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Joint production and energy supply planning of an industrial microgrid

We consider the problem of jointly optimizing the daily production planning and energy supply management of an industrial complex, with manufacturing processes, renewable energies and energy storage system. It is naturally formulated as a mixed-integer multistage stochastic problem. This problem is challenging for three main reasons: there is a large number of time steps (typically 24), renewable energies are uncertain and uncontrollable, and we need binary variables modeling hard constraints. We discuss various solution strategies, in particular Model Predictive Control, Dynamic Programming, and heuristics based on the Stochastic Dual Dynamic Programming algorithm. We compare these strategies on two variants of the problem: with or without day-ahead energy purchases.

Introduction

The latest Intergovernmental Panel on Climate Change (IPCC) warns us yet again on the consequences of climate change, and incites governments, industries and citizens to change accordingly. The COP26, held on November 2021, set up a clear objective of securing global net-zero emissions by mid-century. Therefore the industry, counting for one fifth of global emissions (5th IPCC report), must take strong actions to reduce them. In this respect, the Clean Energy Ministerial Industrial Deep Decarbonisation Initiative (IDDI) calls out for a change in the energy supply, as industry consumes fuel massively to produce local energy, especially steel and cement production. To put things in perspective, renewable generation represent only 11.2% of electricity generation in the industrial sector in 2020, which is far less than its share in global electricity generation, up to 28% in 2020, according to the International Energy Agency (IEA), see their Tracking Industry 2021 report [Intb] and their Global Energy Review 2021 report [Inta]. For instance, micro-grids are an alternative energy supply model. They are defined (see e.g., [START_REF] Hirsch | Microgrids A Review of Technologies, Key Drivers, and Outstanding Issues[END_REF]) as a small-scale power grid that can operate independently or collaboratively with the power grid. Generally, they are compounds of Energy Storage Systems (ESS) and renewable energy generation units (wind turbines, solar panels).

However, incorporating renewable energies in the supply mix is challenging as they are intermittent, unpredictable and uncontrollable. To counteract these defects it is often suggested to add an ESS (we refer to [START_REF] Georgious | Review on Energy Storage Systems in Microgrids[END_REF] for an overview of the available ESS). Indeed, an ESS allows transferring energy across timesteps, making it controllable and compensating intermittency. Unpredictability of the renewable production 1 requires to go from a deterministic formulation to a stochastic formulation. Indeed, a classical deterministic problem is often misleading and optimistic about the potential of the ESS. Unfortunately, multistage stochastic problem are known to be numerically challenging (see e.g., [START_REF] Shapiro | On Complexity of Multistage Stochastic Programs[END_REF]). Starting from a standard scheduling industrial problem, we consider using an onsite micro-grid to provide an alternative energy supply to the main grid. We obtain a mixed-integer multistage stochastic problem optimizing jointly the production planning and the energy supply management of an industrial facility with in advance and intraday energy purchases.

The industrial microgrid management problem

We consider a facility with I machines that manufactures up to J types of products that can be stored (see fig. 1a). Our goal is to provide the facility with a joint production and energy supply planning, on a discrete horizon t ∈ [T ]. The planning should minimize the total expected cost (economic, environmental and labour) while satisfying production target and technical constraints.

Depending on the facility at hand, many technical constraints need to be satisfied. We can classify them in three types. First, physical constraints are induced by the machines at hand. For example most machines, as grinders or plastic extruders, require warming up before being operational. Another straightforward example comes from the food industry, where machines need to be cleaned up to reconfigure the production line.

Second, process constraints which correspond to precedence constraints mandating sequential execution of some tasks (usually called flow-shop problems). For instance, in a chocolate factory, every batch production will follow in order cleaning, roasting, shell removing, grinding and conching. Finally, implied constraint model decision-maker preferences or human resources constraints. For example, the decision maker may limit the number of re-starts to limit wear-off, if a machine is hard to access or for human power reasons.

In this paper we consider a problem with bounded production and set-up costs. In addition, we consider shared resources constraints such that some products cannot be produced simultaneously. Factory energy needs, proportional to production, are met with electricity from a main grid or produced onsite by a micro-grid consisting in solar panels coupled with an energy system storage (ESS) see fig. 1b. Electricity from the main grid can be purchased through two different contracts, usually cumulated: Intraday contract where prices are fixed annually, the factory pays the energy extracted from the main grid at a given time t; In-advance contract where the factory buys energy blocks in advance (e.g., a day ahead of production) at a preferential rate. Decisions are made adjusting energy purchases based on intra-day rates in real time.

Literature review

We consider a problem coupling production planning and energy supply management. Taken separately, each problem has been widely studied, but considering them simultaneously is less common, especially when taking into account uncertainty, leading to large multistage stochastic optimization problem. In this section, we review the state-of-the-art of energy-aware production planning under uncertainties.

Production planning and Scheduling problems under uncertainties

A typical angle for energy-aware production systems is to minimize energy waste, see the reviews [START_REF] Bänsch | Energy-Aware Decision Support Models in Production Environments: A Systematic Literature Review[END_REF], [START_REF] Biel | Systematic Literature Review of Decision Support Models for Energy-Efficient Production Planning[END_REF] and references therein. This part of the literature looks for production plan, or scheduling, that are more energy efficient, adapting tools from well studied problems like single or parallel machine scheduling, job-shop, flow-shop or lot-sizing.1 However, few papers discuss the economic impact of integrating renewable energy sources onsite: indeed, the industrial energy supply is traditionally guaranteed by an external grid.

In their survey [START_REF] Bänsch | Energy-Aware Decision Support Models in Production Environments: A Systematic Literature Review[END_REF], Bänsch et al. count 8 articles (out of 192) that consider an onsite energy generation and an ESS. The literature lacks research on industrial problems with distributed generation systems, though, they are widely studied on their own. We refer to the review [START_REF] Alonso-Travesset | Optimization Models under Uncertainty in Distributed Generation Systems: A Review[END_REF] where Alonso-Travesset et al.

focus on recent studies on models under uncertainties in distributed generation systems. They highlight the necessity of properly taking into account uncertainties in those problems, in particular regarding renewable energy generation. There are two main ways of handling uncertainty: stochastic optimization and robust optimization.

In the first paradigm, we model uncertain variables as random variables with known distribution, usually represented by a scenario tree. Further, as uncertainties are revealed step by step, stochastic problems are often multistage problems which are known to be challenging, while there exists various methods to tackle 2-stage problems e.g., based on Bender's decomposition (see [START_REF] Birge | Introduction to Stochastic Dynamic Programming[END_REF]). As a result, multistage problems are classically relaxed into 2-stage problems: all decision variables, except the first stages variable, are assumed to be taken with the full knowledge of the uncertainty. This is the strategy adopted by Golari, Fan, and Jin in [START_REF] Golari | Multistage Stochastic Optimization for Production-Inventory Planning with Intermittent Renewable Energy[END_REF] to optimize the production planning of interconnected factories each connected to a micro-grid.

Biel et al. take this approach as well in [START_REF] Biel | Flow Shop Scheduling with Grid-Integrated Onsite Wind Power Using Stochastic MILP[END_REF] to solve a flow-shop problem under uncertainties regarding wind energy generation. In another article ([WMG20]), Wang, Mason, and Gangammanavar study a similar problem with multi-objectives (total completion time and energy costs), where selling an energy excess to the main grid is allowed. They propose an epsilon-constraint algorithm integrated with the L-shaped method ([Bir85]), which is a Benders decomposition adapted to 2-stage stochastic programs.

In the second paradigm, robust optimization, we consider the worst case in possible uncertainty realizations. This is the choice made by Ruiz Duarte, Fan, and Jin in [START_REF] Luis | Multi-Process Production Scheduling with Variable Renewable Integration and Demand Response[END_REF], where they evaluate the renewable energy integration with an ESS in a factory while optimizing the production planning. This is modeled by a 2-stage problem: in the first stage, a production plan is defined whereas in the second stage the decisions regarding the energy management system are made to minimize its energy costs under the worst-case energy generation scenario. The robust uncertainty set is determined by statistical tools. Bridging both worlds, Shahandeh, Motamed Nasab, and Li propose in [START_REF] Shahandeh | Multistage Stochastic Capacity Planning of Partially Upgraded Bitumen Production with Hybrid Solution Method[END_REF] to divide random variables into two categories: static and dynamic variables. The idea is to apply robust optimization on one variable category and then stochastic optimization on the other, considering a scenario tree. This results into two hybrid algorithms, mixing robust and stochastic optimization to solve a multistage problem with different uncertainty types. Furthermore, in these industrial problems, the solution is not only affected by renewable energies' variability: costs and demands are other known uncertainty sources. If some articles consider time-of-use (TOU) electricity rates ([Bie+18], [START_REF] Moon | Smart Production Scheduling with Time-Dependent and Machine-Dependent Electricity Cost by Considering Distributed Energy Resources and Energy Storage[END_REF], [START_REF] Li | Toward Net-Zero Carbon Manufacturing Operations: An Onsite Renewables Solution[END_REF] and [START_REF] Wang | Stochastic Optimization for Flow-Shop Scheduling with on-Site Renewable Energy Generation Using a Case in the United States[END_REF]), which are fixed prices in contract depending on consumption's times, others consider variable prices. In that respect, Bohlayer et al. ([Boh+20]) and Ierapetritou et al. ([Ier+02]) both study mixed-integer multistage stochastic problems under energy prices uncertainty. See also Fazli Khalaf and Wang ([FW18]) who solve a 2-stage stochastic scheduling problem considering both electricity prices and energy generation as random variables. Finally, in lot-sizing problems, the product demand is often random: Higle and Kempf consider a multistage stochastic program in [START_REF] Higle | Production Planning Under Supply and Demand Uncertainty: A Stochastic Programming Approach[END_REF] to solve a production planning problem under demand uncertainty, trying to avoid cumulating stocks.

Strategical decision problems for Microgrid

We have covered stochastic considerations for operational or tactical production planning problems. We now discuss strategical decisions like investing in renewable energies and ESS, with question of size, technologies and number of ESS and energy generation units. To adapt their energy mix, factories need to design what distributed generation system is suited for their production. In [START_REF] Fattahi | Sustainable Planning in Mining Supply Chains with Renewable Energy Integration: A Real-Life Case Study[END_REF], Fattahi, Mosadegh, and Hasani focus on the planning in mining supply chains with renewable energy investment: at each stage, warehouse or generation systems can be installed. They propose a multistage stochastic minimization model yielding strategic decisions, costs include energy consumption and production costs, holding inventory and transport costs as well as investment costs. Furthermore, they suggest a methodology evaluating the social and environmental impact both of transportation and system life-cycle.

The growing interest in microgrids is driven by environmental concerns. Thus, instead of minimizing energy waste, a more direct approach consists in integrating environmental objectives into costs. For example Li et al., in [START_REF] Li | Toward Net-Zero Carbon Manufacturing Operations: An Onsite Renewables Solution[END_REF], assess wind and solar generation deployment costs in order to achieve net-zero carbon.

They also investigate a renewable generation energy system's resilience: can it answer the energy demand despite its inherent uncertainty? They answer this question through a multistage stochastic micro-grid sizing problem, with given energy demand. The flexible demand aspect is taken into account by Pham et al., who extend Golari, Fan, and Jin's work in [START_REF] Pham | A Multi-Site Production and Microgrid Planning Model for Net-Zero Energy Operations[END_REF], considering both stochastic demand and the micro-grid sizing. Their goal is to determine if it is economically viable to provide the system with only renewable energies: the objective is to minimize energy bought from the main-grid, not factory costs.

Investing in micro-grids doesn't require only sizing but also investigating the different existing technologies and their characteristics. In [START_REF] Tsianikas | A Storage Expansion Planning Framework Using Reinforcement Learning and Simulation-Based Optimization[END_REF], Tsianikas et al. ask the following questions: is it necessary to extend the factory's storage capacity? If yes, when and what storage quantity should they install? What type of storage technology should they choose? Answering those questions allows determining an optimal investment strategy, and is key to optimizing interconnected micro-grids in the long run. An interesting take on the subject is given in [START_REF] Hajipour | Stochastic Capacity Expansion Planning of Remote Microgrids With Wind Farms and Energy Storage[END_REF]: when most micro-grid investment model consider the ESS sizing at the beginning, Hajipour, Bozorg, and Fotuhi-Firuzabad propose to extend the storage capacity and invest in renewable generation units at different times, leading to a multistage stochastic problem. This model allows life-cycle constraints or decreasing technology efficiency to have an impact on results.

Contributions

Our contribution in this paper lies in four aspects. First, we propose an optimization model for a coupled management problem with both production and energy supply planning. We take into account the multistage structure of the problem, the uncertainties due to onsite renewable energy generation and binary variables modeling physical production constraints. In particular, we model shared resources constraints: a choice has to be made between different products at each time. Therefore, it is crucial, when reducing the problem to stage t with dynamic programming, to have visibility on the consequences of choosing a product at t. Second, we consider both on-demand supply with TOU pricing and in-advance energy purchasing. The latest brings complexity to the multistage problem with first stage variables impacting the whole horizon costs. Third, we discuss multiple solution strategies based on well known and new methodology: a deterministic approach know as Model Predictive Control (MPC); Stochastic Dynamic Programming (SDP); and an approach solving linear multistage stochastic problems, Stochastic Dual Dynamic Programming (SDDP). Finally, as there does not exist an efficient algorithm to solve large mixed-integer multistage stochastic problems, we propose heuristic methods relying on the approximated cost-to-go function given by SDDP. We highlight theoretical and practical limits of these solution strategies on numerical examples.

The remainder of the paper is laid out as follows. Section 2 introduces the problem formulation and define two quantities assessing the sensitivity of the problem to stochasticity. We present in section 3 dynamic programming methods to solve multistage mixed-integer stochastic problems. Those methods being unsatisfactory for the problem at hand, we then proceed to detail different heuristics in section 4. Finally, section 5 presents numerical results.

Notations

To facilitate understanding, we go through some notation used in this paper. We denote [a : b] := {a, . . . , b} the set of integers between a and b, and [T ] := [1 : T ] the set of non-null integers smaller than T . Accordingly,

X [n] denote the collection X [n] := {X i } i∈[n]
. Generally speaking, we denote the state variables x, the control variables u and the noise ξ. All random variables are in bold characters, further if ξ is a random variable then ξ denotes a realization of this variable. Finally, σ(ξ [t] ) represents the σ-algebra generated by {ξ τ } τ ∈[t] .

Multistage stochastic problems

In the considered problem we can often distinguish between strategical and operational decisions. The strategical decision (like sizing of elements, or in-advance purchasing of electricity) are then seen as fixed parameter for the operational management problem. Here, in section 2.1 we describe the operational management problem with given strategical decision θ, while section 2.2 presents the global problem considering both the strategical decision costs as well as the operational costs. Finally, in section 2.3 we discuss the so-called anticipative framework for multistage program and the Value of Stochastic Solution (VSS) and Expected Value of Perfect Information (EVPI) indicators which assess the sensitivity of the problem to uncertainties.

Parametrized multistage problem

We consider a controlled dynamic system, that is a sequence of random vector x [T ] that follows a dynamic (see eq. (1b)), affected by a sequence of noises ξ [T ] . Each noise ξ t takes value in a finite set Ξ t , and we denote Ω := t∈[T ] Ξ t . We assume that these noises represent all the uncertainty in the problem at hand, with known probability distribution, resulting in a probability space (Ω, A, P). We call scenario a sequence ξ [T ] of realization of the noise at each time step. Although there exists a finite number of scenarios S = |Ω|, it can be very large. For example, if we consider a problem with hourly time steps, each noise taking 10 different values i.e., |Ξ t | = 10, then S = 10 24 . With this definition, for a given parameter θ (representing here battery size or day-ahead purchase. . . ), we consider the following parametrized multistage stochastic problem:

(P θ ) V (x 0 ; θ) := min (ut,xt) t∈[T ] E T t=1 L θ t (x t-1 , u t , ξ t ) (1a) s.t. x t = D θ t (x t-1 , u t , ξ t ) ∀t ∈ [T ], (1b) 
x t ∈ X θ t ∀t ∈ [T ], (1c) 
u t ∈ U θ t (x t-1 , ξ t ) ⊂ U θ t ∀t ∈ [T ], (1d) 
σ(u t ) ⊂ σ(ξ 1 , . . . , ξ t ) ∀t ∈ [T ], (1e) 
where x t is a vector of continuous state variables; u t represent mixed-integer control variables, binary variables are necessary to model physical constraints such as sharing resources constraints; and ξ t are exogeneous finitely supported random variables. We take the classical risk neutral approach where we aim at minimizing expected costs in eq. (1a) given as a sum of instantaneous costs given by function L θ t :

X θ t-1 × U θ t × Ξ t → R
depending on current state x t-1 , control u t and noise ξ t . Further, eq. ( 1b) describes the dynamic of the controlled system, that is how the next state x t is obtained from current state x t-1 , control u t and noise ξ t through D θ t :

X θ t-1 × U θ t × Ξ t → X θ t .
Equation (1c) represent constraints on the state variable x t , and eq. ( 1d) constrains the admissible control variables. Note that we can only enforce constraints linking variables at t and t + 1. Finally, the last constraint (eq. ( 1e)), commonly known as non-anticipativity constraint, represent the information available when taking decision u t . In particular, in this framework, we observe the random variable ξ t realization, before making decision u t , with no knowledge of future random realizations from t + 1 to T.

Technically, solutions of eq. ( 1) are random variables of (Ω, A, P), meaning they are functions of the scenario ) depending on the scenario, whose cost is given by eq. (2a). Then, averaging over all scenarios, we compute the noise-based

ξ [T ] , i.e.,
policy expected cost V ψ (x 0 ; θ) in eq. (2b). V ψ (x 0 , ξ [T ] ; θ) := T t=1 L θ t (x t-1 , ψ t (ξ [T ] ), ξ t ) (2a) 
where

x t = D θ t (x t-1 , ψ t (ξ [T ] ), ξ t ), ∀t ∈ [T ]. V ψ (x 0 ; θ) := E ξ V ψ (x 0 , ξ [T ] ; θ) . (2b) 
We say that a noise-based policy ψ is non-anticipative if eq. ( 1e) is satisfied. Further, a non-anticipative noise-based policy is admissible if eqs. (1c) and (1d) are satisfied. The non-anticipativity constraint ensures that random variable u t is measurable with respect to the σ-algebra generated by ξ [t] . In other words, it ensures that ψ t only depends on the first t elements of ξ [T ] , more precisely, with a slight abuse of notation:

ψ t (ξ [t] ) := ψ t (ξ [t] , ξ t+1 , . . . , ξ T ) = ψ t (ξ [t] , ξ t+1 , . . . , ξ T ), ∀ξ , ∀ξ , ∀t.
Remark 1 (Scenario trees point of view). A classical approach in stochastic programming consists in representing the probability space through a scenario tree T , such that the extensive formulation of (P θ ) has as many variables as nodes in Remark 2 (Relatively complete recourse assumptions). Ensuring admissibility in a multistage framework can be difficult, as constraints in future stages can induce constraint in the current stage. To characterize these dependencies, we introduce the complete and relatively complete recourse assumptions. We say that Problem (1) has complete recourse if all control are admissible, more precisely if every sequence of control u t ∈ U θ t results in an admissible trajectory. This is a strong assumption, usually obtained by penalizing most constraints. A less stringent requirement, is the relatively complete recourse which guarantees that there always exists an admissible control. Relatively complete recourse ensures that we can, from any state

x t ∈ X θ t , and for any scenario, construct an admissible trajectory with a non-anticipative policy.

Remark 3 (Estimating noise-based policy cost through Monte Carlo). Bear in mind that, for multistage problem with horizon T larger than a few unit, exactly computing the expected cost to a given noise-based policy might not be numerically tractable. For example, consider that each noise ξ t can take 10 different values, then computing V ψ (x 0 , θ) requires O(10 T ) operations. However, if exact computation is not reachable, it can always be estimated through standard Monte-Carlo simulations.

This approach consists in drawing a number N of independent scenarios ξ n

[T ] n∈[N ]
, where typically N ≥ 1000. We then evaluate the cost of the noise-based policy along each of the N scenario, V ψ (x 0 , ξ n [T ] ; θ), and estimate the expected cost V ψ (x 0 ; θ) as

V ψ (x 0 ; θ) ≈ 1 N N n=1 V ψ (x 0 , ξ n [T ] ; θ). (3) 
Under weak assumptions, the Central Limit Theorem (CLT) (see e.g., Section 27 [START_REF] Brown | Probability and measure[END_REF]) give some control over the error made by this estimation. For the remain of the paper it is enough to keep in mind that, roughly speaking, for N large, the difference between the true expected cost and its estimation is smaller than 2σ/ √ N with probability at least 95%, where σ is the standard deviation of

V ψ (x 0 , ξ n [T ] ; θ) n∈[N ] .

The strategic design problem

We now consider the strategic problem aiming at deciding the best parameter θ ∈ Θ, taking into account the strategic decision cost I(θ), and the expected operational management cost V θ 1 (x 0 ). We model it as follows:

(P) : min θ∈Θ

I(θ) + V 1 (x 0 ; θ) (4) 
One could ask if the strategic Problem (4) can simply be seen as an operational Problem (1), with an additional first stage t = 0 with decision u 0 = θ. Unfortunately, it is not as straightforward as it seems: in eq. (1d) the constraints on the control u t only depend on the current state x t (and noise ξ t ), and cannot depend on past control u 0 . The solution consists in considering an extended state (x t , θ), where the second part is decided at stage t = 0 and then carried on from stage to stage by the dynamics of the system. With this additional time-step, and extended state, we indeed fall back to the classical setting of eq. (1). However, the Dynamic Programming based methods presented in section 3 do not scale well with the dimension of the state. Thus, considering an extended state (x t , θ) is not a numerically efficient solution if θ is multidimensional (for example if θ is a day-ahead electricity plan).

We end the section with some tools to evaluate policies for either the strategic or operational problem.

Deterministic tools to study multistage problem

To characterize the impact of uncertainty on a stochastic problem, we present two indicators: the Expected Value of Perfect Information (EVPI) and the Value of Stochastic Solution (VSS).

A natural lower-bound for stochastic problems comes from relaxing the non-anticipativity constraint (1e).

We are then in the anticipative, or perfect information, framework which consists in assuming that we can look into the future and know the noises realization (e.g., how much renewable energy is available at any given time). More precisely, the anticipative noise-based policy ψ ant returns, for each scenario ξ [T ] a solution perfectly adpated to this scenario, that is an optimal solution to the deterministic problem:

V ψant (x 0 , ξ [T ] ; θ) := min (ut,xt) t∈[T ] T t=1 L θ t (x t-1 , u t , ξ t ) (5a) s.t. x t = D θ t (x t-1 , u t , ξ t ) ∀t ∈ [T ], (5b) 
x t ∈ X θ t ∀t ∈ [T ], (5c) 
u t ∈ U θ t (x t-1 , ξ t ) ⊂ U θ t ∀t ∈ [T ]. (5d) 
Note that, obviously, this noise-based policy is usually not admissible for Problem (1) as it requires unavailable information. However, by definition, the value:

V ψant (x 0 ; θ) := E V ψant (x 0 , ξ [T ] ; θ) , (6) 
is a lower bound of the cost incurred by any admissible noise-based policy on this scenario. The expected value of perfect information (EVPI) is defined as:

EV P I = V (x 0 ; θ) -V ψant (x 0 ; θ), (7a) 
which characterizes what we could gain if we had perfect prediction. Note that EVPI is given as an expectation over all scenarios, which is usually untractable, but can be estimated by Monte-Carlo (see remark 3) by solving a reasonable number of deterministic programs.

We have obtained a lower bound by relaxing the information constraint, we now go the other way by considering a noise-based policy which does not adapt to new information. More precisely, we solve a deterministic problem where noises are replaced by their expected value, yielding a deterministic sequence of control

(u EV t ) t∈[T ] .
The expected value noise-based policy ψ EV is such that for every scenario ξ [T ] , and all t ∈ [T ], 

ψ EV t (ξ [T ] ) = u EV t .
policy V ψ EV (x 0 ; θ) = E V ψ EV (x 0 , ξ [T ]
; θ) is an upper bound of the problem (P θ )'s value V (x 0 ; θ). Again, V ψ EV (x 0 ; θ) is defined as a sum over all scenarios in Ω but can be estimated by Monte Carlo (see remark 3).

Finally, we introduce the value of the stochastic solution (VSS), see [START_REF] Birge | The Value of the Stochastic Solution in Stochastic Linear Programs with Fixed Recourse[END_REF], as the difference between the EV noise-based policy expected cost and the optimal expected cost:

V SS = V ψ EV (x 0 ; θ) -V (x 0 ; θ) ≥ 0. ( 7b 
)
3 Dynamic Programming approaches

Assuming that the noises are finitely supported, a multistage stochastic problem like Problem1 can always be cast as large scale deterministic problem (see e.g., [START_REF] Birge | Introduction to Stochastic Dynamic Programming[END_REF]). The Stochastic Programming literature then offer dedicated algorithm exploiting the special structure of such problems. However, the size of these deterministic equivalent is linear in the number of scenarios, which is often exponential in the horizon. For example, if we consider 10 possible realizations per stage, and T = 24, we have 10 24 scenarios, rendering such approaches intractable.

A solution consists in compressing the information required to take a decision. To this end we make a crucial stagewise independence assumption, and turn to Dynamic Programming tools, presented here. Those are exact methods, although they are not enough to tackle our industrial problem, and implementable heuristics derived from these ideas are presented in section 4.

Recall that we can always go from (P θ ) to (P) by including θ in the state. Going forward, we then alleviate notational burden by dropping the θ in all notations.

Stochastic Dynamic Programming

Our goal is to have a stochastic approach to resolve our problem: we resort to Stochastic Dynamic Programming (SDP). Consider the problem (P t ) on sub-horizon [t : T ],

(P t )

V t (x t-1 ) := min

(ut,xt) t∈[t:T ] E T τ =t L τ (x τ -1 , u τ , ξ τ ) (8a) s.t. x τ = D τ (x τ -1 , u τ , ξ τ ) ∀τ ∈ [t : T ], (8b) x τ ∈ X τ ∀τ ∈ [t : T ], (8c) u τ ∈ U τ (x τ -1 , ξ τ ) ⊂ U τ ∀τ ∈ [t : T ], (8d) 
σ(u τ ) ⊂ σ(ξ 1 , . . . , ξ τ ) ∀τ ∈ [t : T ]. ( 8e 
)
With the stage-wise independence assumption, the Dynamic Programming principle ensures that the value functions follow the following recursive equations:

Vt (x, ξ) = min ut∈Ut(x,ξ) L t (x, u t , ξ) instantaneous cost + V t+1 (D t (x, u t , ξ)) cost-to-go , ( 9a 
) V t (x) = E Vt (x, ξ t ) , (9b) 
V T +1 (x) = 0. ( 9c 
) Solving Problem (P θ ) is equivalent to computing V 1 (x 0 ). However, for any x ∈ X T -3 , computing V T -2 (x)
requires full knowledge of V T -1 . With continuous state, it is usually impossible. Indeed, for a given point

x ∈ X T -2 , we can compute the exact value V T -1 (x) by solving |Ξ T -1 | deterministic problems defined in eq. (9a). We cannot however obtain the value of V T -1 for all x ∈ X T -2 , as there are a non-finite number of them, unless we are in a very specific case where the solution can be obtained analytically (e.g., unconstrained linear-quadratic case). Thus, even computing exactly the value of V T -2 at a single point is not possible.

Therefore, to accomodate for inexact value functions, we introduce the bellman operators which generalize eq. ( 9) so the dynamic equations hold for any given function R approximating the cost-to-go V t+1 .

Backward operators

   Bt (R) : x, ξ → min ut∈Ut(x,ξ) L t (x, u t , ξ) + R(D t (x, u t , ξ)), B t (R) : x → E Bt (R)(x, ξ t ) . (10a) 
Forward operators

   u t ∈ arg min ut∈Ut(x,ξ) L t (x, u t , ξ) + R(D t (x, u t , ξ)), Ft (R) : x, ξ → D t (x, u t , ξ). (10b) 
The backward operator B t , defined in eq. (10a), returns an approximation, at a given state x, of the cost-to-go V t starting from time t, given an approximation of the cost-to-go starting from time t + 1. Assume that we have an approximation Ṽt+1 of the cost-to-go from t + 1. We can select a finite number of point {x k t-1 } k∈K at which we compute, through the Bellman Operator, an approximation of V t . To get an approximation on X t-1 , we need to interpolate these values. Thus, given a discretization of each state space X t , and an interpolation method we can, recursively, compute an approximation of every cost-to-go function see algorithm 2.

The forward operator, defined in eq. (10b), returns the optimal next state x t , given a starting state x, a noise ξ and an approximation of the cost-to-go from t + 1. Note that, in practice, computing Bt (R)(x, ξ)

or Ft (R)(x, ξ) consists in solving the same deterministic problem. Nevertheless, if the backward operator is well defined, the forward operator requires a choice if the optimal solution is not unique. To be completely rigorous, we should say that a forward operator defines a selection of the optimal solution set.

Algorithm 2: Stochastic Dynamic Programming Input : x 0 , discretization grids X D t , interpolation operator. Output : approximated value function Ṽt ṼT +1 = 0.

for t : T → 1 do for x D t-1 ∈ X D t-1 do // We discretize X t 6 for ξ t ∈ Ξ t do 7
Solve the one-stage deterministic optimization problem: Therefore, Dynamic Programming may be a solution for the operational problem presented in section 2.1, if the state is reasonable, but is unrealistic for the strategic problem of section 2.2. Indeed, recall that not only do we have all stocks x t , but also design parameter θ as state variables, and θ can naturally be of dimension 24 for in-advance purchases.

8 Ṽt (x D t-1 , ξ t ) = Bt ( Ṽt+1 )(x D t-1 , ξ t ). Ṽt (x D t-1 ) = ξt∈Ξt π ξt Ṽt (x D t-

Trajectory following dynamic programming algorithms

To counteract the dynamic programming computational issues, a class of Trajectory Following Dynamic Programming (TFDP) algorithms (see [START_REF] Forcier | Convergence of Trajectory Following Dynamic Programming Algorithms for Multistage Stochastic Problems without Finite Support Assumptions[END_REF] for a recent overview) has been developed. The crux of these algorithms is to iterate between forward phases that compute state trajectories, and backward phases that improve cost-to-go estimations.

In stochastic dynamic programming (section 3.1), we do only one backward phase, on a given grid discretizing the state space. The approximate cost-to-go function Ṽt is defined outside of this grid through an interpolation operator. By contrast, TFDP algorithms automatically, and iteratively, generate the trial points at which we estimate the value function. Further, to extend the definition of Ṽ outside of the trial points, they leverage problem-specific properties (e.g., convexity, monotonicity, Lipschitz-continuity...) instead of generic interpolation operators.

More specifically, in a forward phase of a TFDP algorithm, a state trajectory is computed using the current cost-to-go estimations (see eq. ( 11)). Then in a backward phase, the cost-to-go estimations are refined around the state trajectory computed in the forward phase. These approximations are generally given as maximum of elementary functions called cuts. The TFDP algorithms depends on different types of cuts with various assumptions. For example, the well-known Stochastic Dual Dynamic Programming (SDDP) algorithm [START_REF] Pereira | Multi-Stage Stochastic Optimization Applied to Energy Planning[END_REF] defines classical linear cuts (Bender's cut), obtained through linear programming duality, assuming the problem is convex and continuous. In line with SDDP, the Stochastic Dual Dynamic Integer Programming (SDDiP), [START_REF] Zou | Stochastic Dual Dynamic Integer Programming[END_REF], assumes that all state variables are binary, that there exists some continuous recourse ensuring relatively complete recourse assumption, and derives specific linear cuts. As one can always represent bounded integer variables, and approximate continuous variables, through binaries, the algorithm is theoretically applicable for a large number of settings, including ours, but is limited in practice as each step requires solving a MILP, and as the convergence is generally slow. Another algorithm, the Mixed Integer Dynamic Approximation Scheme (MIDAS) (see [START_REF] Philpott | MIDAS: A Mixed Integer Dynamic Approximation Scheme[END_REF]) assumes monotonicity of the cost-to-go functions, and uses piecewise constant cuts to approximate them. Finally, the Stochastic Lipschitz Dynamic Programming (see [START_REF] Ahmed | Stochastic Lipschitz Dynamic Programming[END_REF]), simply assumes Lipschitz regularity of the cost-to-go functions, and uses reverse norm cuts. SDDiP, MIDAS and SLDP might be applicable to the industrial microgrid setting, but are generally slow to converge without additional, problem-specific, cuts.

We now present more precisely the SDDP algorithm, dedicated to convex continuous problem, and link it with the continuous relaxation of (P).

Stochastic Dual Dynamic Programming (SDDP)

For linear multistage stochastic problems with stagewise independence, the SDDP algorithm has proven to be an efficient tool, widely used in the energy community in particular for long term hydro-management. It is the most well known and studied example of TFDP algorithm, relying on Benders' cut obtained through linear programming duality. In particular, it requires continuous variables.

We therefore consider the continuous relaxation of (P), denoted (P r ). It is the same problem as Problem (1)

but we assume all binary variables are in [0, 1] instead of {0, 1}, represented by u r t ∈ U r t (x t-1 , ξ t ). Accordingly, we denote V r t the cost-to-go functions of (P r ). They are linked through a Bellman backward operator B r t defined by eq. ( 10a), but minimizing variables u r t over U r t instead of U t .

// Initialization

k = 0, V r,0 t = LB. for k : 0, . . . do Simulate a scenario {ξ k t } t∈[T ] . // Forward phase x k 0 = x 0 .
for t : 1 → T do

x k t = Fr t (V r,k t )(x k t-1 , ξ k t ). // Backward phase V r,k T +1 = 0 for t : T → 1 do // Cut computation for ξ realization of ξ t do 10 Solve Br t (V r,k t+1 )(x k t-1 , ξ
) and obtain coefficients αk t (ξ) and βk t (ξ) such that:

αk t (ξ) T x + βk t (ξ) ≤ Br t (V r,k t+1 )(x, ξ) ∀x. 11 Define α k t = E αk t (ξ t ) and β k t = E βk t (ξ t ) . 12 Define V r,k t : x → max κ≤k (α κ t T x + β κ t ).
Leveraging the convexity of (P r ), the SDDP algorithm 3, approximates each V r t+1 as a maximum of affine functions. More precisely, at iteration k, we first compute a trial trajectory (x k t ) t∈[T ] . Then, in the backward phase, we can compute B r t (V r t+1 )(x k+1 t-1 ) by solving |Ξ t | linear problems. Linear programming duality yields a sub-gradient of B r t (V r,k+1 t+1 ) at x k+1 t-1 , which in turn defines an affine function which under estimates

B r t (V r,k+1 t+1 ) ≤ B r t (V r t+1 ) = V r t .
In particular, at iteration K, the approximate cost-to-go functions V r,K t are given as a maximum of affine cuts, i.e.,

V r,K t : x → min x γ k (12a) γ k ≥ α t,k + β T t,k x ∀k ∈ [K]. ( 12b 
)
Recall that, given any approximated cost-to-go function, the forward Bellman operator (see section 3.1), produces a state-based feedback, satisfying in particular the binary constraints. Thus, it seems natural to use the functions V r,K t as approximated cost-to-go, leading to a state-based feedback π SDDP t . The main limit of this approach is that we are quite greedy in the way we repair the binary constraints. Indeed, V r,K t does not account for binary constraints, and the forward operator only considers their impact on one time-step.

We illustrate the limit of this approach on the following toy example.

Example 1 (Limit of continuous relaxation.). Consider a production unit that produces two products j = A, B, over T = 2 time steps and one machine. The shared resource constraint, modeled through binary variables b j t , implies that we must decide which product to produce at t = 1, and which at t = 2. We look for the production plan minimizing costs while satisfying a demand D = 1 in both products at the end of the horizon. The problem is formalized as follows.

min 3u A 1 + 2u B 1 + (u A 2 + u B 2 ) (13a) s.t u j 1 + u j 2 ≥ D j = A, B, (13b) 0 ≤ u j t ≤ 2b j t j = A, B t = 1, 2, ( 13c 
) b A t + b B t ≤ 1 t = 1, 2, ( 13d 
) b j t ∈ {0, 1}, u j t ≥ 0 j = A, B t = 1, 2. ( 13e 
)
For the true problem, it is optimal to produce B in the first period and A in the second period, resulting in an optimal cost of 3. However, in the continuous relaxation of Problem (13), b j t ∈ [0, 1], and producing both products at the same time is allowed. For instance, producing both product at time

t = 2 (with b A 2 = b B 2 = 0.5)
is admissible for the relaxed problem, yielding an optimal cost of 2.

Let V r 2 be the relaxed cost-to-go function given by:

V r 2 (u A 1 , u B 1 ) = min u A 2 ,u B 2 ,b A 2 ,b B 2 u A 2 + u B 2 (14a) s.t u j 1 + u j 2 ≥ D j = A, B, (14b) 
0 ≤ u j 2 ≤ 2b j 2 j = A, B, (14c) b 
A 2 + b B 2 ≤ 1, (14d) b j 2 ≥ 0, u j 2 ≥ 0 j = A, B. (14e) 
Now, using the cost-to-go approximation V r 2 to determine optimal decisions of the mixed-integer problem at t = 1, we solve:

min u A 1 ,u B 1 ,b A 1 ,b B 1 3u A 1 + 2u B 1 + V r 2 (u A 1 , u B 1 ) (15a) s.t b A 1 + b B 1 ≤ 1, (15b) 0 ≤ u j 1 ≤ 2b j 1 j = A, B, (15c) 
b j 1 ∈ {0, 1} j = A, B. (15d) 
Note that, when solving Problem15, we make decisions at t = 1 considering the cost impact at t = 2, but not knowing what decisions are attached to this cost. In dynamic programming, infeasibility is supposed to be propagated through costs: in this example, with the real cost-to-go function, V 2 (0, 0) = +∞ and the solution u A 1 = u B 1 = 0 would never be chosen. However, if we use the relaxed cost-to-go function, the infeasible solution

u A 1 = u B 1 = 0 has a cost 0 + V r 2 (0, 0) = 2
and is chosen rather than the optimal solution u A 1 = 1; u B 1 = 0, whose cost is 2 + V r 2 (0, 1) = 3.

We address this limit in section 4.4 through a look-ahead heuristic that consider more than one time-step.

14 Let sum up. We have at hand: a stochastic algorithm with unreasonable computational time and a stochastic algorithm solving a continuous relaxation of our problem. Those are exact methods, but will not allow us to solve the problem in a satisfactory manner. Could we come up with heuristics taking into account uncertainties, using SDDP, and solving mixed-integer problems such as ours?

The Expected Value (EV) heuristic

One of the challenges is to take into account random variables. A common simplification consists in reducing the problem to its deterministic version, by replacing the random variable by our current best estimation.

However, we are not in a complete recourse setting, meaning that the deterministic production and energy plan computed is not necessarily admissible. Therefore, a first heuristic consists in computing the deterministic solution fixing part of control variables, and then, adjusting the rest of the variables to actual random variable realization. In our particular microgrid problem, we fix production variables and then adjust energy flows to actual solar energy produced. We opt for a simple strategy described in fig. 2.

Actual solar energy available q PV t Is there more energy than needed? Charge as much energy as possible yes Stick to the deterministic battery plan. no

We fix q grid t to match energy needed. 

Model Predictive Control

To add flexibility to the previous approach, we present the Model Predictive Control (MPC) approach, as a first adaptive approach. To use MPC we need some forecast methodology, that takes available information to predict the values of the random variables ξ t t∈[T ] . The algorithm then consists in solving successive deterministic sub-problems (see algorithm 4). Step after step, it applies the decision of the first control obtained, reveals the realization of the next random variable, and recomputes all other decisions, updating forecasted values if possible.

As long as we can get a solution to the MILPs in reasonable time, MPC is an easy option to implement. However, this method yields no performance guarantee, and does not really take randomness into account, as the solution is computed for a single possible realization, but simply recomputes the solution as more Algorithm 4: Model Predictive Control

Input : x 0 , initial forecast {ξ 0 τ } τ ∈[T ] . for t : 1 → T do Update forecasted values {ξ 0 τ } τ ∈[T ] . u * t , . . . , u * T = arg min L t (x t-1 , u t , ξ t ) + T τ >t L τ (x τ -1 , u τ , ξ 0 τ ) s.t. x τ = D τ (x τ -1 , u τ ) ∀τ ∈ [t : T ], u τ ∈ U τ (x τ -1 , ξ 0 τ ) ∀τ ∈ [t : T ],
x τ ∈ X τ ∀τ ∈ [t : T ].

x t := D t (x t-1 , u * t )
information becomes available. Consequently, the quality of the solution provided by MPC depends mainly on the quality of the forecasted values, the flexibility of the problem and the sensitivity of the problem to uncertainty. To quantify this sensitivity we can use the Value of Stochastic Solution (VSS) defined in section 2.3.

On a simple example, we show that MPC does not take into account the stochasticity of the problem, and can be largely suboptimal in case of asymmetry of the cost.

Example 2. Consider a production unit with J = 1 product over T = 2 time steps with random demand d at t = 2. We assume d = 0 with probability 1 2 and d = 2 with probability 1 2 , then E[d] = 1. We obtain the following problem:

min E[u 1 + 10u 2 ] (16a) s.t u 1 + u 2 ≥ d, (16b) 
u 1 , u 2 ≥ 0, (16c) 
σ(u 2 ) ⊂ σ(d). (16d) 
The MPC method returns solution u 1 = 1, and then adapts u 2 = 0 if d = 0 and u 2 = 1 if d = 2, leading to an expected cost of V ψEV = 1 2 + 11 2 = 6. On the other hand, as the recourse cost is high, the two-stage approach chooses to produce enough for both scenario at stage 1, i.e., u 1 = 2, leading to an expected cost

V = 2.
Thus, the stochastic solution is better than the MPC solution, which is emphasized by the Value of Stochastic solution V SS = V ψEV -V = 4. Further, the anticipative expected cost is V ψant = 0 + 2 2 = 1, so that the expected value of perfect information EV P I = V -V ψant is 1.

2-stage stochastic programming

The strategic design problem (P) balances the design cost I(θ) and the operational cost V (x 0 , θ). The 2-stage stochastic programming consists in relaxing the non-anticipativity constraint for all operational de-cisions, which amounts to approximating V (x 0 , θ) by V φant (x 0 , θ). Hence, the design problem becomes a two-stage stochastic program, where the first stage decision is the strategic decision θ and the recourse are the operational decisions, i.e.,

min θ∈Θ I(θ) + E [ V ψant (x 0 , ξ [T ] ; θ)] (17) 
Recall that V ψant (x 0 , ξ [T ] ; θ) is the optimal value of the operational problem knowing the full scenario real-

ization ξ [T ] . Thus, computing the exact value of V φant (x 0 , θ) = E [ V ψant (x 0 , ξ [T ] ; θ)
] would require to solve a deterministic operational problem for each possible scenario ξ [T ] ∈ Ω. There is usually far too many scenario to consider, thus, we resort to Sample Average Approximation, which is the 2-stage extension of Monte Carlo methods (see remark 3). We draw S M C scenarios, and approximate problem (17) as:

V 2S M C (x 0 ) := min θ∈Θ min (x s t ,u s t ) s∈[S M C ],t∈[T ] I(θ) + S M C s=1 1 S M C T t=1 L θ t (x s t-1 , u t , ξ s t ) (18a) s.t. x s t = D θ t (x s t-1 , u s t , ξ s t ) ∈ X θ t ∀t ∈ [T ], ∀s ∈ [S M C ], (18b) 
u s t ∈ U θ t (x s t-1 , ξ s t ) ⊂ U t ∀t ∈ [T ], ∀s ∈ [S M C ]. (18c) 
All the approaches presented in this section up to this point relax non-anticipativity constraints but keep binary constraints by solving MILPs. In section 3.3, we saw that SDDP solves problem (P) with nonanticipativity constraints but relaxing binary constraints. We now look for a trade-off between information relaxation and integrity relaxation.

Look-ahead heuristic

Were the forward operator (see eq. ( 10b)) to have more visibility on the future variable possibilities (or impossibilities), we have the intuition that the algorithm would perform better. Indeed, as it is defined, the operator takes the best decision possible at t by optimizing a one-stage problem minimizing the current cost at t plus an approximate cost-to-go function from t + 1. Details of the problem complexity are thus only represented over one stage, and the impact of decision at time t on the next stage should all be taken into account by the approximate cost-to-go function.

To have a better representation of the problem, we can consider τ -stage problems with a final cost-to-go function Ṽt+τ instead of one-stage problems (with final cost-to-go function Ṽt+1 

x t = D t (x t -1 , u t , ξ t ) t ∈ [t + 1 : t + τ ], (19c) u t ∈ U t (x t -1 , ξ t ) t ∈ [t + 1 : t + τ ], (19d) σ(u t ) ⊂ σ(ξ [t+1:t ] ) t ∈ [t + 1 : t + τ ]. (19e) B τ t (R) : x → E Bτ t (R)(x, ξ) (19f) 
In this setting, the first-stage decisions are optimized knowing the impact they have on the next τ -1 stages, thanks to eqs. (19b) to (19e), and a cost-to-go function R from t + τ + 1. However, the τ -stage decisions are taken without any visibility on the future except a given cost-to-go function. For this reason, when solving each τ -stage problem B τ t (R t+τ +1 )(x t-1 ), we only store the first-stage variables u t and then move along to the next sub-problem B τ t+1 (R t+τ +2 )(x t ).

In a sense, we allow the operators to look ahead of time to choose their decision at t, and call this method the look-ahead heuristic. We associate to the backward operator Bτ t a forward operator Fτ t (R) :

X t-1 × Ξ t → X t
which returns x t = D t (x, u, ξ) where u t is an optimal value from the first min in (19a).

For clarity, we explicitly give the 2-look-ahead Bellman operator: 

B2 t (R)(x
x s t+1 = D t+1 (x t , u s t+1 , ξ s t+1 ) ∀s ∈ |Ξ t+1 |, B 2 t (R)(x) = E B2 t (R)(x, ξ t ) . (20b) 
Note that this 2-look-ahead Bellman operator considers the exact cost at t and t + 1, and uses R as an estimation of expected cost-to-go from t + 2 to T . In particular, due to the new information, we must consider as many decisions u s t+1 as there are realizations for random variable ξ t+1 .

Combining these new operators with the approximated cost-to-go functions computed by SDDP (see section 3.3), we get a heuristic where the non-anticipativity constraints hold at any time, and the integrity constraints are kept on τ time steps. Unfortunately, increasing the look-ahead horizon i.e., τ , greatly increases the complexity of the sub-problems we solve. For instance, with |Ω t | = 10, the backward operator Bτ t at t solves a problem with 10 τ -1 times more variables than Bt .

Numerical results

We now present a study case from our industrial partner on which we evaluate the numerical methods presented above. In section 5.1 we detail the study case, intraday results, given in section 5.2, show that the

Study case

The problem (P θ ) introduced in section 1 and formalized in section 2.1 is motivated by a cement factory in South Korea. We solve the problem for an hourly planning on one day, with T = 24 time steps.

In the Republic of Korea, electricity rates are fixed for the industry and depend on different time slots and the season. We took the rates given by the Korea Electricity Power Corporation website [Newa] and thus

obtain {p ID t } t∈[T ]
. We consider that buying energy in advance is cheaper and fix the day-ahead rates to 90% of the real-time rates.

Then we collect data for solar generation on [Newb]. Each dataset provides a year of hourly data on horizontal radiations I t . Then the available solar energy is given as q PV t = η PV A cell n cell C I t where η PV = 0.16 is the solar panel efficiency factor, A cell = 0.0232 m 2 is the surface area of a cell, n cell = 72 is the number of cells per panel, n panel is the number of solar panels, C = 1 3600 is the conversion factor (here MJ to MWh) and I t in W.m -2 is the horizontal solar radiation.

From this data, we use a forecast algorithm to predict a daily solar energy generation: the model is trained on the last 72 hours data to produce generation scenario over the next 24 hours. From this model we estimate, at each time step t, 9 quantiles. We finally assume that the noise is stagewise independent, leading to 9 T scenarios.

The factory owns I = 3 mills and produces J = 3 different cements (F32, F40, CPV). We consider binary variables, (b ij t ) t,i,j , deciding which cement we produce on which mill at each given time and continuous positive variables, (u ij t ) t,i,j , representing the quantity of cement produced.

j b ij t ≤ 1 ∀i, t, (21a) max 
i b i1 t + max i b i3 t ≤ 1 ∀t, (21b) 
u imin t b ij t ≤ u ij t ≤ u imax t b ij t ∀i, j, t, (21c) 
q load t = i,j α i,j u ij t + β i,j b ij t ∀t, (21d) 
b ij t ∈ {0, 1} ∀i, j, t. (21e) 
One mill can produce only one cement at a time (21a), and two of them (F40 and CPV) sharing resources, cannot be produced simultaneously (21b). Bounds are given by the industrial on the production of each cement for each mill (21c). An analysis on the factory's data leads us to model a mill's energy consumption, on the range [u imin t , u imax t ], as an affine function of its cement production (21d).

The factory owns solar panels and a battery. Thus the energy supply is a mix of solar energy available q PV t , of charge φ + t and discharge φ - t from the battery, and of energy bought from the main grid q grid t . With these elements, we need to ensure that the energy supply exceeds the energy demand q load t , leading to the following control constraints (representing eq. (1d)).

q PV t + φ - t -φ + t + q grid t ≥ q load t ∀t, (21f) 0 ≤ φ + t ≤ SOC max 4 ∀t, (21g) 0 ≤ φ - t ≤ SOC max 4 ∀t, (21h) 0 ≤ q grid t . (21i) 
Hence, the state of the system is described by the cements and battery stocks. The stocks of cement are modeled with state variables (s j t ) t,j . The demand at time t is modeled as a deterministic vector (d j t ) j∈J , estimated from factory production data. Initial stocks are empty. Then the stock variables follow dynamic equations and bounding constraints given by

s j t = s j t-1 -d j t + i u ij t ∀t, j, (21j) 
s j t ≥ 0 ∀t, j, (21k) 
s j 0 = 0. (21l) 
Indeed, for each time t and product j, the factory has to satisfy a demand d j t , which is ensured by the positivity of stocks requirement (see eq. ( 21k)). Further, the quantity of energy stored in the battery, (SOC t ) t , is also modeled as a state variable:

SOC t = SOC t-1 - 1 ρ φ - t + ρφ + t ∀t, (21m) 
SOC min ≤ SOC t ≤ SOC max ∀t. (21n) 
The battery size is proportional to the installed renewable capacity. We study three cases, where SOC max is equal to the quantity of energy the solar panels can produce in 0.5, 3 or 6 hours. We also fix φ + max and φ - max to a quarter of the battery's capacity per time-step and the efficiency factor ρ to 0.9. Note that the dynamics in eq. ( 1b) are here represented by eqs. (21j) and (21m), and the state constraints with eqs. (21k) and (21n).

In section 2.2 we describe a strategic problem where a parameter θ design the operational problem (P θ ).

Here we consider that energy can be either bought in advance (e.g., on a day-ahead market), or in real time through industrial contract with fixed price. . On the other side, the look-ahead heuristic, properly taking uncertainties into account with a stochastic procedure, but relaxing some integrity constraint, does not perform as well as MPC. Indeed, the latter, adjusting the solution trajectory to uncertainties, yields solutions close to their anticipative lower bound:

q grid t = v DA t + v ID t ∀t ∈ [T ], (22a) 
v DA t , v ID t ≥ 0 ∀t ∈ [T ]. (22b) 
even for the most volatile instances (i.e., the ones with a solar factor or 3, all on fig. 3's fourth column), the anticipative regret is lower than 5% and in most cases insignificant. These performances can be explained by the problem structure: the uncertainty source does not impact significantly future costs, in case of solar energy variations at t, MPC foresees the cost impact and adapts accordingly. Furthermore, for industrial problems with renewable generation, we confirm the necessity of installing an ESS to make the system flexible.

In fig. 4, we plot the optimal expected cost of the various methods on instances with growing ESS capacity.

Clearly, the expected optimal expected cost decreases as the ESS capacity increases, although the marginal impact of the ESS capacity is decreasing.

Whereas MPC results are better, we call attention to its limits: on table 1 we can see that MPC takes longer in computation time than the look-ahead heuristic, even more so on instances with the most variability. On these instances, it remains reasonable (a few seconds per problem at the most for an hour step time problem), but with larger instances, more constraints, it could be unsuitable. Note that SDDP converges after only a 100 iterations, taking approximately 250s per instance.

Day-ahead results

We now consider the full problem 23 with strategic and operational decisions. In particular, we consider an initial time step (t = 0), where the industrial buys in advance energy quantities for the whole horizon. To our knowledge, this type of contract does not exist yet in South Korea, but they could be interesting for the regulator to encourage certain consumption scheme. It can also model the access to energy markets for large consumers or consumers aggregated through virtual power plants. We fix the in advance prices at 90% of intra-day prices.

The problem (P), see eq. ( 4), can be decomposed in two parts: first a strategical problem with variable θ, here day-ahead energy purchases, and constraints θ ∈ Θ; then an operational sub-problem (P θ ), see eq. (1), parametrized by θ. Our intuition is that a deterministic method might not be flexible enough because first stage decisions impact the whole horizon. Note that the parametrized problem (P θ ) corresponds to the intraday problem we solve in section 5.2. Here we saw that the most efficient method to solve (P θ ) is MPC, in this section we determine through different methods the best strategical decision θ and then run MPC on the problem (P θ ). We assume that the demand is only positive at the end of the day d j T > 0 and we test various renewable size (n panel ∈ {100, 200, 400, 600}). In section 5.2, we tested different battery size, and results showed that extending the battery capacity, to a certain point, improves costs and the system flexibility. Consequently, we now fix the battery capacity to 3 hours of maximum renewable production.

To optimize θ, we test 3 methods evaluated over 1000 common scenarios:

1. the Expected Value strategy, see section 2.3, which solves a deterministic (P ) replacing random variables by their expected value;

2. the 2-stage strategy, detailed in section 4.3, which takes the decision θ minimizing the expected cost over S M C = 10 scenarios (ξ s [T ] ) s∈[S M C ] . As S M C is small, compared to the noise space, for computational reasons, we consider the median scenario with probability 1 2 ;

3. the SDDP strategy in section 3.3 solves (P r ), the continuous relaxation of the problem, and yields a solution taking into consideration the uncertainties on the whole horizon, but relaxing integrity. From table 2, reporting simulated cost and anticipative regret of the various heuristics, we observe that, except for the instance with less uncertainties (first line), the day-ahead energy purchases determined with SDDP yield a lower expected cost as well as a lower anticipative regret than those determined with 2-stage programming or the EV strategy. As uncertainties grow (from top to bottom on the table), the anticipative regret increases and the gap between the AR of EV and the one of SDDP gets wider. Indeed, in the instance with a solar factor equal to 1, the anticipative regret is 0.4% lower for SDDP whereas it is 2% lower for the instance with more uncertainties (factor equal to 3).

On table 3 we separate design costs I(θ) from operational costs V (x 0 ; θ) for all instances solved. Whereas the EV strategy essentially pays energy in advance, the two-stage and SDDP strategies have lower design costs and buy more energy in real time. This can be explained because a stochastic approach is looking for a trade-off between initial and recourse decisions. Assume that we have more energy than predicted, this extra energy comes for free and we better not have bought too much energy in advance, forcing us to throw this extra energy away (we can't charge the battery more than what is allowed). On the contrary, if we have less energy than predicted, we must either adapt the production plan (which might be possible) or buy energy in real time which is not that much more expensive than if we bought it in advance (110% of day-ahead prices).

Thus, we understand that in this problem, it is more efficient to underestimate the quantity of energy to buy from the main grid, as we have more to gain if the solar realization exceeds its prediction than we have to lose in the opposite case.
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 3 Figure 3: Anticipative regret (AR) in percentage for different solar park capacity and ESS capacity: increasing solar energy (and thus variability) from left to right, and increasing battery storage capacity (proportional to solar energy available) from top to bottom.
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 4 Figure 4: Expected value of strategies with 95% confidence interval.

  T . More precisely, a node ν ∈ T , of depth t, represent the realization of all noises up to time t, ξ [t] . Then a node ν corresponding to noise realization ξ [t] has |Ξ t+1 | children. In this setting, a random process (u t , x t ) t∈[T ] is non anticipative (satisfying (1e)), if and only if, for all t ∈ [t], (u t , x

t ) is a function of the nodes of depth t in T .

  Beware that, unless we are in a complete recourse framework, the EV noise-based policy is often non-admissible, leading to infinite cost. For example, for an industrial microgrid without external grid, if the control u EV t is a production plan at t requiring solar energy E[ξ t ], then this production plan is not valid on any scenario ξ [T ] such that ξ t < E[ξ t ]. Generally speaking, the expected cost of the EV noise-based

  Therefore, we have strategic continuous positive variables θ = {v DA t } t∈[T ] which model the energy bought in advance to the main grid at price p DA t . We can decompose the energy bought from the grid {q grid t } t∈[T ] (see eq. (22a)) into energy bought in advance {v DA t } t∈[T ] plus energy bought during the day, represented by continuous positive variables {v ID t } t∈[T ]

Table 1 :

 1 Expected computation time (in seconds) for different solar park capacity and ESS capacity.

	SOCmax		0.5h			3h			6h	
	n panel	MPC L-A SDDP MPC L-A SDDP MPC L-A SDDP
	100	21	6.5	277	12	7.6	268	25	20	262
	200	26	8.0	213	4.4	2.9	225	38	18	238
	400	254	11	249	136	26	234	193	24	260
	600	248	10	266	125	22	250	135	23	261

Table 2 :

 2 Expected Cost (Opt) and Anticipative Regret (AR) of the solution obtained when finding θ with the different methods (EV, 2-stage, SDDP); parametrizing the operational problem with this θ; then solving the parametrized operational problem with MPC. EV 2stage SDDP n panel I(θEV ) V (x0; θEV ) Opt I(θ2S) V (x0; θ2S) Opt I(θr) V (x 0 ; θ r )

				OPT			AR (in %)	
		n panel	EV 2stage SDDP EV	2stage	SDDP
		100	6067 6023	6038	1.6	0.9	1.1
		200	5471	5483	5451	2.1	2.3	1.7
		400	4552	4553	4481	4.2	4.2	2.5
		600	3714	3691	3641	8.7	7.9	6.7
									Opt
	100	6002	65	6067 5830	193	6023 5659	379	6038
	200	5369	102	5471 5123	360	5483 5102	349	5451
	400	4357	195	4552 4073	480	4553 4043	438	4481
	600	3394	320	3714 2965	726	3691 3094	548	3642

Table 3 :

 3 We obtain θ EV , θ 2S , θ r by solving the problem respectively with the EV strategy, 2-stage programming and SDDP; then we parametrize and solve the operational problem with MPC for each θ.

The job-shop problem, see e.g.,[START_REF] Manne | On the Job-Shop Scheduling Problem[END_REF], looks for an optimal scheduling plan for n jobs, consisting of operations with precedence constraints, on m machines. The flow-shop problem is a variant of the job-shop problem with a strict order of all operations on all jobs. Finally, a lot-sizing problem optimizes the production quantities of each item at each time step.

The production and energy plan thus aim to minimize the following stochastic optimization problem:

eqs. ( 21) and ( 22), (23b)

Intraday results

In this section we present and analyze the results obtained when solving problem (23) on instances in which energy can only be bought in real time, which is equivalent to fixing θ := 0 i.e., v DA t = 0 for all t. Further, we only consider a demand at the end of the day: d j t > 0 only for t = T .

On a given day, for various renewable size (n panel ∈ {100, 200, 400, 600}) and battery sizing (SOC max represents 0.5, 3 or 6 hours of maximum renewable production), we test the different strategies, evaluating them over 500 common scenarios drawn from our statistical model. More precisely, we compare:

1. the elementary strategy, described in section 4.1, which solves the EV problem then adapt energy variables following a deterministic procedure as noises are revealed;

2. the MPC strategy, see section 4.2, which consists in solving deterministic sub-problems at each stage, with updated information, to adjust the solution trajectory accordingly;

3. and the Look-Ahead (LA), with τ = 2, explained in section 4.4, strategy which computes a solution with dynamic programming using an under-approximation of future costs given by SDDP.

To evaluate a strategy's performance over a given scenario, we define the anticipative regret of admissible noise-based policy π, on a scenario ξ [T ] , as the relative gap between its cost and the anticipative lower bound:

In fig. 3 we report the anticipative regret of each strategy. The results clearly show MPC's superiority on these instances. On the one side, the EV heuristic yields unsatisfactory results in comparison to MPC: its expected anticipative regret is always higher, and its expected cost as well. Further, except on the first column, which corresponds to instances with few uncertainties (i.e., a solar factor of 0.5), and the first instance of the second column (a more uncertain instance but with a small battery), the EV heuristic performs worse than the look-ahead heuristic. As uncertainties grow (from left to right), the costs of the EV heuristic are farther and farther away from the anticipative lower bound, showing that a purely deterministic procedure is not relevant for our problem.