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June 8, 2023

Abstract

In this work we propose a new primal-dual algorithm with adaptive step-sizes. The stochas-
tic primal-dual hybrid gradient (SPDHG) algorithm with constant step-sizes has become widely
applied in large-scale convex optimization across many scientific fields due to its scalability.
While the product of the primal and dual step-sizes is subject to an upper-bound in order to
ensure convergence, the selection of the ratio of the step-sizes is critical in applications. Up-
to-now there is no systematic and successful way of selecting the primal and dual step-sizes for
SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms,
and prove their convergence under weak assumptions. We also propose concrete parameters-
updating strategies which satisfy the assumptions of our theory and thereby lead to convergent
algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the
proposed schemes.

1 Introduction

The stochastic primal-dual hybrid gradient (SPDHG) algorithm introduced in [8] is a stochastic
version of the primal-dual hybrid gradient (PDHG) algorithm, also known as Chambolle–Pock
algorithm [9]. SPDHG has proved more efficient than PDHG for a variety of problems in the
framework of large-scale non-smooth convex inverse problems [13, 22, 24, 27]. Indeed, SPDHG only
uses a subset of the data at each iteration, hence reducing the computational cost of evaluating the
forward operator and its adjoint; as a result, for the same computational burden, SPDHG attains
convergence faster than PDHG. This is especially relevant in the context of medical imaging, where
there is a need for algorithms whose convergence speed is compatible with clinical standards, and at
the same time able to deal with convex, non-smooth priors like Total Variation (TV), which are well-
suited to ill-posed imaging inverse problems, but preclude the recourse to scalable gradient-based
methods.
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Like PDHG, SPDHG is provably convergent under the assumption that the product of its primal
and dual step-sizes is bounded by a constant depending on the problem to solve. On the other hand,
the ratio between the primal and dual step-sizes is a free parameter, whose value needs to be chosen
by the user. The value of this parameter, which can be interpreted as a control on balance between
primal and dual convergence, can have a severe impact on the convergence speed of PDHG, and
the same also holds true for SPDHG [12]. This leads to an important challenge in practice, as there
is no known theoretical or empirical rule to guide the choice of the parameter. Manual tuning is
computationally expensive, as it would require running and comparing the algorithm on a range
on values, and there is no guarantee that a value leading to fast convergence for one dataset would
keep being a good choice for another dataset. For PDHG, [14] have proposed an online primal-dual
balancing strategy to solve the issue, where the values of the step-sizes evolve along the iterations.
More generally, adaptive step-sizes have been used for PDHG with backtracking in [14, 20], adapting
to local smoothness in [25] and are widely used for a variety of other algorithms, namely gradient
methods in [19], subgradient methods in [3] and splitting methods in [4, 6, 5, 7, 18] to improve
convergence speed and bypass the need for explicit model constants, like Lipschitz constants or
operator norms. For SPDHG, an empirical adaptive scheme has been used for Magnetic Particle
Imaging but without convergence proof [27].

On the theoretical side, a standard procedure to prove the convergence of proximal-based algo-
rithms for convex optimization is to use the notion of Féjer-monotonicity [2]. Constant step-sizes
lead to a fixed metric setting, while adaptive step-sizes lead to a variable metric setting. Work [11]
states the convergence of deterministic Féjer-monotone sequences in the variable metric setting,
while work [10] is concerned by the convergence of random Féjer-monotone sequences in the fixed
metric setting.

In this work, we introduce and study an adaptive version of SPDHG. More precisely:

• We introduce a broad class of strategies to adaptively choose the step-sizes of SPDHG. This
class includes, but is not limited to, the adaptive primal-dual balancing strategy, where the
ratio of the step-sizes, which controls the balance between convergence of the primal and dual
variable, is tuned online.

• We prove the almost-sure convergence of SPDHG under the schemes of the class. In order
to do that, we introduce the concept of C-stability, which generalizes the notion of Féjer-
monotonicity, and we prove the convergence of random C-stable sequences in a variable met-
ric setting, hence generalizing results from [11] and [10]. We then show that our proposed
algorithm falls within this novel theoretical framework by following similar strategies than in
the almost-sure convergence proofs of [16, 1].

• We compare the performance of SPDHG for various adaptive schemes and the known fixed
step-size scheme on large-scale imaging inverse tasks (sparse-view CT, limited-angle CT, low-
dose CT). We observe that the primal-dual balancing adaptive strategy is always as fast or
faster than all the other strategies. In particular, it consistently leads to substantial gains
in convergence speed over the fixed strategy if the fixed step-sizes, while in the theoretical
convergence range, are badly chosen. This is especially relevant as it is impossible to know
whether the fixed step-sizes are well or badly chosen without running expensive comparative
tests. Even in the cases where the SPDHG’s fixed step-sizes are well-tuned, meaning that
they are in the range to which the adaptive step-sizes are observed to converge, we observe
that our adaptive scheme still provides convergence acceleration over the standard SPDHG
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after a certain number of iterations. Finally, we pay special attention to the hyperparameters
used in the adaptive schemes. These hyperparameters are essentially controlling the degree of
adaptivity for the algorithm and each of them has a clear interpretation and is easy to choose
in practice. We observe in our extensive numerical tests that the convergence speed of our
adaptive scheme is robust to the choices of these parameters within the empirical range we
provide, hence can be applied directly to the problem at hand without fine-tuning, and solves
the step-sizes choice challenge encountered by the user.

The rest of the paper is organized as follows. In Section 2, we introduce SPDHG with adaptive
step-sizes, state the convergence theorem, and carry the proof. In Section 3, we propose concrete
schemes to implement the adaptiveness, followed by numeric tests on CT data in Section 4. We
conclude in Section 5. Finally, Section 6 collects some useful lemmas and proofs.

2 Theory

2.1 Convergence theorem

The variational problem to solve takes the form:

min
x∈X

n∑
i=1

fi(Aix) + g(x),

where X and (Yi)i∈{1,...,n} are Hilbert spaces, Ai : X → Yi are bounded linear operators, fi : Yi →
R∪{+∞} and g : X → R∪{+∞} are convex functions. We define Y = Y1×· · ·×Yn with elements
y = (y1, . . . , yn) and A : X → Y such that Ax = (A1x, . . . , Anx). Each iteration of SPDHG involves
the selection of a random subset of J1, nK := {1, . . . , n}. In this article, we are interested in the
serial sampling case, where the random subset is a singleton.

SPDHG with constant step-sizes is described in Algorithm 2.1. Under the condition

τσi <
pi

∥Ai∥2
, i ∈ J1, nK, (2.1)

SPDHG iterates converge almost surely to a solution of the saddle-point problem [1, 16]:

min
x∈X

sup
y∈Y

n∑
i=1

⟨Aix, yi⟩ − f∗
i (yi) + g(x). (2.2)

The set of solution to (2.2) is denoted by C. Elements (x∗, y∗) of C are called saddle-points and
characterized by

Aix
∗ ∈ ∂f∗

i (y
∗
i ), −A∗

i y
∗ ∈ ∂g(x∗), i ∈ J1, nK. (2.3)

We introduce the adaptive stochastic primal-dual hybrid gradient (A-SPDHG) algorithm in
Algorithm 2.2. The main theorem, Theorem 2.1 below, gives conditions on the update rule under
which A-SPDHG is provably convergent. Plainly speaking, these conditions are threefold:

(i) the step-sizes for step k+1, (σk+1
i )i∈J1,nK and τk+1, depend only of the iterates up to step k,

(ii) the step-sizes satisfy to a uniform version of condition (2.1),
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Algorithm 2.1: SPDHG (constant step-sizes, serial sampling)

Input: dual step-sizes (σi)i∈J1,nK, primal step-size τ ; probabilities (pi)i∈J1,nK; primal variable x0,
dual variable y0

Initialize ȳ0 = y0

for k ∈ J0,K − 1K do
xk+1 = proxτg(x

k − τA∗ȳk)
Randomly pick i ∈ J1, nK with probability pi

yk+1
j =

{
proxσif∗

i
(yki + σiAix

k+1) if j = i

ykj if j ̸= i

ȳk+1
j =

{
yk+1
i + 1

pi

(
yk+1
i − yki

)
if j = i

ykj if j ̸= i

end for
return xK

Algorithm 2.2: A-SPDHG (variable step-sizes, serial sampling)

Input: dual step-sizes (σ0
i )i∈J1,nK, primal step-size τ0, update rule; probabilities (pi)i∈J1,nK;

primal variable x0, dual variable y0

Initialize ȳ0 = y0

for k ∈ J0,K − 1K do
Determine (σk+1

i )i∈J1,nK, τ
k+1 according to the update rule

xk+1 = proxτk+1g(x
k − τk+1A∗ȳk)

Randomly pick i ∈ J1, nK with probability pi

yk+1
j =

{
proxσk+1

i f∗
i
(yki + σk+1

i Aix
k+1) if j = i

ykj if j ̸= i

ȳk+1
j =

{
yk+1
i + 1

pi

(
yk+1
i − yki

)
if j = i

ykj if j ̸= i

end for
return xK
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(iii) the step-sizes sequences (τk)k≥0 and (σk
i )k≥0 for i ∈ J1, nK do not decrease too fast. More

precisely, they are uniformly almost surely quasi-increasing in the sense defined below.

In order to state the theorem rigorously, let us introduce some useful notation and definitions.
The set of non-negative integers is denoted by N. For all k ∈ N, the σ-algebra generated by the
iterates up to point k, F

(
(xl, yl), l ∈ J0, kK

)
, is denoted by Fk. We say that a sequence (uk)k∈N is(

Fk
)
k∈N-adapted if for all k ∈ N, uk is measurable with respect to Fk.

A positive real sequence (uk)k∈N is said to be quasi-increasing if there exists a sequence (ηk)k∈N
with values in [0, 1), called the control on (uk)k∈N, such that

∑∞
k=1 ηk < ∞ and :

uk+1 ≥ (1− ηk)uk, k ∈ N. (2.4)

By extension, we call a random positive real sequence (uk)k∈N uniformly almost surely quasi-
increasing if there exists a deterministic sequence (ηk)k∈N with values in [0, 1) such that

∑∞
k=1 ηk <

∞ and equation (2.4) above holds almost surely (a.s.).

Theorem 2.1 (Convergence of A-SPDHG). Let X and Y be separable Hilbert spaces, Ai : X → Yi

bounded linear operators, fi : Yi → R ∪ {+∞} and g : X → R ∪ {+∞} proper, convex and lower
semi-continuous functions for all i ∈ J1, nK. Assume that the set of saddle-points C is non-empty
and the sampling is proper, that is to say pi > 0 for all i ∈ J1, nK. If the following conditions are
met:

(i) the step-size sequences (τk+1)k∈N, (σ
k+1
i )k∈N, i ∈ J1, nK are

(
Fk

)
k∈N-adapted,

(ii) there exists β ∈ (0, 1) such that for all index i ∈ J1, nK and iterate k ∈ N,

τkσk
i

∥Ai∥2

pi
≤ β < 1, (2.5)

(iii) the initial step-sizes τ0 and σ0
i for all index i ∈ J1, nK are positive and the step-sizes sequences

(τk)k∈N and (σk
i )k∈N for all index i ∈ J1, nK are uniformly almost surely quasi-increasing,

then the sequence of iterates (xk, yk)k∈N converges almost surely to an element of C.

While the conditions (i)-(iii) are general enough to cover a large range of step-sizes update rules,
we will focus in practice on the primal-dual balancing strategy, which consists in scaling the primal
and the dual step-sizes by an inverse factor at each iteration. In that case, the update rule depends
on a random positive sequence (γk)k∈N and reads as:

τk+1 =
τk

γk
, σk+1

i = γkσk
i , i ∈ J1, nK. (2.6)

Lemma 2.2 (Primal-dual balancing). Let the step-sizes sequences satisfy to equation (2.6) and
assume in addition that (γk)k∈N is

(
Fk

)
k∈N-adapted, that the initial step-sizes satisfy to

τ0σ0
i

∥Ai∥2

pi
< 1, i ∈ J1, nK,
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and are positive, that there exists a deterministic sequence (ϵk)k∈N with values in [0, 1) such that∑
ϵk < ∞ and for all k ∈ N and i ∈ J1, nK,

min
{
γk, (γk)−1

}
≥ 1− ϵk. (2.7)

Then, the step-sizes sequences satisfy to assumptions (i)-(iii) of Theorem 2.1.

Lemma 2.2 is proved in Section 6.

Connection with the literature:

• The primal-dual balancing strategy has been introduced in [14] for PDHG and indeed for
n = 1 we recover with Lemma 2.2 the non-backtracking algorithm presented in [14]. As a
consequence, our theorem also implies the pointwise convergence of this algorithm, whose
convergence was established in the sense of vanishing residuals in [14].

• Still for PDHG, [20] proposes without proof an update rule where the ratio of the step-sizes
is either quasi non-increasing or quasi non-decreasing. This requirement is similar to but
not directly connected with ours, where we ask the step-sizes themselves to be quasi non-
increasing.

• For SPDHG, the angular constraint step-size rule proposed without convergence proof in [27]
satisfies to assumptions (i)-(iii).

Outline of the proof: Theorem 2.1 is proved in the following sub-sections. We first define in
Section 2.2 metrics related to the algorithm step-sizes on the primal-dual product space. As the
step-sizes are adaptive, we obtain a sequence of metrics. The proof of Theorem 2.1 is then similar in
strategy to those of [1] and [16] but requires novel elements to deal with the metrics variability. In
Theorem 2.5, we state convergence conditions for an abstract random sequence in a Hilbert space
equipped with random variable metrics. In Section 2.4 and Section 2.5 we show that A-SPDHG
falls within the scope of Theorem 2.5. We collect all elements and conclude the proof in Section
2.6.

2.2 Variable metrics

For a Hilbert space H, we call S(H) the set of bounded self-adjoint linear operators from H to H,
and for all M ∈ S(H) we introduce the notation:

∥u∥2M = ⟨Mu, u⟩, u ∈ H.

By an abuse of notation we write ∥ · ∥2α = ∥ · ∥2αId for a scalar α ∈ R. Notice that ∥ · ∥M is a norm
on H if M is positive definite. Furthermore, we introduce the partial order ≼ on S(H) such that
for M, N ∈ S(H),

N ≼ M if ∀u ∈ H, ∥u∥N ≤ ∥u∥M .

We call Sα(H) the subset of S(H) comprised of M such that αId ≼ M . Furthermore a random
sequence (Mk)k∈N in S(H) is said to be uniformly almost surely quasi-decreasing if there exists a
non-negative sequence (ηk)k∈N such that

∑∞
k=1 ηk < ∞ and a.s.

Mk+1 ≼ (1 + ηk)Mk, k ∈ N.
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Coming back to A-SPDHG, let us define for every iteration k ∈ N and every index i ∈ J1, nK
two block operators of S(X × Yi) as:

Mk
i =


1
τk Id − 1

pi
Ai

− 1
pi
A∗

i
1

piσk
i

Id

 , Nk
i =

 1
τk Id 0

0 1
piσk

i

Id

 ,

and a block operator of S(X × Y ) as:

Nk =


1
τk Id 0

. . .
1

piσk
i

Id

0
. . .

 . (2.8)

The following lemma translates assumptions (i)-(iii) of Theorem 2.1 on properties on the variable
metric sequences.

Lemma 2.3 (Variable metric properties). (a) Assumption (i) of Theorem 2.1 implies that (Mk
i )k∈N, (N

k
i )k∈N, i ∈

J1, nK and (Nk)k∈N are
(
Fk

)
k∈N-adapted.

(b) Assumption (ii) of Theorem 2.1 is equivalent to the the existence of β ∈ (0, 1) such that for
all index i ∈ J1, nK and iterate k ∈ N,

(1− β)Nk
i ≼ Mk

i .

(c) Assumption (ii) and (iii) of Theorem 2.1 implies that (Mk
i )k∈N, (N

k
i )k∈N, i ∈ J1, nK and

(Nk)k∈N are uniformly a.s. quasi-decreasing.

(d) Assumption (ii) and (iii) of Theorem 2.1 imply that there exists α > 0 such that for all index
i ∈ J1, nK and iterate k ∈ N, τk > α−1 and σk

i > α−1, or equivalently that Nk
i ∈ Sα(X × Yi)

for all i ∈ J1, nK and k ∈ N, or equivalently that Nk ∈ Sα(X × Y ) for all k ∈ N.

Remark 2.4 (Step-sizes induced metrics on the primal-dual product space). The lemma implies
that Mk

i , Nk
i and Nk are positive definite, hence induce a metric on the corresponding spaces.

If n = 1 and for constant step-sizes, Mk
i corresponds to the metric used in [17], where PDHG

is reformulated as a proximal point algorithm for a non-trivial metric on the primal-dual product
space.

Proof of Lemma 2.3. Assertion (a) of the lemma follows from the fact that for all iterate k ∈ N,
the operators Mk

i , N
k
i and Nk are in the σ-algebra generated by

{
τk, σk

i , i ∈ J1, nK
}
. Assertion (b)

follows from equation (6.2) of Lemma 6.1 to be found in the complementary material. The proof
of assertion (c) is a bit more involved. Let us assume that assumption (iii) of Theorem 2.1 holds
and let (ηk0 )k∈N and (ηki )k∈N be the controls of (τk)k∈N and (σk

i )k∈N for i ∈ J1, nK respectively. We
define a common control (ηk)k∈N by:

ηk = max
{
ηki , i ∈ J0, nK

}
, k ∈ N. (2.9)
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Let us fix k ∈ N and i ∈ J1, nK. It holds almost surely that for all (x, yi) ∈ X × Yi,

∥x, yi∥2Nk+1
i

=
1

τk+1
∥x∥2 + 1

σk+1
i

∥yi∥2

≤ 1

1− ηk

(
1

τk
∥x∥2 + 1

σk
i

∥yi∥2
)

=
1

1− ηk
∥x, yi∥2Nk

i
.

Hence the sequence (Nk
i )k∈N is uniformly quasi-decreasing with control

(
(1− ηk)−1

)
k∈N, which

is indeed a positive sequence with bounded sum. One can see by a similar proof that (Nk)k∈N
is uniformly quasi-decreasing with the same control. To follow with the case of (Mk

i )k∈N, let us
first reformulate the desired conclusion. By equation (6.2) of Lemma 6.1, (Mk

i )k∈N is uniformly
quasi-decreasing with control (ϵk)k∈N if and only if a.s. for all k ∈ N

1
τk+1 Id − 1

pi
Ai

− 1
pi
A∗

i
1

piσ
k+1
i

Id

 ≼ (1 + ϵk)


1
τk Id − 1

pi
Ai

− 1
pi
A∗

i
1

piσk
i

Id



⇔ 0 ≼


(

1+ϵk

τk − 1
τk+1

)
Id − ϵk

pi
Ai

− ϵk

pi
A∗

i

(
1+ϵk

piσk
i

− 1

piσ
k+1
i

)
Id


⇔ τkσk

i

∥Ai∥2

pi

(ϵk)2(
1 + ϵk − τk

τk+1

)(
1 + ϵk − σk

i

σk+1
i

) ≤ 1. (2.10)

Now, by assumption (ii), there exists β ∈ (0, 1) such that τkσk
i ∥Ai∥2p−1

i ≤ β for all k ∈ N. Let
us define

ϵk = λ−1

(
1

1− ηk
− 1

)
, k ∈ N,

with λ a real number such that 0 < λ ≤ 1−
√
β. Then, (ϵk)k∈N is a positive sequence with bounded

sum and it holds that for all k ∈ N

τk

τk+1
≤ 1

1− ηk+1
,

σk
i

σk+1
i

≤ 1

1− ηk+1
,

1

1− ηk+1
= λϵk + 1.

As a consequence, the left-hand side of (2.10) is bounded by above by

β
(ϵk)2

(1 + ϵk − (1 + λϵk))
2 =

β

(1− λ)2
≤ 1,

hence (2.10) holds and (Mk
i )k∈N is uniformly quasi-decreasing with control (ϵk)k∈N.

To conclude with the proof of assertion (c), observe that by assumption (ii), the product of the
sequences (τk)k∈N and (σk

i )k∈N is almost surely bounded by above. Furthermore, each sequence
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(τk)k∈N and (σk
i )k∈N is uniformly a.s. quasi-increasing, hence is a.s. bounded by below by the

deterministic constant C = min
{
τ0, σ0

i , i ∈ J1, nK
}∏∞

j=1(1 − ηj) which is positive as the initial

step-sizes are positive and (ηk)k∈N takes values in [0, 1) and has finite sum. As a consequence,
each sequence (τk)k∈N and (σk

i )k∈N is a.s. bounded by above by a deterministic constant α−1 >
0. The equivalence with Nk

i ∈ Sα(X × Yi) for all i ∈ J1, nK, and with Nk ∈ Sα(X × Y ), is
straightforward.

2.3 Convergence of random C-stable sequences in random variable met-
rics

Let H be a Hilbert space and C ⊂ H a subset of H. Let (Ω, σ(Ω),P) be a probability space. All
random variables in the following are assumed to be defined on Ω and measurable with respect to
σ(Ω) unless stated otherwise. Let (Qk)k∈N be a random sequence of S(H).

A random sequence (uk)k∈N with values in H is said to be stable with respect to the target C
relative to (Qk)k∈N if for all u ∈ C, the sequence

(
∥uk − u∥Qk

)
k∈N converges almost surely. The

following theorem then states sufficient conditions for the convergence of such sequences.

Theorem 2.5 (Convergence of C-stable sequences). Let H be a separable Hilbert space, C a closed
non-empty subset of H, (Qk)k∈N a random sequence of S(H), and (uk)k∈N a random sequence of
H. If the following conditions are met:

(i) (Qk)k∈N takes values in Sα(H) for a given α > 0 and is uniformly a.s. quasi-decreasing,

(ii) (uk)k∈N is stable with respect to the target C relative to (Qk)k∈N,

(iii) every weak sequential cluster point of (uk)k∈N is almost surely in C,

then (uk)k∈N converges almost surely weakly to a random variable in C.

Stability with respect to a target set C is implied by Féjer and quasi-Féjer monotonicity with
respect to C, which have been studied either for random sequences [10] or in the framework of
variable metrics [11], but to the best of our knowledge not both at the same time. The proof of
Theorem 2.5 follows the same lines than [10, Proposition 2.3 (iii)] and uses two results from [11].

Proof. The set C is a closed subset of the separable Hilbert space H, hence is separable. Let
{cn, n ∈ N} be a countable set whose closure is equal to C. Thanks to assumption (ii), there
exists for all n ∈ N a measurable subset Ωn

(ii) of Ω with probability one such that the sequence

(∥uk(ω)− cn∥Wk(ω))k∈N converges for all ω ∈ Ωn
(ii) . Furthermore, let Ω(i) and Ω(iii) be measurable

subsets of Ω of probability one corresponding to the almost sure property for assumptions (i) and
(iii) respectively. Let

Ω̃ =

⋂
n≥0

Ωn
(ii)

⋂
Ω(i)

⋂
Ω(iii).

As the intersection of a countable number of measurable subsets of probability one, Ω̃ is itself a
measurable set of Ω with P(Ω̃) = 1. Fix ω ∈ Ω̃ for the rest of the proof.
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The sequence (Qk(ω))k∈N takes values in Sα(H) for α > 0 and is quasi-decreasing with control
(ηk(ω))k∈N. Furthermore, for all k ∈ N,

∥Qk(ω)∥ ≤

k−1∏
j=0

(
1 + ηj

) ∥Q0(ω)∥ ≤

 ∞∏
j=0

(
1 + ηj

) ∥Q0(ω)∥,

where the product
∏∞

j=0

(
1 + ηj

)
is finite because (ηk)k∈N is positive and summable. By [11, Lemma

2.3], (Qk(ω))k∈N converges pointwise strongly to some Q(ω) ∈ Sα(H).

Furthermore, for all x ∈ C, there exists a sequence (xn)n∈N with values in {cn, n ∈ N} converging
strongly to x. By assumption, for all n ∈ N, the sequence (∥uk(ω) − xn∥Qk(ω))k∈N converges to a
limit which shall be called ln(ω). For all n ∈ N and k ∈ N, we can write thanks to the triangular
inequality:

−∥xn − x∥Qk(ω) ≤ ∥uk(ω)− x∥Qk(ω) − ∥uk(ω)− xn∥Qk(ω) ≤ ∥xn − x∥Qk(ω).

By taking the limit k → +∞, it follows that:

−∥xn − x∥Q(ω) ≤ lim inf
k→∞

∥uk(ω)− x∥Qk(ω) − ln(ω)

≤ lim sup
k→∞

∥uk(ω)− x∥Qk(ω) − ln(ω) ≤ ∥xn − x∥Q(ω).

Taking now the limit n → +∞ shows that the sequence (∥uk(ω) − x∥Qk(ω))k∈N converges for all

x ∈ C. On the other hand, because ω ∈ Ω(iii), the weak cluster points of (uk(ω))k∈N lie in C. Hence,

by [11, Theorem 3.3], the sequence (uk(ω))k∈N converges almost surely to a point u(ω) ∈ C.

We are now equipped to prove Theorem 2.1. We show in Section 2.4 and Section 2.5 that
A-SPDHG satisfies to points (ii) and (iii) of Theorem 2.5 respectively and conclude the proof in
Section 2.6. Interestingly, the proofs of point (ii) and of point (iii) rely on two different ways of
apprehending A-SPDHG. Point (ii) relies on a convex optimisation argument: by taking advantage
of the measurability of the primal variable at step k + 1 with respect to Fk, one can write a
contraction-type inequality relating the conditional expectation of the iterates’ norm at step k + 1
to the iterates’ norm at step k. Point (iii) relies on monotone operator theory: we use the fact that
the update from the half-shifted iterations (yk, xk+1) to (yk+1, xk+2) can be interpreted as a step
of a proximal-point algorithm on X × Yi conditionally to i being the index randomly selected at
step k.

2.4 A-SPDHG is stable with respect to the set of saddle-points

In this section, we show that (xk, yk)k∈N is stable with respect to C relative to the variable metrics
sequence (Nk)k∈N defined in equation (2.8) above. We introduce the operators P ∈ S(Y ) and
Σk ∈ S(Y ) defined respectively by

(Py)i = piyi, (Σky)i = σk
i yi, i ∈ J1, nK,

and the functionals (Uk)k∈N, (V
k)k∈N defined for all (x, y) ∈ X × Y as:

Uk(y) = ∥y∥2(PΣk)−1 ,

V k(x, y) = ∥x∥2(τk)−1 − 2⟨P−1Ax, y⟩+ ∥y∥2(PΣk)−1 .
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We begin by recalling the cornerstone inequality satisfied by the iterates of SPDHG stated first
in [8] and reformulated in [1].

Lemma 2.6 ([1], Lemma 4.1). For every saddle-point (x∗, y∗), it a.s. stands that for all k ∈ N\{0},

E
[
V k+1(xk+1 − x∗, yk+1 − yk) + Uk+1(yk+1 − y∗)|Fk

]
≤ V k+1(xk − x∗, yk − yk−1) + Uk+1(yk − y∗) (2.11)

− V k+1(xk+1 − xk, yk − yk−1).

The second step is to relate the assumptions of Theorem 2.1 to properties of the functionals
appearing in (2.11). Let us introduce Ysparse ⊂ Y the set of elements (y1, . . . , yn) having at most
one non-vanishing component.

Lemma 2.7 (Properties of functionals of interest). Under the assumptions of Theorem 2.1, there
exists a non-negative, summable sequence (ηk)k∈N such that a.s. for every iterate k ∈ N and x ∈
X, y ∈ Y, z ∈ Ysparse:

Uk+1(y) ≤ (1 + ηk)Uk(y), (2.12a)

V k+1(x, z) ≤ (1 + ηk)V k(x, z), (2.12b)

∥(x, z)∥2Nk ≥ α∥(x, z)∥2, (2.12c)

V k(x, z) ≥ (1− β)∥(x, z)∥2Nk , (2.12d)∣∣〈P−1Ax, z
〉∣∣ ≤ β∥x∥2(τk)−1∥z∥2(PΣk)−1 . (2.12e)

Proof. Let (ηki )k∈N and (η̃ki )k∈N be the controls of (Mk
i )k∈N and (Nk

i )k∈N respectively for all i ∈
J1, nK. We define a common control (ηk)k∈N by:

ηk = max
{
max

{
ηki , η̃

k
i

}
, i ∈ J1, nK

}
, k ∈ N. (2.13)

For all y ∈ Y , we can write

Uk+1(y) =

n∑
i=1

∥(0, yi)∥2Nk+1
i

≤ (1 + ηk)

n∑
i=1

∥(0, yi)∥2Nk
i
= (1 + ηk)Uk(y),

which proves (2.12a). Let us now fix x ∈ X, z ∈ Ysparse and k ∈ N. By definition, there exists
i ∈ J1, nK such that zj = 0 for all j ̸= i. We obtain the inequalities (2.12b)-(2.12d) by writing:

V k+1(x, z) = ∥(x, zi)∥2Mk+1
i

≤ (1 + ηk)∥(x, zi)∥2Mk
i
= (1 + ηk)V k(x, z),

∥(x, z)∥2Nk = ∥(x, zi)∥2Nk
i
≥ α∥(x, zi)∥2 = ∥(x, z)∥2,

V k(x, z) = ∥(x, zi)∥2Mk
i
≥ (1− β)∥(x, zi)∥2Nk

i
= (1− β)∥(x, z)∥2Nk .

Finally, let us introduce

M̃k
i =


1
τk Id

1
pi
Ai

1
pi
A∗

i
1

piσk
i

Id

 ∈ S(X × Yi), i ∈ J1, nK.

11



Thanks to Lemma 6.1, we can write that for all i ∈ J1, nK and k ∈ N,

Mk
i ≽ (1− β)Nk

i ⇔ τkσk
i

∥Ai∥2

pi
≤ β ⇔ M̃k

i ≽ (1− β)Nk
i .

By the same reasoning as above,

∥(x, zi)∥2M̃k
i

≥ (1− β)∥(x, zi)∥2Nk
i
= (1− β)∥(x, z)∥2Nk .

We observe that 〈
P−1Ax, z

〉
= ∥(x, zi)∥2Nk

i
− ∥(x, zi)∥2Mk

i
≤ β∥(x, z)∥2Nk ,〈

P−1Ax, z
〉
= ∥(x, zi)∥2M̃k

i

− ∥(x, zi)∥2Nk
i
≥ −β∥(x, z)∥2Nk ,

which proves (2.12e).

Lemma 2.8 (A-SPDHG is C-stable). Under the assumptions of Theorem 2.1, the sequence (xk, yk)k∈N
of Algorithm 2.2 is stable with respect to C relative to (Nk)k∈N.

Proof. By definition of A-SPDHG with serial sampling, the difference between two consecutive dual
iterates is almost surely sparse:

yk − yk−1 ∈ Ysparse, k ∈ N \ {0} .

Let us define the sequences

ak = V k(xk − x∗, yk − yk−1) + Uk(yk − y∗), bk = V k+1(xk+1 − xk, yk − yk−1),

which are a.s. non-negative thanks to (2.12c) and (2.12d). Furthermore, inequalities (2.11), (2.12a)
and (2.12b) imply that almost surely for all k ∈ N \ {0},

E
[
ak+1|Fk

]
≤ (1 + ηk)ak − bk.

By Robbins-Siegmund lemma [23], (ak) converges almost surely, supk E
[
ak

]
< ∞ and

∑
k E

[
bk
]
<

∞. From the last point in particular, we can write thanks to (2.12d) and the monotone convergence
theorem:

E

[∑
k

∥∥yk − yk−1
∥∥2
(PΣk+1)−1

]
≤ E

[∑
k

∥∥(xk+1 − xk, yk − yk−1)
∥∥2
Nk+1

]

≤ E

[∑
k

bk

]
=

∑
k

E
[
bk
]
< ∞,

hence
∑

k ∥yk − yk−1∥2(PΣk+1)−1 is almost surely finite, thus
(
∥yk − yk−1∥2(PΣk+1)−1

)
converges

almost surely to 0. Furthermore, supk E
[
ak

]
< ∞ hence supk ∥xk − x∗∥2(τk)−1 is finite, and by

(2.12e), one can write that for k ∈ N \ {0},∣∣〈P−1A(xk − x∗), yk − yk−1
〉∣∣ ≤ β∥xk − x∗∥2(τk+1)−1∥yk − yk−1∥2(PΣk+1)−1

≤ β(1 + ηk)∥xk − x∗∥2(τk)−1∥yk − yk−1∥2(PΣk+1)−1 .

12



We know that (ηk)k∈N is summable hence converges to 0. As a consequence,

|⟨P−1A(xk − x∗), yk − yk−1⟩| → 0 almost surely.

To conclude with, thanks to the identity

ak = ∥(xk − x∗, yk − y∗)∥2Nk + ⟨P−1A(xk − x∗), yk − yk−1⟩, k ∈ N \ {0} ,

the almost sure convergence of (ak)k∈N implies in turn that of (∥(xk − x∗, yk − y∗)∥2Nk)k∈N.

As a by-product of the proof, one also obtains the following useful lemma.

Lemma 2.9. Under the assumptions of Theorem 2.1,

E

[∑
k

∥∥(xk+1 − xk, yk − yk−1)
∥∥2] < ∞ and a.s.

∥∥xk+1 − xk
∥∥ → 0.

Proof. The first assertion is a straightforward consequence of

E

[∑
k

bk

]
=

∑
k

E
[
bk
]
< ∞

and bounds (2.12c) and (2.12d). Furthermore, it implies that
∑

k

∥∥(xk+1 − xk, yk − yk−1)
∥∥2 is a.s.

finite, hence
(∥∥(xk+1 − xk, yk − yk−1)

∥∥) a.s. converges to 0, and so does
(∥∥xk+1 − xk

∥∥).
2.5 Weak cluster points of A-SPDHG are saddle-points

The goal of this section is to prove that A-SPDHG satisfies to point (ii) of Theorem 2.5. For all
i ∈ J1, nK and positive scalars σi and τ , define

Fi =

 ∂g A∗
i

−Ai ∂f∗
i

 , Oσi,τ
i =

 1
τ Id − 1

pi
A∗

i

−Ai
1
σi
Id

 .

Lemma 2.10. Under the assumptions of Theorem 2.1,

(i) The operator Fi is maximally monotone for all i ∈ J1, nK.

(ii) Let us call (Ik)k∈N the random index with value in J1, nK selected at iteration k. For all
i ∈ J1, nK and σi, τ > 0, there exists an operator Tσi,τ

i : X × Yi → X × Yi such that on the
event

{
Ik = i

}
,

(xk+2, yk+1
i ) = T

σk+1
i ,τk+2

i (xk+1, yki ). (2.14)

(iii) For all i ∈ J1, nK, scalars σi, τ > 0 and (x, yi) ∈ X × Yi, the following identity is satisfied:

Oσi,τ
i (Tσi,τ

i (x, yi)− (x, yi)) ∈ Fi (T
σi,τ
i (x, yi)) . (2.15)
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Remark 2.11 (A-SPDHG as a random asymmetric proximal point algorithm). A sequence (uk)k∈N
of a Hilbert space H satisfying to the variational inequality〈

u− uk+1, F (uk+1) +O(uk+1 − uk)
〉
≥ 0, u ∈ H, k ∈ N, (2.16)

can be interpreted as a proximal point algorithm in H equipped with the norm induced by O if
F is a strongly monotone operator and a O a positive definite self-adjoint linear operator. PDHG
satisfies to an identity of the type (2.16) as shown in [17]. For SPDHG, equation (2.15) implies that
conditionnally on the random index selection, the iterate uk = (xk+1, yki ) satisfies to the variational

inequality (2.16) with F = F i and O = O
σk+1
i ,τk+2

i . However the operator Oσi,τ
i is not self-adjoint,

because the extrapolation parameter is p−1
i ̸= 1. SPDHG can thus be seen as a random asymmetric

proximal point algorithm.

Proof of Lemma 2.10. For point (i), observe that Fi is the sum of the two operators(
∂g 0
0 ∂f∗

i

)
,

(
0 A∗

i

−Ai 0

)
.

As by assumption the functionals g and f∗
i are convex, lower semi-continuous and proper, ∂g and

∂f∗
i are strongly monotone and so is the operator on the left. The skew-symmetric bounded linear

operator on the right is strongly monotone as shown in [2, example 20.35]. Hence Fi is strongly
monotone as the sum of strongly monotone operators.

Let us now prove point (ii). On the event
{
Ik = i

}
, A-SPDHG update procedure can be

rewritten as

yk+1
i = proxσk+1

i f∗
i
(yki + σk+1

i Aix
k+1), ȳk+1

i = yk+1
i +

1

pi

(
yk+1
i − yki

)
,

xk+2 = proxτk+2g(x
k+1 − τk+2A∗ȳk+1).

Hence identity (2.14) stands with Tσi,τ
i (x, yi) = (x̂, ŷi) and

x̂ = proxτg

(
x− τA∗

(
ŷi +

1

pi
(ŷi − yi)

))
, ŷi = proxσif∗

i
(yi + σiAix).

Finally for point (iii), observe that the equations above can be rewritten as{
x− τA∗

(
ŷi +

1
pi
(ŷi − yi)

)
− x̂ ∈ τ∂g(x̂)

yi + σiAix− ŷi ∈ σi∂f
∗
i (ŷi)

⇔

{
0 ∈ ∂g(x̂)− 1

τ (x− x̂) +A∗
(
ŷi +

1
pi
(ŷi − yi)

)
0 ∈ ∂f∗

i (ŷi)− 1
σi
(yi − ŷi)−Aix

⇔

{
0 ∈ ∂g(x̂)− 1

τ (x− x̂) + 1
pi
A∗ (ŷi − yi) +A∗ŷi

0 ∈ ∂f∗
i (ŷi)− 1

σi
(yi − ŷi)−Ai(x− x̂)−Aix̂

⇔
(
0
0

)
∈ Fi

(
x̂
ŷi

)
−Oτ,σi

i

(
x̂− x
ŷi − yi

)
.

Even though the operator Oσi,τ
i is not auto-adjoint, we can leverage identities (2.14) and (2.15)

to obtain the desired result.
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Lemma 2.12 (Cluster points of A-SPDHG are saddle points). Let (x̃, ỹ) be a random variable
almost surely taking its values in the set of weak cluster points of (xk, yk)k∈N, and assume that the
assumptions of Theorem 2.1 hold. Then (x̃, ỹ) is a.s. in C.

Proof. Thanks to Lemma 2.9, Lemma 2.10 and the monotone convergence theorem,

E

[∑
k

∥∥(xk+1 − xk, yk − yk−1)
∥∥2] =

∑
k

E
[∥∥(xk+1 − xk, yk − yk−1)

∥∥2]
=

∑
k

E
[
E
[
∥(xk+1 − xk, yk − yk−1)∥2|Ik

]]
=

∑
k

n∑
i=1

P(Ik−1 = i)E
[∥∥∥Tσk

i ,τ
k+1

i (xk+1, yki )− (xk, yk−1
i )

∥∥∥2]

=

n∑
i=1

piE

[∑
k

∥∥∥Tσk
i ,τ

k+1

i (xk+1, yki )− (xk, yk−1
i )

∥∥∥2]
< ∞.

Let us fix an index i ∈ J1, nK. By assumption, pi is positive, hence the quantity

E

[∑
k∈N

∥Tσk
i ,τ

k+1

i (xk+1, yki )− (xk, yk−1
i )∥2

]
is finite, hence the series inside the expectqtion is a.s. finite, and in turn the summand converges
almost surely to 0: ∥∥∥Tσk

i ,τ
k+1

i (xk+1, yki )− (xk, yk−1
i )

∥∥∥ → 0 almost surely.

Let us define

δki = Ok
i

(
T

σk
i ,τ

k+1

i (xk+1, yki )− (xk, yk−1
i ))

)
, k ∈ N \ {0} .

For all k ∈ N, one can see that∥∥∥Oσk
i ,τ

k+1

i

∥∥∥2 ≤ 2

(
max

{
1

(τk+1)2
,

1

(σk
i )

2

}
+

∥Ai∥2

p2i

)
≤ 2

(
α2 +

∥Ai∥2

p2i

)
= M2,

where the second bound comes from assumption (ii) of Theorem 2.1. As a consequence,∥∥δki ∥∥ ≤ M
∥∥∥(Tσk

i ,τ
k

i (xk+1, yki )− (xk, yk−1
i )

)∥∥∥ → 0 almost surely.

Let us now consider a sub-sequence
(
xkm , ykm

)
m∈N which converges weakly a.s. to (x̃, ỹ). By Lemma

2.9, the sequence
(
∥xk+1 − xk∥

)
converges a.s. to 0, hence

(
xkm+1

)
converges weakly a.s. to x̃ and(

xkm+1, ykm
)
m∈N converges weakly a.s. to (x̃, ỹ). By Lemma 2.10, δkm

i ∈ F i
(
xkm+1, ykm

)
for every

km ∈ N \ {0} and F i is maximally monotone. This implies that a.s. 0 ∈ F i(x̃, ỹ) [2, Proposition
20.38], that is to say a.s.

Aix̃ ∈ ∂f∗
i (ỹi), −A∗

i ỹ ∈ ∂g(x̃).

This being true for all i ∈ J1, nK, (x̃, ỹ) a.s. satisfies to (2.3) hence is a.s. in C.

15



2.6 Proof of Theorem 2.1

Under the assumptions of Theorem 2.1, the set C of saddle-points is closed and non-empty and
X × Y is a separable Hilbert space. By Lemma 2.3, the variable metrics sequence (Nk)k∈N defined
in (2.8) satisfies to condition (i) of Theorem 2.5. Furthermore, the iterates of Algorithm 2.2 comply
with condition (ii) and (iii) of Theorem 2.5 by Lemma 2.8 and Lemma 2.12 respectively, hence
converge almost surely to a point in C.

3 Algorithmic Design and Practical Implementations

In this section we present practical instances of our A-SPDHG algorithm, where we specify a step-
size adjustment rule which satisfies our assumptions in convergence proof. We extend the adaptive
step-size balancing rule for deterministic PDHG, which is proposed by [14], into our stochastic
setting, with minibatch approximation to minimize the computational overhead.

We present our first practical implementation in Algorithm 3.1 as our rule-(a), where we estimate
the progress of primal and dual via the two sequences vk and dk evaluated in each iteration, utilizing
the fact that:

E
[
(xk − xk+1)/τk+1 − 1

pi
A∗

i (y
k
i − yk+1

i )

]
∈ ∂g(xk+1) +A∗yk+1, (3.1)

meanwhile:
(yki − yk+1

i )/σk −Ai(x
k − xk+1) ∈ ∂f∗

i (y
k+1
i )−Aix

k+1. (3.2)

Hence our vk and dk estimate the lengths of the subgradients of the saddle-point objective g(x) +∑
i⟨Aix, yi⟩−f∗

i (yi) w.r.t. the primal and dual updates at each iteration. By making them balanced
on the fly, we can enforce the algorithm to achieve similar progress in both primal and dual steps,
hence improve the convergence. Note that here we adopt the choice of ℓ1-norm as the length
measure for vk and dk as done by Goldstein et al [14, 15], since we also observe numerically the
benefit over the more intuitive choice of ℓ2-norm.

For full-batch case (n = 1), it reduces to the adaptive PDHG proposed by [14, 15]. We adjust the
ratio between primal and dual step sizes according to the ratio between vk and dk, and whenever the
step-sizes changed, we shrink α (which controls the amplitude of the changes) by a factor η ∈ (0, 1)
– we typically choose η = 0.995 in our experiments. For the choice of s, we choose s = ∥A∥ as our
default.1

Noting that unlike the deterministic case which does not have the need of extra matrix-vector
multiplication since A∗yk and Axk can be memorized, our stochastic extension will require the
computation of Aix

k since we will sample different subsets between back-to-back iterations with
high probability. Assuming that the evaluations of these matrix-vector products dominate the
computational cost, we will have a maximum 50% overhead in terms of FLOPs count which is
acceptable. Moreover, we found numerically that very often we can further reduce this overhead
significantly by approximation tricks such as subsampling:

dk+1 ≈ ρ

pi
∥Sk(yki − yk+1

i )/σk+1 − (SkAi)(x
k − xk+1)∥1 (3.3)

1The choice of s is crucial for the convergence behavior of rule (a), and we found numerically that it is better to
scale with the operator norm ∥A∥ instead of depending on the range of pixel values as suggested in [15].
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Algorithm 3.1: A-SPDHG, rule (a)

Input: dual step-size σ0, primal step-size τ0, α0 ∈ (0, 1), η ∈ (0, 1), δ > 1, probabilities
(pi)1≤i≤n; primal variable x0, dual variable y0

Initialize ȳ0 = y0, v0 = d0 = 0, s = ∥A∥
for k ∈ J0,K − 1K do

If vk > sdkδ then τk+1 = τk

1−αk , σ
k+1 = σk(1− αk), αk+1 = αkη

If vk < sdk/δ then τk+1 = τk(1− αk), σk+1 = σk

1−αk , α
k+1 = αkη

If sdk/δ ≤ vk ≤ sdkδ then τk+1 = τk, σk+1 = σk, αk+1 = αk

xk+1 = proxτk+1g(x
k − τk+1A∗ȳk)

Randomly pick i ∈ J1, nK with probability pi

yk+1
j =

{
proxσk+1f∗

i
(yki + σk+1Aix

k+1) if j = i

ykj if j ̸= i

ȳk+1
j =

{
yk+1
i + 1

pi

(
yk+1
i − yki

)
if j = i

ykj if j ̸= i

vk+1 = ∥(xk − xk+1)/τk+1 − 1
pi
A∗

i (y
k
i − yk+1

i )∥1
dk+1 = 1

pi
∥(yki − yk+1

i )/σk+1 −Ai(x
k − xk+1)∥1 – or approximate this step by (3.3)

end for
return xK

with Sk being a random subsampling operator satisfying E[(Sk)TSk] = 1
ρ Id. In our experiments we

choose 10% subsampling for this approximation hence the overhead is reduced from 50% to only
5% which is negligible.

More recently, Yokota and Hontani [26] propose a variant of adaptive step-size balancing scheme
for PDHG, utilizing the angles between the subgradients ∂g(xk+1) + A∗yk+1 and the difference of
the updates xk − xk+1.

If these two directions are highly aligned, then the primal step size can be increased for bigger
step. If these two directions have a large angle, then the primal step-size should be shrunken.
By extending this scheme to stochastic setting we obtain another choice of adaptive scheme for
SPDHG.

We present this scheme in Algorithm 3.2 as our rule (b). At iteration k, compute:

qk+1 = (xk − xk+1)/τk+1 − 1

pi
A∗

i (y
k
i − yk+1

i ), (3.4)

as an unbiased estimate of ∂g(xk+1) + A∗yk+1, then measure the cosine of the angle between this
and xk − xk+1:

wk+1 =
⟨xk − xk+1, qk+1⟩

(∥xk − xk+1∥2∥qk+1∥2)
. (3.5)

The threshold c for the cosine value (which triggers the increase of the primal step-size) typically
needs to be very close to 1 (we use c = 0.999).

Recently Zdun et al [27] proposed a heuristic similar to our rule (b), but they choose qk+1 to
be the approximation for an element of ∂g(xk+1) instead of ∂g(xk+1)+A∗yk+1. Our choice follows
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Algorithm 3.2: A-SPDHG, rule (b)

Input: dual step-size σ0, primal step-size τ0, η ∈ (0, 1), probabilities (pi)1≤i≤n; primal variable
x0, dual variable y0

Initialize ȳ0 = y0, w0 = 0, α0 = 1
for k ∈ J0,K − 1K do

If wk < 0 then τk+1 = τk

1+αk , σ
k+1 = σk(1 + αk), αk+1 = αkη

If wk ≥ c then τk+1 = τk(1 + αk), σk+1 = σk

1+αk , α
k+1 = αkη

If 0 ≤ wk < c then τk+1 = τk, σk+1 = σk, αk+1 = αk

xk+1 = proxτk+1g(x
k − τk+1A∗ȳk)

Randomly pick i ∈ J1, nK with probability pi

yk+1
j =

{
proxσk+1f∗

i
(yki + σk+1Aix

k+1) if j = i

ykj if j ̸= i

ȳk+1
j =

{
yk+1
i + 1

pi

(
yk+1
i − yki

)
if j = i

ykj if j ̸= i

qk+1 = (xk − xk+1)/τk+1 − 1
pi
A∗

i (y
k
i − yk+1

i )

wk+1 = ⟨xk − xk+1, qk+1⟩/(∥xk − xk+1∥2∥qk+1∥2)
end for
return xK

more closely to the original scheme of Yokota and Hontani [26]. We numerically found that their
scheme is not competitive in our settings and we hence do not recommend it.

4 Numerical Experiments

In this section we present our numerical studies of our proposed scheme in solving one of the most
typical imaging inverse problems, the X-ray computed tomography. We compare our A-SPDHG
algorithm with the original SPDHG, on different choices of starting ratio of the primal and dual
step-sizes.
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Figure 1: Comparison between SPDHG and our A-SPDHG on X-ray Sparse-View CT (Example
1), with a variety of starting primal-dual step-size ratios. Here the forward operator A ∈ Rm×d

where the dimension m = 368640, d = 1048576. We includes the images reconstructed by the
algorithms at termination (50th epoch). In the first plot of each subfigure, the black circle indicates
the starting step-size ratio for all the algorithms, same for the following figures.
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Figure 2: Comparison between SPDHG and our A-SPDHG on X-ray Sparse-View CT (Example 2),
with a variety of starting primal-dual step-size ratios. Here the forward operator A ∈ Rm×d where
the dimension m = 92160, d = 262144. We includes the images reconstructed by the algorithms at
termination (50th epoch).
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Figure 3: Comparison between SPDHG and our A-SPDHG on X-ray Low-Dose CT (where we use a
large number of highly-noisy X-ray measurements), with a variety of starting primal-dual step-size
ratios. Here the forward operator A ∈ Rm×d where the dimension m = 184320, d = 65536. We
resized the phantom image to 256 by 256. We includes the images reconstructed by the algorithms
at termination (50th epoch).
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Figure 4: Comparison between SPDHG and our A-SPDHG on X-ray Limited-Angle CT (Example
2), with a variety of starting primal-dual step-size ratios. Here the forward operator A ∈ Rm×d

where the dimension m = 92160, d = 262144. We includes the images reconstructed by the
algorithms at termination (50th epoch).
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In our X-ray CT imaging example, we seek to reconstruct the tomography images from fan-beam
X-ray measurement data, by solving the following TV-regularized objective:

x⋆ ∈ arg min
x∈[0,1]d

1

2
∥Ax− b∥22 + λ∥Dx∥1 (4.1)

whereD denotes the 2D differential operator, A ∈ Rm×d and x ∈ Rd. We consider three fanbeam CT
imaging modalities: Sparse-View CT, Low-Dose CT and Limited-Angle CT. We test the A-SPDHG
and SPDHG on two images of different sizes (Example 1 on a phantom image sized 1024 × 1024,
while Example 2 being real CT image sized 512 × 512), on 4 different starting ratios (10−3, 10−5,
10−7 and 10−9). We split the measurement data and operator into n = 10 minibatches for both
algorithms. For A-SPDHG we choose to use the approximation step for dk presented in (3.3) with
10% subsampling hence the computational overhead is negligible in this experiment.

We present our numerical results in Figures 1, 2, 3 and 4. Among these, Figures 1 and 2
report the results for large-scale sparse-view CT experiments on a phantom image and a real CT
image, while Figure 3 reports the results for low-dose CT experiments where we simulate a large
number of measurements corrupted with a significant amount Poisson noise, and then, in Figure
4 we report the results for limited-angle CT where a range of 60-degree of measurement angle
is missing. In all these examples we can consistently observe that no matter how we initialize
the primal-dual step-size ratio, our A-SPDHG can automatically and consistently adjust the step
size ratio to the optimal choice which is around either 10−5 or 10−7 for these four different CT
problems, and significantly outperform the vanilla SPDHG for the cases where the starting ratio is
away from the optimal range. Meanwhile, even for the cases where the starting ratio of SPDHG
algorithm is near-optimal, we can observe consistently from most of these examples that our scheme
outperforms the vanilla SPDHG algorithm locally after a certain number of iterations (highlighted
by the vertical dash lines in relevant subfigures), which further indicates the benefit of adaptivity
for this class of algorithms2. Note that throughout all these different examples, we use only one
fixed set of parameters for A-SPDHG suggested in the previous section, which again indicates the
strong practicality of our scheme.

We should also note that conceptually all the hyperparameters in our adaptive schemes are
basically the controllers of the adaptivity of the algorithm (while for extreme choices we recover
the vanilla SPDHG). In Figures 5 and 7, we present some numerical studies on the choices of
hyperparameters of rule (a) and rule (b) of A-SPDHG algorithm. We choose the fixed starting
ratio of 10−7 for primal-dual step-sizes in these experiments. For rule (a), we found that it is robust
to the choice of the starting shrinking rate α0, shrinking speed η and the gap δ. Overall, we found
that these parameters have weak impact of the convergence performance of our rule (a) and easy
to choose.

For rule (b), we found that the performance is more sensitive to the choice of parameter c and
η comparing to rule (a), although the dependence is still weak. Our numerical studies suggest that
rule (a) is a better-performing choice than rule (b), but each of them have certain weaknesses,
which require further studies and improvements. Nevertheless, we need to emphasis that all these
parameters are essentially controlling the degree of adaptivity of the algorithms and fairly easy to
choose, noting that for all these CT experiments with varying sizes/dimensions and modalities we

2The most typical example here would be the Figure 1(b) where the optimal step-size ratio selected by the adaptive
scheme at convergence is almost exactly 10−5, where we have set SPDHG to run with this ratio. We can still observe
benefit of local convergence acceleration given by our adaptive scheme.
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Figure 5: Test on different choices of parameters of A-SPDHG (rule-a) on X-ray Low-Dose fanbeam
CT example, starting ratio of primal-dual step-sizes: 10−7. We can observe that the performance
of ASPDHG has only minor dependence on these parameter choices.

only use one fixed set of the hyperparameters in A-SPDHG, and we are already able to consistently
observe numerical improvements over vanilla SPDHG.

5 Conclusion

In this work we propose a new framework (A-SPDHG) for adaptive step-size balancing in stochas-
tic primal-dual hybrid gradient methods. We first derive theoretically sufficient conditions on the
adaptive primal and dual step-sizes for ensuring convergence in the stochastic setting. We then pro-
pose a number of practical schemes which satisfy the condition for convergence, and our numerical
results on imaging inverse problems supports the effectiveness of our approach.

To our knowledge, this work constitutes the first theoretical analysis of adaptive step-sizes
for a stochastic primal-dual algorithm. Our on-going work includes the theoretical analysis and
algorithmic design of further accelerated stochastic primal-dual methods with line-search schemes
for even faster convergence rates.

6 Complementary material for Section 2

We begin by a useful lemma.

Lemma 6.1. Let a, b be positive scalars, β ∈ (0, 1), and P a bounded linear operator from a Hilbert
space X to a Hilbert space Y . Then,

(ab)−1/2∥P∥ ≤ 1 ⇔
(
a Id P
P ∗ b Id

)
≽ 0. (6.1)

(ab)−1/2∥P∥ ≤ β ⇔
(
a Id P
P ∗ b Id

)
≽ (1− β)

(
a Id 0
0 b Id

)
. (6.2)
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Figure 6: Test on the default choice s = ∥A∥ of A-SPDHG (rule-a) on X-ray Low-Dose fanbeam
CT example. Left figure: starting ratio of primal-dual step-sizes: 10−7. Right figure: starting
ratio of primal-dual step-sizes: 10−5. We can observe that our default choice of s is indeed a
reasonable choice (at least near-optimal) in practice, and when deviating from it may lead to slower
convergence.
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Figure 7: Test on different choices of parameters of A-SPDHG (rule-b) on X-ray Low-Dose fanbeam
CT example, starting ratio of primal-dual step-sizes: 10−7.

Proof. Let us call

M =

(
a Id P
P ∗ b Id

)
.

For all (x, y) ∈ X × Y ,

∥(x, y)∥2M ≥ a∥x∥2 + b∥y∥2 − 2∥P∥∥x∥∥y∥ = ∥x∥2a + ∥y∥2b − 2(ab)−1/2∥P∥∥x∥a∥y∥b,

which proves the direct implication of (6.1). For the converse implication, consider x ∈ X such
that ∥Px∥ = ∥P∥∥x∥ and y = −λPx for a scalar λ. Then, the non-negativity of the polynomial

∥(x, y)∥2M = b∥P∥2λ2 − 2∥P∥2λ+ a

for all λ ∈ R implies that ∥P∥4 − ab∥P∥2 ≥ 0, which is equivalent to the desired conclusion
(ab)−1/2∥P∥ ≤ 1.
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Equivalence (6.2) is straightforward by noticing that(
a Id P
P ∗ b Id

)
≽ (1− β)

(
a Id 0
0 b Id

)
⇔

(
βa Id P
P ∗ βb Id

)
≽ 0.

Let us now turn to the proof of Lemma 2.2.

Proof of Lemma 2.2. Let us assume that the step-sizes satisfy to the assumptions of the lemma.
Then, Assumption (i) of Theorem 2.1 is straightforwardly satisfied. Moreover, for i ∈ J1, nK, the
product sequence (τkσk

i )k∈N is constant along the iterations by equation (2.6) and satisfies to
equation (2.5) for iterate k = 0, thus satisfies to (2.5) for all k ∈ N, which proves Assumption (ii).
Finally, equation (2.7) implies that Assumption (iii) is satisfied.
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Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging appli-
cations. SIAM Journal on Optimization, 28(4):2783–2808, 2018.

[9] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145, 2011.

[10] Patrick L. Combettes and Jean-Christophe Pesquet. Stochastic quasi-Fejér block-coordinate
fixed point iterations with random sweeping. SIAM Journal on Optimization, 25(2):1221–1248,
2015.
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