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We study the variational inference problem of minimizing a regularized Rényi divergence over an exponential family, and propose a relaxed moment-matching algorithm, which includes a proximal-like step. Using the information-geometric link between Bregman divergences and the Kullback-Leibler divergence, this algorithm is shown to be equivalent to a Bregman proximal gradient algorithm. This novel perspective allows us to exploit the geometry of our approximate model while using stochastic black-box updates. We use this point of view to prove strong convergence guarantees including monotonic decrease of the objective, convergence to a stationary point or to the minimizer, and convergence rates. These new theoretical insights lead to a versatile, robust, and competitive method, as illustrated by numerical experiments.

Introduction 1.Variational inference

Probability distributions of interest in statistical problems are often intractable. In Bayesian statistics for instance, the targeted posterior distributions often cannot be obtained in closed-form due to intractable normalization constants. The construction of efficient approximating distributions is thus a core issue in these cases. Variational inference (VI) methods aim at finding good approximations by minimizing a divergence to the target over a family of parametric distributions [START_REF] Blei | Variational inference: A review for the statistician[END_REF][START_REF] Zhang | Advances in variational inference[END_REF]. Such procedures can be summarized by the choice of approximating densities, the choice of divergence, and the algorithm used to solve the resulting optimization problem. As an example, the standard VI algorithm uses mean-field approximating densities and minimizes the exclusive Kullback-Leibler (KL) divergence [START_REF] Blei | Variational inference: A review for the statistician[END_REF]. Assuming that the complete conditionals of the true model are in an exponential family, the optimal mean-field approximation can then be found by a deterministic coordinate-ascent algorithm [START_REF] Hoffman | Stochastic variational inference[END_REF].

The research on VI methods has been very active in the last years (see [START_REF] Zhang | Advances in variational inference[END_REF] for a review). Majorization techniques have been proposed to cope with large scale models not satisfying conjugacy hypotheses [START_REF] Marnissi | Majorize-minimize adapted Metropolis-Hastings algorithm[END_REF][START_REF] Zheng | Efficient unsupervised variational Bayesian image reconstruction using a sparse gradient prior[END_REF][START_REF] Huang | Unrolled variational Bayesian algorithm for image blind deconvolution[END_REF]. Another approach in such challenging context is to run stochastic gradient descent, which leads to the so-called black-box VI methods [START_REF] Titsias | Local expectation gradients for black box variational inference[END_REF][START_REF] Li | Rényi divergence variational inference[END_REF][START_REF] Hernandez-Lobato | Black-box alpha divergence minimization[END_REF][START_REF] Bamler | Perturbative black box variational inference[END_REF][START_REF] Dieng | Variational inference via χ upper bound minimization[END_REF]. Black-box methods allow a broad choice of divergence, like the α-divergences [START_REF] Hernandez-Lobato | Black-box alpha divergence minimization[END_REF][START_REF] Dieng | Variational inference via χ upper bound minimization[END_REF][START_REF] Daudel | Infinite-dimensional gradient-based descent for alpha-divergence minimisation[END_REF] and Rényi divergences [START_REF] Rényi | On measures of entropy and information[END_REF][START_REF] Li | Rényi divergence variational inference[END_REF], which are generalizations of the KL divergence depending on a scalar parameter α > 0. This parameter can be chosen in order to enforce a mode-seeking or a mass-covering behavior in the approximations. On the contrary, the exclusive KL divergence tends to produce approximations that under-estimate the variance of the target [START_REF] Minka | Divergence measures and message passing[END_REF][START_REF] Blei | Variational inference: A review for the statistician[END_REF].

VI algorithms have also benefited from advances in information geometry, a field that studies statistical models through a differential-geometric lens. Among other results from this field, it has been shown that the Fisher information matrix can play the role of a metric tensor such that the square of the induced Riemannian distance is locally equivalent to the KL divergence [START_REF] Amari | Differential-geometrical methods in statistics[END_REF]. Another useful insight when exponential families are considered is the relation between the KL divergence, Bregman divergences, and dual geometry [START_REF] Amari | Information geometry of divergence functions[END_REF][START_REF] Nielsen | Entropies and cross-entropies of exponential families[END_REF]. These ideas can be leveraged by using the natural gradient [START_REF] Amari | Natural gradient works efficiently in learning[END_REF], which amounts to a preconditioning of the standard gradient by the inverse Fisher information matrix. In the VI algorithms investigated in [START_REF] Honkela | Approximate Riemannian conjugate gradient learning for fixed-form variational Bayes[END_REF][START_REF] Hensman | Fast variational inference in the conjugate exponential family[END_REF][START_REF] Hoffman | Stochastic variational inference[END_REF][START_REF] Lin | Fast and simple natural-gradient variational inference with mixture of exponential-family approximations[END_REF], the standard gradient of the evidence lower bound is thus adjusted to take into account the Riemannian geometry of the approximating distributions, leading to simpler updates and improved behavior.

Despite those advances, there are still shortcomings in the development and understanding of VI algorithms, and as such, we identify below two main limitations.

First, to the best of our knowledge, there are still few links between black-box VI algorithms and natural gradient VI algorithms in the literature. On the one hand, the former methods allow to tackle a broad range of targets using various divergence measures but are usually restricted to the use of standard stochastic gradients. On the other hand, the latter methods use the more efficient and robust natural gradients, but are often limited to certain class of divergence, target, and approximating family. In this direction, let us however mention that information-geometric procedures have been deployed along black-box updates in [START_REF] Khan | Faster stochastic variational inference using proximal-gradient methods with general divergence functions[END_REF][START_REF] Khan | Conjugate-computation variational inference: Converting variational inference in non-conjugate models to inferences in conjugate models[END_REF][START_REF] Ji | Marginalized stochastic natural gradients for black-box variational inference[END_REF], but these works remain restricted to the minimization of the exclusive KL divergence. One can also mention [START_REF] Saha | A geometric variational approach to Bayesian inference[END_REF] where the minimization of an α-divergence over a mean-field family is studied using the Fisher Riemannian geometry.

Second, convergence studies of VI schemes are mostly empirical for black-box VI schemes [START_REF] Titsias | Local expectation gradients for black box variational inference[END_REF][START_REF] Li | Rényi divergence variational inference[END_REF][START_REF] Hernandez-Lobato | Black-box alpha divergence minimization[END_REF][START_REF] Bamler | Perturbative black box variational inference[END_REF][START_REF] Dieng | Variational inference via χ upper bound minimization[END_REF], and the same arises for schemes based on natural gradients [START_REF] Honkela | Approximate Riemannian conjugate gradient learning for fixed-form variational Bayes[END_REF][START_REF] Hensman | Fast variational inference in the conjugate exponential family[END_REF][START_REF] Hoffman | Stochastic variational inference[END_REF][START_REF] Lin | Fast and simple natural-gradient variational inference with mixture of exponential-family approximations[END_REF]. Indeed, the considered optimization problems are non-convex, making the algorithms hard to analyze (see however [START_REF] Daudel | Infinite-dimensional gradient-based descent for alpha-divergence minimisation[END_REF] for a study in a convex setting). This is in stark contrast with MCMC methods, which can be used alternatively to VI, or optimization procedures, upon which many VI methods are based. MCMC methods are guaranteed to asymptotically produce samples from the target [START_REF] Robert | Monte Carlo Statistical Methods[END_REF] but also benefit from non-asymptotic convergence guarantees [START_REF] Durmus | Analysis of Langevin Monte Carlo via convex optimization[END_REF][START_REF] Ma | Is there an analog of Nesterov acceleration for gradient-based mcmc?[END_REF]. Convergence results in the optimization literature include monotonic decrease of the objective, which has been proven for some VI schemes, but also convergence to a minimizer, or a stationary point for non-convex problems, and rates of convergence, even for composite objectives with one non-differentiable term [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF].

Contributions and outline

In this paper, we propose a novel VI algorithm that links black-box VI methods and VI methods based on natural gradients, while benefiting from solid convergence guarantees. Our algorithm minimizes a versatile composite objective, which is the sum of a Rényi divergence between the target and an exponential family, and a possible regularization term.

In order to solve the minimization problem, we introduce the so-called proximal relaxed moment-matching algorithm, whose iterations are composed of a relaxed moment-matching step, followed by a proximal-like step. A stochastic implementation based on sampling is also provided to cover the black-box setting. The convergence of our new algorithm is then studied using the theory of Bregman proximal gradient algorithms.

In particular, it exploits an equivalence relationship between Bregman divergences and the KL divergence arising when doing VI within the space of exponential families.

Bregman proximal gradient algorithms [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF][START_REF] Bauschke | A descent lemma beyond Lipschitz gradient continuity: revisited and applications[END_REF][START_REF] Teboulle | A simplified view of first order methods for optimization[END_REF][START_REF] Mukkamala | Convex-concave backtracking for inertial Bregman proximal gradient algorithms in nonconvex optimization[END_REF][START_REF] Mukkamala | Global convergence of model function based Bregman proximal minimization algorithms[END_REF] are recent optimization methods arising from the generalization of the powerful proximal minimization schemes from the Euclidean setting [START_REF] Combettes | Proximal Splitting Methods in Signal Processing[END_REF]. Bregmanbased algorithms allow to choose a Bregman divergence that tailors the intrinsic geometry of an optimization problem, more suitably than the standard Euclidean one [START_REF] Bauschke | A descent lemma beyond Lipschitz gradient continuity: revisited and applications[END_REF][START_REF] Teboulle | A simplified view of first order methods for optimization[END_REF]. Note that stochastic methods have also been generalized in this fashion [START_REF] Hanzely | Fastest rates for stochastic mirror descent methods[END_REF][START_REF] Xiao | A unified convergence analysis of stochastic Bregman proximal gradient and extra-gradients methods[END_REF]. Also related are proximal methods on perspective functions [START_REF] Combettes | Perspective functions: Proximal calculus and applications in highdimensional statistics[END_REF][START_REF] Gheche | Proximity operators of discrete information divergences[END_REF], where divergences (typically, φ-divergence) are directly processed through their proximity operator on the Euclidean metric.

We show in this paper that the connection between VI algorithms and proximal optimization algorithms written in Bregman geometry yields many theoretical and practical insights. To summarize, our main contributions are the following:

• We propose a deterministic VI algorithm for exponential approximation family. We show that our method can be written as a Bregman proximal gradient algorithm whose Bregman divergence is induced by the KL divergence, and exploits per se the geometry of the approximating family. We propose a stochastic implementation for our method. We show that it can be seen as a stochastic Bregman proximal gradient algorithm in the same geometry, thus bridging the gap between information-geometric and black-box VI methods.

• Our deterministic algorithm is shown to achieve a monotonic decrease of the composite objective, with its fixed points being stationary points of the objective function. Convergence to these stationary points is established. When the Rényi divergence recovers the inclusive KL divergence, convergence to the global minimizer, shown to exist and be unique, is proven with a linear rate.

• We explain through a simple counter-example how the convergence of equivalent schemes written in the Euclidean geometry may fail. This theoretical insight is backed by numerical studies highlighting the superior performance and robustness of our scheme over its Euclidean counterpart.

• Our algorithm generalizes many existing moment-matching algorithms. We show through numerical experiments in the Gaussian case how our additional parameters allow to create mass-covering or mode-seeking approximations and compensate high approximation errors.

• Our framework allows a possibly non-smooth regularization term that is handled in our algorithm through a proximal update. We explicit the proximal operators of two regularizers that promote the good conditioning of the covariance matrix or the sparsity of the means of the approximating densities.

The paper is organized as follows. In Section 2, we recall basic facts about Rényi divergences and exponential families, before presenting the optimization problem we propose to solve. Then, in Section 3, we outline our algorithm, before providing an alternative black-box implementation for it. In Section 4, we show how these algorithms can be interpreted as Bregman proximal gradient algorithms in the geometry induced by the KL divergence, and state our working assumptions. Theoretical analysis is provided in Section 5. Finally, numerical experiments with Gaussian proposals are presented in Section 6. We discuss our results and possible future research lines in Section 7.

The supplementary material [START_REF] Guilmeau | Supplement to "Regularized Rényi divergence minimization through Bregman proximal gradient algorithms[END_REF] contains four appendices. The proofs of our results are deferred to Appendices A and B, while the computations of the proximal operators are conducted in Appendix C. Additional numerical experiments are presented in Appendix D.

Notation

The discrete set {n 1 , n 1 + 1, . . . , n 2 } defined for n 1 , n 2 ∈ N, n 1 < n 2 is denoted by n 1 , n 2 . Throughout this work, H is a real Hilbert space of finite dimension n with scalar product •, • and norm • . The interior of a set C is denoted by int C. Consider the set of matrices of R d×d . Then, the set of symmetric matrices is denoted by S d , the set of positive semidefinite matrices is denoted by S d + , and the set of positive definite matrices is denoted by S d ++ . The identity matrix is denoted by I, det(•) denotes the determinant operator on matrices and • F the Frobenius norm. Convex analysis notations are those from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]. In particular, we denote by Γ 0 (H) the set of proper convex lower-semicontinuous functions from

H to R ∪ {+∞}. The domain of a function f : H → [-∞, +∞] is dom f := {θ ∈ H, f (θ) < +∞}. The indicator function function ι C of a set C ⊂ H is defined for every θ ∈ H by ι C (θ) = 0 if θ ∈ C, +∞ else.
We adopt measure theory notations following [START_REF] Chopin | An Introduction to Sequential Monte Carlo[END_REF]. In particular, the Borel algebra of a set X is denoted by B(X ). M(X ) is the set of measures on (X , B(X )), and P(X ) is the set of probability measures on (X , B(X )). Given m 1 , m 2 ∈ M(X ), we write m 1 m 2 when m 1 is absolutely continuous with respect to m 2 . For a given m ∈ M(X ) and a measurable function h : X → H, we denote by m(h) the vector of H defined by (m(h)) i = X h i (x)m(dx) for i ∈ 1, n . Finally, N (• ; µ, Σ) denotes the density of a Gaussian probability measure with mean µ ∈ R d and covariance Σ ∈ S d ++ .

Problem of interest

We propose to reformulate the problem of approximating a target π by a parametric distribution q θ as a variational minimization problem. In this context, the optimal parameters θ are defined to minimize a divergence to the target. Specifically, we focus here on the case when q θ lies in an exponential family, and we propose to optimize its parameters θ through the minimization of a Rényi divergence between π and q θ with a regularization term. In this section, we first recall important definitions regarding Rényi divergences (including the Kullback-Leibler divergence as a special case) and exponential families. We then introduce our variational inference (VI) problem. Let (X , B(X )) be a measurable space. Let us consider a measure ν ∈ M(X ), with the sets M(X , ν) := {m ∈ M(X ), m ν} and P(X , ν) := {p ∈ P(X ), p ν}. We are interested in approximating the target probability distribution π ∈ P(X , ν).

Rényi and Kullback-Leibler divergences

Rényi divergences [START_REF] Rényi | On measures of entropy and information[END_REF] and Kullback-Leibler (KL) divergence [START_REF] Kullback | On information and sufficiency[END_REF] are widely used in statistics as discrepancy measures between probability distributions. To define them, let us consider two probability densities p 1 , p 2 ∈ P(X , ν). We can then define the Rényi and KL divergences between p 1 and p 2 as follows.

Definition 1. The Rényi divergence with parameter α > 0, α = 1, between p 1 and p 2 is defined by

RD α (p 1 , p 2 ) = 1 α -1 log p 1 (x) α p 2 (x) 1-α ν(dx) .
When the above integral is not well-defined, then RD α (p 1 , p 2 ) = +∞.

Definition 2. The KL divergence between p 1 and p 2 is defined by

KL(p 1 , p 2 ) = log p 1 (x) p 2 (x) p 1 (x)ν(dx).
When the above integral is not well-defined, then KL(p 1 , p 2 ) = +∞.

The KL divergence is a limiting case of Rényi divergence [START_REF] Van Erven | Rényi divergence and Kullback-Leibler divergence[END_REF], since lim α→1, α≤1

RD α (p 1 , p 2 ) = KL(p 1 , p 2 ).
Note that the same result also holds by taking the limit from above α = 1 under some additional conditions [START_REF] Van Erven | Rényi divergence and Kullback-Leibler divergence[END_REF].

Let us recall the important following property, that explains the term divergence: 

Proposition 1 ([88]). For any α > 0, α = 1, RD α (p

Exponential families

In this work, we propose to approximate the target π ∈ P(X , ν) by a parametric distribution taken from an exponential family [START_REF] Brown | Fundamentals of Statistical Exponential families with applications in Satistical decision theory[END_REF][START_REF] Barndorff-Nielsen | Information and Exponential Families in Statistical Theory[END_REF].

Definition 3. Let Γ : X → H be a Borel-measurable function. The exponential family with base measure ν and sufficient statistics Γ is the family

Q = {q θ ∈ P(X , ν), θ ∈ Θ} such that q θ (x) = exp ( θ, Γ(x) -A(θ)) , ∀x ∈ X , (1) 
with A being the log-partition function, such that Θ = dom A ⊂ H, and which reads:

A(θ) = log exp ( θ, Γ(x) ) ν(dx) , ∀θ ∈ Θ. (2) 
In the following, for the sake of conciseness, we will say that some family Q is an exponential family, without stating explicitly the base measure and the sufficient statistics Q is associated to.

Remark 1. We work here with parameters in the finite-dimensional Hilbert space H, which is slightly more general than considering parameters in R n . This allows to consider vectors, matrices, or Cartesian products in a unified way. In particular, when symmetric matrices are considered, we work directly with S d rather than with its vectorized counterpart R d(d+1)/2 . The goal of our approximation method is thus to find θ ∈ Θ such that q θ is an optimal approximation of π, in a sense that remains to be precised. Before going further, let us provide an important example of an exponential family.

Example 1. Let d ≥ 1. Consider the family of Gaussian distributions with mean µ ∈ R d and covariance Σ ∈ S d ++ . This is an exponential family [START_REF] Barndorff-Nielsen | Information and Exponential Families in Statistical Theory[END_REF], with sufficient statistics Γ : x -→ x, xx and Lebesgue base measure that we denote by G in the following. Its corresponding parameters are θ = (θ 1 , θ 2 ) with θ 1 = Σ -1 µ, and

θ 2 = -1 2 Σ -1 , while A(θ) = d 2 log(2π) -1 4 θ 1 θ -1 2 θ 1 -1 2 log det(-2θ 2 ). The domain of A is Θ = R d × -S d ++ , which is included in H = R d × S d .
The scalar product of H is taken as the sum of the scalar product of R d and the one of S d . Under such parametrization, for any x ∈ R d and θ ∈ Θ,

q θ (x) = exp θ 1 , x + θ 2 , xx -A(θ) = exp µ Σ -1 x - 1 2 x Σ -1 x - 1 2 µ Σ -1 µ - 1 2 log((2π) d det(Σ)) = N (x; µ, Σ).
Exponential families recover many other continuous distributions, such as the inverse Gaussian and Wishart distributions, among others. Discrete distributions can also be put under the form (1) when ν is chosen as a discrete measure. Exponential families benefit from a rich geometric structure [START_REF] Amari | Differential-geometrical methods in statistics[END_REF][START_REF] Nielsen | Entropies and cross-entropies of exponential families[END_REF] and have been used as approximating families in many contexts such as VI algorithms [START_REF] Hensman | Fast variational inference in the conjugate exponential family[END_REF][START_REF] Hoffman | Stochastic variational inference[END_REF][START_REF] Blei | Variational inference: A review for the statistician[END_REF][START_REF] Lin | Fast and simple natural-gradient variational inference with mixture of exponential-family approximations[END_REF], expectationpropagation schemes [START_REF] Seeger | Expectation propagation for exponential families[END_REF], or adaptive importance sampling (AIS) procedures [START_REF] Akyildiz | Convergence rates for optimised adaptive importance samplers[END_REF].

Proposed approximation approach

We seek to approximate π by a parametric distribution q θ from an exponential family Q with base measure ν, such that the domain Θ ⊂ H is non-empty. To measure the quality of our approximations, we define the following family of functions f (α) π for α > 0:

f (α) π (θ) := RD α (π, q θ ), if α = 1, KL(π, q θ ), if α = 1, ∀θ ∈ Θ. ( 3 
)
Consider now a regularizing term r, which promotes desirable properties on the sought parameters θ. We now define our objective function for some α > 0:

F (α) π (θ) := f (α) π (θ) + r(θ), ∀θ ∈ Θ. ( 4 
)
We propose to resolve our approximation problem by minimizing (4) over an exponential family Q, i.e., by considering the following optimization problem:

minimize θ∈Θ F (α) π (θ). (P (α) π ) 
Problem (P

(α) π ) consists in minimizing F (α)
π , which is the sum of the Rényi divergence RD α (π, •) and a regularizing function r. This allows to capture or generalize many settings.

Choosing the Rényi divergence as a discrepancy measure allows to generalize the widely-used KL divergence [START_REF] Kroese | The cross-entropy method for continuous multi-extremal optimization[END_REF][START_REF] Seeger | Expectation propagation for exponential families[END_REF][START_REF] Douc | Convergence of adaptive mixtures of importance sampling schemes[END_REF][START_REF] Cappé | Adaptive importance sampling in general mixture classes[END_REF], recovered when α = 1. This allows to choose the right value of α for the application [START_REF] Li | Rényi divergence variational inference[END_REF] by fine-tuning the algorithm's behavior. This is in contrast with the use of one fixed divergence, which creates a fixed behavior. For instance, minimizing KL(π, •) induces a mass-covering behavior and minimizing KL(•, π) induces a mode-fitting behavior [START_REF] Minka | Divergence measures and message passing[END_REF][START_REF] Blei | Variational inference: A review for the statistician[END_REF]. Moreover, the Rényi divergence with parameter α can be monotonically transformed [START_REF] Van Erven | Rényi divergence and Kullback-Leibler divergence[END_REF] into the corresponding α-divergence [START_REF] Minka | [END_REF][START_REF] Hernandez-Lobato | Black-box alpha divergence minimization[END_REF][START_REF] Daudel | Infinite-dimensional gradient-based descent for alpha-divergence minimisation[END_REF], including in particular the Hellinger distance [START_REF] Campbell | Universal boosting variational inference[END_REF] and the χ 2 divergence [START_REF] Dieng | Variational inference via χ upper bound minimization[END_REF][START_REF] Akyildiz | Convergence rates for optimised adaptive importance samplers[END_REF].

Adding a regularization term gives even more possibilities. When r is null or an indicator function, then Problem (P (α) π ) relates to the computation of the so-called reverse information projection [START_REF] Csiszar | I-divergence geometry of probability distributions and minimization problems[END_REF][START_REF] Dykstra | An iterative procedure for obtaining I-projections onto the intersection of convex sets[END_REF][START_REF] Csiszár | Information Theory and Statistics: A Tutorial[END_REF]] when α = 1, which has later been generalized in [START_REF] Kumar | Projection theorems for the Rényi divergence on α-convex sets[END_REF] for α = 1. A similar setting is used in sparse precision matrix estimation, relying on the KL divergence and a sparsity-inducing regularizer [START_REF] Yuan | Model selection and estimation in the gaussian graphical model[END_REF][START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data[END_REF]. The problem of computing Bayesian core-sets has also been formulated as a KL minimization problem over a set of sparse parameters [START_REF] Campbell | Sparse variational inference: Bayesian coresets from scratch[END_REF]. Let us also cite [START_REF] Shao | Variational inference with graph regularization for image annotation[END_REF], that performs VI with an added graph regularization term, used to enforce special geometric structure. Finally, the minimization of problems composed of a divergence and an additional term is at the core of the generalized view on variational inference proposed in [START_REF] Knoblauch | An optimization-centric view on Bayes' rule: Reviewing and generalizing variational inference[END_REF].

A proximal relaxed moment-matching algorithm

In this section, we detail our proposed algorithm and its behavior, and discuss its connections with existing works. Our algorithm solves Problem (P (α) π ) by adapting the parameters θ iteratively. Each iteration is composed of two steps: (i) a relaxed moment-matching step, and (ii) a proximal step, both described in Section 3.1. Then, we provide a black-box implementation of our method based on non-linear importance sampling in Section 3.2. Finally, we discuss in Section 3.3 how our method generalizes existing momentmatching algorithms.

A proximal relaxed moment-matching algorithm

In order to state our algorithm, we first introduce the notion of geometric average between our target π and the parametric density q θ . Definition 4. Consider θ ∈ Θ and α > 0. We introduce, whenever it is well-defined, the geometric average with parameter α between π and q θ , denoted by π (α) θ , which is the probability distribution of P(X , ν) defined by

π (α) θ (x) = 1 π(y) α q θ (y) 1-α ν(dy) π(x) α q θ (x) 1-α , ∀x ∈ X . (5) 
Probability densities akin to π (α) θ

have been used for instance in annealing importance sampling [START_REF] Neal | Annealed importance sampling[END_REF], in sequential Monte-Carlo schemes [START_REF] Moral | Sequential Monte Carlo samplers[END_REF], or in adaptive importance sampling [START_REF] Bugallo | A new strategy for effective learning in population monte carlo sampling[END_REF]. The integral in ( 5) is well-defined if α ≤ 1 and the supports of π and q θ have non-empty intersection. Since π and every q θ ∈ Q are absolutely continuous with respect to ν, and q θ (x) > 0 for every x ∈ X , the latter condition is always satisfied within the setting of our study.

Remark 2. If one does not have access to π but only to an unnormalized density π such that π(x) = 1

Zπ π(x), the geometric average between π and q θ can be still computed using

π (α) θ (x) = 1 π(y) α q θ (y) 1-α ν(dy) π(x) α q θ (x) 1-α , ∀x ∈ X .
We are now ready to introduce our proximal relaxed moment-matching algorithm, described in Algorithm 1. At iteration k, the first step, Eq. ( 6) can be viewed as a relaxed form of a moment-matching step, with relaxation step-size τ k+1 chosen such that τ k+1 ∈ (0, 1]. The parameter α arises from the Rényi divergence f (α) π . The second step, Eq. ( 7), is a so-called proximal step on the regularization term r (see Section 4.1) that involves again the step-size τ k+1 .

Algorithm 1: Proposed proximal relaxed matching algorithm Choose the step-sizes {τ k } k∈N , such that τ k ∈ (0, 1] for any k ∈ N. Set the Rényi parameter α > 0.

Initialize the algorithm with θ 0 ∈ int Θ. for k = 0, ... do Compute θ k+ 1 2 such that

q θ k+ 1 2 (Γ) = τ k+1 π (α) θ k (Γ) + (1 -τ k+1 )q θ k (Γ). (6) 
Update θ k+1 following

θ k+1 = arg min θ ∈Θ r(θ ) + 1 τ k+1 KL(q θ k+ 1 2 , q θ ) . (7) 
end

The following example explicits the relaxed moment-matching step of Algorithm 1 when the exponential family is Gaussian.

Example 2. In the case when Q = G, the update (6) reads

   q θ k+ 1 2 (x) = τ k+1 π (α) θ k (x) + (1 -τ k+1 )q θ k (x), q θ k+ 1 2 (xx ) = τ k+1 π (α) θ k (xx ) + (1 -τ k+1 )q θ k (xx ). ( 8 
)
This shows that (6) consists in matching the first and second order moments of the new distribution q θ k+ 1 2 with a convex combination between the moments of π

(α)
θ k and those of the previous distribution q θ k . We recall that, for q θ ∈ G, q θ (x) = µ and q θ (xx ) = Σ + µµ . Thus, we can further write that ( 8) is equivalent to

µ k+ 1 2 = τ k+1 π (α) θ k (x) + (1 -τ k+1 )µ k , Σ k+ 1 2 = τ k+1 π (α) θ k (xx ) + (1 -τ k+1 ) Σ k + µ k µ k -µ k+ 1 2 µ k+ 1 2
. We now give an example in order to illustrate the second step of Algorithm 1. This example is rather general and links Eq. ( 7) with reverse information projections [START_REF] Csiszar | I-divergence geometry of probability distributions and minimization problems[END_REF][START_REF] Dykstra | An iterative procedure for obtaining I-projections onto the intersection of convex sets[END_REF][START_REF] Csiszár | Information Theory and Statistics: A Tutorial[END_REF] 

θ k+1 = arg min θ ∈Θ ι C (θ ) + KL(q θ k+ 1 2 , q θ ) = arg min θ ∈Θ∩C KL(q θ k+ 1 2 , q θ ).
We recognize that in this case, [START_REF] Barndorff-Nielsen | Information and Exponential Families in Statistical Theory[END_REF] is the reversed information projection of q θ k+ 1 2 on the set {q θ ∈ Q, θ ∈ C ∩ Θ}, as described in [29, Section 3] for instance.

A black-box implementation based on non-linear importance sampling

Implementing directly Algorithm 1 might not be possible in practice. In many situations, π (α) θ (Γ) cannot be expressed analytically, and must be approximated. We thus propose a stochastic implementation of Algorithm 1 based on non-linear importance sampling. This new scheme only requires that samples distributed following q θ are available for any θ ∈ Θ, and that an unnormalized version of π can be evaluated. This means that there exists π ∈ M(X , ν) and Z π > 0 such that for any x ∈ X , π(x) = 1

Zπ π(x) with π(x) being easy to compute. This setting is standard in importance sampling as well as in black-box VI [START_REF] Ranganath | Black box variational inference[END_REF] for instance. The proposed stochastic form of Algorithm 1 is motivated by the following alternative form of π

(α) θ (Γ): π (α) θ (Γ) = 1 π(y) q θ (y) α q θ (y)ν(dy) π(x) q θ (x) α Γ(x)q θ (x)ν(dx). ( 9 
)
We see here that both integrals in Eq. ( 9) are expectations with respect to q θ , with the ratios π(x) q θ (x) α evoking exponentiated importance weights. Therefore, our approximate implementation of Algorithm 1 consists in approximating these integrals with weighted samples from q θ , which yields Algorithm 2.

Algorithm 2: Proposed Monte Carlo proximal relaxed moment-matching algorithm Choose the step-sizes {τ k } k∈N , such that τ k ∈ (0, 1] for any k ∈ N.

Choose the sample sizes {N k } k∈N , such that N k ∈ N \ {0} for any k ∈ N.

Set the Rényi parameter α > 0.

Initialize the algorithm with θ 0 ∈ int Θ. for k = 0, ... do Sample x l ∼ q θ k for l ∈ 1, N k+1 . For l ∈ 1, N k+1 , compute the non-linear importance weights

w (α) l = π(x l ) q θ k (x l ) α , (10) 
and the normalized non-linear importance weights w(α)

l = w (α) l N k+1 l=1 w (α) l . ( 11 
)
Compute θ k+ 1 2 such that

q θ k+ 1 2 (Γ) = τ k+1   N k+1 l=1 w(α) l Γ(x l )   + (1 -τ k+1 )q θ k (Γ). (12) 
Update θ k+1 following

θ k+1 = arg min θ ∈Θ r(θ ) + 1 τ k+1 KL(q θ k+ 1 2 , q θ ) . ( 13 
)
end Algorithms 1 and 2 are both written assuming that the proximal step can be computed exactly. Examples of such computations are provided in Appendix C. However, it may not be the case, depending on r and Q.

In such situations, one may use an optimization algorithm as a subroutine to approximate this step. Specific cases have been investigated in the literature. For instance, the proximal algorithm proposed in [START_REF] Benfenati | Proximal approaches for matrix optimization problems: Application to robust precision matrix estimation[END_REF] can be used in the case of Gaussian densities with fixed mean. A graphical lasso solver such as [START_REF] Yuan | Model selection and estimation in the gaussian graphical model[END_REF][START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data[END_REF] can also be employed for computation of this step for Gaussian densities with fixed mean and 1 regularizer.

Comparison with existing moment-matching algorithms

Let us now discuss the main features of our algorithms, and their positioning with respect to existing moment-matching algorithms. First, note that a strict moment-matching update of θ k+1 ,

q θ k+1 (Γ) = π(Γ), (14) 
is recovered in Algorithm 1 when τ k+1 = 1, α = 1 and r ≡ 0. Therefore, each update of Algorithm 1 can be viewed as a generalized version of the strict moment-matching update of Eq. ( 14) with supplementary degrees of freedom, hence its name. Many algorithms in statistics resort to moment-matching updates. In AIS, the AMIS scheme [START_REF] Cornuet | Adaptive multiple importance sampling[END_REF][START_REF] Marin | Consistency of adaptive importance sampling and recycling schemes[END_REF] and the M-PMC scheme [START_REF] Cappé | Adaptive importance sampling in general mixture classes[END_REF] rely on updates similar to [START_REF] Blei | Variational inference: A review for the statistician[END_REF]. The idea of moment-matching updates with τ > 0 as in [START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data[END_REF] can also be found in many contexts, such as VI [START_REF] Khan | Conjugate-computation variational inference: Converting variational inference in non-conjugate models to inferences in conjugate models[END_REF], covariance learning in adaptive importance sampling [START_REF] El-Laham | Recursive shrinkage covariance learning in adaptive importance sampling[END_REF] or in the cross-entropy method [START_REF] Kroese | The cross-entropy method for continuous multi-extremal optimization[END_REF], although π is not used directly in the latter. However, all the aforementioned works consider KL-based updates, that is with α = 1 and no regularization term (i.e., r ≡ 0).

Moment-matching updates are often approximated through IS, as we do in Algorithm 2. Importance sampling estimation of π(Γ) or π (α) θ (Γ) is for instance used in the AMIS scheme of [START_REF] Cornuet | Adaptive multiple importance sampling[END_REF][START_REF] Marin | Consistency of adaptive importance sampling and recycling schemes[END_REF][START_REF] El-Laham | Efficient adaptive multiple importance sampling[END_REF] for adaptive importance sampling, where proposals are constructed by matching the moments of the target. AMIS is recovered when α = 1, τ k ≡ 1 and r ≡ 0. However, note that in AMIS, all the past samples are used at each iteration and re-weighted (interpreting that samples are simulated in a multiple IS setting [START_REF] Elvira | Generalized multiple importance sampling[END_REF]), which is not the case here. In that respect, the APIS algorithm [START_REF] Martino | An adaptive population importance sampler[END_REF] bears some similarity, since it performs adaptation via moment matching with only the samples at each given iteration. Let us also mention the algorithm in [START_REF] Khan | Conjugate-computation variational inference: Converting variational inference in non-conjugate models to inferences in conjugate models[END_REF], where deterministic and stochastic updates are combined to exploit the structure of the target.

When α = 1, the weights of Algorithm 2 reduce to standard importance sampling weights, with q θ k as a proposal distribution. However, for α = 1, then each weight comes from a non-linear transformation applied to the standard importance sampling weights. A particular type of non-linearity has been studied in [START_REF] Koblents | A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models[END_REF], where cropped weights have been shown to decrease the variance of the estimator. Some related methodologies for a non-linear transformation of the importance weights can be found in [START_REF] Ionides | Truncated importance sampling[END_REF][START_REF] Vehtari | Pareto smoothed importance sampling[END_REF] (see also [START_REF] Martino | A comparison of clipping strategies for importance sampling[END_REF] for a review). Note that similarly to cropping the weights, raising them at a power α ≤ 1, is also a concave transformation of the weights, which may improve the estimators too. This intuition is confirmed by our theoretical analysis in Section 5 and by our numerical experiments in Section 6.

In a different context, moment-matching updates have been used in [START_REF] Grosse | Annealing between distributions by averaging moments[END_REF] to construct a path between two exponential distributions by averaging their moments, corresponding to α = 1. Similarly, geometric paths using distributions similar to π (α) θ have been used in [START_REF] Neal | Annealed importance sampling[END_REF][START_REF] Moral | Sequential Monte Carlo samplers[END_REF], corresponding to τ k ≡ 0. This means that our updates in Algorithm 1 use both techniques simultaneously. This is linked to the more general paths between probability distributions proposed in [START_REF] Bui | Connecting the thermodynamic variational objective and annealed importance sampling[END_REF], or to the q-paths of [START_REF] Masrani | q-paths: Generalizing the geometric annealing path using power means[END_REF]. Actually, moment-matching and geometric averages both are barycenters between π and q θ in the sense of the inclusive or exclusive KL divergence [START_REF] Grosse | Annealing between distributions by averaging moments[END_REF], indicating that Eq. ( 6) may have a similar interpretation.

Geometric interpretation as a Bregman proximal gradient scheme

Let us show now that Algorithm 1 can be interpreted as a special case of a Bregman proximal gradient algorithm [START_REF] Bauschke | A descent lemma beyond Lipschitz gradient continuity: revisited and applications[END_REF][START_REF] Teboulle | A simplified view of first order methods for optimization[END_REF]. This perspective will be a key element of our convergence analysis in Section 5. We show hereafter that Algorithms 1 and 2 lie within this framework and detail our working assumptions. The proofs are deferred to the supplementary material [START_REF] Guilmeau | Supplement to "Regularized Rényi divergence minimization through Bregman proximal gradient algorithms[END_REF] in Appendix A. Then, we discuss how our algorithms relate with natural gradient methods and black-box schemes.

Geometric interpretation as a Bregman proximal gradient scheme

In this section, we first recall some notions about Bregman proximal optimization schemes (more details can be found in [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF][START_REF] Bauschke | A descent lemma beyond Lipschitz gradient continuity: revisited and applications[END_REF][START_REF] Teboulle | A simplified view of first order methods for optimization[END_REF]). We then identify the Bregman geometry leading to our algorithms. Finally, we show the equivalence between Algorithm 1 and a Bregman proximal gradient algorithm within this particular geometry under some assumptions that we also explain here.

An essential tool of our analysis is the notion of Bregman divergence, that generalizes the standard Euclidean distance. The Bregman divergence paradigm allows to propose new optimization algorithms by relying on other geometries, with the aim to yield better convergence results and/or simpler updates for a given problem. Each Bregman divergence is constructed from a function satisfying the so-called Legendre property.

Definition 5. A Legendre function is a function B ∈ Γ 0 (H) that is strictly convex on the interior of its domain int dom B, and essentially smooth. B is essentially smooth if it is differentiable on int dom B and such that ||∇B(θ k )|| -----→ k→+∞ +∞ for every sequence {θ k } k∈N converging to a boundary point of dom B with

θ k ∈ int dom B for every k ∈ N.
Given a Legendre function B, we define the Bregman divergence d B as

d B (θ, θ ) := B(θ) -B(θ ) -∇B(θ ), θ -θ , ∀(θ, θ ) ∈ (dom B) × (int dom B).
We now define the notion of conjugate function (sometimes called the Fenchel conjugate) [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF], which allows to state some useful properties of Legendre functions.

Definition 6. The conjugate of a function f : H → [-∞, +∞] is the function f * : H → [-∞, +∞] such that f * (θ) = sup θ ∈H θ , θ -f (θ ).
Proposition 2 (Section 2.2 in [START_REF] Teboulle | A simplified view of first order methods for optimization[END_REF]). Let B be a Legendre function. Then we have that (i) ∇B is a bijection from int dom B to int dom B * , and (∇B)

-1 = ∇B * , (ii) dom ∂B = int dom B and ∂B(θ) = {∇B(θ)}, ∀θ ∈ int dom B.
Finally, B is a Legendre function if and only if B * is a Legendre function.

The Bregman divergence d B (θ, θ ) measures the gap between the value of the function B and its linear approximation at θ , when both are evaluated at θ. B is strictly convex, meaning that its curve is strictly above its tangent linear approximations. Thus, d B satisfies the following distance-like property. Note however that d B is not symmetric nor does it satisfy the triangular inequality in general.

Proposition 3 (Section 2.2 in [START_REF] Teboulle | A simplified view of first order methods for optimization[END_REF]). Consider a Legendre function B with the associated Bregman divergence

d B . Then, for every θ ∈ dom B, θ ∈ int dom B, d B (θ, θ ) ≥ 0, d B (θ, θ ) = 0 if and only if θ = θ .
Each choice for the Legendre function B yields a specific divergence d B . In particular, Bregman divergences generalize the Euclidean norm, since the latter is recovered for B(θ) = 1 2 θ 2 [START_REF] Bauschke | A descent lemma beyond Lipschitz gradient continuity: revisited and applications[END_REF]. Given these notions, we can now explicit the geometry that will be useful to provide a new interpretation of our Algorithm 1. The following proposition shows that the log-partition function defined in ( 2) is a natural choice to generate a Bregman divergence.

We first make an assumption ensuring that the choice of Q, given the target π, makes the function f

(α) π well-posed.
Assumption 1. The exponential family Q and the target π are such that

(i) int Θ = ∅ and int Θ ⊂ dom f (α) π ,
(ii) Q is minimal and steep (following the definitions of [START_REF] Barndorff-Nielsen | Information and Exponential Families in Statistical Theory[END_REF]Chapter 8]).

Minimality implies in particular that for each distribution in Q, there is a unique vector θ that parametrizes it. Most exponential families are steep. In particular Theorem 8.2]. Note that when α ∈ (0, 1), then dom f (α) π = Θ so that Assumption 1 (i) holds. Indeed, q θ (x) > 0 for every x ∈ X and, in particular, q θ (x) is positive as soon as π(x) > 0. This means that the quantity in the logarithm is positive. When α = 1, we have

, if Θ is open (in this case, Q is called regular ), then Q is steep [7,
KL(π, q θ ) = log(π(x))π(x)ν(dx) -θ, π(Γ) + A(θ), ∀θ ∈ Θ.
Thus dom f (α) π = Θ, and Assumption 1 (i) holds if log(π(x))π(x)ν(dx) and π(Γ) are finite. However, Assumption 1 (i) may not be satisfied when α > 1.

Proposition 4. Under Assumption 1 (i), the log-partition A, defined in Eq. (2), is proper, lower semicontinuous and strictly convex. In addition, all the partial derivatives of A exist on int Θ. In particular, its gradient reads

∇A(θ) = q θ (Γ), ∀θ ∈ int Θ. ( 15 
)
If Assumption 1 (i)-(ii) is satisfied, then the log-partition function is a Legendre function.

Proof. See Appendix A.1

The Bregman divergence induced by the Legendre function A admits a statistical interpretation that has been well-studied in the information geometry community [START_REF] Amari | Information geometry of divergence functions[END_REF][START_REF] Nielsen | Entropies and cross-entropies of exponential families[END_REF]. Indeed, the KL divergence between two distributions from Q is equivalent to the Bregman divergence d A between their parameters, as we recall in the next proposition.

Proposition 5 ([76]

). Consider θ, θ ∈ int Θ and A the log-partition function defined in (2). Then,

KL(q θ , q θ ) = d A (θ , θ).
This proposition links the KL divergence with the notion of Bregman divergence, which is also central to many new algorithms in optimization. We now exploit this connection to analyze Algorithm 1 as an optimization algorithm written with the divergence d A . We first give an intermediate proposition that shows the differentiability of f (α) π , and thus properly justifies the use of the gradients of f (α) π in our following study.

Proposition 6. Let α > 0. The map f (α) π is of class C 2 on int Θ ∩ dom f (α) π . In particular, for any θ ∈ int Θ ∩ dom f (α) π , ∇f (α) π (θ) = q θ (Γ) -π(Γ) if α = 1, q θ (Γ) -π (α) θ (Γ) if α = 1.

Similarly, for any

θ ∈ int Θ ∩ dom f (α) π , ∇ 2 f (α) π (θ) = ∇ 2 A(θ) if α = 1, ∇ 2 A(θ) + (α -1) π (α) θ (ΓΓ ) -π (α) θ (Γ)(π (α) θ (Γ)) if α = 1.
Proof. See Appendix A.2

We now give the definitions of the gradient descent operator for f

(α)
π , of the proximal operator for r, and of the proximal gradient operator for

F (α) π = f (α) π
+ r, all within the Bregman metric induced by the log-partition function A. Interested readers can go to [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF][START_REF] Teboulle | A simplified view of first order methods for optimization[END_REF] for a study of iterative schemes relying on these operators in a general setting. Definition 7. Consider a positive step-size τ > 0.

(i) The Bregman proximal operator of τ r is defined as prox A τ r (θ) := arg min

θ ∈dom A r(θ ) + 1 τ d A (θ , θ) , ∀θ ∈ int dom A. (ii) When ∇A(θ) -τ ∇f (α)
π (θ) ∈ dom ∇A * for every θ ∈ int dom A, the Bregman gradient descent operator of τ f (α) π is well-defined and reads

γ A τ f (α) π (θ) := ∇A * ∇A(θ) -τ ∇f (α) π (θ) , ∀θ ∈ int dom A.
(iii) The Bregman proximal gradient operator of τ F (α) π is defined by

T A τ F (α) π (θ) := arg min θ ∈dom A r(θ ) + ∇f (α) π (θ), θ -θ + 1 τ d A (θ , θ) , ∀θ ∈ int dom A.
Next, we show that Algorithm 1 is a Bregman proximal gradient algorithm relying on the divergence d A and that it is well-posed, which brings useful links between statistics, Bregman divergences, and optimization. To do so, let us introduce technical assumptions under which the operators γ A τ f (α) π and prox A τ r from Definition 7 are well-defined, single-valued, and mapping the set int Θ to itself.

Assumption 2. For any θ ∈ int dom A, π (α) θ (Γ) ∈ int dom A * . Equivalently, there exists θ (α) ∈ int Θ such that π (α) θ (Γ) = q θ (α) (Γ).
In the case where α = 1 and Q = G, Assumption 2 is equivalent to the target π having finite first and second order moments. Assumption 3. The regularizer r is in Γ 0 (H), is bounded from below, and is such that int Θ ∩ dom r = ∅.

This assumption is standard in the Bregman optimization literature [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF], and allows in particular nonsmooth regularizers. For instance, Assumption 3 is satisfied by the 1 norm often used to enforce sparsity [45, Section 3.4], or by indicator functions of non-empty closed convex sets, to impose constraints on the parameters.

We now show how Assumptions 1, 2, and 3 ensure the well-posedness of the operators introduced in Definition 7. We also define the stationary points of F (α) π and show that they coincide with the fixed points of the operators of Definition 7.

Definition 8. Under Assumption 3, we introduce for α > 0 the set of stationary points of

F (α) π as S (α) π := {θ ∈ int Θ ∩ dom f (α) π , 0 ∈ ∇f (α) π (θ) + ∂r(θ)}. Remark 3. Points in S (α) π are stationary points of F (α) π
in the sense of the limiting subdifferential ∂ L [78, Chapter 6], which generalizes the subdifferential to non-convex functions. In particular, for f ∈ Γ 0 (H),

∂ L f = ∂f [78, Proposition 6.17]. For every θ ∈ int Θ ∩ dom f (α) π , ∂ L F (α) π = ∇f (α) π + ∂r, by convexity of r, differentiability of f (α)
π , and [78, Proposition 6.17], meaning that θ ∈ S (i) Under Assumptions 1 and 2, if τ ∈ (0, 1], the operator γ A τ f

(α) π is well-defined on int Θ and γ A τ f (α) π (θ) ∈ int Θ for every θ ∈ int Θ.
(ii) Under Assumptions 1 and 3, the domain of prox A τ r is int Θ. On int Θ, prox A τ r is single-valued, and prox A τ r (θ) ∈ int Θ for every θ ∈ int Θ.

(iii) If Assumptions 1, 2, and 3 are satisfied, and τ ∈ (0, 1],

T A τ F (α) π = prox A τ r • γ A τ f (α) π
, and a point θ

∈ int Θ is a fixed point of T A τ F (α) π
if and only if it is a stationary point of

F (α) π .
Proof. See Appendix A.3

We now state our main proposition, that provides an optimization-based interpretation for our Algorithm 1. Specifically, we show that Algorithm 1 consists first in a Bregman gradient descent step on f (α) π and then in a Bregman proximal step on the regularization function r, both within the Bregman geometry induced by log-partition function A.

Proposition 8. Consider a sequence {θ k } k∈N generated by Algorithm 1 starting from θ 0 ∈ int Θ. Under Assumptions 1, 2, and 3, for every k ∈ N, θ k , θ k+ 1 2 ∈ int Θ, and we can define equivalently the updates (6) and (7) as

θ k+ 1 2 = γ A τ k+1 f (α) π (θ k ), (16) 
θ k+1 = prox A τ k+1 r θ k+ 1 2 . ( 17 
)
Furthermore,

θ k+1 = T A τ k+1 F (α) π (θ k ). (18) 
Proof. See Appendix A.4 θ k (Γ). Recall from Proposition 6 that this quantity appears in ∇f

(α) π (θ k ) = q θ k (Γ) -π (α)
θ k (Γ). Therefore, Algorithm 2 uses a noisy approximation of ∇f (α) π (Γ), that we denote by G(α) π (θ k ). Following the result of Proposition 8, which shows that Algorithm 1 is a Bregman proximal gradient algorithm, we can interpret Algorithm 2 as a stochastic Bregman proximal gradient algorithm [START_REF] Xiao | A unified convergence analysis of stochastic Bregman proximal gradient and extra-gradients methods[END_REF], where

θ k+1 = prox A τ k+1 r ∇A * ∇A(θ k ) -τ k+1 G(α) π (θ k ) .
Note however that we do not guarantee here the well-posedness of this stochastic step.

Comparison with existing gradient descent algorithms

In the previous section, we interpret Algorithms 1 and 2 under the framework of Bregman proximal gradient algorithms. Let us use this perspective to explain the links between our algorithms, natural gradients methods, and black-box VI algorithms.

Comparison with information-geometric gradient descent algorithms

Proposition 8 shows that Algorithm 1 can be interpreted as a Bregman proximal gradient algorithm, whose geometry is given by the KL divergence between distributions of the approximating family. This result is similar to the approach taken in [START_REF] Khan | Conjugate-computation variational inference: Converting variational inference in non-conjugate models to inferences in conjugate models[END_REF], which considers the minimization of the KL divergence with a regularization term. In the existing literature, the link between moment-matching steps and KL minimization is well-known [START_REF] Cappé | Adaptive importance sampling in general mixture classes[END_REF][START_REF] Cornuet | Adaptive multiple importance sampling[END_REF], while the interpretation of the KL divergence as a Bregman divergence in the case of an exponential family is for instance presented in [START_REF] Nielsen | Entropies and cross-entropies of exponential families[END_REF].

Methods using the so-called natural gradients also exploit the geometry of their statistical models [START_REF] Amari | Natural gradient works efficiently in learning[END_REF][START_REF] Honkela | Approximate Riemannian conjugate gradient learning for fixed-form variational Bayes[END_REF][START_REF] Hensman | Fast variational inference in the conjugate exponential family[END_REF][START_REF] Hoffman | Stochastic variational inference[END_REF][START_REF] Lin | Fast and simple natural-gradient variational inference with mixture of exponential-family approximations[END_REF], as the gradients are multiplied by the inverse of the Fisher information matrix of the statistical model. This pre-conditioned gradient is the steepest descent direction in the Riemannian manifold whose metric tensor is the Fisher information matrix [START_REF] Amari | Natural gradient works efficiently in learning[END_REF]. In the previously mentioned works, turning to natural gradients is shown to improve algorithms performance.

Bregman gradient descent shares close ties with natural gradient methods as shown in [START_REF] Raskutti | The information geometry of mirror descent[END_REF]. More explicitly, for exponential families, a Bregman gradient descent step in the variable θ is equivalent to a natural gradient descent step in the variable ∇A(θ), with the metric tensor being ∇ 2 A * instead of ∇ 2 A, the latter being equal to the Fisher information matrix [START_REF] Amari | Differential-geometrical methods in statistics[END_REF].

However, while natural gradient methods in variational inference are often restricted to minimizing the KL divergence, our methods allow to consider Rényi divergences with a possible regularization term. This creates more flexibility in the choice of the divergence since α can be tuned. The additional regularization term allows to enforce features on the sought parameters θ, such as sparsity for better compressibility/interpretability, which is usually done with non-smooth regularizer [START_REF] Hastie | The Elements of Statistical Learning[END_REF]. The Rényi divergence is handled with a Bregman gradient step which writes as a relaxed moment-matching step, while adding a non-smooth regularizer simply translates in a Bregman proximal step in Algorithm 1.

Note that Algorithm 2 is a black-box implementation of Algorithm 1. This setting allows to consider targets which can only be evaluated up to a multiplicative constant. On the contrary, the previously mentioned natural gradients methods are often restricted to conjugacy hypotheses linking the target and the proposals.

Comparison with the variational Rényi bound algorithm of [60]

Algorithm 2 works in the black-box setting, meaning that samples from q θ are available for any θ ∈ Θ and that π = 1 Zπ π, where Z π is unknown and π(x) can be evaluated for any x ∈ X . However, most of the black-box VI algorithms use standard gradients, meaning that they are implicitly written in the Euclidean metric. In this section, we compare our Algorithms 1 and 2 with the method of [START_REF] Li | Rényi divergence variational inference[END_REF], which also addresses the minimization of θ -→ RD α (q θ , π) through stochastic gradient descent in the black-box setting. Namely, we show that the method in [START_REF] Li | Rényi divergence variational inference[END_REF] can be seen as an Euclidean counterpart of Algorithm 2 when r ≡ 0, while our method leverages information-geometric ideas.

In [START_REF] Li | Rényi divergence variational inference[END_REF], an alternative objective that does not involve the unknown normalization constant Z π is constructed from θ -→ RD α (q θ , π). It is called the variational Rényi bound and plays a role akin to the evidence lower bound for KL divergence minimization. This objective is then minimized using a stochastic gradient descent algorithm using samples from the proposals. We now explicit this algorithm when an exponential family is used for the proposals. Consider in the following α ∈ (0, 1), and θ ∈ int Θ. Then,

RD 1-α (q θ , π) = 1 -α α RD α (π, q θ ) = - 1 α log π(x) α q θ (x) 1-α ν(dx) = - 1 α log π(x) α q θ (x) 1-α ν(dx) + log Z π ,
where the first equality comes from [88, Proposition 2]. Therefore, minimizing θ -→ RD 1-α (q θ , π) is equivalent to maximizing

L (α) π (θ) := 1 α log π(x) α q θ (x) 1-α ν(dx) . (19) 
Note that, as pointed in [60, Theorem 1], L

π (θ) ---→ α→1 log Z π , (α) 
L (α) and 
π ≤ log Z π for α ≤ 1, meaning that the marginal likelihood is recovered for α = 1. Now, following computations very similar to those of Proposition 6, we obtain

∇L (α) π (θ) = 1 -α α π (α) θ (Γ) -q θ (Γ) = - 1 -α α ∇f (α) π .
Therefore, the gradient ascent algorithm to maximize L (α) π on Θ reads

θ k+1 = θ k + τ k+1 ∇L (α) π (θ k ) = θ k -τ k+1 ∇f (α) π (θ k ).
where the factor 1-α α is absorbed by the step-size. Hence, the exact implementation of the VRB algorithm appears as an Euclidean analogue of Algorithm 1. In the black-box setting, the quantities π (α) θ (Γ) are approximated at iteration k ∈ N using samples from q θ k , as it is done for Algorithm 2, leading to Algorithm 3. Initialize the algorithm with θ 0 ∈ int Θ.

for k = 0, ... do Sample x l ∼ q θ k for l ∈ 1, N k+1 . Compute the weights { w(α) l } N k+1
l=1 as in Algorithm 2. Compute θ k+1 such that

θ k+1 = θ k + τ k+1   N k+1 l=1 w(α) l Γ(x l ) -q θ k (Γ)   . ( 20 
)
end

Convergence analysis

In this section, we analyze the convergence of Algorithm 1. We rely on its interpretation as a Bregman proximal gradient algorithm from Section 4.1. We explain in Section 5.1 in which sense the Bregman geometry induced by the KL divergence is well-adapted to handle Problem (P (α) π ). Convergence results are given in Section 5.2 and are compared with existing results in Section 5.3. The proofs can be found in the supplementary material [START_REF] Guilmeau | Supplement to "Regularized Rényi divergence minimization through Bregman proximal gradient algorithms[END_REF] in Appendices A-B.

Properties of Problem

(P (α) π )
We start by introducing the notions of relative smoothness and relative strong convexity, which generalize the Euclidean notions of smoothness and strong convexity to the Bregman setting. In the Euclidean setting, having an objective function that satisfies these two notions is desirable to construct efficient algorithms. When these properties are not satisfied, this may indicate that the Euclidean metric is not the best metric to handle the problem and encourages a switch to more adapted Bregman divergences. Definition 9. Consider a Legendre function B and a differentiable function f . (i) We say that f is L-relatively smooth with respect to B if there exists L ≥ 0 such that

f (θ) -f (θ ) -∇f (θ ), θ -θ ≤ Ld B (θ, θ ), ∀(θ, θ ) ∈ (dom B) × (int dom B).
(ii) Similarly, we say that f is ρ-relatively strongly convex with respect to B is there exists ρ ≥ 0 such that

ρd B (θ, θ ) ≤ f (θ) -f (θ ) -∇f (θ ), θ -θ , ∀(θ, θ ) ∈ (dom B) × (int dom B).
These properties give indications about the relation between f and its tangent approximation at θ , defined by θ -→ f (θ ) + ∇f (θ ), θ -θ + Ld B (θ, θ ), where L can be changed for ρ. This tangent approximation majorizes f in the case of relative smoothness, while it minorizes f in the case of relative strong convexity, as illustrated in Fig. 1. In both cases, f and its tangent approximation coincide at θ .

In the Euclidean case B(•) = 1 2 • 2 , the relative smoothness property is equivalent to the standard smoothness property, i.e. the Lipschitz continuity of the gradient, and relative strong convexity is equivalent to the strong convexity property [START_REF] Bauschke | A descent lemma beyond Lipschitz gradient continuity: revisited and applications[END_REF][START_REF] Hanzely | Fastest rates for stochastic mirror descent methods[END_REF]. Note also that relative strong convexity implies convexity (which corresponds to ρ = 0 in the above). We explain now the interplay between the parameter α of the Rényi divergence and the above notions. Proof. See Appendix A.5

In Proposition 9, the case α = 1 plays a special role, as it is the only value for which we have both relative smoothness and relative strong convexity. Indeed, f

π (θ) = KL(π, q θ ) and d A (θ, θ ) = KL(q θ , q θ ), which gives the intuition that f

(1) π and d A are functions with similar mathematical behaviors, leading to improved properties.

We now give a result about potential failures of the Euclidean smoothness of f (α)

π . This suggests that the Euclidean metric is not well-suited to minimize f (α) π .

Proposition 10. There exist targets π and exponential families Q such that the gradient of f

(α) π is not Lipschitz on dom f (α) π , for α > 0.
Proof. See Appendix A.6

Remark 5. The complete proof is in Appendix A in the supplementary material [START_REF] Guilmeau | Supplement to "Regularized Rényi divergence minimization through Bregman proximal gradient algorithms[END_REF]. We exhibit counterexamples built from the family of one-dimensional centered Gaussian distributions with variance σ 2 , that we denote by G 1 0 in the following. It is an exponential family, with parameter θ = -1 2σ 2 and sufficient statistics Γ(x) = x 2 . Its log-partition function is

A(θ) = 1 2 log(2π) -1 2 log(-2θ), whose domain is Θ = R --. Consider also a target q θπ ∈ G 1 0 . Recall that (f (α)
π ) is Lipschitz continuous on its domain if and only if (f

(α)
π ) is bounded on its domain.

We have

dom f (α) π = Θ if α ≤ 1, ( α α-1 θ π , 0) if α > 1,
and |(f (α) π ) (θ)| → +∞ when θ → 0, and also when θ → α α-1 θ π for the case α > 1.

The counter-example used in the proof of Proposition 10 illustrates why choosing to work in the Bregman geometry induced by A can be beneficial. Indeed, when α ∈ (0, 1], we have relative smoothness from Proposition 9, while Euclidean smoothness fails. Note that in this case, Euclidean smoothness could be recovered if we restricted f (α) π to some set of the form [ , +∞). However, this creates a risk of excluding the target value θ π by choosing too large.

This counter-example is also a case where Assumption 1 (i) fails for α > 1 since dom f Figure 1 illustrates the results of Proposition 9 when the exponential family is the family of centered one-dimensional Gaussians G 1 0 and the target belongs to this family too. This setting is used to provide the counter-example of Proposition 10. We can see that when α ≤ 1, relative smoothness is satisfied and f (α) π is above its tangent approximation. On the contrary, α ≥ 1 leads to relative strong convexity, ensuring that f (α) π is above its tangent approximation. We now give a result about the existence of minimizers to Problem (P (α) π ). Again, this result highlights different behaviors depending on the value of α (i.e., if it is lower, equal or higher than one). Proposition 11. Let α > 0.

(i) Under Assumptions 1 and 3, the objective function F (α) π is proper (i.e., with nonempty domain), lower semicontinuous, and bounded from below, that is

-∞ < ϑ (α) π := inf θ∈Θ F (α) π (θ).
(ii) If α ≥ 1 and Assumptions 1, 2, and 3 are satisfied, then F (α) π is coercive and there exists θ * ∈ Θ such that

F (α) π (θ * ) = ϑ (α)
π . Further, it is unique and in int Θ.

Proof. See Appendix A.7

Convergence analysis of Algorithm 1

We are now ready to present our convergence results for Algorithm 1. We give a first set of results for values of α in (0, 1], and then stronger results when α = 1. Results for α ∈ (0, 1] only exploit the relative smoothness, while the results for α = 1 rely on the relative smoothness and the relative strong convexity of f We now give our convergence results for Algorithm 1 for α ∈ (0, 1].

Proposition 12. Consider a sequence {θ k } k∈N generated by Algorithm 1 from θ 0 ∈ int Θ, with α ∈ (0, 1] and a sequence of step-sizes {τ k } k∈N such that τ k ∈ [ , 1] for some > 0. Under Assumptions 1, 2, and 3, then

(i) the sequence {F (α) π (θ k )} k∈N is non-increasing, (ii) if F (α) π (θ K+1 ) = F (α) π (θ K ) for some K ∈ N, then θ k = θ K for every k ≥ K and θ K is a stationary point of F (α) π , (iii)
k≥0 KL(q θ k , q θ k+1 ) < +∞, (iv) if in addition, there exists a non-empty compact set C ⊂ int Θ such that θ k ∈ C for every k ∈ N and r is continuous on C, then every converging subsequence of {θ k } k∈N converges to a point in

S (α) π . Proof. See Appendix B.1
The additional assumption used for point (iv) is satisfied for instance if r = ι C , for a compact C ⊂ int Θ. The continuity assumption on r is also satisfied by the 1 norm. In this case, r is also coercive, ensuring that the iterates stay in a compact set. However, this does not ensure that the iterates do not approach the boundary of Θ.

We now refine the result of Proposition 12 in the case α = 1. In this case, the function f

(α) π
is also relatively strongly convex and coercive, two properties that are used to give stronger results, including rates of convergence.

Proposition 13. Consider a sequence {θ k } k∈N generated by Algorithm 1 from θ 0 ∈ int Θ, with α = 1 and a sequence of step-sizes {τ k } k∈N such that τ k ∈ [ , 1] for some > 0. Consider the point θ * defined in Proposition 11. Under Assumptions 1, 2, and 3, (i) the sequence {KL(q θ k , q θ * )} k∈N is non-increasing and KL(q θ k , q θ * ) ≤ (1 -) k KL(q θ0 , q θ * ), ∀k ∈ N, (ii) we have that

F (1) π (θ k ) -----→ k→+∞ F (1) π (θ * ) = ϑ (1)
π and that

F (1) π (θ k ) -F (1) π (θ * ) ≤ (1 -) k KL(q θ0 , q θ * ), ∀k ∈ N, (iii) the iterates converge to the solution, θ k -----→ k→+∞ θ * .
Proof. See Appendix B.2 Remark 6. We can see in the above result that if = 1, then KL(q θ1 , q θ * ) = 0, meaning that the optimal value is reached in one iteration. This is because of the particular structure of the Bregman gradient operator / moment-matching update when α, τ = 1. Under Assumption 2, there exists θ (1) ∈ int Θ such that π(Γ) = q θ (1) (Γ), so for every θ ∈ int Θ, γ A f (1) π (θ) = θ (1) (using Eq. ( 6) and Proposition 8) and ) ). So prox A r (θ (1) ) is a stationary point of F

T A F (α) π (θ) = prox A r (θ ( 1 
π , hence equal to θ * , using Proposition 12 (ii) and Proposition 11. Note that this phenomenon does not happen for Algorithm 2, where π(Γ) is approximated.

Discussion

We now relate our convergence results with existing works in the optimization and statistics literature. Note that our study leverages techniques from the literature on optimization schemes based on Bregman divergences [START_REF] Bauschke | A descent lemma beyond Lipschitz gradient continuity: revisited and applications[END_REF][START_REF] Teboulle | A simplified view of first order methods for optimization[END_REF][START_REF] Bolte | First order methods beyond convexity and lipschitz gradient continuity with applications to quadratic inverse problems[END_REF][START_REF] Gao | Randomized Bregman coordinate descent methods for non-Lipschitz optimization[END_REF][START_REF] Hanzely | Fastest rates for stochastic mirror descent methods[END_REF].

In some of these works, the Legendre function B is assumed to be β-strongly convex for some β > 0. This ensures that d B (θ, θ ) ≥ β 2 θ -θ 2 , and allows to work with the Euclidean norm directly. Similarly, it may be assumed that dom A is closed, or even equal to the full space, alleviating problems that may happen at the boundary. These two assumptions may not hold in our setting. Indeed, consider the family G 1 0 of one-dimensional Gaussians distributions with zero mean. Its log-partition function, presented in the proof of Proposition 10, is not strongly convex and its domain is open. This counter-example is also exploited in Proposition 10 to show that smoothness with respect to the Euclidean norm may fail. We thus have to reconsider previous works whose theoretical results leverage these assumptions.

In [START_REF] Khan | Faster stochastic variational inference using proximal-gradient methods with general divergence functions[END_REF], approximating distributions are considered in an exponential family, and the strong convexity of the log-partition function as well as the Lipschitz continuity of the gradients of the objective are needed. Our counter-example shows that these properties do not hold in general. In [START_REF] Akyildiz | Convergence rates for optimised adaptive importance samplers[END_REF], the χ 2 divergence is minimized over an exponential family and the Lipschitz continuity of the gradient is assumed, which may fail due to Proposition 10. The authors have circumvented this problem by restricting the search to a compact space and using a projected gradient algorithm, but this creates a risk of excluding interesting values of the parameters. Similarly, the VRB method of [START_REF] Li | Rényi divergence variational inference[END_REF] aims at minimizing the Rényi divergence and can be seen as a Euclidean counterpart to Algorithm 2 (see Section 4.2.2). In all those methods, since Euclidean smoothness is not satisfied in general, the tuning of the step-size cannot be done using the Lipschitz constant of the gradients. We show in Section 6 that this creates instabilities and poor performance, in contrast to our methods where the step-sizes can be chosen following the results presented in Propositions 12 and 13.

Proposition 12 implies a monotonic decrease of F (α) π along iterations. This kind of result appears in many statistical procedures [START_REF] Douc | Convergence of adaptive mixtures of importance sampling schemes[END_REF][START_REF] Cappé | Adaptive importance sampling in general mixture classes[END_REF][START_REF] Daudel | Infinite-dimensional gradient-based descent for alpha-divergence minimisation[END_REF][START_REF] Daudel | Monotonic alpha-divergence minimization[END_REF]. Note that these works allow more general approximating families, but do not consider an additional regularization term. In our setting, we are able to give results that are novel and more precise on the convergence of the sequence of iterates. For α = 1, we prove that f (1) π admits an unique minimizer located in int Θ. We also leverage the relative strong convexity of f (1) π to prove a linear convergence rates of the objective values and the strong convergence of the iterates to the global minimizer. In the non-convex case α ∈ (0, 1), we use an additional assumption ensuring that the iterates are bounded and do not tend to the boundary. We then prove the subsequential convergence of the iterates to the stationary points.

The result of Proposition 12 (iii), which is a type of finite length property of the sequence of iterates, is not common for a statistical procedure, to our knowledge. This type of result can be used to assess the convergence of our algorithms. Indeed, the KL divergence between distributions from the same exponential family can often be computed explicitly, so the condition KL(q θ k , q θ k+1 ) ≤ ε can be used as a stopping criterion in Algorithms 1 and 2.

Note that our convergence analysis is restricted to α ∈ (0, 1]. This is also the case in [START_REF] Daudel | Monotonic alpha-divergence minimization[END_REF], which considers the minimization of the α-divergence D α over wider families. The techniques used in this work also share some common points with ours. In particular, because of the 1-relative smoothness of f (α) π with respect to A, we have from Definition 9 that

f (α) π (θ) -f (α) π (θ ) ≤ q θ (Γ) -π (α) θ (Γ), θ -θ + KL(q θ , q θ ). ( 21 
)
Compare this with [31, Proposition 1] that we adapt to our setting as

Ψ (α) π (θ) -Ψ (α) π (θ ) ≤ - 1 α π(x) α q θ (x) 1-α log q θ (x) q θ (x) ν(dx). (22) 20 
Note that here, q θ , q θ are not necessarily from an exponential family and that we used Ψ (α) π (θ) = D α (π, q θ ), while D α (q θ , π) was considered in [START_REF] Daudel | Monotonic alpha-divergence minimization[END_REF] (this does not affect the results as D α (π, q θ ) = D 1-α (q θ , π) for α ∈ [0, 1]). When q θ and q θ are in an exponential family Q, Eq. ( 22) can be further rewritten as

Ψ (α) π (θ) -Ψ (α) π (θ ) ≤ Z π (α) θ α q θ (Γ) -π (α) θ (Γ), θ -θ + KL(q θ , q θ ) , (23) 
with Z π (α) θ = π(x) α q θ (x) 1-α ν(dx). We recognize now that the right-hand side of Eq. ( 23) is equal to the one of ( 21) up to a positive multiplicative constant. Even if the result of [31, Proposition 1] is derived directly without using Bregman divergences, our analysis gives a geometric interpretation to it.

In another context, it is often not straightforward to choose the most adapted statistical divergence for a given application. Indeed, there are many types of statistical divergences that are indexed by a scalar parameter, for some value of which the KL divergence is recovered [START_REF] Cichocki | Families of alpha-beta-and gamma-divergences: Flexible and robust measures of similarities[END_REF]. There exist some comparative studies [START_REF] Grivel | Kullback-Leibler and Rényi divergence rate for Gaussian stationary ARMA processes comparison[END_REF], but they are restricted to particular contexts. The notions of relative smoothness and relative strong convexity allow us to show that the KL divergence can be used to construct tangent majorizations or minorization of the Rényi divergences, which seems to be a new insight and may help guide the choice of a divergence.

Numerical experiments

In this section, we investigate the performance of our methods through numerical simulations in a blackbox setting and compare them with existing algorithms. We focus our study on Algorithm 2, that we call the relaxed moment-matching (RMM) algorithm when r ≡ 0 and the proximal relaxed moment-matching (PRMM) otherwise. We also consider VRB algorithm from [START_REF] Li | Rényi divergence variational inference[END_REF], whose implementation for an exponential family is described in Algorithm 3. It is shown in Section 4.2.2 that the VRB algorithm can be interpreted as an Euclidean version of our novel RMM algorithm. However, when α ∈ (0, 1], f (α) π is not smooth relatively to the Euclidean distance (see Proposition 10) while it is smooth relatively to the Bregman divergence d A (see Proposition 9). Therefore, the comparison between the RMM and PRMM algorithms with the VRB method might allow to assess the use of the Bregman divergence instead of the Euclidean distance on a numerical basis. We also use this comparison to assess the role of the regularizer, which is a feature of our approach, but not of [START_REF] Li | Rényi divergence variational inference[END_REF].

Additional numerical experiments are presented in Appendix D in the supplementary material [START_REF] Guilmeau | Supplement to "Regularized Rényi divergence minimization through Bregman proximal gradient algorithms[END_REF]. In particular, the influence of the parameters α and τ and of the regularizer r is studied in Appendix D.1 using a Gaussian toy example. In Appendix D.2, we provide additional comparison between the RMM and the VRB algorithms. We now turn to a Bayesian regression task, which allows us to compare the RMM, PRMM and VRB algorithms on a realistic problem and understand better the interest of using the Bregman geometry. We also use this example to show how our PRMM algorithm allows to compensate for a misspecified prior by adding a regularizer.

We consider a problem of non-linear regression, where we try to infer a regression vector β ∈ R d+1 from J measurements y ∈ R J , X ∈ R J×d under Gaussian noise. The non-linearity mimics the effect of a neural network with one single hidden layer,

Φ β (x) = φ d i=1 β i x i + β 0 , ∀x ∈ R d ,
where β = (β i ) 0≤i≤d+1 ∈ R d+1 is the regression vector, with the component β 0 playing the role of the bias. The function φ is the activation function and is taken here as the sigmoid function

φ(s) = 1 1 + e -s , ∀s ∈ R.
Given a ground truth vector β ∈ R d+1 , and a feature set X, we assume, for every j ∈ {1, . . . , J}, y j ∼ N y j ; Φ β (X j ), σ 2 , with X j,: the j-th line of X, and X j = X j,: ∈ R d . Assuming i.i.d. realizations, this leads to the likelihood expression for a given β ∈ R d+1 ,

p(y|β) = J j=1 N y j ; Φ β (X j ), σ 2 .
Our goal is to explore the posterior distribution on β, p(β|y) = p(y|β)p(β) p(y) ,

where knowledge on the regression vector β is encoded in a prior density p(β). In the following, we drop the dependence on the data, so that our target reads π(β) := p(β|y) and π(β) := p(β|y)p(β).

The RMM, PRMM, and VRB algorithm are tested on synthetic data. First, a regression vector β is sampled from a spike-and-slab distribution

p 0 (β) = N (β 0 ; 0.0, 1.0) d i=1 (ρδ 0 (β i ) + (1 -ρ)N (β i ; 0.0, 1.0)) .
which places a non-zero probability on β i being zero, for i ∈ 1, d . This type of distribution is called a Gaussian-zero model in [START_REF] Ormerod | A variational Bayes approach for variable selection[END_REF] and is linked with Bernoulli-Gaussian models. Regression vectors are sampled until we find β ∼ p 0 with at least one zero and one non-zero component.

Then, for every j ∈ 1, J , we sample vectors X j uniformly in the square [-s, s] d and draw the observation y j as stated before. Test data y test ∈ R Jtest and X ∈ R Jtest×d are also generated in this manner. We consider a Gaussian prior on β, p(β) = N (β; 0, I).

Since β is not sampled from the prior p(β), there is a mismatch between the data we feed the algorithms and the posterior model. In the following, we show that the choice of a suitable regularizer in our VI method can allow to cope with this issue.

We run experiments using the VRB and RMM algorithms, as well as the PRMM algorithm, using the family of Gaussian densities with diagonal covariance matrix, whose parametrization is detailed in Appendix C. For the PRMM algorith, we use the regularizer

r(θ) = η θ 1 1 ,
with η ≥ 0. This can be understood as the Lagrangian relaxation [START_REF] Hiriart-Urruty | Abstract Duality for Practitioners[END_REF] with multiplier η ≥ 0 of the constraint

d i=1 θ 1 1 ≤ c,
for c ≥ 0 such that the constrained set is non empty.

Our 1 -like regularizer enforces sparsity on all the components of the mean µ, except the component µ 0 . The aim is to mimic the sparse structure of β that was simulated from p 0 . The computation of the corresponding Bregman proximal operator for this choice of r is detailed in Appendix C.

The algorithms are run for K = 100 iterations, with a constant number of samples N = 500. Two values of α are tested, namely, α = 1.0 and α = 0.5. The VRB algorithm is run with τ = 10 -3 while the PRMM algorithm is run with τ = 10 -1 . These choices correspond to the most favorable step-size for each algorithm, as indicated by our experiments in Appendix D. The algorithms are run 10 3 times. We choose η = 1.0 in the following. In the subsequent experiments, we set d = 5, J = 100, J test = 50, σ 2 = 0.5, and s = 5.0.

In order to asses the performance of the algorithm, we track the variational Rényi bound, defined Eq. ( 19), that is estimated at each iteration k ∈ N through

L (α) π (θ k ) ≈ 1 α log   1 N k+1 N k+1 l=1 w (α) l   . ( 24 
)
We also consider the F1 score that each algorithm achieves in the prediction of the zeros of the true regression vector β. It is computed at each iteration k ∈ N, by seeing how the zeros of µ k match those of β.

Additionally, since we provide not only a pointwise estimate of β, but an approximation of the full target π, we also test the quality of the distributional approximation by sampling a regression vector β from the final proposal q θ K . This is done by computing

MSE test (β) := J test j=1 y test j -Φ β (X test j ) 2 .
By sampling N test β vectors β ∼ q θ K and analyzing the distribution of the values {MSE test (β l )}

N test β l=1
, we can get a sense of the quality of the approximated density q θ K in terms of both location and scale. At each run, the final distribution q θ K is tested by sampling N test Figure 2 shows the increase of the approximated variational Rényi bound described in Eq. ( 24). As discussed in Section 4.2.2, an increase in the Rényi bound L (α) π (θ) shows a decrease in the Rényi divergence RD α (π, q θ ), so these plots show that the three method decrease the Rényi divergence. However, our methods are able to reach higher values at a faster rate than the VRB method, illustrating the improvement coming from using the Bregman geometry rather than the Euclidean one.

Figure 3 shows the F1 score achieved by each algorithm in the retrieval of the zeros of the true regression vector. The RMM and VRB algorithms are not able to recover any zeros, which is to be expected since they do not include any sparsity-inducing mechanisms. However, the PRMM algorithm is able to recover in this example the zero components of the regression vector in a few number of iterations and in most of the runs. Note also that it does not create false positives neither. This illustrates that adding a regularizer in the VI method itself can enforce sparsity although the prior of our model did not enforce it. The box plots of Fig. 4 assess the quality of the variational approximation of the posterior obtained by each method, by evaluating how regression vectors sampled from the approximations are able to reconstruct the test data. We see that the PRMM and RMM algorithms yields reconstruction errors that are less spread and at a lower level than the ones coming from the VRB algorithm. This is in accordance with the plots of Fig. 2. This shows the higher performance coming from using a more adapted geometry. Note that errors are more spread for the PRMM algorithm than for the RMM algorithm. This may be due to the proximal step, which creates bigger eigenvalues for the covariance matrix (see Appendix C for details).

In this section, we observed that the RMM and PRMM are able to obtain better performance than the VRB algorithm in terms of Rényi bound and reconstruction errors, while recovering all the correct zeros of the regression vector using a regularizer. This shows the interest of using the geometry induced by the KL divergence and additional regularizer terms.

Conclusion and perspectives

We introduced in this work the proximal relaxed moment-matching algorithm, which is a novel VI algorithm minimizing the sum of a Rényi divergence and a regularizing function over an exponential family. We provided a black-box implementation which allows to bridge the gap between information-geometric VI methods and black-box VI algorithms, while generalizing several existing moment-matching algorithms. We also rewrote our algorithm as a Bregman proximal gradient algorithm whose Bregman divergence is equivalent to the Kullback-Leibler divergence.

Using this novel perspective, we established strong convergence guarantees for our exact algorithm. For α ∈ (0, 1], we established the monotonic decrease of the objective function, a finite-length property of the sequence of iterates, and subsequential convergence to a stationary point. In the particular case α = 1, we also established the linear convergence of the iterates towards the optimal parameters. We also exhibited a simple counter-example for which the corresponding Euclidean schemes may fail to converge, showing the necessity of resorting to an adapted geometry. These findings are backed by numerical results showing the versatility of our methods compared to more restricted moment-matching updates. Indeed, our parameters allow to tune the algorithms speed and robustness but also the features of the approximating densities. Comparison of our algorithms with their Euclidean counterparts also showed their robustness and good performance.

This confirmed the benefits of using a regularized Rényi divergence and the underlying geometry of exponential families, but also opened several research avenues.

First, although we proved the convergence of Algorithm 1, work remains to be done to establish the convergence of Algorithm 2. In particular, it would be interesting to understand the interplay between α, the step-sizes {τ k } k∈N and the sample sizes {N k } k∈N . Then, another venue of improvement would be the use of more complex optimization schemes, such as block updates or accelerated schemes. Variance reduction techniques as used in some black-box VI algorithms could also be used to improve our Algorithms. Finally, studying optimization schemes over mixtures of distributions from an exponential family could be a natural extension in order to tackle multimodal targets. Similarly, extending our analysis to values α > 1 would allow to use the χ 2 divergence, which plays an important role for the analysis of importance sampling schemes.

A Results about F (α) π

A.1 Proof of Proposition 4

Proof of Proposition 4. The domain of A is non-empty by Assumption 1. Also, since exp( θ, Γ(x) )ν(dx) > 0 for any θ ∈ Θ, we have that A(θ) > -∞ for every θ in its domain, so A is proper. The set Θ = dom A is convex, and the function A is lower semi-continuous on H and strictly convex on Θ by [START_REF] Brown | Fundamentals of Statistical Exponential families with applications in Satistical decision theory[END_REF]Theorem 1.13]. The derivability property comes from [16, Theorem 2.2], and the expression of the gradient follows from simple computations.

Because of the steepness assumption on Q, A is steep. With the differentiability properties of the above, this means that A is essentially smooth, showing that A is Legendre.

A.2 Proof of Proposition 6

Proof of Proposition 6. For the case α = 1, note that f

(1)
π can be written as

f (1) π (θ) = log(π(x))π(x)ν(dx) -θ, π(Γ) + A(θ), ∀θ ∈ Θ ∩ dom f (α) π , (25) 
where Θ = dom A, and A defined in Eq. ( 2). The results come from the properties of A, given Proposition 4.

We now turn to the case α = 1. For every θ ∈ Θ, it is possible to decompose f

(α) π as in f (α) π (θ) = A(θ) + 1 α -1 log π(x) α exp( θ, Γ(x) ) 1-α ν(dx) .
where the functions h and p defined such that h(θ) = π(x) α exp( θ, Γ(x) ) 1-α ν(dx) and p(x, θ) = π(x) α exp( θ, Γ(x) ) 1-α for any θ ∈ int Θ ∩ dom f (α) π and x ∈ X . For any θ ∈ int Θ ∩ dom f (α) π , x -→ p(x, θ) is integrable. Since θ -→ p(x, θ) is continuous on int Θ, we also have that (x, θ) -→ p(x, θ) is measurable on X × int Θ. Furthermore, for any x ∈ X , θ -→ p(x, θ) admits continuous partial derivatives of first and second order on int Θ. Finally, for any x ∈ X , the partial derivatives of first and second order of θ -→ p(x, θ) are continuous on int Θ, so the functions

θ -→ X ∂ p ∂θ i (x, θ) ν(dx), θ -→ X ∂ 2 p ∂θ i ∂θ j (x, θ) ν(dx),
are locally integrable for any 1 ≤ i, j ≤ n. Therefore, at any θ ∈ int Θ, the partial derivatives of h of first and second order exist, are continuous and can be obtained by derivating under the integral sign. Since h(θ) > 0 for all θ ∈ Θ ∩ dom f (α) π , and f

(α) π = A + 1 α-1 log • h, these results with those of Proposition 4 about A give the following. On int Θ ∩ dom f (α) π , the map f (α) π
admits continuous first and second order partial derivatives that can be obtained by differentiating under the integral sign.

We now turn to the explicit derivation of the gradient ∇f 

∈ int Θ ∩ dom f (α) π . For i ∈ 1, n , we first compute ∂ h ∂θ i (θ) = (1 -α) Γ i (x)π(x) α q θ (x) 1-α ν(dx).
From there, we obtain

∂f (α) π ∂θ i (θ) = ∂A ∂θ i (θ) - Γ i (x)π(x) α exp( θ, Γ(x) ) 1-α ν(dx) π(x) α exp( θ, Γ(x) ) 1-α ν(dx) . (26) 
Since q θ (x) = exp( θ, Γ(x) ) exp(-A(θ)), we finally obtain that

∂f (α) π ∂θ i (θ) = ∂A ∂θ i (θ) -π (α) θ (Γ i ).
Because ∇f

(α) π (θ) i = ∂f (α) π (θ) ∂θi
, this concludes the computations about the gradient of f

π . Before computing the second order partial derivatives, we introduce another intermediate quantity. Denote gi :

θ -→ Γ i (x)π(x) α exp( θ, Γ(x) ) 1-α ν(dx) for i ∈ 1, n . In fact, gi (θ) = 1 1-α ∂ h ∂θi (θ)
, and from Eq. ( 26), we have ∂f

(α) π ∂θ i (θ) = ∂A ∂θ i (θ) - gi (θ) h(θ) .
We also compute for any j ∈ 1, n

∂g i ∂θ j (θ) = (1 -α) Γ j (x)Γ i (x)π(x) α exp( θ, Γ(x) ) 1-α ν(dx).
Using those intermediate results, we obtain for i, j ∈ 1, n that

∂ 2 f (α) π ∂θ j ∂θ i (θ) = ∂ 2 A ∂θ j ∂θ j (θ) - 1 h(θ) 2 ∂g i ∂θ j (θ) h(θ) -gi (θ) ∂ h ∂θ j (θ) = ∂ 2 A ∂θ j ∂θ j (θ) + (α -1) Γ i (x)Γ j (x)π(x) α q θ (x) 1-α ν(dx) h(θ) - gi (θ)g j (θ) h(θ) 2 = ∂ 2 A ∂θ j ∂θ j (θ) + (α -1) π (α) θ (Γ i Γ j ) -π (α) θ (Γ i )π (α) θ (Γ j ) .
We conclude about the Hessian by using that (∇ 2 f (α)

π (θ)) i,j = ∂ 2 f (α) π ∂θj ,∂θi (θ). 

A.3 Proof of Proposition 7

Proof of Proposition 7.

(i) Since A is Legendre, A * is also Legendre from Proposition 2, so in particular dom A * is convex. This implies that int dom A * is convex. Consider θ ∈ int Θ, then q θ (Γ) = ∇A(θ) ∈ int dom A * . Since by assumption, π (α) θ (Γ) ∈ int dom A * and the step-size τ ∈ (0, 1], then ∇A(θ) -τ ∇f (α) π = τ π (α) θ (Γ) + (1 -τ )q θ (Γ) ∈ int dom A * . This shows the well-posedness of γ A τ f (α) π
. Using results from Proposition 2, this also implies that γ A τ f 

A.4 Proof of Proposition 8

Proof of Proposition 8. Every operation is well-defined because of Proposition 7. We now show the equivalence between the moment-matching step [START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data[END_REF] and its reformulation [START_REF] Brown | Fundamentals of Statistical Exponential families with applications in Satistical decision theory[END_REF]. From Assumption 1, and Proposition 6, f (α) π is differentiable on int Θ and its gradient is ∇f

(α) π (θ) = q θ (Γ) -π (α)
θ (Γ). Using that ∇A(θ) = q θ (Γ) from Proposition 4 and that (∇A) -1 = ∇A * from Proposition 2, it comes that (6) reads

θ k+ 1 2 = ∇A * τ k+1 π (α) θ k (Γ) + (1 -τ k+1 )q θ k (Γ) = ∇A * q θ k (Γ) -τ k+1 (q θ k (Γ) -π (α) θ k (Γ)) = ∇A * ∇A(θ k ) -τ k+1 ∇f (α) π (θ k ) ,
which shows the result. Equation ( 17) is straightforward, and comes from the equivalence between d A and the KL divergence stated in Proposition 5. Finally, Eq. ( 18) comes from the two previous points and Proposition 7 (iii).

A.5 Proof of Proposition 9

Proof of Proposition 9. We prove relative smoothness and relative strong convexity by using the alternative characterizations given in [44, We first cover the case α = 1. In this case, we have that for every θ ∈ int Θ, ∇ 2 f (1) π (θ) = ∇ 2 A(θ) from Proposition 6. Therefore, the functions f

(1) π -A and A -f (1) 
π have null Hessian on int Θ, showing that they are convex, hence the result. Now, consider α = 1, then, under Assumption 1, we recall from Proposition 6 that

∇ 2 f (α) π (θ) = ∇ 2 A(θ) + (α -1) π (α) θ (ΓΓ ) -π (α) θ (Γ)(π (α) θ (Γ)) , ∀θ ∈ int Θ.
Consider θ ∈ int Θ, we show now that π

(α) θ (ΓΓ ) -π (α) θ (Γ)(π (α) θ (Γ)) is positive semidefinite. Consider a vector ξ ∈ R d , then ξ, π (α) θ (ΓΓ ), ξ = ξ, Γ(x)Γ(x) ξ π (α) θ (x)ν(dx) = ( Γ(x), ξ ) 2 π (α) θ (x)ν(dx) ≥ Γ(x), ξ π (α) θ (x)ν(dx) 2 = ξ, π (α) 
θ (Γ) 2 = ξ, π (α) θ (Γ)π (α)
θ (Γ) ξ , where we used Jensen inequality to show the inequality. This shows that ξ, π

(α) θ (ΓΓ ) -π (α) θ (Γ)π (α) θ (Γ) ξ ≥ 0, ∀ξ ∈ R d .
Therefore, for every θ ∈ int Θ,

∇ 2 (f (α) π -A)(θ) = (α -1) π (α) θ (ΓΓ ) -π (α) θ (Γ)(π (α) θ (Γ))
is positive semidefinite if α ≥ 1, and

∇ 2 (A -f (α) π )(θ) = (1 -α) π (α) θ (ΓΓ ) -π (α) θ (Γ)(π (α) θ (Γ))
is positive semidefinite if α ≤ 1. This shows that f 

(α) π -A is convex if α ≥ 1 and A -f (α) π is convex if α ≤ 1,

A.6 Proof of Proposition 10

Proof of Proposition 10. Consider the family of one-dimensional centered Gaussian distributions with variance σ 2 , that we denote by G 1 0 in the following. It is an exponential family, with parameter θ = -1 2σ 2 , sufficient statistics Γ(x) = x 2 and log-partition function A(θ) = 1 2 log(2π) -1 2 log(-2θ), whose domain is Θ = R --.

We show that f (α) π

is not smooth for α > 0 by showing that (f

(α)
π ) is unbounded on Θ. This prevents the existence of any L > 0 such that

(f (α) π ) (θ) -(f (α) π ) (θ ) ≤ L θ -θ , ∀θ, θ ∈ Θ. Consider first the case α = 1. From Proposition 6, (f (α)
π ) is independent of the choice of the target π, and is equal to

(f (α) π ) (θ) = A (θ) = 1 2θ 2 . (27) 
Now, for α = 1, we have from Proposition 6 that

(f (α) π ) (θ) = A (θ) + (α -1) π (α) θ (Γ 2 ) -π (α) θ (Γ) 2 .
Consider a target π ∈ G 1 0 , meaning that there exists θ π ∈ Θ such that π = q θπ . We can compute that π (α) θ = q αθπ+(1-α)θ , assuming that θ is such that αθ π + (1 -α)θ ∈ Θ. This condition is always satisfied when α ≤ 1, but when α > 1, it is equivalent to having θ > α α-1 θ π . In the case α > 1, f (α) π

is not even defined outside of ( α α-1 θ π , 0), showing that dom f (α) π = (0, α α-1 θ π ) for α > 1. In the following, we consider θ ∈ dom f (α) π . Then we compute

(f (α) π ) (θ) = 1 2θ 2 + (α -1) x 4 q αθπ+(1-α)θ (x)dx - x 2 q αθπ+(1-α)θ (x)dx 2 .
To do so, we recall the following formulas

x 4 exp(-bx 2 )dx = 3 √ π 4b 5/2 , x 2 exp(-bx 2 )dx = √ π 2b 3/2 ,
and we note that A(θ) = log -π θ . We first compute

x 4 q αθπ+(1-α)θ (x)dx = exp(-A(αθ π + (1 -α)θ)) x 4 exp((αθ π + (1 -α)θ)x 2 )dx = exp(A(αθ π + (1 -α)θ)) -1 x 4 exp(-((α -1)θ -αθ π )x 2 )dx = π (α -1)θ -αθ π -1/2 3 √ π 4((α -1)θ -αθ π ) 5/2 = 3 4((α -1)θ -αθ π ) 2 ,
and then

x 2 q αθπ+(1-α)θ (x)dx = exp(-A(αθ π + (1 -α)θ)) x 2 exp((αθ π + (1 -α)θ)x 2 )dx = exp(A(αθ π + (1 -α)θ)) -1 x 2 exp(-((α -1)θ -αθ π )x 2 )dx = π (α -1)θ -αθ π -1/2 √ π 2((α -1)θ -αθ π ) 3/2 = 1 2((α -1)θ -αθ π )
.

These calculations yield

(f (α) π ) (θ) = 1 2θ 2 + α -1 2((α -1)θ -αθ π ) 2 . ( 28 
)
Equations ( 27) and [START_REF] Csiszar | I-divergence geometry of probability distributions and minimization problems[END_REF] show that the absolute value of ∇ 2 f (α) π goes to +∞ when θ approaches 0 or α α-1 θ π , which is in Θ if and only if α > 1.

A.7 Proof of Proposition 11

Proof of Proposition 11. Consider α > 0.

(i)

F (α) π is proper because f (α) π
is non-negative from Proposition 1, takes finite values for some θ ∈ Θ by Assumption 1, and because r is proper by Assumption 3. The fact that the infimum of (P (α) π ) is not equal to -∞ comes from the non-negativity of f (α) π and the fact that r is bounded from below from Assumption 3.

We now prove the lower semicontinuity. When α = 1, we recall from Eq. ( 25) that

f (1) π (θ) = H(π) -θ, π(Γ) + A(θ), ∀θ ∈ Θ, (29) 
where H(π) = log(π(x))π(x)ν(dx). Because A is lower semicontinuous on Θ from Proposition 4, so is f

π . Now consider α = 1. For every θ ∈ Θ, it is possible to decompose f (α) π as in

f (α) π (θ) = A(θ) + 1 α -1 log h(θ) ,
where the function h is such that

h(θ) = π(x) α exp( θ, Γ(x) ) 1-α ν(dx).
The function h is lower semicontinuous due to Fatou's lemma [START_REF] Carothers | Real Analysis[END_REF]Lemma 18.13] and takes values in R ++ , thus 1 α-1 log • h is lower semicontinuous. (ii) We now turn to the second point, concerning values α ≥ 1. In the particular case α = 1, consider again the decomposition given in Eq. [START_REF] Csiszár | Information Theory and Statistics: A Tutorial[END_REF]. Because of Assumption 2, π(Γ) ∈ int dom A * . Thanks to [START_REF] Bauschke | Legendre functions and the method of random Bregman projections[END_REF]Fact 2.11] and Proposition 4, this ensures that f π , we have from [START_REF] Van Erven | Rényi divergence and Kullback-Leibler divergence[END_REF] that

f (1) π (θ) ≤ f (α) π (θ), ∀θ ∈ int Θ.
This ensures that f (α) π is coercive for α > 1. The regularizer r is bounded from below thanks to Assumption 3, so F (α) π is also coercive for α ≥ 1.

We have proven that F (α) π is lower-continuous and coercive, so there exists θ * ∈ dom Θ such that

F (α) π (θ * ) = ϑ (α)
π . We now use the optimality conditions that θ * satisfies to show that θ * ∈ int Θ. In particular, we have from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 16.2] that 0 ∈ ∂F (α) π (θ * ).

When α = 1, we can split the subdifferential of

F (α) π as ∂F (1) 
π (θ * ) = π(Γ) +∂A(θ * ) +∂r(θ * ). This comes from the decomposition [START_REF] Combettes | Proximal Splitting Methods in Signal Processing[END_REF], Assumption 3 and the convexity and properness of θ -→ -θ, π(Γ) , A and r (see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 16.38]). By the same arguments, when α > 1, ∂F

(α) π (θ * ) = ∂ 1 α-1 log •h (α) π (θ * )+∂A(θ * )+∂r(θ * )
Assume by contradiction that θ * belongs to the boundary of Θ. Then ∂A(θ * ) = ∅, because of Proposition 2, so Eq. ( 30) implies that 0 ∈ ∅. This shows that θ * ∈ int Θ.

Finally, since A is strictly convex on int Θ (Proposition 4), so is F

π , so such θ * is unique.

B Convergence analysis of Algorithm 1

In order to prove Propositions 12 and 13, we start with a sufficient decrease lemma that reads as follows.

Lemma 1. Under Assumptions 1, 2, and 3, for τ > 0 and α ∈ (0, 1], we have that for every θ ∈ int Θ,

τ F (α) π (T A τ F (α) π (θ)) -F (α) π (θ) ≤ -d A (θ, T A τ F (α) π (θ)) + (τ -1)d A (T A τ F (α) π (θ), θ). (31) 
In the particular case where α = 1, we further have

τ F (1) π (T A τ F (1) π (θ)) -F (1) π (θ ) ≤ (1 -τ )d A (θ , θ) -(1 -τ )d A (T A τ F (1) π (θ), θ) -d A (θ , T A τ F (1) π (θ)), ∀θ ∈ int Θ. ( 32 
)
Proof. Using [86, Lemma 4.1], which is still true in our finite-dimensional Hilbert setting, we get that

τ F (α) π (T A τ F (α) π (θ)) -F (α) π (θ ) ≤ d A (θ , θ) -(1 -τ )d A (T A τ F (1) π (θ), θ) -d A (θ , T A τ F (1) π (θ)) -τ d f (α) π (θ , θ), ∀θ ∈ int Θ, where d f (α) π (θ , θ) = f (α) π (θ ) -f (α) π (θ) -∇f (α) 
π (θ), θ -θ . Equation (31) comes by evaluating the above at θ = θ. To get Eq. ( 32), the strong convexity of f

(1) π relatively to A yields d f (1) π (θ , θ) ≥ d A (θ , θ), ∀θ , θ ∈ int Θ,
showing the result.

We also give a sequential consistency lemma, that links the Bregman divergence d A with the Euclidean distance.

Lemma 2. Consider two sequences {θ k } k∈N and {θ k } k∈N and assume that there exists a compact set

C ⊂ int Θ such that θ k , θ k ∈ C for every k ∈ N. In this case, if d A (θ k , θ k ) -----→ k→+∞ 0, then θ k -θ k -----→ k→+∞ 0.
Proof. We introduce the convex hull of C, denoted by conv C which is the intersection of every convex set containing C. Therefore conv C ⊂ int Θ. Since we are in finite dimension, we also have that conv C is compact. Thus, conv C is a convex compact included in int Θ.

A is proper, strictly convex, and continuous on conv C ⊂ int Θ, therefore, A is uniformly convex (following the definition of [9, Definition 10.5]) on conv C [9, Proposition 10.15]. This means that there exists an increasing function ψ : R + → [0, +∞] that vanishes only at 0, such that for every θ, θ ∈ conv C,

ψ( θ -θ ) ≤ 1 2 A(θ) + 1 2 A(θ ) -A( 1 2 θ + 1 2 θ ).
Because A is convex on conv C, we have that for every t > 0,

∇A(θ), θ -θ ≤ A(θ + t(θ -θ)) -A(θ) t .
This implies in particular that for every θ, θ ∈ conv C,

d A (θ, θ ) = A(θ) -A(θ ) -∇A(θ ), θ -θ ≥ A(θ) -A(θ ) - A(θ + 1 2 (θ -θ )) -A(θ ) 1 2 = A(θ) + A(θ ) -A( 1 2 (θ -θ )) ≥ ψ( θ -θ ).

Suppose now by contradiction that d

A (θ k , θ k ) -----→ k→+∞ 0 while there exists some > 0 such that θ k -θ k ≥ for every k ∈ N. Then we have that d A (θ k , θ k ) ≥ ψ( ) > 0,
which is a contradiction, hence showing the result.

B.1 Proof of Proposition 12

Proof of Proposition 12. The proof of (i)-(ii) can be deduced from [11, Theorem 1, (i)-(ii)], using Eq. ( 31) from Lemma 1, and the equivalence between d A and KL from Proposition 5.

(iii) If F (α) π (θ K+1 ) = F (α)
π (θ K ), then, using Lemma 1 and τ K+1 ≤ 1,

d A (θ K , θ K+1 ) ≤ 0. By Proposition 3, this shows that θ K+1 = θ K . Since θ K+1 = T A τ K+1 F (α) π (θ K ), θ K is a fixed point of T A τ K+1 F (α) π .
From Proposition 7, it is a stationary point of F Our working space H is a finite-dimensional Hilbert space, which is included in the setting of [START_REF] Penot | Calculus without Derivatives[END_REF].

Set k ∈ N. Under Assumptions 1, 2, and 3, since θ 0 ∈ int Θ, Proposition 8 applies and thus θ k+1 = T A τ k+1 F (α) π (θ k ). This implies that there exists g k+1 ∈ ∂r(θ k+1 ) such that

1 τ k+1 (∇A(θ k+1 ) -∇A(θ k )) + ∇f (α) π (θ k ) + g k+1 = 0. ( 33 
)
According to [START_REF] Penot | Calculus without Derivatives[END_REF]Corollary 4.35],

∇f (α) π (θ k+1 ) + g k+1 ∈ ∂ F F (α) π (θ k+1 ). (34) 
Using Eq. ( 33) and the assumptions on τ k+1 ,

∇f (α) π (θ k+1 ) + g k+1 ≤ ∇f (α) π (θ k+1 ) -∇f (α) π (θ k ) + 1 ∇A(θ k+1 ) -∇A(θ k ) .
The additional hypothesis introduced in (iv) ensures that both θ k+1 and θ k belong to C, a compact set included in int Θ. Since ∇ 2 f (α) π is continuous on C (by Proposition 6) and C is bounded, ∇f

is Lipschitz on C. The same reasoning applies for ∇A. This shows that there exists a scalar s > 0 such that, for every k ∈ N, there exists

k+1 ∈ ∂ F F (α) π (θ k+1 ) satisfying k+1 ≤ s θ k+1 -θ k . (35) 
Now, we deduce from (iii

) that d A (θ k+1 , θ k ) -----→ k→+∞ 0. Using Lemma 2, this yields θ k+1 -θ k -----→ k→+∞ 0, showing that the sequence { k } k∈N is such that k ∈ ∂ F F (α) π (θ k ), ∀k ∈ N, and k -----→ k→+∞ 0. ( 36 
)
On the other hand, the sequence {θ k } k∈N is contained in the compact set C by assumption. Hence, there exists θ lim ∈ C, and a strictly increasing function ϕ : N → N such that θ ϕ(k) -----→ k→+∞ θ lim . The regularizing term r is continuous on C as assumed in (iv), so we have

θ ϕ(k) -----→ k→+∞ θ lim , (37) 
F (α) π (θ ϕ(k) ) -----→ k→+∞ F (α) π (θ lim ), (38) ϕ 
(k) ∈ ∂ F F (α) π (θ ϕ(k) ), ϕ(k) -----→ k→+∞ 0. ( 39 
)
By definition of the limiting subdifferential ∂ L F (α) π

(see [START_REF] Penot | Calculus without Derivatives[END_REF]Defintion 6.1]), this shows that

0 ∈ ∂ L F (α) π (θ lim ). ( 40 
)
Hence θ lim is a stationary point of F (α) π which concludes the proof.

B.2 Proof of Proposition 13

Proof of Proposition 13. We first give an inequality to prove (i)-(ii). Consider iteration k of Algorithm 1, and evaluate Eq. ( 32) from Lemma 1 at θ = θ * , yielding

τ k+1 F (α) π (θ k+1 ) -F (α) π (θ * ) ≤ (1 -τ k+1 )d A (θ * , θ k ) -(1 -τ k+1 )d A (θ k+1 , θ k ) -d A (θ * , θ k+1 ). ( 41 
) (i) Since τ k+1 ∈ [ , 1], F (1) 
π (θ k+1 ) ≥ F

π (θ * ), and d A takes non-negative values (from Proposition 3), Eq. (41) gives

d A (θ * , θ k+1 ) ≤ (1 -τ k+1 )d A (θ * , θ k ), (42) 
from which we deduce the results since

τ k+1 ∈ [ , 1]. (ii) Since τ k+1 ∈ [ , 1 
] and d A takes non-negative values, we get from Eq. ( 41) that

τ k+1 F (1) π (θ k+1 ) -F (1) π (θ * ) ≤ (1 -τ k+1 )d A (θ * , θ k ).
With Eq. ( 42) and the condition on τ k+1 , we obtain

F (1) π (θ k+1 ) -F (1) π (θ * ) ≤ 1 d A (θ * , θ k+1 ),
from which we conclude using point (i) and Proposition 11.

(iii) Using Proposition 12 (i), we obtain that for every k ∈ N, F

π (θ k ) ≤ F (1) 
π (θ 0 ), meaning that the sequence {θ k } k∈N is contained in a sub-level set of F (1) π . F

(1) π is coercive under our assumptions (see the proof of Proposition 11), and it is lower semicontinuous from Proposition 4, so its sub-level sets are compact. This means that we can extract converging subsequences from {θ k } k∈N .

Consider now such a subsequence {θ ϕ

(k) } k∈N , with θ ϕ(k) -----→ k→+∞ θ lim . F (1) π is lower semicontinuous, so lim inf F (1) π (θ ϕ(k) ) ≥ F (1) π (θ lim ).
However, because of (ii), lim inf F

(1)

π (θ ϕ(k) ) = F (1) 
π (θ * ), so we obtain that F

π (θ lim ) = F

π (θ * ). Using Proposition 11, this shows that θ lim = θ * .

We have shown that {θ k } k∈N is contained in a compact set and that each of its converging subsequences converges to θ * , which implies the result.

C Computations of two Bregman proximal operators

In this section, we motivate for two choices of regularizer r and exponential family Q that lead to explicitly computable proximal operators prox A τ r , as defined in Definition 7.

C.1 Gaussian family with bounded eigenvalues

Consider the family of Gaussian distribution G. We can think of regularization on the eigen-values of Σ and Σ -1 . We study here how to impose that the eigenvalues of Σ

-1 are constrained in [b 1 , b 2 ], with 0 < b 1 ≤ b 2 .
This can prevent numerical problems in situations where the target is very ill-posed. The retained regularizer is an indicator function, and the resulting operator prox A r is a projection. We enforce the constraint using the Loewner order denoted by . Definition 10. Consider P 1 , P 2 ∈ S d . Then P 1 P 2 if and only if P 2 -P 1 ∈ S d + . We define the set onto which we aim at projecting by

E := {P ∈ S d + , b 1 I P b 2 I}. ( 43 
)
Lemma 3. Consider the Gaussian family G, whose log-partition function A, parameters θ and natural parameters ∇A(θ) are defined in Example 1. Consider q θ ∈ G, with θ ∈ int Θ, and denote its mean by µ and its covariance by Σ, which can be written as Σ = U diag(λ -1 i )U , where λ i > 0 for i ∈ 1, d and U is an ortonormal matrix.

If we consider the regularizing function defined on int Θ by r(θ) = ι E (-2θ 2 ), where E is defined in Eq. [START_REF] Guilmeau | Supplement to "Regularized Rényi divergence minimization through Bregman proximal gradient algorithms[END_REF], then θ = prox A τ r (θ) is such that the mean μ and covariance Σ of q θ satisfy μ = µ and Σ

= U diag(( λi ) -1 )U , with λi = max(b 1 , min(b 2 , λ i )), ∀i ∈ 1, d .
This means that the original covariance structure of Σ is conserved, but its eigenvalues are cropped so their inverses fit between b 1 and b 2 . Remark that the condition number of Σ is bounded by b2 b1 .

Proof. The optimality conditions associated with the proximal operator read

1 τ (µ -μ) = 0, 1 τ ((Σ + µµ ) -( Σ + μμ )) ∈ -2N E (( Σ) -1 ).
From here, we obtain that μ = µ. With P = ( Σ) -1 , this yields

0 ∈ 1 2τ (Σ -( P ) -1 ) + N E ( P ). ( 44 
)
We introduce now the fonction g(P ) = -log det(P ) and rewrite Eq. ( 44) as 0 ∈ 1 2τ ∇g( P ) + Σ + ∂ι E ( P ). ( 45)

Because E is compact and g is convex and lower semicontinuous, the optimality conditions (45) satisfied by P are equivalent to P being solution of P = arg min P 1 2τ (g(P ) + Σ, P ) + ι E (P ).

In this problem, the functions g and ι E depend only on the eigenvalues of their arguments, and Σ is such that there exists an orthonormal matrix U such that Σ = U diag(λ -1 i )U . The solutions of such problems have a particular form, given by [ This problem is separable, so for every i ∈ 1, d , we have λi = arg min b1≤λ i ≤b2 1 2τ -log(λ i ) -λ i λ i .

Since the 1 2τ has no influence, we can write equivalently the optimality conditions as 1 λi -

1 λ i ∈ N [b1,b2] ( λi ).
The normal cone is equal to {0} if λi ∈ (b 1 , b 2 ), it is equal to R -if λi = b 1 , and it is equal to

R + if λi = b 2 , hence λi =      b 1 if λ i ≤ b 1 , b 2 if λ i ≥ b 2 , λ i else,
which gives the result. ) . Its sufficient statistics is Γ(x) = (Q x, (Q x 1 ) 2 , ..., (Q x d ) 2 ).

C.2 Gaussian family with sparse mean and structured covariance matrix

D.1.2 Interplay between α and τ : speed or robustness

We now discuss the influence of α, τ on the practical speed and robustness of Algorithm 2, in its nonregularized version RMM. We recall that this algorithm resorts to importance sampling to approximate the integrals involved in the computation of π (α) θ (Γ), which creates an approximation error linked with the sample size, N . The influence of τ can be understood through the theory on stochastic Bregman gradient descent with fixed step-size. In particular, [START_REF] Hanzely | Fastest rates for stochastic mirror descent methods[END_REF]Theorem 5.3] states that such methods converge to a neighborhood of the optimum, whose size decreases with τ . On the other hand, low values of α amount to a concave transformation of the importance weights, which is known in the importance sampling field to lead to a higher effective sample size [START_REF] Koblents | A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models[END_REF].

In order to highlight this compromise between speed and robustness, we use the RMM algorithm to approximate the target described in Eq. ( 47) with κ = 10. We use a constant number of samples per iteration N = 500, for d ∈ {5, 10, 20, 40}. It is recommended for importance sampling procedures that the sample size grows as exp(d) to avoid weight degeneracy [START_REF] Bengsston | Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems[END_REF]. In our setting, d increases while N remains constant, thus creating approximation errors that increase with d.

For each dimension, we test α ∈ {0.5, 1.0} and τ ∈ {0.25, 0.5, 1.0}. We track the square errors μ -µ k In dimension d = 5, all the choices of parameters lead to convergence, as shown in Fig. 6. We can notice that the lowest values of τ lead to the slowest convergence, but the values reached are lower. On the contrary, when τ = 1.0, the algorithm stops early at higher values. Figure 7 shows the experiments in dimension d = 10. We still observe the same trade-off between accuracy and speed, but we also notice that the choice α = 1.0, τ = 1.0 leads to failure. Indeed, it amounts to approximate π(Γ) directly without using the estimates from past iterations, so the approximation errors cannot be averaged over iterations. In dimension d = 20, we see in Fig. 8 that the only scenario reaching convergence with α = 1.0 has τ set to the lowest value. Similarly, the algorithm with the highest value of τ is only able to converge with the lowest value of α, but with very slow convergence. This may indicate that α and τ both allow to average the approximation errors in Algorithm 2, which is linked to the interpretation of the relaxed moment-matching updates as barycenters, as discussed in Section 3.3. This study shows that the parameters α and τ should be lowered to compensate for high approximation errors possibly arising in Algorithm 2. On the contrary, when these errors are low, one can increase the values of τ to create faster algorithms.

D.1.3 Adding a regularizer: mismatch and improved behavior

Adding a regularizer r is a feature of our novel method. We thus compare the PRMM and the RMM algorithm, to investigate the influence of r. A minimizer θ * of F (α) π = f (α) π + r is not a minimizer of f (α) π , meaning that the regularized solutions q θ * are further from π, but the parameters θ * have some features enforced by r. We now illustrate the effects of such a regularizer, showing its benefits when π is poorly conditioned and the approximation errors are high.

We consider again the target from Eq. ( 47), with κ = 10. For the PRMM algorithm, we set r as an indicator function constraining the approximated proposal covariance matrix to be in the set E of symmetric matrices whose eigenvalues are in [ , 1/ ] for ∈ (0, 1). The computation of the corresponding proximal step, which is here a projection, is detailed in Appendix C. Since our target covariance has a condition number equal to κ = 10, and matrices in the constraint set E have a condition number bounded above by 1/ 2 with = 0.5, there is a mismatch Σκ / ∈ E . This can be observed in Fig. 10. Actually, the proposal covariance are better conditioned thanks to the regularizer, which can lead to better performance in some contexts, as we illustrate in Fig. 11. Figure 12 shows that the VRB algorithm used with diagonal covariance in the approximation family exhibits two distinct regimes. For sufficiently low values of τ , it is able to improve the estimates compared to initialization, but once τ crosses a certain threshold, the MSE reaches very high values, showing a degradation from the initialization. The VRB algorithm with full covariance in the approximation family is not able to create covariance matrices that are positive definite, hence it stops after initialization. On the contrary, our RMM algorithm does not degrade the values reached at initialization even for the worst settings of τ , and reaches the lowest MSE values for properly chosen step-sizes.

This confirms that the lack of Euclidean smoothness of f (α) π translates numerically into a high level of instability of VRB with respect to the choice of the step-size. On the contrary, the RMM algorithm has a more stable behavior even for poorly chosen step-sizes, confirming the theoretical study of Section 5.
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 01 Figure 1: Plots of f (α) π and the tangent approximations described in Definition 9, obtained following the setting decribed in the proof of Proposition 10.
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 2 Figure 2: Approximated Rényi bound, averaged over 10 3 runs with N = 500 samples per iteration.
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 3 Figure 3: F1 score in the prediction of the zeros of β by the zeros of {µ k } K k=0 , averaged over 10 3 runs with 500 samples per iteration.

Figure 4 :

 4 Figure 4: Box plots of the values MSE test , showing the reconstruction errors on the test data.
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  dom ∇A = int Θ. (ii) We conclude about the proximal operator with [10, Proposition 3.21 (vi)], which ensures that dom prox A τ r = int Θ, with [10, Proposition 3.23 (v)] which ensures that ran prox A τ k+1 r ⊂ int dom A, and with [10, Proposition 3.22 (2)(d)], showing that prox A τ r is single-valued. (iii) The third point comes from [40, Lemma 3].
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  This proof relies on two notions of subdifferentials: the limiting subdifferential ∂ L [78, Chapter 6] and the Fréchet subdifferential ∂ F [78, Chapter 4].
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 122 Consider an orthonormal matrix Q and the family of Gaussian distribution with covariance of the form Σ = Q diag(σ 2 1 , ..., σ 2 d )Q and mean µ ∈ R d . It is an exponential family with parameters θ = (θ 1 , θ 2 ) , with θ 1 = diag( ..., 1 σ )Q µ and θ 2 = -(

2 and Σκ -Σ k 2 F

 22 , that are averaged over 10 3 independent runs.
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 6 Figure 6: MSE on the mean and the covariance, averaged over 10 3 runs, in dimension d = 5.

  (a) MSE on the mean (b) MSE on the covariance

Figure 7 :

 7 Figure 7: MSE on the mean and the covariance, averaged over 10 3 runs, in dimension d = 10.
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 8 Figure 8: MSE on the mean and the covariance, averaged over 10 3 runs, in dimension d = 20.

  (a) MSE on the mean (b) MSE on the covariance

Figure 9 :

 9 Figure 9: MSE on the mean and the covariance, averaged over 10 3 runs, in dimension d = 40.
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 10 Figure 10: One run of the RMM algorithm (top) and the PRMM algorithm (bottom), with = 0.5, α = 0.5, and τ = 0.5. The color levels mark the target, while the solid lines mark the level sets of the approximating densities after a varying number of iterations. The initial mean µ 0 is denoted by the green square while Σ 0 = 10I.
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 12 Figure 12: MSE in the estimation of μ and Σκ (d = 5) after 100 iterations, against values of τ . For each value of τ , 10 3 runs with 500 samples per iteration are conducted. The dotted black lines represent the MSE at initialization. The prefix dG refer to the family of diagonal Gaussians, while the prefix G refers to Gaussians with full covariance.

  1 , p 2 ) ≥ 0, and RD α (p 1 , p 2 ) = 0 if and only if p 1 = p 2 . KL(p 1 , p 2 ) ≥ 0, and KL(p 1 , p 2 ) = 0 if and only if p 1 = p 2 .

	Moreover,

  . A list of comprehensive examples of this step is provided in Appendix C. Example 3. The proximal step (7) encompasses the notion of projection if the function r is the indicator ι C of a non-empty closed convex set C ⊂ H [9, Example 12.25]. We obtain, for α = 1,

  Proposition 2.2] and [44, Proposition 2.3]. f is L-relatively smooth with respect to A if and only if ∇ 2 f L∇ 2 A, on int Θ, and it is ρ-relatively strongly convex with respect to A if and only if ρ∇ 2 A ∇ 2 f

		(α) π	and A are twice differentiable
	on int Θ, so thanks to these results, f	(α) π	(α π
			(α π on int Θ.

  giving the results using the characterizations from [44, Proposition 2.2] and[START_REF] Hanzely | Fastest rates for stochastic mirror descent methods[END_REF] Proposition 2.3].
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Supplementary material (Appendices A-D)

The supplementary material [START_REF] Guilmeau | Supplement to "Regularized Rényi divergence minimization through Bregman proximal gradient algorithms[END_REF] contains four appendices. Appendices A and B contain the proofs of our theoretical results. Appendix C contains the computations of two Bregman proximal operators. Appendix D includes additional numerical experiments.

Its log-partition function is

i=1 log(-2(θ 2 ) i ), and its natural parameters ∇A(θ) are Q µ and ((Q µ) 2 1 + σ 2 1 , ..., (Q µ) 2 d + σ 2 d ) . We consider a regularizer that enforces sparsity on some components of the mean. We propose to this end

where

We aim at computing θ = prox A τ r (θ). Lemma 4. Consider the Gaussian family defined above. Consider q θ in this family, with θ ∈ int Θ and whose mean and covariance are respectively µ and Q diag(σ 2 1 , ..., σ 2 d )Q . If we consider the regularizing function defined in Eq. [START_REF] Hensman | Fast variational inference in the conjugate exponential family[END_REF], then θ = prox A τ r (θ) is such that the mean μ and covariance

In the particular case where η i = 0, then µ * i = µ i and σ2 i = (σ i ) 2 . We can also remark that we always have σ2 i ≥ σ 2 i , with equality if and only if (Q µ) i = 0. Therefore, the operator prox A τ r modifies q θ by shrinking certain values of the mean to zero, but it increases the variance. In particular, the bigger the (Q µ) i , the bigger the variance increase. When Q = I, the exponential family is the family of Gaussian distributions with diagonal covariance. The above results can thus be applied to this family too.

Proof. The regularizing function r is separable, so we study the optimality condition for every i ∈ 1, d . This is justified by [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 16.8], which shows that ∂r(θ) is the Cartesian product of its subdifferentials with respect to each of its variable. Therefore, for i ∈ 1, d , we have

from which we already deduce the result about the standard deviation. Because ( Σi ) 2 > 0, the sign of ( θ1

From there, we obtain that

which gives the result.

D Supplementary numerical experiments D.1 Understanding the influence of the parameters

We first study how the parameters and the possible regularizer affect the RMM and PRMM algorithms. In particular, we study the influence of the Rényi parameter α on the variational approximation, the interplay between α, the step-size τ , and the sample size N , as well as the impact of adding or not a regularization function r.

To this end, we use Gaussian targets in various dimensions d, with unnormalized density of the form

Their means μ are chosen uniformly in [-0.5, 0.5] d and their covariance matrices Σκ are chosen with a condition number equal to κ, following the procedure in [72, Section 5].

D.1.1 Choice of α: mode-seeking or mass-covering behaviors

In this section, we illustrate the influence of α on the adapted proposal. The target is described in Eq. ( 47) with dimension d = 2 and κ = 20. The approximating family is the family of Gaussian distributions with diagonal covariance matrices. Since the target covariance is not diagonal, the approximating densities cannot cover exactly the target, which allows to illustrate several interesting behaviors for the methods. Specifically, we evaluate how the value of α changes the approximating behavior in such cases by showing, in Fig. 5 the results of several runs of our RMM algorithm, with N = 1000, τ = 0.8, and α ∈ {1.0, 0.5, 0.25}. The runs are initialized with a mean µ 0 = (5.0, 5.0) and a covariance matrix Σ 0 = 10I. We see in Fig. 5 that when α is high, the approximated proposals tend to cover most of the mass of the target. Lower values of α lead instead to proposals that are highly concentrated around the mode of the target and thus less spread which is in accordance with the observations of [START_REF] Li | Rényi divergence variational inference[END_REF]. We see that the best performance is achieved by the RMM algorithm with α = 0.5, τ = 0.5, while the RMM algorithm with α = 1.0 and τ = 1.0 achieves the worst one. These results are in accordance with the result of Section D.1.2. However, turning to the PRMM algorithm in this setting allows a performance increase from this worst case. Indeed, the PRMM algorithm achieves better performance than the RMM algorithm when α = 1, τ = 1, especially for the estimation of the mean. Since the target is poorly conditioned, the covariance matrices Σ k , k ∈ N tend to become singular when r ≡ 0. This behavior is prevented by the regularization, explaining better performance in this case. Note that the PRMM algorithm cannot approximate the true covariance Σκ since Σκ / ∈ E .

D.2 Comparison with the variational Rényi bound on a Gaussian target

Our theoretical analysis provides guidelines to choose the step-size τ for our RMM algorithm (Propositions 12 and 13) but also shows that there is no equivalent guarantees for the VRB algorithm (see Proposition 10).

In particular, poorly chosen step-sizes could create unstable behaviors. We thus investigate these effects in the following by comparing our novel RMM algorithm with the VRB algorithm on Gaussian targets. We use Gaussian target from Eq. ( 47), with κ = 10, and d = 5. Each algorithm is run with constant number of samples N = 500, and constant values of the step-size τ . We test values of α corresponding to the Hellinger distance (α = 0.5) and the KL divergence (α = 1.0). We test two different exponential families: Gaussian with full covariance, and Gaussian with diagonal covariance. For each tested value of τ , 10 3 runs are performed.