θ)2

)
=

∂2A

∂θj∂θj
(θ) + (α− 1)

(
π

(α)
θ (ΓiΓj)− π(α)

θ (Γi)π
(α)
θ (Γj)

)
.

We conclude about the Hessian by using that (∇2f
(α)
π (θ))i,j =

∂2f(α)
π

∂θj ,∂θi
(θ).

A.3 Proof of Proposition 7

Proof of Proposition 7.
(i) Since A is Legendre, A∗ is also Legendre from Proposition 2, so in particular domA∗ is convex.

This implies that int domA∗ is convex. Consider θ ∈ int Θ, then qθ(Γ) = ∇A(θ) ∈ int domA∗. Since by

assumption, π
(α)
θ (Γ) ∈ int domA∗ and the step-size τ ∈ (0, 1], then

∇A(θ)− τ∇f (α)
π = τπ

(α)
θ (Γ) + (1− τ)qθ(Γ) ∈ int domA∗.

This shows the well-posedness of γA
τf

(α)
π

. Using results from Proposition 2, this also implies that γA
τf

(α)
π

∈
dom∇A = int Θ.

(ii) We conclude about the proximal operator with [10, Proposition 3.21 (vi)], which ensures that
dom proxAτr = int Θ, with [10, Proposition 3.23 (v)] which ensures that ran proxAτk+1r

⊂ int domA, and

with [10, Proposition 3.22 (2)(d)], showing that proxAτr is single-valued.
(iii) The third point comes from [40, Lemma 3].
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A.4 Proof of Proposition 8

Proof of Proposition 8. Every operation is well-defined because of Proposition 7. We now show the equiva-
lence between the moment-matching step (6) and its reformulation (16). From Assumption 1, and Proposition

6, f
(α)
π is differentiable on int Θ and its gradient is ∇f (α)

π (θ) = qθ(Γ) − π(α)
θ (Γ). Using that ∇A(θ) = qθ(Γ)

from Proposition 4 and that (∇A)−1 = ∇A∗ from Proposition 2, it comes that (6) reads

θk+ 1
2

= ∇A∗
(
τk+1π

(α)
θk

(Γ) + (1− τk+1)qθk(Γ)
)

= ∇A∗
(
qθk(Γ)− τk+1(qθk(Γ)− π(α)

θk
(Γ))

)
= ∇A∗

(
∇A(θk)− τk+1∇f (α)

π (θk)
)
,

which shows the result.
Equation (17) is straightforward, and comes from the equivalence between dA and the KL divergence

stated in Proposition 5. Finally, Eq. (18) comes from the two previous points and Proposition 7 (iii).

A.5 Proof of Proposition 9

Proof of Proposition 9. We prove relative smoothness and relative strong convexity by using the alternative

characterizations given in [44, Proposition 2.2] and [44, Proposition 2.3]. f
(α)
π and A are twice differentiable

on int Θ, so thanks to these results, f
(α)
π is L-relatively smooth with respect to A if and only if∇2f

(α
π 4 L∇2A,

on int Θ, and it is ρ-relatively strongly convex with respect to A if and only if ρ∇2A 4 ∇2f
(α
π on int Θ.

We first cover the case α = 1. In this case, we have that for every θ ∈ int Θ, ∇2f
(1)
π (θ) = ∇2A(θ) from

Proposition 6. Therefore, the functions f
(1)
π −A and A− f (1)

π have null Hessian on int Θ, showing that they
are convex, hence the result.

Now, consider α 6= 1, then, under Assumption 1, we recall from Proposition 6 that

∇2f (α)
π (θ) = ∇2A(θ) + (α− 1)

(
π

(α)
θ (ΓΓ>)− π(α)

θ (Γ)(π
(α)
θ (Γ))>

)
, ∀θ ∈ int Θ.

Consider θ ∈ int Θ, we show now that π
(α)
θ (ΓΓ>)− π(α)

θ (Γ)(π
(α)
θ (Γ))> is positive semidefinite. Consider

a vector ξ ∈ Rd, then

〈ξ, π(α)
θ (ΓΓ>), ξ〉 =

∫
〈ξ,Γ(x)Γ(x)>ξ〉π(α)

θ (x)ν(dx)

=

∫
(〈Γ(x), ξ〉)2π

(α)
θ (x)ν(dx)

≥
(∫
〈Γ(x), ξ〉π(α)

θ (x)ν(dx)

)2

=
(
〈ξ, π(α)

θ (Γ)〉
)2

= 〈ξ, π(α)
θ (Γ)π

(α)
θ (Γ)>ξ〉,

where we used Jensen inequality to show the inequality. This shows that

〈ξ,
(
π

(α)
θ (ΓΓ>)− π(α)

θ (Γ)π
(α)
θ (Γ)>

)
ξ〉 ≥ 0, ∀ξ ∈ Rd.

Therefore, for every θ ∈ int Θ,

∇2(f (α)
π −A)(θ) = (α− 1)

(
π

(α)
θ (ΓΓ>)− π(α)

θ (Γ)(π
(α)
θ (Γ))>

)
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is positive semidefinite if α ≥ 1, and

∇2(A− f (α)
π )(θ) = (1− α)

(
π

(α)
θ (ΓΓ>)− π(α)

θ (Γ)(π
(α)
θ (Γ))>

)
is positive semidefinite if α ≤ 1. This shows that f

(α)
π −A is convex if α ≥ 1 and A− f (α)

π is convex if α ≤ 1,
giving the results using the characterizations from [44, Proposition 2.2] and [44, Proposition 2.3].

A.6 Proof of Proposition 10

Proof of Proposition 10. Consider the family of one-dimensional centered Gaussian distributions with vari-
ance σ2, that we denote by G1

0 in the following. It is an exponential family, with parameter θ = − 1
2σ2 ,

sufficient statistics Γ(x) = x2 and log-partition function A(θ) = 1
2 log(2π) − 1

2 log(−2θ), whose domain is
Θ = R−−.

We show that f
(α)
π is not smooth for α > 0 by showing that (f

(α)
π )′′ is unbounded on Θ. This prevents

the existence of any L > 0 such that

‖(f (α)
π )′(θ)− (f (α)

π )′(θ′)‖ ≤ L‖θ − θ′‖, ∀θ, θ′ ∈ Θ.

Consider first the case α = 1. From Proposition 6, (f
(α)
π )′′ is independent of the choice of the target π,

and is equal to

(f (α)
π )′′(θ) = A′′(θ) =

1

2θ2
. (27)

Now, for α 6= 1, we have from Proposition 6 that

(f (α)
π )′′(θ) = A′′(θ) + (α− 1)

(
π

(α)
θ (Γ2)−

(
π

(α)
θ (Γ)

)2
)
.

Consider a target π ∈ G1
0 , meaning that there exists θπ ∈ Θ such that π = qθπ . We can compute that

π
(α)
θ = qαθπ+(1−α)θ, assuming that θ is such that αθπ + (1 − α)θ ∈ Θ. This condition is always satisfied

when α ≤ 1, but when α > 1, it is equivalent to having θ > α
α−1θπ. In the case α > 1, f

(α)
π is not even

defined outside of ( α
α−1θπ, 0), showing that dom f

(α)
π = (0, α

α−1θπ) for α > 1. In the following, we consider

θ ∈ dom f
(α)
π . Then we compute

(f (α)
π )′′(θ) =

1

2θ2
+ (α− 1)

(∫
x4qαθπ+(1−α)θ(x)dx−

(∫
x2qαθπ+(1−α)θ(x)dx

)2
)
.

To do so, we recall the following formulas∫
x4 exp(−bx2)dx =

3
√
π

4b5/2
,

∫
x2 exp(−bx2)dx =

√
π

2b3/2
,

and we note that A(θ) = log
(√
−πθ
)
.

We first compute∫
x4qαθπ+(1−α)θ(x)dx = exp(−A(αθπ + (1− α)θ))

∫
x4 exp((αθπ + (1− α)θ)x2)dx

= exp(A(αθπ + (1− α)θ))−1

∫
x4 exp(−((α− 1)θ − αθπ)x2)dx

=

(
π

(α− 1)θ − αθπ

)−1/2
3
√
π

4((α− 1)θ − αθπ)5/2

=
3

4((α− 1)θ − αθπ)2
,
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and then ∫
x2qαθπ+(1−α)θ(x)dx = exp(−A(αθπ + (1− α)θ))

∫
x2 exp((αθπ + (1− α)θ)x2)dx

= exp(A(αθπ + (1− α)θ))−1

∫
x2 exp(−((α− 1)θ − αθπ)x2)dx

=

(
π

(α− 1)θ − αθπ

)−1/2 √
π

2((α− 1)θ − αθπ)3/2

=
1

2((α− 1)θ − αθπ)
.

These calculations yield

(f (α)
π )′′(θ) =

1

2θ2
+

α− 1

2((α− 1)θ − αθπ)2
. (28)

Equations (27) and (28) show that the absolute value of ∇2f
(α)
π goes to +∞ when θ approaches 0 or

α
α−1θπ, which is in Θ if and only if α > 1.

A.7 Proof of Proposition 11

Proof of Proposition 11. Consider α > 0.

(i) F
(α)
π is proper because f

(α)
π is non-negative from Proposition 1, takes finite values for some θ ∈ Θ by

Assumption 1, and because r is proper by Assumption 3. The fact that the infimum of (P
(α)
π ) is not equal

to −∞ comes from the non-negativity of f
(α)
π and the fact that r is bounded from below from Assumption

3.
We now prove the lower semicontinuity. When α = 1, we recall from Eq. (25) that

f (1)
π (θ) = H(π)− 〈θ, π(Γ)〉+A(θ), ∀θ ∈ Θ, (29)

where H(π) =
∫

log(π(x))π(x)ν(dx). Because A is lower semicontinuous on Θ from Proposition 4, so is f
(1)
π .

Now consider α 6= 1. For every θ ∈ Θ, it is possible to decompose f
(α)
π as in

f (α)
π (θ) = A(θ) +

1

α− 1
log
(
h̃(θ)

)
,

where the function h̃ is such that

h̃(θ) =

∫
π(x)α exp(〈θ,Γ(x)〉)1−αν(dx).

The function h̃ is lower semicontinuous due to Fatou’s lemma [22, Lemma 18.13] and takes values in R++,
thus 1

α−1 log ◦h̃ is lower semicontinuous.
(ii) We now turn to the second point, concerning values α ≥ 1. In the particular case α = 1, consider

again the decomposition given in Eq. (29). Because of Assumption 2, π(Γ) ∈ int domA∗. Thanks to [8,

Fact 2.11] and Proposition 4, this ensures that f
(1)
π is coercive. Because of Assumption 1 which ensures the

well-posedness of f
(α)
π , we have from [88] that

f (1)
π (θ) ≤ f (α)

π (θ), ∀θ ∈ int Θ.

This ensures that f
(α)
π is coercive for α > 1. The regularizer r is bounded from below thanks to Assumption

3, so F
(α)
π is also coercive for α ≥ 1.
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We have proven that F
(α)
π is lower-continuous and coercive, so there exists θ∗ ∈ dom Θ such that

F
(α)
π (θ∗) = ϑ

(α)
π . We now use the optimality conditions that θ∗ satisfies to show that θ∗ ∈ int Θ. In

particular, we have from [9, Theorem 16.2] that

0 ∈ ∂F (α)
π (θ∗). (30)

When α = 1, we can split the subdifferential of F
(α)
π as ∂F

(1)
π (θ∗) = π(Γ)+∂A(θ∗)+∂r(θ∗). This comes from

the decomposition (25), Assumption 3 and the convexity and properness of θ 7−→ −〈θ, π(Γ)〉, A and r (see [9,

Corollary 16.38]). By the same arguments, when α > 1, ∂F
(α)
π (θ∗) = ∂

(
1

α−1 log ◦h(α)
π

)
(θ∗)+∂A(θ∗)+∂r(θ∗)

Assume by contradiction that θ∗ belongs to the boundary of Θ. Then ∂A(θ∗) = ∅, because of Proposition
2, so Eq. (30) implies that 0 ∈ ∅. This shows that θ∗ ∈ int Θ.

Finally, since A is strictly convex on int Θ (Proposition 4), so is F
(1)
π , so such θ∗ is unique.

B Convergence analysis of Algorithm 1

In order to prove Propositions 12 and 13, we start with a sufficient decrease lemma that reads as follows.

Lemma 1. Under Assumptions 1, 2, and 3, for τ > 0 and α ∈ (0, 1], we have that for every θ ∈ int Θ,

τ
(
F (α)
π (TA

τF
(α)
π

(θ))− F (α)
π (θ)

)
≤ −dA(θ, TA

τF
(α)
π

(θ)) + (τ − 1)dA(TA
τF

(α)
π

(θ), θ). (31)

In the particular case where α = 1, we further have

τ
(
F (1)
π (TA

τF
(1)
π

(θ))− F (1)
π (θ′)

)
≤ (1− τ)dA(θ′, θ)− (1− τ)dA(TA

τF
(1)
π

(θ), θ)

− dA(θ′, TA
τF

(1)
π

(θ)), ∀θ′ ∈ int Θ. (32)

Proof. Using [86, Lemma 4.1], which is still true in our finite-dimensional Hilbert setting, we get that

τ
(
F (α)
π (TA

τF
(α)
π

(θ))− F (α)
π (θ′)

)
≤ dA(θ′, θ)− (1− τ)dA(TA

τF
(1)
π

(θ), θ)

− dA(θ′, TA
τF

(1)
π

(θ))− τd
f
(α)
π

(θ′, θ), ∀θ′ ∈ int Θ,

where d
f
(α)
π

(θ′, θ) = f
(α)
π (θ′)− f (α)

π (θ)− 〈∇f (α)
π (θ), θ′ − θ〉.

Equation (31) comes by evaluating the above at θ′ = θ. To get Eq. (32), the strong convexity of f
(1)
π

relatively to A yields
d
f
(1)
π

(θ′, θ) ≥ dA(θ′, θ), ∀θ′, θ ∈ int Θ,

showing the result.

We also give a sequential consistency lemma, that links the Bregman divergence dA with the Euclidean
distance.

Lemma 2. Consider two sequences {θk}k∈N and {θ′k}k∈N and assume that there exists a compact set C ⊂
int Θ such that θk, θ

′
k ∈ C for every k ∈ N. In this case, if dA(θk, θ

′
k) −−−−−→

k→+∞
0, then ‖θk − θ′k‖ −−−−−→

k→+∞
0.
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Proof. We introduce the convex hull of C, denoted by convC which is the intersection of every convex set
containing C. Therefore convC ⊂ int Θ. Since we are in finite dimension, we also have that convC is
compact. Thus, convC is a convex compact included in int Θ.

A is proper, strictly convex, and continuous on convC ⊂ int Θ, therefore, A is uniformly convex (following
the definition of [9, Definition 10.5]) on convC [9, Proposition 10.15]. This means that there exists an
increasing function ψ : R+ → [0,+∞] that vanishes only at 0, such that for every θ, θ′ ∈ convC,

ψ(‖θ − θ′‖) ≤ 1

2
A(θ) +

1

2
A(θ′)−A(

1

2
θ +

1

2
θ′).

Because A is convex on convC, we have that for every t > 0,

〈∇A(θ), θ′ − θ〉 ≤ A(θ + t(θ′ − θ))−A(θ)

t
.

This implies in particular that for every θ, θ′ ∈ convC,

dA(θ, θ′) = A(θ)−A(θ′)− 〈∇A(θ′), θ − θ′〉

≥ A(θ)−A(θ′)−
A(θ′ + 1

2 (θ − θ′))−A(θ′)
1
2

= A(θ) +A(θ′)−A(
1

2
(θ − θ′))

≥ ψ(‖θ − θ′‖).

Suppose now by contradiction that dA(θk, θ
′
k) −−−−−→

k→+∞
0 while there exists some ε > 0 such that ‖θk−θ′k‖ ≥

ε for every k ∈ N. Then we have that
dA(θk, θ

′
k) ≥ ψ(ε) > 0,

which is a contradiction, hence showing the result.

B.1 Proof of Proposition 12

Proof of Proposition 12. The proof of (i)-(ii) can be deduced from [11, Theorem 1, (i)-(ii)], using Eq. (31)
from Lemma 1, and the equivalence between dA and KL from Proposition 5.

(iii) If F
(α)
π (θK+1) = F

(α)
π (θK), then, using Lemma 1 and τK+1 ≤ 1,

dA(θK , θK+1) ≤ 0.

By Proposition 3, this shows that θK+1 = θK . Since θK+1 = TA
τK+1F

(α)
π

(θK), θK is a fixed point of TA
τK+1F

(α)
π

.

From Proposition 7, it is a stationary point of F
(α)
π .

(iv) This proof relies on two notions of subdifferentials: the limiting subdifferential ∂L [78, Chapter 6]
and the Fréchet subdifferential ∂F [78, Chapter 4]. Our working space H is a finite-dimensional Hilbert
space, which is included in the setting of [78].

Set k ∈ N. Under Assumptions 1, 2, and 3, since θ0 ∈ int Θ, Proposition 8 applies and thus θk+1 =
TA
τk+1F

(α)
π

(θk). This implies that there exists gk+1 ∈ ∂r(θk+1) such that

1

τk+1
(∇A(θk+1)−∇A(θk)) +∇f (α)

π (θk) + gk+1 = 0. (33)

According to [78, Corollary 4.35],

∇f (α)
π (θk+1) + gk+1 ∈ ∂FF (α)

π (θk+1). (34)
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Using Eq. (33) and the assumptions on τk+1,

‖∇f (α)
π (θk+1) + gk+1‖ ≤ ‖∇f (α)

π (θk+1)−∇f (α)
π (θk)‖+

1

ε
‖∇A(θk+1)−∇A(θk)‖.

The additional hypothesis introduced in (iv) ensures that both θk+1 and θk belong to C, a compact set

included in int Θ. Since ∇2f
(α)
π is continuous on C (by Proposition 6) and C is bounded, ∇f (α)

π is Lipschitz
on C. The same reasoning applies for ∇A. This shows that there exists a scalar s > 0 such that, for every

k ∈ N, there exists %k+1 ∈ ∂FF (α)
π (θk+1) satisfying

‖%k+1‖ ≤ s‖θk+1 − θk‖. (35)

Now, we deduce from (iii) that dA(θk+1, θk) −−−−−→
k→+∞

0. Using Lemma 2, this yields ‖θk+1 − θk‖ −−−−−→
k→+∞

0,

showing that the sequence {%k}k∈N is such that

%k ∈ ∂FF (α)
π (θk), ∀k ∈ N, and %k −−−−−→

k→+∞
0. (36)

On the other hand, the sequence {θk}k∈N is contained in the compact set C by assumption. Hence, there
exists θlim ∈ C, and a strictly increasing function ϕ : N → N such that θϕ(k) −−−−−→

k→+∞
θlim. The regularizing

term r is continuous on C as assumed in (iv), so we have

θϕ(k) −−−−−→
k→+∞

θlim, (37)

F (α)
π (θϕ(k)) −−−−−→

k→+∞
F (α)
π (θlim), (38)

%ϕ(k) ∈ ∂FF (α)
π (θϕ(k)), %ϕ(k) −−−−−→

k→+∞
0. (39)

By definition of the limiting subdifferential ∂LF
(α)
π (see [78, Defintion 6.1]), this shows that

0 ∈ ∂LF (α)
π (θlim). (40)

Hence θlim is a stationary point of F
(α)
π which concludes the proof.

B.2 Proof of Proposition 13

Proof of Proposition 13. We first give an inequality to prove (i)-(ii). Consider iteration k of Algorithm 1,
and evaluate Eq. (32) from Lemma 1 at θ′ = θ∗, yielding

τk+1

(
F (α)
π (θk+1)− F (α)

π (θ∗)
)
≤ (1− τk+1)dA(θ∗, θk)

− (1− τk+1)dA(θk+1, θk)− dA(θ∗, θk+1). (41)

(i) Since τk+1 ∈ [ε, 1], F
(1)
π (θk+1) ≥ F (1)

π (θ∗), and dA takes non-negative values (from Proposition 3), Eq.
(41) gives

dA(θ∗, θk+1) ≤ (1− τk+1)dA(θ∗, θk), (42)

from which we deduce the results since τk+1 ∈ [ε, 1].
(ii) Since τk+1 ∈ [ε, 1] and dA takes non-negative values, we get from Eq. (41) that

τk+1

(
F (1)
π (θk+1)− F (1)

π (θ∗)
)
≤ (1− τk+1)dA(θ∗, θk).
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With Eq. (42) and the condition on τk+1, we obtain(
F (1)
π (θk+1)− F (1)

π (θ∗)
)
≤ 1

ε
dA(θ∗, θk+1),

from which we conclude using point (i) and Proposition 11.

(iii) Using Proposition 12 (i), we obtain that for every k ∈ N, F
(1)
π (θk) ≤ F

(1)
π (θ0), meaning that the

sequence {θk}k∈N is contained in a sub-level set of F
(1)
π . F

(1)
π is coercive under our assumptions (see the

proof of Proposition 11), and it is lower semicontinuous from Proposition 4, so its sub-level sets are compact.
This means that we can extract converging subsequences from {θk}k∈N.

Consider now such a subsequence {θϕ(k)}k∈N, with θϕ(k) −−−−−→
k→+∞

θlim. F
(1)
π is lower semicontinuous, so

lim inf F (1)
π (θϕ(k)) ≥ F (1)

π (θlim).

However, because of (ii), lim inf F
(1)
π (θϕ(k)) = F

(1)
π (θ∗), so we obtain that F

(1)
π (θlim) = F

(1)
π (θ∗). Using

Proposition 11, this shows that θlim = θ∗.
We have shown that {θk}k∈N is contained in a compact set and that each of its converging subsequences

converges to θ∗, which implies the result.

C Computations of two Bregman proximal operators

In this section, we motivate for two choices of regularizer r and exponential family Q that lead to explicitly
computable proximal operators proxAτr, as defined in Definition 7.

C.1 Gaussian family with bounded eigenvalues

Consider the family of Gaussian distribution G. We can think of regularization on the eigen-values of Σ and
Σ−1. We study here how to impose that the eigenvalues of Σ−1 are constrained in [b1, b2], with 0 < b1 ≤ b2.
This can prevent numerical problems in situations where the target is very ill-posed. The retained regularizer
is an indicator function, and the resulting operator proxAr is a projection. We enforce the constraint using
the Loewner order denoted by 4.

Definition 10. Consider P1, P2 ∈ Sd. Then P1 4 P2 if and only if P2 − P1 ∈ Sd+.

We define the set onto which we aim at projecting by

E := {P ∈ Sd+, b1I 4 P 4 b2I}. (43)

Lemma 3. Consider the Gaussian family G, whose log-partition function A, parameters θ and natural
parameters ∇A(θ) are defined in Example 1. Consider qθ ∈ G, with θ ∈ int Θ, and denote its mean by µ and
its covariance by Σ, which can be written as Σ = U diag(λ−1

i )U>, where λi > 0 for i ∈ J1, dK and U is an
ortonormal matrix.

If we consider the regularizing function defined on int Θ by r(θ) = ιE(−2θ2), where E is defined in

Eq. (43), then θ̆ = proxAτr(θ) is such that the mean µ̆ and covariance Σ̆ of qθ̆ satisfy µ̆ = µ and Σ̆ =

U diag((λ̆i)
−1)U>, with

λ̆i = max(b1,min(b2, λi)), ∀i ∈ J1, dK.

This means that the original covariance structure of Σ is conserved, but its eigenvalues are cropped so
their inverses fit between b1 and b2. Remark that the condition number of Σ̆ is bounded by b2

b1
.
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Proof. The optimality conditions associated with the proximal operator read{
1
τ (µ− µ̆) = 0,
1
τ ((Σ + µµ>)− (Σ̆ + µ̆µ̆>)) ∈ −2NE((Σ̆)−1).

From here, we obtain that µ̆ = µ. With P̆ = (Σ̆)−1, this yields

0 ∈ 1

2τ
(Σ− (P̆ )−1) +NE(P̆ ). (44)

We introduce now the fonction g(P ) = − log det(P ) and rewrite Eq. (44) as

0 ∈ 1

2τ

(
∇g(P̆ ) + Σ

)
+ ∂ιE(P̆ ). (45)

Because E is compact and g is convex and lower semicontinuous, the optimality conditions (45) satisfied by
P̆ are equivalent to P̆ being solution of

P̆ = arg min
P ′

1

2τ
(g(P ′) + 〈Σ, P ′〉) + ιE(P ′).

In this problem, the functions g and ιE depend only on the eigenvalues of their arguments, and Σ is such
that there exists an orthonormal matrix U such that Σ = U diag(λ−1

i )U>. The solutions of such problems

have a particular form, given by [12, Theorem 2.1]. Namely, there exists λ̆ ∈ Rd such that P̆ = U diag(λ̆i)U
>,

where

λ̆ = arg min
λ′

1

2τ

(
−

d∑
i=1

log(λ′i) +
λ′i
λi

)
+

d∑
i=1

ι[b1,b2](λ
′
i).

This problem is separable, so for every i ∈ J1, dK, we have

λ̆i = arg min
b1≤λ′i≤b2

1

2τ

(
− log(λ′i)−

λ′i
λi

)
.

Since the 1
2τ has no influence, we can write equivalently the optimality conditions as

1

λ̆i
− 1

λi
∈ N[b1,b2](λ̆i).

The normal cone is equal to {0} if λ̆i ∈ (b1, b2), it is equal to R− if λ̆i = b1, and it is equal to R+ if

λ̆i = b2, hence

λ̆i =


b1 if λi ≤ b1,
b2 if λi ≥ b2,
λi else,

which gives the result.

C.2 Gaussian family with sparse mean and structured covariance matrix

Consider an orthonormal matrix Q and the family of Gaussian distribution with covariance of the form Σ =
Qdiag(σ2

1 , ..., σ
2
d)Q> and mean µ ∈ Rd. It is an exponential family with parameters θ = (θ1, θ2)>, with θ1 =

diag( 1
σ2
1
, ..., 1

σ2
d
)Q>µ and θ2 = −( 1

2σ2
1
, ..., 1

2σ2
d
)>. Its sufficient statistics is Γ(x) = (Q>x, (Q>x1)2, ..., (Q>xd)

2).
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Its log-partition function is A(θ) = − 1
4θ
>
1 (diag(θ2))−1θ1 + d

2 log(2π) − 1
2

∑d
i=1 log(−2(θ2)i), and its natural

parameters ∇A(θ) are Q>µ and ((Q>µ)2
1 + σ2

1 , ..., (Q
>µ)2

d + σ2
d)>.

We consider a regularizer that enforces sparsity on some components of the mean. We propose to this
end

r(θ) =

d∑
i=1

ηi |(θ1)i| , (46)

where ηi ≥ 0 for i ∈ J1, dK.
Since σ2

i > 0 for all i ∈ J1, dK, having a null component in θ1 means that Q>µ has a null component,

promoting sparsity in Q>µ. We aim at computing θ̆ = proxAτr(θ).

Lemma 4. Consider the Gaussian family defined above. Consider qθ in this family, with θ ∈ int Θ and whose
mean and covariance are respectively µ and Qdiag(σ2

1 , ..., σ
2
d)Q>. If we consider the regularizing function

defined in Eq. (46), then θ̆ = proxAτr(θ) is such that the mean µ̆ and covariance Qdiag(σ̆2
1 , ..., σ̆

2
d)Q> of qθ̆

satisfy for any i ∈ J1, dK

(Q>µ̆)i =


0 if (Q>µ)i ∈ [−τηi, τηi],
−τηi + (Q>µ)i if (Q>µ)i > τηi,

τηi + (Q>µ)i if (Q>µ)i < −τηi.

σ̆2
i = (σi)

2 + ((Q>µ)2
i − (Q>µ̆)2

i ).

Consider i ∈ J1, dK. In the particular case where ηi = 0, then µ∗i = µi and σ̆2
i = (σi)

2. We can also
remark that we always have σ̆2

i ≥ σ2
i , with equality if and only if (Q>µ)i = 0. Therefore, the operator proxAτr

modifies qθ by shrinking certain values of the mean to zero, but it increases the variance. In particular, the
bigger the (Q>µ)i, the bigger the variance increase.

When Q = I, the exponential family is the family of Gaussian distributions with diagonal covariance.
The above results can thus be applied to this family too.

Proof. The regularizing function r is separable, so we study the optimality condition for every i ∈ J1, dK. This
is justified by [9, Proposition 16.8], which shows that ∂r(θ) is the Cartesian product of its subdifferentials
with respect to each of its variable. Therefore, for i ∈ J1, dK, we have{

1
τ ((Q>µ)i − (Q>µ̆)i) ∈ ηi∂| · |((θ̆1)i),
1
τ ((Q>µ)2

i + σ2
i − ((Q>µ̆)2

i + σ̆2
i )) = 0,

from which we already deduce the result about the standard deviation.
Because (Σ̆i)

2 > 0, the sign of (θ̆1)i = 1
(Σ̆i)2

(Q>µ̆)i is the sign of (Q>µ̆)i and we get that

(Q>µ)i − (Q>µ̆)i ∈


[−τηi, τηi] if (Q>µ̆)i = 0,

{τηi} if (Q>µ̆)i > 0,

{−τηi} if (Q>µ̆)i < 0.

From there, we obtain that

(Q>µ̆)i =


0 if (Q>µ)i ∈ [−τηi, τηi],
−τηi + (Q>µ)i if (Q>µ)i > τηi,

τηi + (Q>µ)i if (Q>µ)i < −τηi,

which gives the result.
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D Supplementary numerical experiments

D.1 Understanding the influence of the parameters

We first study how the parameters and the possible regularizer affect the RMM and PRMM algorithms. In
particular, we study the influence of the Rényi parameter α on the variational approximation, the interplay
between α, the step-size τ , and the sample size N , as well as the impact of adding or not a regularization
function r.

To this end, we use Gaussian targets in various dimensions d, with unnormalized density of the form

π̃(x) = exp

(
−1

2
(x− µ̄)>Σ̄−1

κ (x− µ̄)

)
, ∀x ∈ Rd. (47)

Their means µ̄ are chosen uniformly in [−0.5, 0.5]d and their covariance matrices Σ̄κ are chosen with a
condition number equal to κ, following the procedure in [72, Section 5].

D.1.1 Choice of α: mode-seeking or mass-covering behaviors

In this section, we illustrate the influence of α on the adapted proposal. The target is described in Eq.
(47) with dimension d = 2 and κ = 20. The approximating family is the family of Gaussian distributions
with diagonal covariance matrices. Since the target covariance is not diagonal, the approximating densities
cannot cover exactly the target, which allows to illustrate several interesting behaviors for the methods.

Specifically, we evaluate how the value of α changes the approximating behavior in such cases by showing,
in Fig. 5 the results of several runs of our RMM algorithm, with N = 1000, τ = 0.8, and α ∈ {1.0, 0.5, 0.25}.
The runs are initialized with a mean µ0 = (5.0, 5.0)> and a covariance matrix Σ0 = 10I.

(a) α = 1.0 (b) α = 0.5 (c) α = 0.25

Figure 5: Plots of the target in color levels and the proposal in solid lines, after k = 100 iterations for
α ∈ {1.0, 0.5, 0.25}. The initial mean is denoted by the green square while the initial covariance is 10I.

We see in Fig. 5 that when α is high, the approximated proposals tend to cover most of the mass of the
target. Lower values of α lead instead to proposals that are highly concentrated around the mode of the
target and thus less spread which is in accordance with the observations of [60].
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D.1.2 Interplay between α and τ : speed or robustness

We now discuss the influence of α, τ on the practical speed and robustness of Algorithm 2, in its non-
regularized version RMM. We recall that this algorithm resorts to importance sampling to approximate the

integrals involved in the computation of π
(α)
θ (Γ), which creates an approximation error linked with the sample

size, N . The influence of τ can be understood through the theory on stochastic Bregman gradient descent
with fixed step-size. In particular, [44, Theorem 5.3] states that such methods converge to a neighborhood
of the optimum, whose size decreases with τ . On the other hand, low values of α amount to a concave
transformation of the importance weights, which is known in the importance sampling field to lead to a
higher effective sample size [57].

In order to highlight this compromise between speed and robustness, we use the RMM algorithm to
approximate the target described in Eq. (47) with κ = 10. We use a constant number of samples per
iteration N = 500, for d ∈ {5, 10, 20, 40}. It is recommended for importance sampling procedures that the
sample size grows as exp(d) to avoid weight degeneracy [13]. In our setting, d increases while N remains
constant, thus creating approximation errors that increase with d.

For each dimension, we test α ∈ {0.5, 1.0} and τ ∈ {0.25, 0.5, 1.0}. We track the square errors ‖µ̄− µk‖2
and ‖Σ̄κ − Σk‖2F , that are averaged over 103 independent runs.

(a) MSE on the mean (b) MSE on the covariance

Figure 6: MSE on the mean and the covariance, averaged over 103 runs, in dimension d = 5.

In dimension d = 5, all the choices of parameters lead to convergence, as shown in Fig. 6. We can notice
that the lowest values of τ lead to the slowest convergence, but the values reached are lower. On the contrary,
when τ = 1.0, the algorithm stops early at higher values.
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(a) MSE on the mean (b) MSE on the covariance

Figure 7: MSE on the mean and the covariance, averaged over 103 runs, in dimension d = 10.

Figure 7 shows the experiments in dimension d = 10. We still observe the same trade-off between
accuracy and speed, but we also notice that the choice α = 1.0, τ = 1.0 leads to failure. Indeed, it amounts
to approximate π(Γ) directly without using the estimates from past iterations, so the approximation errors
cannot be averaged over iterations.

(a) MSE on the mean (b) MSE on the covariance

Figure 8: MSE on the mean and the covariance, averaged over 103 runs, in dimension d = 20.

In dimension d = 20, we see in Fig. 8 that the only scenario reaching convergence with α = 1.0 has τ set
to the lowest value. Similarly, the algorithm with the highest value of τ is only able to converge with the
lowest value of α, but with very slow convergence. This may indicate that α and τ both allow to average the
approximation errors in Algorithm 2, which is linked to the interpretation of the relaxed moment-matching
updates as barycenters, as discussed in Section 3.3.
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(a) MSE on the mean (b) MSE on the covariance

Figure 9: MSE on the mean and the covariance, averaged over 103 runs, in dimension d = 40.

Finally, for d = 40, only the lowest values of α and τ yield a significant decrease of the MSE as shown in
Fig. 9. This shows that low values of α and τ can counteract high approximation errors. As expected, the
convergence is slower and the final MSE values are higher than in lower dimensions.

This study shows that the parameters α and τ should be lowered to compensate for high approximation
errors possibly arising in Algorithm 2. On the contrary, when these errors are low, one can increase the
values of τ to create faster algorithms.

D.1.3 Adding a regularizer: mismatch and improved behavior

Adding a regularizer r is a feature of our novel method. We thus compare the PRMM and the RMM

algorithm, to investigate the influence of r. A minimizer θ∗ of F
(α)
π = f

(α)
π + r is not a minimizer of f

(α)
π ,

meaning that the regularized solutions qθ∗ are further from π, but the parameters θ∗ have some features
enforced by r. We now illustrate the effects of such a regularizer, showing its benefits when π is poorly
conditioned and the approximation errors are high.

We consider again the target from Eq. (47), with κ = 10. For the PRMM algorithm, we set r as an
indicator function constraining the approximated proposal covariance matrix to be in the set Eε of symmetric
matrices whose eigenvalues are in [ε, 1/ε] for ε ∈ (0, 1). The computation of the corresponding proximal step,
which is here a projection, is detailed in Appendix C.
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(a) k = 1, r ≡ 0 (b) k = 5, r ≡ 0 (c) k = 10, r ≡ 0 (d) k = 20, r ≡ 0

(e) k = 1, r = ιEε (f) k = 5, r = ιEε (g) k = 10, r = ιEε (h) k = 20, r = ιEε

Figure 10: One run of the RMM algorithm (top) and the PRMM algorithm (bottom), with ε = 0.5, α = 0.5,
and τ = 0.5. The color levels mark the target, while the solid lines mark the level sets of the approximating
densities after a varying number of iterations. The initial mean µ0 is denoted by the green square while
Σ0 = 10I.

Since our target covariance has a condition number equal to κ = 10, and matrices in the constraint set
Eε have a condition number bounded above by 1/ε2 with ε = 0.5, there is a mismatch Σ̄κ /∈ Eε. This can
be observed in Fig. 10. Actually, the proposal covariance are better conditioned thanks to the regularizer,
which can lead to better performance in some contexts, as we illustrate in Fig. 11.
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(a) MSE on the mean (b) MSE on the covariance

Figure 11: MSE on the mean and the covariance, averaged over 103 runs, in dimension d = 20. PRMM
denotes the algorithms with r = ιEε , while RMM denotes the algorithm with r ≡ 0.

We see that the best performance is achieved by the RMM algorithm with α = 0.5, τ = 0.5, while the
RMM algorithm with α = 1.0 and τ = 1.0 achieves the worst one. These results are in accordance with
the result of Section D.1.2. However, turning to the PRMM algorithm in this setting allows a performance
increase from this worst case. Indeed, the PRMM algorithm achieves better performance than the RMM
algorithm when α = 1, τ = 1, especially for the estimation of the mean. Since the target is poorly conditioned,
the covariance matrices Σk, k ∈ N tend to become singular when r ≡ 0. This behavior is prevented by
the regularization, explaining better performance in this case. Note that the PRMM algorithm cannot
approximate the true covariance Σ̄κ since Σ̄κ /∈ Eε.

D.2 Comparison with the variational Rényi bound on a Gaussian target

Our theoretical analysis provides guidelines to choose the step-size τ for our RMM algorithm (Propositions
12 and 13) but also shows that there is no equivalent guarantees for the VRB algorithm (see Proposition 10).
In particular, poorly chosen step-sizes could create unstable behaviors. We thus investigate these effects in
the following by comparing our novel RMM algorithm with the VRB algorithm on Gaussian targets.

We use Gaussian target from Eq. (47), with κ = 10, and d = 5. Each algorithm is run with constant
number of samples N = 500, and constant values of the step-size τ . We test values of α corresponding to the
Hellinger distance (α = 0.5) and the KL divergence (α = 1.0). We test two different exponential families:
Gaussian with full covariance, and Gaussian with diagonal covariance. For each tested value of τ , 103 runs
are performed.
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(a) MSE on the mean, α = 0.5 (b) MSE on the covariance, α = 0.5

(c) MSE on the mean, α = 1.0 (d) MSE on the covariance, α = 1.0

Figure 12: MSE in the estimation of µ̄ and Σ̄κ (d = 5) after 100 iterations, against values of τ . For each
value of τ , 103 runs with 500 samples per iteration are conducted. The dotted black lines represent the
MSE at initialization. The prefix dG refer to the family of diagonal Gaussians, while the prefix G refers to
Gaussians with full covariance.

Figure 12 shows that the VRB algorithm used with diagonal covariance in the approximation family
exhibits two distinct regimes. For sufficiently low values of τ , it is able to improve the estimates compared to
initialization, but once τ crosses a certain threshold, the MSE reaches very high values, showing a degradation
from the initialization. The VRB algorithm with full covariance in the approximation family is not able to
create covariance matrices that are positive definite, hence it stops after initialization. On the contrary, our
RMM algorithm does not degrade the values reached at initialization even for the worst settings of τ , and
reaches the lowest MSE values for properly chosen step-sizes.

This confirms that the lack of Euclidean smoothness of f
(α)
π translates numerically into a high level of

instability of VRB with respect to the choice of the step-size. On the contrary, the RMM algorithm has a
more stable behavior even for poorly chosen step-sizes, confirming the theoretical study of Section 5.
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