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The use of Hidden Markov Models for radar frequency track detection is studied in this paper. In particular, we focus on periodic signals, and propose a new algorithm that incorporates information about the periodicity in the Hidden Markov Model. Two frequency estimation methods are used, namely the Forward-Backward algorithm, and the Viterbi algorithm. The impact of including the periodicity of the signal into these algorithms is studied through simulations.

Introduction

Continuous radar signals detection and characterization can be a challenging task, especially when the frequency is modulated, as the transmitted power is usually lower than for pulse radar signals. A convenient representation for characterizing radar signals is the spectrogram, since it shows the time-varying energy repartition in a time-frequency plane, enabling the signal to concentrate into a restricted number of pixels, while the noise will spread over the whole domain [START_REF] Stevens | Detection and Parameter Extraction of Low Probability of Intercept Frequency Hopping Signals using the Spectrogram and the Reassigned Spectrogram[END_REF]. A good overview of signal detection spectrogram-based methods can be found in [START_REF] Lampert | A survey of spectrogram track detection algorithms[END_REF]. Among the most prevalent methods, Maximum Likelihood (ML)-based ones suffer from tremendous computational costs [START_REF] Lampert | A survey of spectrogram track detection algorithms[END_REF] [START_REF] Paris | A new tracker for multiple frequency line[END_REF]. To detect specific waveforms, such as linear frequency modulated continous waveform, with reasonable computing time, image processing involving particular feature extraction techniques can be used, for instance the well-known Hough transform [START_REF] Brahosky | A combinatorial approach to automated lofargram analysis[END_REF].

A more general way to detect a continuous waveform is to view it as a frequency line tracking problem. In [START_REF] Streit | Frequency line tracking using hidden Markov models[END_REF], this is adressed by using a Hidden Markov Model (HMM). This model assumes that the frequency behaves according to a random walk in the time-frequency domain, so that from time t to t + 1, the frequency "moves" in its vicinity according to some given transition rules. HMM based algorithms have proved to be effective under low SNR conditions for various applications, such as underwater acoustics [START_REF] Paris | A new tracker for multiple frequency line[END_REF] [START_REF] Luo | A Sensing and Tracking Algorithm for Multiple Frequency Line Components in Underwater Acoustic Signals[END_REF], in astrophysics [START_REF] Suvorova | Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin[END_REF] to track drifting frequency peaks, or in radar [START_REF] Wang | Detection of long-duration narrowband processes[END_REF]. However, in [START_REF] Streit | Frequency line tracking using hidden Markov models[END_REF], a single frequency track is considered. In [START_REF] Paris | A new tracker for multiple frequency line[END_REF], multiple frequency tracks are considered. Hence, the possibility for two tracks to intersect needs to be taken into account. This is done by introducing the derivative of the frequency in the state vector, as well as a mutual exclusion event into the probabilities to maximize, to prevent two tracks from being in the same state at the same time. However, this approach does not enable to correctly associate the different segments corresponding to a same track, if two tracks should happen to cross one another.

Here, we focus on periodic signals, and we propose to extend the approach in [START_REF] Paris | A new tracker for multiple frequency line[END_REF] to include this information in the HMM, to improve the frequency estimation and the deinterleaving of mixed tracks, and extended to the Viterbi algorithm. Both algorithms are evaluated on simulated data, and compared to the Pulse Repetition Interval-free ones. This paper is organized as follows: firstly, a HMM of the periodic multitrack frequency tracking problem is proposed. The frequency estimation algorithms are then presented. Finally, the simulation framework and results are presented.

Frequency tracks Markov Chain modeling

In this section, we will define the transition and observation matrices needed to define the HMM. For each, we will start with the non-periodic, single track case, and then generalize to the periodic multitrack one.

State equation

Non periodic single-track case:

In a spectrogram representation, the instantaneous frequency f of a continuous signal will evolve in a relatively smooth way. To represent this smooth evolution, only a few frequency slope values ḟ will be allowed (corresponding to one or two spectrogram bins, for instance). Between times t -1 and t, the instantaneous frequency is modeled as:

f t = f t-1 + ḟt-1 ∆t. (1) 
Since we are working on a spectrogram, the frequency is supposed to be discretized, and hence in the following, we will refer to it either as a frequency or an index (the frequency index in the spectrogram).

Generalization to periodic multitrack:

As mentionned in the introduction, to tackle multiple frequency tracks, [START_REF] Paris | A new tracker for multiple frequency line[END_REF] suggests to include the frequency slope in the state vector, x t = f t ḟt T , in order to tackle crossing tracks. The random walk can then be modeled by the following state equation:

x t = Hx t-1 + ϵ t (2) 
where H = 1 ∆t 0 1 , and ϵ t ∼ N (0, R) is some state noise, and the frequency value and the frequency slopes are supposed to be independent variables at a given time, so that

R = σ 2 f 0 0 σ 2 ḟ .
Assuming the signal is periodic, we propose to add its period into this previous model. The period τ is supposed to be independent from the other variables. In this case, the state vector is now defined as: x t = f t ḟt τ t T , and (1) becomes:

x t = H p x t-1 + ϵ t ( 3 
)
where

H p =   1 ψ 0 0 1 0 0 0 1   , ϵ t ∼ N (0, R p ) , and R p =   σ 2 f 0 0 0 σ 2 ḟ 0 0 0 σ 2 τ   .
To tackle multiple frequency tracks simultaneously, (3) simply should be indexed by a track number:

f l t , l ∈ [1..L],
where L is the number of considered tracks. However, since all the frequency tracks have the same state equation, a single matrix A defines our HMM. This matrix coefficients correspond to the probability of going from a state x t-1 = i j k

T to a state

x t = m n q T . It is given by:

a mnq ijk def = P x l t |x l t-1 = 1 2π det R p × exp -1 2 x l t -H p x l t-1 T R -1 p x l t -H p x l t-1
.

(4) The construction of this matrix is illustrated in figure 1. In our case, the ponderation coefficients of this matrix are given by ( 4), but other rules can be found (for instance, a matrix of 1 and 0 only).

Observations equation

Expression in the single-track case:

In [START_REF] Paris | A new tracker for multiple frequency line[END_REF], the observations are given by the squared modulus of the spectrogram. Let s t,m denote the squared absolute value of the spectrogram at time t and frequency bin m ∈ [0, ...M -1]. Let σ 2 be the noise power. For a single spectrogram bin, the likelihood of s t (m)/σ 2 follows either a chi-squared distribution with 2 degrees of freedom if no signal is present in the bin, or a non-centered chi-squared distribution with 2 degrees of freedom and parameter of non-centrality λ, which is proportional to the Signal to Noise Ratio (SNR) [START_REF] Paris | A new tracker for multiple frequency line[END_REF]: λ = M × SNR/2. For a single frequency track, the likelihood at times t for all the frequencies, supposing the bins are mutually independent, is given by [START_REF] Paris | A new tracker for multiple frequency line[END_REF]:

P (s t (0, .., M -1)|f t = m) = M -1 i=0 i̸ =m 1 σ 2 exp - s k (m) σ 2 × 1 σ 2 exp - s k (m) σ 2 -λ I 0 4λs t (m) σ 2 . ( 5 
)
However, in practice, the SNR is often unknown, so that (5) cannot be computed. In [START_REF] Paris | A new tracker for multiple frequency line[END_REF], it is proposed to use the following quantity instead, which has the same characteristic as a probability mass:

b i = s t (i) j s t (j) . ( 6 
)
This quantity is nevertheless not an approximation of the desired measurement likelihood. Here, we propose to instead replace the unknown signal amplitude with its ML estimate. To do so, let z t (i) be the spectrogram complex value (not raised to the power of 2), distributed as a Gaussian random variable. When a signal is present, this random variable is composed of the signal amplitude α t (i), added to some random complexvalued Gaussian noise of variance σ 2 . Thus, the likelihood is given by, up to a scaling factor:

P (z t (i)|f t = i) ∝ exp - 1 σ 2 |z t (i) -α t (i)| 2 . ( 7 
)
The ML estimate of α t (i) is classically given by:

αt (i) = z t (i). (8) 
When no signal is present, the likelihood is simply

P (z t (i)|f t = i) = exp -1 σ 2 |z t (i)| 2
. Supposing all the frequency bins at a given time t are independent, the joint likelihood (considering all the frequency bins at a given time) is then, up to a scaling factor:

P (z t (0), ...z t (M -1)|f t = i) ∝ j̸ =i exp - 1 σ 2 |z t (j)| 2 × exp - 1 σ 2 |z t (i) -α t (i)| 2 (9) 
One can notice that when injecting the ML estimate ( 8) into ( 9), the second exponential term simply becomes equal to 1. In the following, the vector [z t (0), ..., z t (M -1)] T will simply be noted z t . Equation ( 9) can be weighted in the following way:

P (z t |f t = i) j P (z t |f t = j) = j̸ =i exp -1 σ 2 |z t (j)| 2 j k̸ =j exp -1 σ 2 |z t (k)| 2 . ( 10 
)
The upper and lower terms of the above equation can be multiplied by

M -1 k=0 exp -1 σ 2 |z t (k)| 2 , which leads to: b i (z t ) = P (z t |f t = i) j P (z t |f t = j) = exp 1 σ 2 |z t (i)| 2 j exp 1 σ 2 |z t (j)| 2 . (11) 
This enables to define the matrix B, the columns of which are given by b i (z t ), i = 0...M -1.

Generalization to periodic multitrack:

For a fixed period τ = k, the likelihood can be expressed as:

P (z t,t+k,...t+N k |x t,...t+N k = (i, j, k)) = N n=0 P (z tn |x tn = (i, j, k)) , ( 12 
)
where N is the number of periods during the observation time, and t n = t + nk. Similarly to the non-periodic case, this probability can be scaled by 1/ i P (z tn |x tn = (i, j, k)) (normalization on all the possible frequencies at times t n ), and both the numerator and denominator can be multiplied by:

tn N f l=1 exp -1 σ 2 |z tn (l)| 2 , which leads to: b ijk (z tn ) = N n=0 exp 1 σ 2 |z tn (i)| 2 N f l=1 N n=0 exp 1 σ 2 |z tn (l)| 2 , ( 13 
)
which will be used to define the observations matrix B of our HMM. Finally, to fully define the HMM, we need to define an initial probability π l for each track.We will choose the same as in [START_REF] Paris | A new tracker for multiple frequency line[END_REF]. Thus, the HMM for the lth track is defined as h l = (π l , A, B), with A defined in (4) and B defined in (13) [START_REF] Paris | A new tracker for multiple frequency line[END_REF].

Frequency estimation algorithms

In this paper, the Viterbi algorithm will be considered, as well as the Forward-Backward (FB) algorithm used in [START_REF] Paris | A new tracker for multiple frequency line[END_REF]. Both have the same objective of estimating the sequence of states based on the observations and on the HMM as defined in section 2. The structures of these algorithms are presented in a single-track framework first, and their extension to the periodic multitrack case is then presented.

Forward Backward algorithm -single track

The FB algorithm [START_REF] Rabiner | An introduction to hidden Markov model[END_REF] estimates at each time t the a posteriori probability of being in the state i, knowing all the observations, i.e. P (f t = i|Z 1:K ), where Z 1:K = {z 1 , z 2 , ...z K }. This probability is expressed as a function of the so-called Forward and Backward probabilities, respectively denoted as α t and β t :

P (f t = i|Z 1:K ) = α t (i)β t (i) j α t (j)β t (j) , (14) 
with

α t (i) = P (f t = i, Z 1:t ) , β t (i) = P (Z t+1:T |f t = i) . (15) 
These two probabilities can be calculated recursively:

α t (i) = b i (z t ) j a ji α t-1 (j), t = 1, ..., T, β t (i) = j b j (z t+1 )a ij β t+1 (j), t = T -1, ..., 1. (16) 
It should be noted that to avoid numerical errors, these quantities should be normalized at each iteration.

Viterbi algorithm -single track

The Viterbi algorithm [START_REF] Brushe | A soft output hybrid algorithm for ML/MAP sequence estimation[END_REF] estimates at each time t the whole states sequence (x 1 , ..., x t ), and in that sense is a more global approach than the FB algorithm. The a posteriori probability is expressed as:

P (f t = i|Z 1:K ) = δ t (i) (17) 
where δ t can be calculated recursively:

δ t (i) = max X 1:t-1 [P (X 1:t-1 , f t = i|Z 1:t )] = max j [δ t-1 (j)a ji ] , t = 1, ..., T. ( 18 
)

Generalization to periodic multitracks

In a multitrack framework, all the aforementionned probabilities need to be calculated for each track, and should include the mutual exclusion event [START_REF] Paris | A new tracker for multiple frequency line[END_REF]. This event should prevent a given state from belonging to several tracks. Finally, to take into account the periodic characteristic of the signals, the probability b i (z t ) should be calculated as in (13), so that the probability to maximize for track l is [START_REF] Paris | A new tracker for multiple frequency line[END_REF]:

P (l) x t = (i, j, k)|Z 1:K , Ω (l) 1:K (19)
with for the FB forward probability: t-1 (m,n,p)

α (l) t (i, j, k) = α(l) t (i, j, k) q (l) t,α (i, j, k) α(l) t (i, j, k) = b ijk (z t ) m,n,p
q (l) t,α (i, j, k) = L r=1 r̸ =l 1 - m,n,p∈V α(r) t (m, n, n) , ( 20 
)
where V represents the neighbour states, and for the FB backward probability:

β (l) t (i, j, k) = β(l) t (i, j, k) q (l) t,β (i, j, k) β(l) t (i, j, k) = m,n,p bmnp(z t+1 )a ijk mnp β (l) t+1 (m,n,p) q,r,s m,n,p bmnp(z t+1 )a ijk qrs β (l) t+1 (m,n,p)) q (l) t,β (i, j, k) = L r=1 r̸ =l 1 - m,n,p∈V β(r) t (m, n, p) . ( 21 
)
The terms q (l) t,α and q (l) t,β in ( 20) and ( 21) are the probability corresponding to the mutual exclusion event, and enable to reduce the values of α (l) t and β (l) t when a similar state is already present on another frequency track. The Viterbi probabilities γ (l) t are defined in a similar way. Once again, α (l) t , β (l) t , δ (l) t should be normalized at each iteration.

Remarks

• As mentionned in [START_REF] Paris | A new tracker for multiple frequency line[END_REF], the number of tracks L should be stated a priori. Usually, an overestimated number of tracks is selected, and the various estimated tracks are then discarded or not, depending on a detector. This step is beyond the scope of this paper. • The transition matrix A is of size Number of frequency × Number of slope × Number of period, so the algorithms get slower as these dimensions increase. A lead to tackle this issue could be to adopt a Divide & Sew strategy as in [START_REF] Luo | A Sensing and Tracking Algorithm for Multiple Frequency Line Components in Underwater Acoustic Signals[END_REF] (i.e. to apply the algorithms on smaller areas of the spectrogram, and then recombine them).

Evaluation of the algorithms on simulations

To evaluate the proposed algorithms ability to correctly extract a frequency track two scenarios were simulated, with SNR set to 14dB, 8dB or 4dB:

• Scenario 1: two periodic signals, well separated in terms of central frequency (no intersection -see Figure 2); • Scenario 2: two periodic signals, interleaved (numerous intersections, Figure 3).

The spectrogram was of size N f × T = 100 × 140 samples. In our simulations, 3 frequency slopes were allowed: -1, 0, +1. The tested periods were: 0, 12, 20, 50. The neighbour states set V is defined as the frequencies in a radius of 1 from the currently tested one, and all the possible periods and slopes.

Four algorithms were tested: Viterbi, with or without taking into account the period, which will be designated in the following as PRI-Viterbi or regular-Viterbi, and the Forward Backward algorithm (regular or with PRI). The Forward Backward algorithms results seemed less promising than those of the Viterbi algorithms, which is why only the latter will be displayed in the results. Each scenario was run on 100 Monte-Carlo simulations. It should be noted that the mean and standard deviation are calculated by comparing to the reference track that is, on average, the closest to the estimated tracks, and not by taking the closest target at each time.

Tests on two separated tracks (scenario 1)

This scenario corresponds to the "simplest" case, since the two frequency tracks are well separated and never cross. Figure 4 shows the mean estimated tracks and their standard deviation for SNR = 14 dB. All the algorithms correctly extract the two tracks.

As a comparison, Table 1 gathers the Root Mean Square Error (RMSE) of the estimated tracks for different SNR for the proposed Viterbi algorithms and for the Forward Backward algorithm proposed in [START_REF] Paris | A new tracker for multiple frequency line[END_REF]. At higher SNR, the performance for both algorithms are quite similar. As the SNR decreases, the Viterbi algorithms (regular or PRI versions) give better results.

Tests on two interleaved tracks (scenario 2)

This is the worst-case scenario, where the tracks show multiple intersections (but still have different periods).

Figure 4 presents the mean estimated tracks as well as their standard deviation for a 14dB SNR, using either regular-Viterbi or PRI-Viterbi. On average, PRI-Viterbi correctly manage to separate the two tracks, unlike the regular-Viterbi. Indeed, the regular-Viterbi enables to estimate the tracks, but not to associate each portion to the correct track, so that at each intersection, the current track might equivalently jump to track 2 or track 1. This leads to the aspect of the mean tracks that can be observed in figure 4.

Figure 7 and 8 respectively present results for a 8dB SNR using either the regular or the PRI Viterbi algorithms. The regular Viterbi shows a heavily impacted standard deviation, whereas the PRI-Viterbi standard deviation only slightly increases, and moslty at the intersection points.

Conclusion

A HMM-based frequency estimation algorithm exploiting the periodicity of data was proposed. Compared to the algorithms that do not include information about the periodicity, they enabled a better estimation of close or interleaving frequency tracks, and were more robust to the noise level. The V-PRI algorithm seemed to perform better than the FB-PRI one. To further study the issue of deinterleaving two tracks, other information, such as amplitude variations, could be used. The transition matrix A plays an important part in the performance of all these algorithms, hence the impact of other transition models should also be studied. Finally, one major drawback of this method is the computational cost, and this issue should be adressed by, for instance, treating sub-spectrograms and seaming the results.
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 1 Fig. 1: Structure of matrix A. As the state is composed of 3 parameters (frequency, frequency slope and period), A is a repetition of (Number of Periods × Number of slopes) times a M × M matrix. The smallest block component (the M × M matrix) represents the frequencies for states x t-1 and x t . Then, in the given example, the slope for each state is encoded in 3×3 block matrix (in red in the figure). Similarly, the period information is encoded in the biggest block matrix (in blue).
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 23 Fig. 2: Spectrogram of Scenario 1, SNR = 8dB Fig. 3: Spectrogram of Scenario 2, SNR = 8dB

Fig. 4 :

 4 Fig. 4: Estimated frequency averaged on 100 Monte-Carlo simulations for Scenario 1. The SNR of the spectrogram was set to 14dB. The two black curves represent the true frequency tracks. All the estimated trakcs are superimposed.

Fig. 5 :

 5 Fig. 5: Estimated frequency averaged on 100 Monte-Carlo simulations for Scenario 1. The SNR of the spectrogram was set to 4.dB. The colored areas represent the standard deviation. The two black curves represent the true frequency tracks. The colored curves represent the mean estimated tracks for the PRI Viterbi or the regular Viterbi algorithms.

Fig. 6 :

 6 Fig. 6: Estimated frequency averaged on 100 Monte-Carlo simulations for Scenario 2, using the regular and PRI-Viterbi algorithms.The SNR of the spectrogram was set to 14dB. The black circle and cross markers black represent the true frequency tracks. The red and cyan ones correspond to the average tracks estimated with the regular Viterbi algorithm. The blue and greend ones correspond to those estimated with the PRI-Viterbi algorithm.

Fig. 7 :

 7 Fig. 7: Estimated frequency averaged on 100 Monte-Carlo simulations for Scenario 2, using the regular Viterbi algorithm.The SNR of the spectrogram was set to 8dB. The two black dotted curves represent the true frequency tracks. The red and cyan ones correspond to the average estimated tracks. The colored areas represent the standard deviation.

Fig. 8 :

 8 Fig. 8: Estimated frequency averaged on 100 Monte-Carlo simulations for Scenario 2, using the Viterbi-PRI algorithm.The SNR of the spectrogram was set to 8dB. The two black dotted curves represent the true frequency tracks. The green and blue ones correspond to the average estimated tracks. The colored areas represent the standard deviation.

Table 1

 1 Root Mean Square Error (averaged on the two tracks) for Scenario 1.

	X SN R (dB) X X X X X 14	X	X Algo FB-REG FB-PRI V-REG V-PRI X X 0.04 0.00 0.01 0.00
	8		1.01	0.03	1.10	0.01
	4		3.54	1.67	3.45	1.20