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ABSTRACT
XRP Ledger is one of the oldest, well-established blockchains. De-
spite the popularity of the XRP Ledger, little is known about its
underlying peer-to-peer network. The structural properties of a
network impact its efficiency, security and robustness. We aim to
close the knowledge gap by providing a detailed analysis of the
XRP overlay network.

In this paper we examine the graph-theoretic properties of the
XRP Ledger peer-to-peer network and its temporal characteristics.
We crawl the XRP Ledger over two months and collect 1,290 unique
network snapshots. We uncover a small group of nodes that act as
a networking backbone. In addition, we observe a high network
churn, with a third of the nodes changing every five days. Our
findings have strong implications for the resilience and safety of
the XRP Ledger.
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• Networks → Logical / virtual topologies; Network dynamics;
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1 INTRODUCTION
XRP Ledger is one of the oldest, well-established cryptocurrencies.
In 2022 it ranked seventh by market capitalization. The XRP Ledger
aims to provide high transaction throughput whilst maintaining
security against Byzantine failures. The XRP Ledger Consensus Pro-
tocol is a Federated Byzantine Agreement protocol [28], in which
each participant selects a Unique Node List (UNL) of validators.
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These validators are not necessarily trusted individually but are
believed not to collude as a collective.

Servers running the rippled software join into a single peer-to-
peer network. The peer-to-peer network’s topological structure
affects the blockchain’s security, resilience, and efficiency. By de-
sign, there are no direct incentives to run rippled software [4]. Those
who participate do so because they are interested in the long-term
health of or are participants on the XRP Ledger. A corpus of research
focuses on the study of structural properties of Bitcoin [14, 23] and
Ethereum [17, 26, 31]. To the best of our knowledge, there are no
works examining the overlay network of the XRP Ledger.

The overlay network is uniquely suited for study. Unlike other
blockchains that focus on hiding their topology, XRP Ledger na-
tively supports network crawling [3]. The public availability of
data enables researchers to determine the accurate topology of the
network.

In this paper, we provide an in-depth analysis of the graph-
theoretic properties of the XRP Ledger overlay network. Our main
contributions are as follows:

• We measure the structural properties of the network, as well
as their evolution over time. We discover a central compo-
nent of the network.

• We examine the stability of the nodes and their uptime. We
show that less than 50% of nodes maintained their presence
during the measurement period.

• Finally, we show that the network may be vulnerable to
Autonomous System failures.

The remainder of this paper is structured as follows. We discuss
related work in Section 2. In Section 3, we introduce the relevant
aspects of the XRP network. We describe our findings in Section 4
and in Section 5 we discuss network changes over time. Finally, we
conclude our work in Section 6.

2 RELATEDWORK
We discovered a significant corpus studying cryptocurrency net-
works, predominantly Bitcoin and Ethereum. We provide a sum-
mary of these works in this Section.

Miller et al. [23] were the first to determine the topology of the
Bitcoin network. The authors discovered "extremely high-degree
nodes", which persist in the network over time. Furthermore, the
Bitcoin network is not purely random. Delgado-Segura et al. [14]
inferred the topology of Bitcoin using orphaned transactions. Due
to the limitations of their method, they performed measurements
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only in the Bitcoin testnet. Their results indicate that the testnet is
not a random graph.

Paphitis et.al. [26] conducted a graph-theoretic analysis of sev-
eral different blockchain overlay networks. The results indicate that
blockchain overlays have varying network properties and degree
distributions. Despite the significant variance, there is a strong
correlation between the node’s session length and the degree. In
addition, the networks have small average shortest paths, but they
are not small-world. Finally, the overlay networks are resilient to
random node failures, but targeted attacks can considerably affect
their connectivity.

Similar studies focus on the Ethereum block-chain. Zhao et
al. [31] performed a temporal, evolutionary analysis of the Ethereum
blockchain interaction networks. The authors found a link between
anomalies in structural properties and real-life events. Furthermore,
they discovered that the network expansion follows a preferential
attachment model.

In a later study, Gao et al. [17] conducted a graph-theoretic
analysis of the peer-to-peer layer of the Ethereum network. They
discovered an abundance of nodes that do not contribute to the
Ethereum network. Furthermore, they showed that the degree distri-
bution does not follow a power-law. In contradiction to the work of
Paphitis et al., the authors found evidence of small-world property.

The research conducted in the XRP Ledger context is predom-
inantly on the Consensus Protocol. Chase et al. [10] provide a
detailed description and analysis of the Consensus Protocol. They
demonstrate that at least a 90% overlap of the UNLs is required to
ensure network safety. In a later study, Christodoulou et al. [11]
show when fewer than 20% of nodes are malicious, the overlap of
UNLs can be relaxed. Otherwise, an overlap of 90-99% is required. In
a similar study, Amores-Sesar et al. [6] demonstrate that, in the pres-
ence of Byzantine nodes, the ledger may fork under standard UNL
overlap requirements. Furthermore, the authors show that a single
Byzantine node may cause consensus protocol to lose liveliness.

In a different line of research, Roma et al. [29] studied the energy
efficiency of an XRP validator. They found that the annual validator
running cost is significantly lower than that of a miner.

Aoyama[7] provides a unique view of the XRP network from the
perspective of its transactions. They found a clear divide between
groups accepting transactions and groups receiving transactions.

To the best of our knowledge, there are no previous studies on
the topological properties of the XRP network. With this work, we
aim to close this gap.

3 BACKGROUND
The XRP Ledger consists of nodes running the rippled [16] software.
The interconnected rippled servers form the decentralized peer-to-
peer overlay network.

The node owners configure it to accept some number of inbound
and outbound connections. Each outgoing connection corresponds
to an incoming connection at another node. When nodes connect,
the communication over the link is bidirectional. We, therefore,
represent the overlay network as a directed graph. The direction of
an edge identifies the node that initiated the connection.

A node gets initial entry into the overlay network by connecting
to several hardcoded bootstrapping hubs. These hubs share the

addresses of other nodes with available inbound connections. The
node continues to establish links to others until it reaches the
desired limit of outgoing connections. When a node has reached its
maximum number of inbound links, it rejects further connection
attempts. At the time of data collection, the default number of
outgoing connections was 10.

A node periodically advertises to its peers when it has open in-
bound connection slots. Nodes store this information and communi-
cate it with their peers. As a result, available incoming connections
propagate throughout the network.

4 NETWORK ANALYSIS
Network Topology. We used the XRP Ledger Crawler [15] to

discover the nodes in the overlay network. The crawler starts by
querying the peers of a single rippled server1. It adds the new nodes
to a list and calls every node with a known IP address. The crawler
repeats this process until it no longer discovers new nodes. We
enriched the snapshot data with Autonomous System information.
We collected the XRP Ledger network snapshot for two months, be-
tween 05/01/2022 and 01/03/2022.We crawled the network topology
at one-hour intervals. In two months, we collected 1,290 snapshots.
We made the datasets available online for further research [5].

Table 1: Basic XRP network properties.

Mean STD
Nodes 948.53 18.54
Edges 15010.26 508.92
In-Degree 15.82 45.62
Out-Degree 15.82 19.94
Connected Component 1 0.00
Assortativity -0.48 0.02
Global Clustering Coefficient 0.76 0.02
Density 0.03 0.00
Avg. Shortest Path 2.31 0.03
Diameter 5.1 0.33

We summarize the basic properties of the XRP Ledger Network
in Table 1.

Size. The network is relatively small. We observed 948 nodes and
15,010 links on average. In comparison, Bitcoin has 50,000 nodes
and Ethereum 12,000 nodes [26]. We measured a fluctuation of 2%
in the total node count and 1% in the edge count.

In&Out Degrees. Each outgoing connection corresponds to an
incoming one, and the nodes report only the active links (not the
potential ones). Therefore, the means of incoming and outgoing
degrees are equal. The standard deviation of incoming connections
is 45.62. This is more than two times greater than that of outgoing
ones. The difference in deviations suggests that some nodes in
the network accept significantly more incoming connections than
others.

1We used r.ripple.com as the starting node
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(a) Total connection distribution. (b) Outgoing (top) and Incoming (bottom) degree distribution.

Figure 1: Illustrative node degree distribution.

Connected Components. A network is consistently connected
when, at any point in time, there is a path between two nodes in
the network. XRP Ledger is consistently connected, as indicated by
the single connected component and zero-value standard deviation.
However, this may also be due to the nature of the crawler. The
crawler can only discover the nodes that are members of the same
connected component as the initial entry node. However, any node
not connected to the core could not participate in the Ledger.

Network Density. Network Density is the proportion of the pos-
sible and actual connections in the network. Higher values indicate
a denser network. In dense networks, messages have a lower prop-
agation delay but at the cost of increased redundancy [8]. The XRP
Ledger network has a density of 0.03. In comparison, the density of
Bitcoin and Ethereum are 0.002 and 0.0006, respectively [26].

Clustering Coefficient. The Clustering Coefficient quantifies the
node’s tendency to form tightly knit groups with high-density ties.
The Global Clustering coefficient is 0.78. The low average shortest
path and high clustering coefficient of XRP Ledger Network suggest
that it may exhibit the small-world property.

4.1 Single Network
We conducted an in-depth analysis of a single XRP Ledger network
snapshot. We selected the sample whose node and edge counts
are the closest to the mean of the dataset. In the remainder of this
Section, we discuss our findings.

Degree Distribution. The network degree distribution impacts
many of its properties, such as message propagation delay and
the resilience of the network [8]. Random networks have binomial
degree distributions, whereas real-world networks contain a small
number of highly connected nodes that cannot be accounted for by
random models [9].

In Figure 1a, we illustrate the percentage of nodes (y-axis) with
a given number of combined incoming and outgoing connections
(x-axis). The distribution’s shape is similar to a gamma distribution

with a long right tail. The majority of nodes, 32.5%, have between
10 and 15 connections. At the tail end, nodes have over 325 peers,
six times more than nodes at the beginning of the tail.

In Figure 1b, we show separated incoming and outgoing dis-
tributions. The upper plot depicts the outgoing connections. The
majority of nodes establish between 1 and 22 connections. The
largest bin holds 50% of all the nodes, with ten peers. The spike
reflects the default rippled configuration. At the time of the data
collection, the default number of outgoing connections was 10. This
value was since updated to 21 [2]. Other nodes connect to between
22 and 90 peers. We also found three outliers; Two nodes with well
over 150 and one with just under 100 connections.

In the lower plot, we depict the incoming connection distribution.
The first bin contains 60% of nodes without incoming connections.
There is no incentive to accept connections, but there is a server
maintenance cost. Therefore, the majority of servers only establish
outgoing connections. In addition, the first bin may also include
validators. By default, for security reasons, they do not accept in-
coming connections.

The second largest group represents 19% of nodes with between
9 and 11 connections. The remaining bins contain 11% of nodes.
These account for the vast majority of the incoming connections in
the network. Nodes with around 150 incoming connections are the
hubs.

In Figure 2a, we illustrate the cumulative sum of incoming and
outgoing connections. There are two outgoing connection groups.
The first group, indicated by the exponential portion of the curve,
holds nodes whose out-degree is above the mean. It contains 1̃5% of
the nodes that account for 5̃0% of all connections. The second group,
indicated by the linear portion of the curve, holds the remaining
85% of the nodes. Finally, a deeper inspection revealed two outlier
nodes with over 150 outgoing connections.

We similarly grouped the incoming connections. The first group,
indicated by the sharp spike of the curve, dominates the overall
network connectivity. It contains 11% of nodes with an in-degree
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Figure 2: Representative network properties.

above the mean. These nodes account for 85% of incoming connec-
tions. The second group, depicted by the short linear portion of
the curve, contains 27% of nodes. They account for approx. 15%
of the incoming links. The final group, reflected by the plateau,
holds nodes without incoming connections and accounts for the
remaining 62% of nodes.

The incoming and outgoing connection distributions are heavy-
tailed. However, they seem to have different shapes. We discuss
which model best describes these distributions in Section 4.1. We
also observe that a small subset of nodes holds the majority of
connections. Our findings suggest that the network has a group of
authoritative nodes.

Scale-Free Property. Across scientific domains, it is often claimed
that real-world networks are scale-free. Details vary, but in gen-
eral, a network is scale-free, when nodes with degree 𝑘 follow a
power-law distribution 𝑘−𝛼 , where 𝛼 is the scaling criterion 𝛼 > 1.
However, other versions of this hypothesis have stronger restric-
tions, e.g. 2 < 𝛼 < 3 [8]. Cohen et al. show that scale-free networks
are highly resilient to random attacks but are vulnerable to targeted
attacks [12]. Therefore, it is important to understand the type of
degree distribution.

We used the fitter [1] Python library to find the most accu-
rate model. We used the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) to determine the quality of
a fit. A lower AIC or BIC value indicates a better fit. The analysis
in Section 4.1 revealed that the in and out degrees are likely to
have different distributions. Therefore we modelled the in, out, and
combined distributions separately. We found that the in-degree
distribution was best captured by the power-law distribution, with
𝛼 1.2. On the other hand, the out-degree was best described by the
generalized normal distribution, with a heavy, long tail. Likewise,
generalized normal distribution fits the overall degree distribution
the best.

The ubiquity of scale-free networks in the real world has been
questioned [9]. Therefore, we avoid claiming that the XRP network

is scale-free, as a deeper analysis is required. However, our findings
indicate that the XRP network is not random. Furthermore, the
power-law distribution fit of the in-degree offers further evidence
that the network relies on a subset of nodes for its connectivity.

Small-World Property. The well-studied small-world property in-
dicates that a short path connects any two nodes in the network [8].
An average shortest path l is short when 𝑙 ≈ 𝑙𝑛𝑁

𝑙𝑛⟨𝑘 ⟩ , where N is the
size of the network, and ⟨𝑘⟩ is the average degree.

Manfred Kochen and Ithiel de Sola Pool [13] formalized the
effect. Which was later popularized by the well-known Milgram
experiment that inspired the six degrees of separation phrase.

Network G is said to be small-world if it has a similar average
shortest path length but a greater clustering coefficient than an
equivalent random graph. Two graphs are equivalent when they
have an equal number of nodes. Let 𝐿𝑔 be the average shortest path
length of 𝐺 and 𝐶𝑔 its clustering coefficient. Equivalent properties
for a random graph are 𝐿𝑟𝑎𝑛𝑑 and 𝐶𝑟𝑎𝑛𝑑 . Network G is said to be
small-world if 𝐿𝑔 ≥ 𝐿𝑟𝑎𝑛𝑑 and 𝐶𝑔 >> 𝐶𝑟𝑎𝑛𝑑 .

A quantitative measure of small-worldness is expressed as fol-
lows: 𝛾𝑔 =

𝐶𝑔

𝐶𝑟𝑎𝑛𝑑
and 𝜆𝑔 =

𝐿𝑔
𝐿𝑟𝑎𝑛𝑑

, where 𝛾𝑔 is the clustering coeffi-
cient ratio and 𝜆𝑔 is the average shortest path ratio of network G
and an equivalent random graph. Then measure of small-worldness
is expressed as 𝑆 =

𝛾𝑔

𝜆𝑔
. A network is considered small-world when

𝑆 > 1 [19].
We used the Erdős–Rényi (ER) model to generate random graphs.

To ensure the robustness of the small-worldness calculation, we
used Monte Carlo sampling of 1000 equivalent ER graphs. We mea-
sured 𝑆 = 8.3 for the XRP Network. We, therefore, conclude that
the XRP network has the small-world property.

In/Out Degree Analysis. Link analysis is a method to identify
authoritative nodes in a network [21, 24]. We use it to identify
selfish nodes that do not reciprocate the connections they establish
by accepting incoming links.



Topology Analysis of the XRP Ledger SAC ’23, March 27 - March 31, 2023, Tallinn, Estonia

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1.5  1.7  1.9  2.1  2.3  2.5  2.7  2.9  3.1  3.3  3.5  3.7  3.9

R
el

at
iv

e 
fr

eq
ue

nc
y

Average shortest path length of the node to all others

Figure 3: Distribution of the average shortest path length. Figure 4: Node uptime CDF.

We express the link ratio as 𝜆 = 𝐼𝑛+1
𝑂𝑢𝑡+1 , a ratio between incoming

and outgoing number of connections. All degrees are incremented
by 1 to account for no incoming or outgoing connections. A high
ratio 𝜆 > 1 suggests that a node is altruistic - it establishes more
incoming connections than outgoing ones. Conversely, 𝜆 < 1 indi-
cates nodes that consume more connectivity than they provide.

We illustrate the ratio distribution in Figure 2b. We observe that
15% of nodes have 𝜆 << 1. Interestingly, we find that a significant
percentage of nodes have a 𝜆 = 0.09. These nodes use the default
rippled configuration, with ten outgoing and zero incoming con-
nections. In contrast, only about 10% of nodes have more incoming
than outgoing connections, and only 3% 𝜆 >> 1.

There are no direct incentives to participate in the XRP network.
However, running a node that accepts incoming connections re-
quires significant investment. Such a server has to be reliable and
available. Therefore, we see that most nodes connect to the network
as consumers, and only relatively few behave altruistically. In the
next section, we discuss the preference of nodes to connect to other
similar nodes.

Degree Correlation. The degree correlation captures the node’s
preference to form connections with others that are similar in some
way [8]. In the context of this study, we consider similarity in
terms of node degree. A network is assortative when nodes tend to
connect to others with a similar degree. In a disassortative network,
small-degree nodes prefer to link with high-degree nodes, and hubs
tend to avoid each other. Finally, a network is considered neutral
when the wiring between the nodes is random.

The degree correlation impacts the robustness of a network [30].
In an assortative network, node removal causes little fragmentation,
as high-degree nodes form a core group and are redundant. In
contrast, disassortative networks are easier to fragment [8]. High-
degree nodes connect to many small-degree nodes, forming a hub-
and-spoke structure. The small-degree nodes become disconnected
once a high-degree node fails.

Degree correlation coefficient r characterizes degree correlation
using a single number r [25]. In general it varies between −1 ≤ 𝑟 ≥
1 [8]. For 𝑟 > 0 the network is assortative, for 𝑟 = 0 the network
is neutral, and for 𝑟 < 0 the network is disassortative. The degree
correlation coefficient for XRP Ledger is −0.48. In comparison, the
degree correlation of an equivalent ER network is zero.We conclude

that the XRP Ledger network is disassortative. It has a hub-and-
spoke network structure and may be vulnerable to targeted attacks.

Average Shortest Path Distribution. The average shortest path is
the mean of all shortest paths from a node to every other node in the
network. We show the distribution of these distances in Figure 3.

The X-Axis is the average path length (in hops), rounded to the
tenth. The Y-Axis is the percentage of nodes with the given path
length. We observe that around 50% of the nodes have an average
distance between 2.2 and 2.3 hops. The distribution has a bell-like
shape with a long tail towards longer distances. IP networks have
a similar distribution, although the average path length is around
nine hops [22].

XRP Ledger uses broadcasting to propagate messages in the
network. The shortest path distribution suggests that the network’s
topology assists in timely message delivery.

Node Distribution over Autonomous Systems. The Autonomous
System (AS) number is a 32-bit unique identifier. It represents a
collection of IP networks administered by a single entity. We used
the AS number to compute the node distribution per AS. In the
remainder of this section, we discuss our findings.

Most systems contain only a handful of nodes, while a few AS
have a large number of nodes. Around 18% of discovered nodes did
not reveal their IP addresses. Therefore, we do not know their AS
details.

We split AS details across two tables to illustrate the heavy-tailed
nature of node distribution between the AS. Table 2 shows the top
ten AS by the number of nodes. These systems, owned by the largest
cloud service providers (Amazon, Google, Microsoft), hold nearly
62% of the XRP Ledger nodes. Routing failures in one or more
of the dominant Autonomous Systems may disrupt XRP Ledger
operations. Therefore, a concentration of nodes may represent a
weakness for the ledger.

The remaining 38% of the nodes are evenly distributed over 117
AS. Table 3 shows the number of AS possessing a given number
of nodes. We observe that 84 AS only host one XRP node. As the
node count per AS increases, the number of autonomous systems
rapidly approaches 1.

Node Uptime Distribution. The rippled software reports the num-
ber of seconds (uptime) it has been running. We plot the cumulative
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Figure 5: Temporal complimentary cumulative degree distribution.

Table 2: AS with the highest number of nodes.

Rank AS number AS name XRP nodes
1 16509 Amazon.com 177
2 24940 Hetzner Online 115
3 14618 Amazon.com 71
4 8987 Amazon DS Ireland 70
5 396982 Google 52
6 8075 Microsoft Corporation 25
7 16276 OVH 23
8 14061 DigitalOcean 18
9 38895 Amazon.com 18
10 134963 Alibaba.com Singapore 17

Table 3: Number of AS with a given number of nodes.

Nodes per AS Total number of AS
1 84
2 13
3 8
4 6
5 3
6 1
8 2

distribution function (CDF) of the reported uptime in Figure 4. The
X-Axis depicts the uptime in days, rounded to the closest hour.

The average uptime is 9.7 days, with a standard deviation of 18.4
days. Just under 18% of nodes reported uptime of fewer than 12
hours, whereas the oldest node was running for 259 days. Approxi-
mately 18% of nodes reported an uptime between 20 and 60 days,
and 2% were running for up to 80 days. We observed only a handful
of nodes older than 100 days.

5 TEMPORAL ANALYSIS
In this section, we discuss the evolution of the network over time.
We begin with a summary of the temporally stable properties. We
observe that the preference for small-degree nodes to connect to
high-degree nodes remains constant over time. Likewise, the global
clustering coefficient and average shortest path are stable. Further-
more, all network snapshots have the small-world property. These
findings suggest that there were no significant disruptions in the
network during the observation period.

The relatively small change in the network’s size had a non-
negligible effect on the average incoming and outgoing degree, as
indicated by the standard deviation. We dedicate the rest of this
section to discussing these changes.

Degree Distribution. We illustrate the complementary cumula-
tive distribution function (CCDF) of the node degrees in Figure 5.
Overall, both distributions have long tails, and their shapes remain
stable. However, we see some variance over time in both figures, as
indicated by the changing thickness of the plots.

We plot the CCDF of incoming connections in Figure 5a. Our
first observation is that consistently 6̃0% of nodes do not accept
incoming connections. Likewise, we see little variance at the tail-
end of the spectrum.We see slightly more variance in nodes close to
the mean and nodes with a degree between 250 and 300. We observe
the largest variance in nodes with in-degree between 50-150. Our
observations suggest that the nodes at the ends of the distribution
are saturated. They cannot accept new peers. Therefore, nodes in
the middle of the distribution handle the new connections to the
network. Furthermore, the majority of new nodes do not accept
incoming links.

We depicted the CCDF of the outgoing connections in Figure5b.
The long, thin tail of the distribution suggests the existence of a few
stable nodes with a high number of outgoing connections. We see
a much higher variance in the group of nodes with an out-degree
between 50 and 100. Finally, the majority of new nodes had an
out-degree under the mean.
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Figure 6: Temporal in/out degree ratio.
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Figure 7: Number of times a node was observed in a net-
work.

Two versions of the rippled software came out during the data
collection. Some observed variances may be explained by nodes
leaving the network to update their version. However, overall the
network has a stable member group.

In/Out Degree Analysis. In Figure 6, we display the degree ratio
plot for all captured snapshots. We observe little change in the over-
all degree ratio. The majority of nodes establish more outgoing than
incoming connections. Only 1̃0% of nodes establish more incoming
than outgoing connections.

The lack of change in the shape of the curve confirms our initial
observation that nodes do not reciprocate the connections they
consume.

Membership Stability. Over the collection period, we discovered
3,000 unique nodes. In Figure 7, we outline the lifespan of these
nodes. The green, striped bar indicates nodes with the shortest
lifespan. These nodes were present in around 5% of all network
snapshots. On the other side of the plot, the blue crossed bar repre-
sents the most stable nodes. They were present in at least 95% of all
the snapshots. The remaining 1/5th of the nodes have a gradually
decreasing lifespan.

The fully present nodes have an average in-degree of 26.1. In
comparison, the nodes we observed in the 5% of snapshots have an
average in-degree of 16. The difference between the values suggests
that the fully present nodes are the ones that form the network
backbone, which we discovered in Section 4.1.

We further analyzed the presence of the top 10% of the highest
in-degree nodes in the network over time. The group of the first
network snapshot contains 95 nodes. The last network snapshot
group holds 98 nodes. However, 23 nodes or 24% from the first
group are not present in the second group. Four nodes changed
their IDs but had the old IP addresses and similar degree profiles.
However, we did not find the other 19.

Node Uptime Over Time.
We measured the uptime of the 410 nodes present during every

network crawl. Figure 8 presents two illustrative examples of the
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Figure 8: Illustrative uptime of representative nodes.

observed uptime. We limit our selection to the most representative
nodes, in which we can observe clear patterns.

The top graph depicts the uptime graph of the 259 days old node
we discussed in Section 4.1. There are two distinct features in the
figure. The top line indicates that a server was running smoothly for
the obersvation period. In contrast, the bottom feature suggests a
server started and failed multiple times. These features suggest two
separate instances of rippled running behind a single IP address.

The bottom plot offers a better illustration of two servers behind
one IP address. There are two parallel lines of similar length. When
we query the server uptime, we receive a response from one of the
two servers. The fragmentation in the lines is information gaps
caused by a different server handling the uptime request.

In all plots, we notice inexplicable uptime values. These could
suggest that a new rippled instance started or, more worryingly,
uptime reporting issues. However, we leave the study of these
observations for future work.
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6 CONCLUSION & FUTUREWORK
A decentralized peer-to-peer overlay network forms the backbone
of the XRP Ledger. In this paper, we provided an in-depth analysis
of the graph-theoretic properties of this overlay.

We use a publicly available crawler to capture 1,290 snapshots
of the underlying overlay network over two months. We find that
it is significantly smaller than other blockchain overlay networks.
The nodes are connected via short paths and are tightly clustered.
Furthermore, the clusters tend to have a hub-and-spoke structure,
as shown by the high assortativity of the network. Unlike other
blockchain overlay networks, XRP has a small-world topology.

XRP does share some similarities with other blockchains. The
network degree distribution has an exponential-like shape. We did
not find conclusive evidence that it is scale-free. However, like other
blockchains, the topology is not random.

Overall, the size of the network is consistent over time. However,
we captured a significant amount of churn. Given these observa-
tions, we suspect that many nodes join the network to conduct
their business and leave shortly.

The XRP overlay network may be vulnerable to targeted attacks.
We discovered the existence of a small subset of influential nodes
that provide the backbone of the network connectivity. Furthermore,
a malicious actor can use the publicly available topology to identify
these nodes.

We revealed a vast disparity between nodes that accept incom-
ing connections and nodes that do not. Furthermore, link analy-
sis showed that many nodes do not accept incoming connections.
These nodes increase the dependence on the influential nodes. Thus,
contributing to the network centralization. We suspect that a lack
of financial incentive contributes to this behavior, as there are
significant costs associated with running a reliable node. Natural
centralization is a common problem in decentralized peer-to-peer
networks[20][18]. A common solution is to introduce communal
incentives or mandatory behavior.

Our results raise further questions about the security and vul-
nerability of the XRP Ledger. Research works [12] [27] show that
networks with a long-tail degree distribution are susceptible to tar-
geted attacks. For future work, we intend to evaluate the resilience
of the XRP network to random and targeted attacks, and to identify
mitigation strategies.
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