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Abstract:  

Solutions to topology optimization problems are strongly influenced by the consideration and 

simultaneous anisotropy optimization. To broaden anisotropy consideration in topology 

optimization to other optimization objective and/or constraints, such as strength or buckling, 

this work introduces a novel way of incorporating 2D orthotropy in a gradient-based optimization 

routine. The orthotropy is represented by means of the polar formalism, and the optimization 

strategy uses a combination of the Method of Moving Asymptotes (MMA) and Global 

Convergent Method of Moving Asymptotes (GCMMA), whichever approximation is better suited 

to the variable type. As gradient-based optimization are  prone to local minima, it is shown that 

with a proper initialization, the split “MMA” strategy obtains similar compliance values and 

variable distribution as the alternate directions benchmark algorithm, validating the strategy for 

further use.  

Keywords: topology; optimization; polar parameters 

1. Introduction 

Topology optimization seeks to define the optimal material distribution of a structure for a 

defined load case. It is a well-documented problem for compliance minimization with an 

isotropic material [1], however other properties influence the final solution and topology. This 

effect can for example be seen in optimizations considering strength and/or buckling constraints 

[2]. The resolution of such optimization problems with additional constraint is either done with 

genetic [3] or gradient based [1,2,4] algorithms in literature.  

Another influence on the optimized shape is the type and amount of material variables, such as 

incorporating material anisotropy. General material orthotropy was considered in topology 

optimizations by Ranaivomiarana et al. [5]. Another subset of anisotropy can be mentioned, 

being the composite laminate space, and having their equivalent stiffness represented and 

optimized by means of lamination parameters, as performed by Peeters et al. [4], with a 

subsequent fiber path retrieval step. 

Ranaivomiarana et al. [5] demonstrated that the concurrent consideration of orthotropy in 

topology optimization resulted in different final topologies, being potential less bulky yet better 

designs than a sequential optimization of first the topology with an isotropic material, followed 

by the material orthotropy optimization. However, the optimization method used by 

Ranaivomiarana et al. [5] is based on the alternate directions (AD) method [6] which can only be 

used for compliance minimization. 
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In order to incorporate additional constraints in topology optimization whilst considering 

material anisotropy, the algorithm to solving the optimizations must be switched to a gradient-

based method. This is the purpose of the presented work, and is done more specifically with the 

Methods of Moving Asymptotes (MMA) algorithm [7]. The material anisotropy is still 

characterized by means of the polar parameters [8], facilitating a comparison of the results of 

the proposed approach to the ones obtained by Ranaivomiarana et al. [5]. Moreover, this still 

leaves the later possibility to limit the design space to composite layups by means of the 

geometric bounds on the polar parameters [9].  

This remainder of this abstract is setup as follow: Section 1 discusses the background of the 

topology and anisotropy modelling, the optimization strategy is laid out in Section 2, followed 

by the presentation and discussion of the results in Section 3 and finally the abstract is concluded 

in Section 4. 

2. Methodology 

2.1 Topology representation 

The topology variables are the element densities 𝜌, which are used in the Solid Isotropic Material 

with Penalization (SIMP) [1] given in Eq. (1) to achieve distinct results. D is the elasticity tensor 

as used in the definition of an element’s stiffness matrix in the finite element method (FEM) 

analysis, p is the penalization exponent and 𝐷0 the pristine elasticity tensor of an element. 

Section 1.2 gives the definition of this elasticity tensor 𝐷0 with anisotropy. 

𝐷 = 𝜌𝑝𝐷0                                 (1) 

To prevent checkerboard instabilities, a linear filter is used to smoothen the density variables 

and obtain a length scale control, according to Eq. (2). Ω𝑖  is the set of elements whose centroid 

distance lays within the filter radius R, and are given a filter weight 𝑤𝑖𝑗 according to Eq. (3). x 

represents each element’s centroid location, and V the element’s area. 

𝜌�̃� =
∑ 𝑤𝑖𝑗𝑉𝑗𝜌𝑗𝑗∈Ω𝑖

∑ 𝑤𝑖𝑗𝑉𝑗𝑗∈Ω𝑖

                   (2) 

Ω𝑖 = {𝑗| |𝑥𝑗 − 𝑥𝑖| ≤ 𝑅} and 𝑤𝑖𝑗 = 𝑅 −   |𝑥𝑗 − 𝑥𝑖|                (3) 

2.2 Anisotropic representation 

The anisotropic behavior of the material is represented by means of the polar formalism [10]. In 

this communication, the anisotropy is restricted to orthotropy. The components of the pristine 

elasticity tensor 𝐷0 are obtained by means of the polar parameters [8], expressed in Eq. (4) with 

normalized anisotropic modules 𝜂0 and 𝜂1. 𝑇0 and 𝑇1 are the isotropic modules, 𝜙1 is the 

direction of orthotropy. 𝜂0 and 𝜂1 are defined as  
(−1)𝐾𝑅0

𝑇0
 and 

𝑅1

√𝑇0𝑇1
 respectively, where 𝑅0 and 

𝑅1 are the anisotropic modules and K the orthotropic shape factor. 

𝐷1111 = 𝑇0 + 2𝑇1 + 𝜂0𝑇0 cos 4𝜙1 + 4𝜂1√𝑇0𝑇1 cos 2𝜙1  

𝐷1122 = −𝑇0 + 2𝑇1 − 𝜂0𝑇0 cos 4𝜙1  

𝐷1112 = 𝜂0𝑇0 sin 4𝜙1 + 2𝜂1√𝑇0𝑇1 sin 2𝜙1                (4) 
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𝐷2222 = 𝑇0 + 2𝑇1 + 𝜂0𝑇0 cos 4𝜙1 − 4𝜂1√𝑇0𝑇1 cos 2𝜙1  

𝐷2212 = −𝜂0𝑇0 cos 4𝜙1 + 4𝜂1√𝑇0𝑇1 sin 2𝜙1  

𝐷1212 = 𝑇0 − 𝜂0𝑇0 cos 4𝜙1  

2.3 Thermodynamic bounds 

To keep the elasticity tensor 𝐷0 theoretically valid, meaning it remains positive definite, the 

thermodynamic bounds must be enforced on the anisotropic modules and orthotropic shape 

factor [8]. These bounds are expressed with the normalized anisotropic modules in Eq. (5), 

where the strict inequality has been relaxed by introducing (1 − 𝜀). This relaxation is necessary, 

as the constraints in MMA are simple inequalities. The value of 𝜀 is taken as 0.05 in this 

communication. 

𝜂0 ≥ (1 − 𝜀) (2 (
𝜂1

(1 − 𝜀) 
)

2

− 1) 

−(1 − 𝜀) ≤ 𝜂0 ≤ (1 − 𝜀)                 (5) 

−(1 − 𝜀) ≤ 𝜂1 ≤ (1 − 𝜀)  

However, as the thermodynamic constraint must be considered for each separate element with 

its own variables, the number of optimization constraints quickly rises and becomes 

troublesome and slow to handle by the optimization algorithm. Therefore, the thermodynamic 

constraint is implicitly incorporated as a variable change in a similar way as suggested by Izzi et 

al. [11]. The variable change specific to Eq. (5) is given in Eq. (6), and means the optimization 

constraint now becomes a simple interval on these new variables. 

𝛼 =
𝜂1 + (1 − 𝜀) 

2(1 − 𝜀) 
  ;  𝛽 =

𝜂0 − (1 − 𝜀) 

2(1 − 𝜀) [(
𝜂1

(1 − 𝜀) 
)

2

− 1]

 

0 ≤ 𝛼 ≤ 1  ;  0 ≤ 𝛽 ≤ 1                          (6) 

2.4 Optimization problem 

The optimization problem treated is the minimization of the compliance (C), being the work of 

the external loads, and defined as the deformation energy (𝑈𝑇𝐾𝑈). U is the displacement vector, 

obtained from the resolution of 𝐾𝑈 = 𝐹, where is K the global stiffness matrix and F the force 

vector. The optimization problem is stated in Eq. (7), and subjected to a volume V constraint to 

be lowered than a prescribed volume 𝑉0. 

min
ρ,ϕ1,𝜂0,𝜂1   

𝑈𝑇𝐾𝑈  

𝑠. 𝑡.  𝑉 ≤ 𝑉0 

         0 ≤ 𝛼 ≤ 1                   (7) 

         0 ≤ 𝛽 ≤ 1  

         0.001 ≤ 𝜌 ≤  1    ;    −
𝜋

2
≤ 𝜙1 ≤

𝜋

2
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3. Optimization strategy 

The MMA optimization algorithm class [7] is used to solve this optimization problem. MMA is an 

iterative method of solving a non-linear problem by solving a succession of approximate convex 

problems. These approximated convex problems are constructed based on the gradient 

information. As the response surface of the problem differs with respect to the nature of the 

variable, Bruyneel et al. [12] therefore suggested using different approximations for different 

variables [12], to influence on the convergence properties of the optimization. This inspired the 

following split “MMA” optimization strategy, where each variable type is optimized separately 

based on what better suits it characteristics. 

The density variables are optimized with the standard MMA and its monotonous approximation, 

shown to behave well in literature [1,2]. Equally, the anisotropic modules and its change of 

variables are updated with a separate call of MMA and its monotonous approximation, giving 

good convergence. Having this separate MMA call allows to use a different optimization settings 

to guide the optimization of the anisotropic components. Finally, the orientations are optimized 

with the convex approximation of GCMMA, to help mitigate the influence of the periodicity of 

the variable, and again with its individual settings. An overview of the optimization strategy is 

given in Fig. (1). 

 

Figure 1. Optimization strategy.  

3.1 Sensitivities 

As a gradient optimizer is used, the sensitivities of the compliance and volume must be 

calculated with respect to each variable. The sensitivity with respect to the density is 

straightforward [1], given in Eq. (8) and Eq. (9), where 𝑘𝑖 and 𝑢𝑖 are the respective element’s 

stiffness matrix and nodal displacement. 𝑉𝑖 is an element’s volume. 

𝜕 𝐶

𝜕�̃�𝑖
=  −𝑝�̃�𝑖

𝑝−1
 𝑢𝑖

𝑇𝑘𝑖𝑢𝑖                   (8) 

𝜕 𝑉

𝜕�̃�𝑖
=  𝑉𝑖                    (9) 
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Furthermore, to take the effect of the filter on the optimization variables into account, the chain 

rule must be applied according to Eq. (10), for any function f. 

𝜕𝑓

𝜕𝜌𝑖
= ∑  

𝜕𝑓

𝜕�̃�𝑒

𝜕�̃�𝑒

𝜕𝜌𝑖
 𝑒∈Ω𝑖
 , with 

𝜕�̃�𝑒

𝜕𝜌𝑖
=

𝑤𝑒𝑖𝑉𝑖

∑ 𝑤𝑒𝑗𝑉𝑗𝑗∈Ω𝑒

              (10) 

Analogously to the gradient with respect to the density, and using the self-adjoint property of 

the compliance problem [1], the gradient with respect to the anisotropic components can be 

obtained as shown in Eq. (11) and Eq. (12) for the direction of orthotropy 𝜙1, and similarly for 

𝜂0 and 𝜂1. The sensitivity of the elasticity tensor is obtained from the analytical derivation of Eq. 

(4), where B is the strain displacement matrix of the element used to setup the FEM analysis. 

𝜕 𝐶

𝜕𝜙𝑖
= −  𝑢𝑖

𝑇 𝜕𝑘𝑖

𝜕𝜙𝑖
𝑢𝑖                              (11) 

𝜕𝑘𝑖

𝜕𝜙𝑖
= −𝜌𝑖

𝑝
∬ 𝐵𝑇 𝜕𝐷0𝑖

𝜕𝜙𝑖
𝐵𝑑Ω

Ω
                 (12) 

Finally, to obtain the gradient with respect to the change of variable to incorporate the 

thermodynamic bounds, the chain rule as given in Eq. (13) must be applied. 

𝜕𝐶

𝜕𝛼
=

𝜕𝐶

𝜕𝜂0

𝜕𝜂0

𝜕𝛼
+

𝜕𝐶

𝜕𝜂1

𝜕𝜂1

𝜕𝛼
   ;    

𝜕𝐶

𝜕𝛽
=

𝜕𝐶

𝜕𝜂0

𝜕𝜂0

𝜕𝛽
+

𝜕𝐶

𝜕𝜂1

𝜕𝜂1

𝜕𝛽
            (13) 

4. Results and discussion 

The suggested methodology and optimization strategy by means of a gradient-based algorithm 

is compared against reproduced results with the optimization strategy of Ranaivomiarana et al. 

[5], itself based on the alternate directions algorithm [6].  The treated optimization problem 

consists of a cantilever beam of aspect ratio 2:1, clamped at the left side, and loaded in the 

middle of the right side. The continuation on the SIMP exponent is p = 3 then p = 5, both 

exponents used for 100 iteration each for either algorithm.  

Furthermore, the same filter radius is used with both algorithms. However, the AD algorithm in 

[5] is programmed with an energy filter [13], which filters the deformation energy instead of 

only the densities. The most notable difference from this comes as the energy filter with a given 

filter radius will result in a topology with little intermediate densities. On the contrary, the 

density filter with the same active filter radius will have intermediate densities due to the 

averaging and blurring effect on the boundary of the topology. These intermediate densities 

penalize the objective interpretation. Therefore, the density filter is removed for the last 25 

iterations, to obtain distinct results. This removal results in similar intermediate density levels 

between both algorithms, measured by the measure of non-discreteness (𝑀𝑛𝑑) [14], and allows 

the comparison of the optimization objective value. 

Gradient-based optimizations are prone to getting trapped in local minima. The optimization 

solutions are sensitive to the initialization of the variables, the settings of the (GC)MMA 

optimization algorithm, and continuation strategy on the SIMP exponent. Here, the split “MMA” 

optimization is initialized with the variable distributions obtained after five iterations with the 

energy filter and AD algorithm, given in Fig. (2). It can be seen that these variable distributions 

are still general, however, as discussed later, allow converging to a similar solution as the AD 

algorithm. 
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Figure 2. Initialization of the variables, obtained from five iterations with the AD algorithm [5], 

for the gradient-based optimization. 

The results of both optimizations after the final iteration are given in Fig. (3). Similar topology 

and anisotropy variable distributions are obtained in both cases. Some chequerboard-like 

phenomenon is visible for 𝜂1 with the gradient-based optimization. This difference could be 

filter related, where the energy filter in the AD optimization uses the deformation energy of 

neighboring elements into account, which in itself filters the orientation and anisotropic 

components. The filter used for the gradient-based optimization is only acting on the densities. 

Furthermore, comparing the compliance of both optimization reveals close values, with similar 

levels of 𝑀𝑛𝑑: 13.8 mJ with 5.1% of 𝑀𝑛𝑑 for the AD optimization and 14.0 mJ with 2.9% 𝑀𝑛𝑑 for 

the suggested MMA gradient-based strategy. 
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Figure 3. Final variable distribution, on the left for the AD algorithm [5] with energy filter (C = 

13.8 mJ, 𝑀𝑛𝑑 = 5.1%), on the right with the current strategy with density filter (C = 14.0 mJ, 

𝑀𝑛𝑑 = 2.9%). The orientations and anisotropic modules are shown for densities ≥ 0.8.  

Analyzing the results more in details, it is particularly interesting to note that the gradient 

optimization manages to find a theoretical result directly exploited in the case of the AD 

algorithm, namely that the optimal orientations 𝜙1 are aligned with the maximum of the 

absolute value of the principal stresses. This observation and the good agreement between 

variable distributions and objective value allows to validate that the suggested gradient-based 

strategy is well suited to incorporating anisotropy in topology optimization, and converges to a 

similar solution to that of a simultaneous optimization with the AD algorithm. 

5. Conclusion 

The purpose of this paper is to describe a gradient-based optimization strategy capable of 

considering material anisotropy in topology optimization. The anisotropy is restricted to 2D 

orthotropy and characterized by means of the polar parameters. The anisotropic modules are 

bound by the thermodynamic bound, which applies to each separate element. To reduce the 

computational cost of considering the many thermodynamic constraints during the 

optimization, these bounds were therefore replaced as a variable change. This variable change 

results in an implicit optimization interval, furthermore ensuring the thermodynamic condition 

is always satisfied. Moreover, the optimization strategy relies on the adequate selection of the 

approximation type of the Method of Moving Asymptotes (MMA), depending on the nature of 

the variables. This results in the introduction of a “split” MMA strategy, where density and 

normalized anisotropic modules are optimized separately with each the standard MMA, while 

the orientations are optimized with GCMMA. Finally, as gradient-based optimization are prone 

to local minima, a specific initialization to the optimization problem is used to guide the “split” 

MMA optimization towards a similar topology and variable distribution as the alternate 

directions benchmark optimization. Furthermore, removing the density filter during the last few 

iterations reduces the amount of intermediate densities and boundary blurring, to obtain 

distinct topologies, whose compliance value can be compared to the alternate directions 

solution of Ranaivomiarana et al. [5]. The comparison of variable distribution and compliance 

between the benchmark and suggested strategy are in agreement. This successful comparison 
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validates the suggested split “MMA” strategy to consider anisotropy in topology optimization. 

Hence, this strategy allows for later incorporation of more versatile optimization constraints in 

topology optimization, such as buckling or strength. 
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