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ABSTRACT

We present direct constraints on galaxy intrinsic alignments (IAs) using the Dark Energy Survey Year 3 (DES Y3), the Extended
Baryon Oscillation Spectroscopic Survey (eBOSS), and its precursor, the Baryon Oscillation Spectroscopic Survey (BOSS).
Our measurements incorporate photometric red sequence (redMaGiC) galaxies from DES with median redshift z ~ 0.2-1.0,
luminous red galaxies from eBOSS at z ~ 0.8, and also an SDSS-IIT BOSS CMASS sample at z ~ 0.5. We measure two-point
IA correlations, which we fit using a model that includes lensing, magnification, and photometric redshift error. Fitting on scales
6 Mpch™' < r, <70 Mpch™!, we make a detection of IAs in each sample, at 50220 (assuming a simple one-parameter
model for IAs). Using these red samples, we measure the IA—luminosity relation. Our results are statistically consistent with
previous results, but offer a significant improvement in constraining power, particularly at low luminosity. With this improved
precision, we see detectable dependence on colour between broadly defined red samples. It is likely that a more sophisticated
approach than a binary red/blue split, which jointly considers colour and luminosity dependence in the IA signal, will be needed
in future. We also compare the various signal components at the best-fitting point in parameter space for each sample, and find
that magnification and lensing contribute ~ 2—18 per cent of the total signal. As precision continues to improve, it will certainly
be necessary to account for these effects in future direct IA measurements. Finally, we make equivalent measurements on a
sample of emission-line galaxies from eBOSS at z ~ 0.8. We constrain the non-linear alignment amplitude to be A; = 0.0770-33
(JA;] < 0.78 at 95 per cent CL).

Key words: gravitational lensing: weak — galaxies: statistics —cosmological parameters —cosmology: observations.

1 INTRODUCTION

The study of cosmic shear as a probe of the large-scale structure of

the Universe has developed rapidly over the past decade. Although its
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potential was recognized some time ago (see e.g. Jain & Seljak 1997;
Hu 1999), only more recently have high-precision cosmological
constraints been possible. In the past 10 yr, data sets have grown
to the point where weak lensing measurements alone have roughly
comparable power to constrain certain cosmological parameters as
the cosmic microwave background (CMB) temperature fluctuations.
Galaxy weak lensing and the CMB are both sensitive to the amplitude
of the matter power spectrum in the low-redshift Universe, Ss.
Although lensing allows one to probe the late-time matter field
directly, the primary temperature anisotropies of the CMB provide
a somewhat more complicated route, relying on an extrapolation
from the surface of last scattering to the present day. Ever since the
results of Heymans et al. (2013) lensing measurements have given
a typically lower Sg than the CMB; interestingly, this finding holds
across multiple lensing surveys, whose members have implemented
their own independent, well-tested, blind analyses (Kilbinger et al.
2013; Dark Energy Survey Collaboration 2016; Jee et al. 2016;
Hildebrandt et al. 2017, 2020; Troxel et al. 2018; Hikage et al.
2019; Hamana et al. 2020; Asgari et al. 2021; Amon et al. 2022;
Secco, Samuroff et al. 2022). The current level of (dis)agreement in
the full parameter space, as assessed using various different metrics
(Lemos et al. 2021), is at the level of up to ~2.5¢ (although it differs
significantly between surveys and probe combinations).

Future lensing surveys will have much smaller statistical uncer-
tainties compared with the current generation, which will greatly
increase the precision of weak lensing measurements. This will, in
turn, improve our constraining power and help us make sense of
the apparent tensions in the literature. It will also, however, require
a much tighter control of modelling errors in order to avoid our
analyses becoming dominated by systematic uncertainties. Although
much progress has been made in recent years, and the methods for
mitigating systematics are highly sophisticated, we still have some
way to go, as a field. One outstanding gap in our understanding
is the treatment of intrinsic alignments (IAs; Joachimi et al. 2015;
Kiessling et al. 2015; Kirk et al. 2015; Troxel & Ishak 2015).

IAs are shape correlations induced not by cosmological lensing,
but by local interactions, which can confuse the interpretation of
the cosmic shear measurement. Most obviously, galaxies that are
physically close by to each other experience the same background
tidal field, which couples their intrinsic shapes, inducing what are
known as II correlations. Additionally, GI (shear-intrinsic) correla-
tions are generated by the fact that the same foreground matter that
interacts with foreground galaxies also lenses background sources.
A significant amount of literature over the past few years has
focused on developing analytic models for IAs, which allow them
to be forward modelled and marginalized in cosmological analyses
(Catelan, Kamionkowski & Blandford 2001; Mackey, White &
Kamionkowski 2002; Hirata & Seljak 2004; Bridle & King 2007;
Blazek, Vlah & Seljak 2015; Blazek et al. 2019; Vlah, Chisari &
Schmidt 2020; Fortuna et al. 2021a).

Perhaps the most well-established approach is an analytic formal-
ism that assumes the intrinsic shapes of galaxies are linear in the
background tidal field, and frozen at the point of galaxy formation
(Catelan et al. 2001; Hirata & Seljak 2004). What became known
as the linear alignment (LA) model predicts both the GI and II
power spectra and is, by convention, normalized such that the free
amplitude A, is very roughly one for a typical lensing source sample
(i.e. a mixed colour sample, dominated by blue galaxies at z < 1).
A few years later, Hirata et al. (2007) and Bridle & King (2007)
introduced a modification, whereby the full non-linear matter power
spectrum is used in place of the linear version in the LA model
equations. This has been shown to improve the performance of the
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model on scales ~a few #~! Mpc (Blazek, McQuinn & Seljak 2011).
More recently, Blazek et al. (2015, 2019) take further steps along
this route. The perturbative model developed in those papers (known
as the Tidal Alignment and Tidal Torque model, TATT) extends the
LA model to include higher order terms. Although in principle there
are specific physical mechanisms for how correlations that are, for
example, quadratic in the tidal field arise, in practice the model is
agnostic to the underlying physics. An alternative approach, which
is more closely connected with the physics on sub-halo scales, is to
use a version of the halo model. The basic concept was introduced
a decade ago (Schneider & Bridle 2010), and more recently Fortuna
et al. (2021a) took significant steps towards developing a practical
implementation.

Although a useful tool for learning about IAs, pure theory cannot
provide a complete picture. Real data are very much necessary for
properly understanding their behaviour in the real universe. Broadly,
measurements can be classified as direct (i.e. using a statistic that
is dominated by IAs, with little or no contribution from lensing), or
simultaneous (i.e. where 1As contribute only a small part of the total
signal, and are inferred alongside cosmological and other parame-
ters). There have also been studies that have sought to do something
in between, using particular combinations of lensing data to try to
isolate an IA signal (e.g. Zhang 2010; Blazek et al. 2012). By this
definition, almost all cosmic shear studies to date are simultaneous IA
measurements. Although comparison is complicated by non-trivial
differences in the samples and measurement methods, as well as
the high-dimensional model space, such constraints have typically
found IA amplitudes for mixed lensing samples in the range A,
~ 0.1-1 (Troxel et al. 2018; Hildebrandt et al. 2020; Asgari et al.
2021; Secco et al. 2022). A smaller number of works have attempted
to understand how IAs enter simultaneous measurements in more
detail. For example, Heymans et al. (2013) split the CFHTLenS
source catalogue into early and late types and perform independent
cosmic shear analyses; they report A; ~ 0 in the bluer population,
and A; ~ 5 in early types (albeit with large error bars). Several
years later, Samuroff et al. (2019) implemented a similar colour-split
methodology to explore IAs in DES Y1, this time analysing red
and blue galaxies along with their cross-correlations simultaneously.
Assuming the non-linear alignment (NLA) model, that work found
qualitatively similar results, with blue galaxies consistent with zero
alignments and A ~ 3 in the red population. Using the TATT model,
it found the quadratic alignment amplitude A, to be <O at the level
of ~2¢ in both colour samples.

Direct measurements are typically restricted by the need for
precise estimates for the redshifts of individual galaxies, and for
this reason have tended to focus on bright red samples. A number of
such studies have been carried out over the years (Hirata et al. 2007;
Joachimi et al. 2011; Singh, Mandelbaum & More 2015; Johnston
et al. 2019; Fortuna et al. 2021b), and the alignment strength as
a function of luminosity is relatively well measured in brighter
populations. Since these samples tend to have compact redshift
distributions, any given study only weakly (if at all) constrains the
redshift evolution of IAs. In the case of bluer galaxies, a handful of
direct measurements have been attempted (Mandelbaum et al. 2011;
Tonegawa et al. 2018; Johnston et al. 2019), but the samples here are
typically small; though they make null detections and place upper
limits on the IA amplitude, the error bars are wide enough to allow for
significantly non-zero values. Although analogous IA measurements
can be and have been made on hydrodynamic simulations, these are
limited by finite box size, difficulty in constructing realistic galaxy
samples, and the accuracy of the simulations themselves (Codis et al.
2015; Hilbert et al. 2017; Samuroff, Mandelbaum & Blazek 2021).
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This paper falls into the category of direct measurements, and
represents the first such exercise using DES. We use a combination
of DES redMaGiC (or the ‘red sequence Matched filter Galaxy
Catalog’; photometric, but with precise per-galaxy redshift estimates)
and the overlapping BOSS and eBOSS surveys (spectroscopic) to
measure IA correlations in physical space, which we then fit using
a range of IA models. This work follows implicit IA constraints
from DES cosmic shear (Amon et al. 2022; Secco et al. 2022) and
galaxy—galaxy lensing (Prat et al. 2022; Sdnchez, Prat et al. 2022).
We should note that, while they use the same DES catalogues, the
samples in these earlier works are significantly different from ours,
and so we do not expect the IA signal to be the same.

The paper is structured as follows. In Section 2, we describe
the various data sets used in this work. Section 3 then outlines
measurements on these data, including redshifts, calibrated galaxy
shapes, and two-point correlations. In Section 4, we set out the
model used fit those measurements, and discuss our analysis choices
such as priors and scale cuts; a range of validation tests of that
theory pipeline, using real and simulated data, are outlined in
Section 5. Our main results are discussed in Section 6. We conclude in
Section 7.

2 DATA

In this section, we briefly describe the data sets used in this work,
and how the various galaxy samples are defined.

2.1 The Dark Energy Survey Year 3

The Dark Energy Survey is a 6-yr programme encompassing ~5000
square deg of the Southern sky using the Victor Blanco telescope
in Chile. The approximate footprint is shown (purple) in Fig. 1.
Images were taken in five photometric bands (g, r, i, z, and Y) with
a nominal depth of magnitude r ~ 24.1 (at full Y6 depth); although
all five are used for redshift estimation, galaxy shape measurements
are limited to riz due to difficulties in accurately estimating the
point spread function (PSF) in the g band (Jarvis et al. 2021), and
shallower imaging in the Y band (45 s exposures as opposed to
90 s in griz). The work described in this paper is based on data
collected during the first 3 yr of operation (the Y3 data). These
data cover the full area at slightly less than the full depth, with
an average of about five exposures per galaxy. A description of
the image processing and reduction pipeline, including background
subtraction and object detection, can be found in Morganson et al.
(2018) and Sevilla-Noarbe, Bechtol et al. (2021). The photometric
data set, before any further cuts, is known as the GOLD catalogue
(Sevilla-Noarbe et al. 2021). In Y3, this has a limiting magnitude i ~
23. Per-galaxy photometry measurements are obtained using multi-
object fitting (Drlica-Wagner et al. 2018), and shapes are measured
using the METACALIBRATION algorithm (Gatti, Sheldon et al. 2021;
see Section 3.1).

2.2 BOSS and eBOSS

We also use galaxies from both the Baryon Oscillation Spectroscopic
Survey (BOSS) and the Extended Baryon Oscillation Spectroscopic
Survey (eBOSS) in this paper, and so we discuss both briefly here.
The former is a spectroscopic sample collected as part of SDSS-III
(Eisenstein et al. 2011). Imaging in five photometric bands (ugriz)
and spectroscopy for BOSS were performed using the 2.5 m Sloan
Telescope at Apache Point Observatory in New Mexico (Gunn
et al. 2006; Smee et al. 2013). The observing program took place
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between autumn 2009 and spring 2014, and covered more than 1.5M
galaxies across 10 000 square deg of high-latitude sky. One can find
a description of the BOSS spectrographs and other details in Dawson
et al. (2013).

The eBOSS data are slightly more recent, being taken over the
period between summer 2014 and spring 2019, as part of SDSS-IV
(Blanton et al. 2017; see also Dawson et al. 2016 for a discussion of
the differences between BOSS and eBOSS). Again, spectroscopy
relied on the BOSS spectrographs on the Sloan Telescope. The
method for target selection differs slightly depending on the nature
of the galaxy sample. Emission-line galaxies (ELGs) were targeted
from the DECam Legacy Survey (DECaLS), which is deeper than
SDSS, detections, and photometry. DECaLS was carried out using
the DECam on the Blanco telescope, and covers an area of 6700
square deg in the region —20 deg < 6 < +30 deg to a 5o limiting
magnitude of 24.7,23.9, and 23.0 in the g, r, and z bands, respectively
(compared with 22.8, 22.3, and 20.4 for SDSS; Delubac et al. 2017).
Luminous red galaxy (LRG) targets, on the other hand, were selected
using SDSS riz imaging and infrared sky maps from the Wide-field
Infrared Survey Explorer (WISE; Wright et al. 2010).

The BOSS and eBOSS footprints are divided in two approximately
equal arearegions; the ELG and LRG samples used in this work come
from the Southern Galactic Cap (SGC), which contains roughly 600
square deg of overlap with the DES footprint.

2.3 Primary Galaxy samples

In this paper we consider five distinct samples (for a summary, see
Table 1). These are:

(i) eBOSS Emission Line Galaxies: Our eBOSS ELG sample
contains ~100 000 galaxies in the SGC region. The target selection
process in described in more detail in Raichoor et al. (2017), and
further discussion can be found in Tamone et al. (2020) and Raichoor
et al. (2021). The cuts that define the sample are relatively complex,
and include a g-band magnitude limit at g = 22.8 mag, as well as
selection in colour space designed to limit the redshift range. In total,
we have 92 954 galaxies, with a mean redshift of about 0.8. Although
this sample covers a similar range in redshift to the LRGs described
below, they are significantly bluer than any of our other samples (both
in apparent and rest-frame magnitudes), and are thus not expected to
exhibit strong IAs.

(i) e BOSS Luminous Red Galaxies: A sample of LRGs from
eBOSS DR16, drawn from the SGC region. Selection is performed
using the criteria outlined in Prakash et al. (2016) (see also Ross et al.
2020; Bautista et al. 2021; Rossi et al. 2021 for details on the LRG
sample); the cuts are primarily on extinction-corrected magnitudes
and colours (z < 19.95 mag). The redshift coverage is similar to that
of the ELG sample, with a mean of z ~ 0.8, and the total number of
galaxies is 22 244.

(iii) BOSS CMASS: The CMASS selection algorithm is de-
scribed in detail by Reid et al. (2016) (see their section 3.3 and
references therein). We additionally impose redshift cuts at z < 0.6
to ensure there is no overlap with the eBOSS LRGs, and at z > 0.4
to remove outliers below the intended CMASS redshift range as they
may have atypical colours and luminosities compared to those within
the intended redshift range. This leaves us with 49 820 galaxies.

(iv) redMaGiC high-z (RMH): A sample of red sequence galax-
ies from the DES Y3 redMaGiC catalogue. These objects are selected
using the algorithm outlined in Rozo et al. (2016). In brief, all
detected galaxies are fitted using a red sequence template, yielding a
best-fitting redshift, Zreamagic, and a derived luminosity L, as well as a
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Figure 1. The approximate footprint of the Dark Energy Survey (purple) and SDSS eBOSS (pink). The overlap in the Stripe 82 region (across the beak and

head of the hummingbird shape) is roughly 600 square deg.

Table 1. A summary of the properties of the shape samples used in this work. From left, we show the total number of galaxies after cuts, the area
of the footprint in square degrees, and the mean comoving number density (averaged over redshift). The value fp indicates the number of galaxies in
the density tracer sample relative to the size of the shape sample. Note that this reflects both the impact of METACALIBRATION cuts and, in the SDSS
samples, the geometric selection. The ellipticity dispersion o, is defined according to Heymans et al. 2012 (see also Gatti et al. 2021 equation 13).
Also shown are the ensemble mean redshift (z), the selection response for each sample (the shear response due to the galaxy shape catalogue cuts; see
Sheldon & Huff 2017), and the mean rest-frame colour and r-band magnitude. The means incorporate the weights described in Section 3.2.

No. of Galaxies fp Area [sq. deg.]  7ic [10* n3 Mpc’3] O, Mean redshift (z) Rg x 10* (M, — M) (M)
redMaGiC high-z 754574 1.13 4203 3.22 0.28 0.78 4.8 0.43 —21.6
redMaGiC low-z 1.61M 1.14 4203 7.64 0.26 0.46 23.1 0.43 —20.9
eBOSS ELGs 92954 1.10 604 1.95 0.24 0.84 —42 - -
eBOSS LRGs 22244 3.03 604 0.55 0.26 0.75 —4.7 0.37 —-21.9
CMASS 49820 3.35 604 4.11 0.23 0.52 —4.0 0.36 —-21.8

corresponding x2. If the galaxy falls above a minimum L and below
a maximum y?, it is included in the catalogue. The x2 threshold is
a function of redshift, such that the comoving density is constant
(Rozo et al. 2016, section 3.3). This process gives a set of bright red
galaxies with both well-constrained per-object photometric redshifts
(o,/(1 + z) < 0.02) and well-understood redshift error. Our high-z
sample consists of the upper two redshift bins of the lens sample
used in Dark Energy Survey Collaboration (2022), cut at z > 0.6.
The luminosity threshold is Ly, = L., where L, is a characteristic
luminosity, as defined in Rozo et al. (2016), section 3.1. The sample
before shape cuts comprises ~0.8 M galaxies over 4203 square deg.
The redshift distribution is relatively compact and peaks at a similar
value to our eBOSS samples at z ~ 0.8.

(v) redMaGiC low-z (RML): Our low-z redMaGiC sample is
defined in a similar way to redMaGiC high-z, with key differences.
Primarily, the luminosity threshold is lower at Ly;, = 0.5L, (Dark
Energy Survey Collaboration 2022). A cut on Zyedmagic 1S imposed at
z < 0.6, equivalent to the three lower lens bins from Dark Energy
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Survey Collaboration (2022). Without shape cuts, the catalogue
contains 1.84 M objects, with a median redshift of z ~ 0.5.

In each case we define density and shape tracer selections. The
former uses all galaxies passing the baseline cuts described above,
and also are not required to be within the DES-SDSS overlap. In
each sample, we obtain galaxy shape estimates by matching galaxies
to the DES Y3 METACALIBRATION catalogue (Gatti et al. 2021). We
construct a KDTree of METACALIBRATION galaxy angular positions,
which is used to locate the nearest DES neighbour for each eBOSS
or redMaGiC object. A match tolerance of 1 arcsec is imposed to
exclude spurious matches, and objects outside the overlap region
between the two surveys. To obtain a subset of galaxies with reliable
shapes, we then impose the cuts recommended by Gatti et al. (2021)
(their section 4.2), which includes selections based on size and
signal-to-noise ratio, as well as a cut designed to remove binary star
contamination. We show the estimated redshift distributions n(z) for
each sample in the top panel of Fig. 2 (see Section 3.4 for more detail

20z Iudy gg uo 3senb Aq zz2.2022./5612/2/72S/210ne/seiu/wod dno-olwapede//:sdjy Wwoij papeojumoq



—— redMaGiC low-z
6 [ —— redMaGiC high-z
—— eBOSS ELGs
34 | eBOSS LRGs
= —— CMASS
2t
O k
5
i, 10 r
2
5
= 6t
=
— 4 F
X
s 27
0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Redshift z

Figure 2. Top: The estimated redshift distributions of the various shape
samples used in this work. Each n(z) is normalized to integrate to 1 over
the redshift range shown. The n(z)s for the spectroscopic samples are shown
as shaded curves, and are estimated as the histogram of single-galaxy z
estimates. The unshaded n(z)s are estimated by stacking random samples
from the redMaGiC redshift PDFs. Bottom: The same, but showing comoving
number density as a function of redshift. Note that n. is weakly cosmology-
dependent, and so we assume the fiducial cosmology specified in Section 4.
Note that both the n(z) and n.(z) are qualitatively the same for the density
tracer samples. The shape cuts remove galaxies, but do not change the shape
or mean redshift of these distributions significantly.

about how these are estimated), and the comoving number density
n.(z) in the bottom.

2.4 Comparison sample: LOWZ

In addition to the five catalogues discussed above, we also use
BOSS LOWZ (Dawson et al. 2013) as a reference sample. The point
of including these data is to test our measurement and inference
pipelines by comparing against the baseline analysis of Singh et al.
(2015). LOWZ is a convenient choice for this, since there are
relatively detailed published results using a very similar methodology
to our own.

LOWZ is a sample of LRGs from BOSS DR11. The sample covers
a footprint of 9243 square deg and is approximately volume-limited
over the redshift range 0.16 < z < 0.36; a sharp cut-off is imposed
at these bounds. Unlike the other samples, we do not match to Y3
METACALIBRATION to obtain shape estimates, but simply use the pre-
existing catalogues (Reyes et al. 2012). For all other catalogue-level
quantities (redshifts, k¥ + e-corrected magnitudes etc), we likewise
use the pre-computed columns (see Singh et al. 2015 for details).
After cuts, the LOWZ shape and density tracer samples contain
159620 and 173 854 galaxies, respectively.

3 MEASUREMENTS

3.1 Shapes

The galaxy shapes for all samples except LOWZ are obtained by
matching to the DES Y3 METACALIBRATION catalogue. Discussion
of the shape measurement algorithm, and catalogue level tests, can
be found in Gatti et al. (2021). The basic measurement is a maximum
likelihood fit of an elliptical Gaussian to each galaxy. This process
uses a Markov chain Monte Carlo, and is performed over multiple
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exposures and in bands riz simultaneously. In order to calibrate biases
due to image noise, model bias, and other effects, the fit is repeated
four times using artificially PSF-deconvolved and resheared images,
a technique known as METACALIBRATION. For details of how the
METACALIBRATION corrections are applied in this particular context
see Section 3.6; for the general case and validation on simulations
see Huff & Mandelbaum (2017), Sheldon & Huff (2017), and Zuntz
et al. (2018).

3.2 Galaxy weights

For galaxy clustering and galaxy—shape measurements, we use the
recommended weights for each sample. Descriptions of these can be
found in Raichoor et al. (2017) and Ross et al. (2020) (for eBOSS),
Reid et al. (2016) (for CMASS), and Rodriguez-Monroy et al. (2022)
(redMaGiC). These are designed to correct for correlations between
the observed galaxy number density and various survey properties,
which can be induced by systematics. For the SDSS samples, there
are additional weights designed to account for fibre collisions and
redshift failures, which are combined as per the references above.

It is worth noting briefly that previous works (see e.g. Ross
et al. 2020) identified a possible systematic due to variations in the
redshift distributions of the eBOSS samples within the SGC and NGC
regions, which is not explicitly corrected by the weights. Although
relatively mild for eBOSS LRGs, it was found to be significant
enough to need correcting for in a Redshift Space Distortion (RSD)
analysis using the ELG sample (Tamone et al. 2020; Bautista et al.
2021; de Mattia et al. 2021). We do not, however, believe this to
be a significant concern for our analysis, given the fact that our
IA constraint (from the projected shape—galaxy and shape—shape
correlations, w, 4 + w4 ) is constrained to the DES-eBOSS overlap
region, which is a relatively small part of the overall eBOSS SGC
footprint. Although we do use the full area for the galaxy—galaxy two-
point measurement w,, given that the result from ELGs is essentially
anull detection (see Section 6.1), we do not expect a small systematic
affecting the galaxy bias to be a significant factor.

The shape catalogues for the different samples are all ultimately
subsets of Y3 METACALIBRATION, and so we adopt the inverse
variance weights discussed in Gatti et al. (2021).

3.3 Magnification coefficients

In addition to imprinting a coherent pattern in their shapes, lensing
by large-scale structure also modulates the observed brightness and
size of galaxies, an effect known as magnification. In order to model
the impact on our galaxy number counts, we require an estimate for
the slope of the faint end of the galaxy luminosity function for each of
our density tracer samples (see e.g. Mandelbaum et al. 2005; Elvin-
Poole et al. 2023 and Joachimi & Bridle 2010’s appendix A). Our
fiducial estimates are derived via what we refer to as the ‘flux-only’
method (Elvin-Poole et al. 2023). In the cases of eBOSS, CMASS,
and LOWZ the process is straightforward. For a particular catalogue
containing N, galaxies, with a given pre-existing selection function,
we apply a small achromatic shift m to the observed magnitudes.
We reapply the magnitude cuts using this perturbed catalogue, and
count how many galaxies are lost to the bright-end cut 6N_. The
sign of ém is then flipped, and the process repeated to estimate the
number shifted up over the faint-end threshold § NV, . The total change
in number counts is then simply:

SN(8k) =8N, —8N_ (1)
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with 8k = 0.5(107%"2> — 1). For small perturbations we can measure
the slope of N(8«)/Ny with §x numerically. This gives us a quantity
Elvin-Poole et al. (2023) referred to as Cgumple, Which describes the
linear response of the observed galaxy number density to a small
change in k. We define a quantity referred to as the magnification
coefficient as & = Cgumple/2 (see Section 4 for how this enters the
theory predictions).

For redMaGiC, the sample selection is more complex. For this
reason, we start with the Y3 GOLD catalogue (Sevilla-Noarbe et al.
2021), perturb the magnitudes, and rerun the redMaGiC algorithm
for each §m. We then estimate « in the same way as before. We find
ofML = 1,101 for redMaGiC low-z and o™ = 1.719 for redMaGiC
high-z. For our LRG, ELG and CMASS samples we find oR¢ =
2.020, o6 = 1.177, and «™ASS = 0.529, respectively.

In addition to the flux-only estimates, we have alternative values,
derived using an algorithm called BALROG (Suchyta et al. 2016;
Everett et al. 2022): «®™" =2.11 4+ 0.32 and «®™M" = 0.20 + 0.29 for
redMaGiC high-z and low-z. BALROG works by inserting additional
synthetic galaxies into real photometric images. By running the
detection and measurement processes on the altered BALROG images,
one can sample the selection function of the survey and explore
effects such as magnification and blending. Although these, in
principle, capture size selection effects that the flux-only numbers
cannot (see Elvin-Poole et al. 2023 for discussion), they are also
relatively noisy. We also have BALROG estimates for the redMaGiC
samples only, and not CMASS/eBOSS. We thus use the flux-only
estimates as our fiducial choice; we do, however, confirm that in the
two redMaGiC samples our basic conclusions are unaffected by this
choice (see Section 6.3).

3.4 Redshift distributions

3.4.1 Spectroscopic redshifts for BOSS and eBOSS

For details on the BOSS and eBOSS spectroscopic redshift pipelines
see Comparat et al. (2016), Hutchinson et al. (2016), and Bolton
et al. (2012). In brief, galaxy spectra are collected using the BOSS
spectrographs on the Sloan Telescope (Smee et al. 2013); the
instrument has two identical spectrographs, each of which has a
red and a blue camera, collectively covering the wavelength range
360-1040 nm, and 1000 optical fibres, 3 arcsec in diameter, and
with a collision scale of 62 arcsec (corresponding to a physical scale
of ~0.6 h~! Mpc at z = 0.8). Each object is observed in multiple
exposures, which are 15 min in duration and can be distributed
across several nights. All good data for a particular galaxy are co-
added together during the spectroscopic data reduction process. Fits
are made to each observed spectrum using a number of templates
and combinations of templates evaluated for all allowed redshifts. A
point estimate redshift is then obtained by maximizing the likelihood.
The estimated redshift distributions used in our theory modelling of
the CMASS and eBOSS samples (the shaded curves in the top panel
of Fig. 2) are, then, histograms of these point estimates. Note that in
making these histograms, we apply the METACALIBRATION weights
described in Section 3.2.

3.4.2 Photometric redshifts

Unlike with the SDSS samples, we do not have spectroscopic
redshifts for our DES redMaGiC samples. Rather, for each galaxy, we
have a redshift PDF, which is obtained using DES photometry. The
redMaGiC algorithm (Rozo et al. 2016) relies on the fact that red se-
quence galaxies have a relatively tight magnitude—colour—redshift re-
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lation, which can be calibrated using overlapping spectroscopic data
(Cawthon et al. 2022). Individual galaxies are fit using the process
described in Section 2.3. Where it is necessary to have point redshift
estimates (e.g. for the binning in Section 3.6), we use the value that
maximizes the likelihood, Zredmagic. We follow Dark Energy Survey
Collaboration (2022) and estimate the ensemble n(z)s by stacking
samples from the full non-Gaussian redshift PDFs (see also Porredon
et al. 2021 for discussion). These are shown in Fig. 2 (upper panel).

In addition to the n(z) for each sample and point estimates
themselves, our modelling also requires an estimate for the per-
galaxy redshift uncertainty as a function of redshift. In the cases
of eBOSS and CMASS, the spectral resolution allows very precise
redshift estimates, and so we can assume this to be negligible. In the
case of redMaGiC we obtain error estimates using a representative
subsample of the Y3 redMaGiC catalogues with spectra (see Pandey
et al. 2022). Specifically, we divide the sample into bins of zgc,
and within each bin we evaluate the histogram p([Zsamp — Zspec]/[1
+ Zpec]), where zgump are the PDF draws used in estimating the n(z)
above. Since we have four PDF samples per galaxy', we compute
four histograms, and average them, giving us a noisy estimate for the
redshift error in the bin centred on z... We find that the histograms
are well approximated by a Gaussian distribution, and so we fit
each histogram to obtain a width o,. This process leaves us with
0.(z), an estimate for the redshift scatter as a function of redshift,
which we interpolate and incorporate into the modelling described in
Section 4.4.2. Although there is some slight variation with redshift,
a constant o,/(1 4+ z) ~ 0.01 is a reasonable approximation, with
o./(1 + z) < 0.02 over the range z = 0.2-1.1 (see Porredon et al.
2021, and in particular their fig. 1).

3.5 Luminosities, colours, and absolute magnitudes

To obtain rest-frame absolute magnitudes for our galaxy catalogues,
we first convert the best-fitting 7-band fluxes from METACALIBRATION
to apparent magnitudes, r = 30 — 2.Slogf,. The corresponding
absolute magnitude is then given by

M} =r"—5(logDy(z") — 1) — K(2), @

where the index i denotes a galaxy, z' is the best point estimate redshift
for that galaxy, and D is the corresponding luminosity distance. Note
that D; is in units of pch™'. We calculate a k + e-correction K for
each galaxy based on the redshift using the stellar synthesis models
of Bruzual & Charlot (2003). In brief, we employ two models: one
assuming a passively evolving spectral energy distribution, and the
other passive but with a single instantaneous burst of star formation
at z = 9.84. These models give us predicted colours and a k + e-
correction as a function of z. For each galaxy i, we then compare the
observed r — i colour with the model predictions; if the observed
colour is redder than the predicted one from the passive model, we
use that model. If it is bluer than the one from the passive plus
star formation burst model, then we use that one. Otherwise, we
calculate a weighted average of the two k + e-corrections. In all
cases, we correct the magnitudes to z = 0. Note that these star

IThis a product of how the redMaGiC lens redshift distributions were
estimated for DES Y3. Instead of saving the full non-Gaussian PDF as a
function of redshift, four Monte Carlo samples were saved per galaxy. These
were then combined to give the estimate for the distribution for the overall
sample n(z). Note this is different from the methodology for the fiducial
Y3 lens sample, MAGLIM. See e.g. section C1 of Pandey et al. (2022) and
section B2 of Dark Energy Survey Collaboration (2022) for details.
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Figure 3. The r-band luminosity distributions of the red samples used in
this work. We divide each sample, with the exception of eBOSS LRGs, into
roughly equal number bins in luminosity, as indicated by the shading. See
Section 3.5 for details.

formation models are designed to describe elliptical galaxies, and
we do not apply them to our ELG sample.

The above procedure is based on the assumption that the overall
stellar population in a given galaxy sample is a mixture of two sub-
populations, such that the observed colours are a linear combination
of the colours of those components; these observed colours are
therefore subject to a linear combination of the associated k 4+
e-corrections. Note that in practice the templates do not differ
enormously over the redshift range of our samples. Indeed, we
recompute the k 4 e-corrections using the two models separately,
and find no significant change in the distributions shown in Fig. 3.

The luminosity relative to a pivot Ly is then given by log (L,/Ly) =
—(M, — My)/2.5, where M, is a fixed reference magnitude; we adopt

IAs with DES and eBOSS 2201
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Figure 4. Top: The rest-frame colour—magnitude diagram for the samples
used in this work. The quantities here are k + e-corrected magnitudes in
the DES filters. In the main galaxy samples (solid lines), these are estimated
using METACALIBRATION fluxes. For LOWZ, which is kept as a validation
sample, we use the pre-computed absolute magnitudes described in Singh
etal. (2015). The contours are defined relative to the peak, at 0.5 x, and 0.25 x
the maximum density. Bottom: The equivalent colour—-magnitude space, but
using apparent magnitudes. Note that we do not have k 4 e-corrections for
eBOSS ELGs, so they appear in the lower panel only.

avalue My = —22 for the sake of comparability with previous results.
For the purposes of constraining trends in alignment properties, we
subdivide our red galaxy samples into luminosity bins. These are
shown in Fig. 3, and are defined such that they contain roughly
equal numbers of galaxies (with the exception of the bright end of
redMaGiC high-z, where the signal-to-noise ratio was sufficient to
allow us to further split the highest L bin in two.). Between them, our
four samples cover a range of roughly log (L,/Ly) = [—0.9, 0.4], with
redMaGiC low-z in particular providing excellent coverage of the
fainter end. We also show the rest-frame colour-magnitude diagram
for these red samples (as well as LOWZ) in the top panel of Fig. 4.
As can be seen here, although we group these samples together as
‘red’, there is some significant variation in colour at fixed luminosity.
We will return to this in the context of our main results in Section 9.
The lower panel shows the same colour—-magnitude space, but using
apparent magnitudes. Here, the distributions are relatively elongated,
primarily due to the colour—redshift degeneracy; that is, a galaxy of
given rest-frame magnitude and colour observed at high redshift will
appear both fainter and redder than the same object observed at low
redshift.
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3.6 Two-point correlations

Following a number of previous IA studies, our primary measure-
ments are constructed using a modified Landy—Szalay estimator
(Landy & Szalay 1993). For two-point galaxy clustering, this has
the form

(D — Rp)(D — Rp)
Eqo(rp, T) = R"D R, 2 3)

The measurement is made on a grid of line-of-sight and perpendicular
(comoving) separation, rp, and IT. For a particular sample of galaxies,
we have a density tracer catalogue and a second catalogue of random
points tracing the same footprint and redshift distribution. DD, RpD,
and RpRp are the weighted counts of galaxy—galaxy, galaxy—random,
and random-random pairs in a given bin of 7, and IT. To reduce shot
noise, the randoms Ry, are oversampled relative to the actual data by
a factor of >10.
Similarly, one can estimate the shape—density cross correlation:

S+(D — Rp)
RpRs
where again D represents the density sample, and Ry and Rp are

randoms matching the shape and density samples, respectively. The
shape—shape correlation is constructed in a similar way:

§g+(rpv H) = ) (4)

§++("ps ) = RSRS. ©)
We also define
SiSi= ) exlBlajes(@lp), ©)
o, Bip#a
SiD= > ei(Bla). @)
a,Bip#a

Here, the sum runs over galaxies (or random points) at a given
separation drawn from the two catalogues; e, (8|x) is the tangential
ellipticity component of galaxy i, defined by the separation vector
with galaxy B. The quantity S;Rp is the same, but using the
positions of random points in place of galaxies. One can write down
a set of analogous equations for &, ., £, and &, ., which are
identical to the above, but with galaxy ellipticities rotated by 45
deg. Any astrophysical contribution to these, however, is expected to
be negligible (due to parity arguments) and for this reason they are
commonly used for null testing.

The &(rp, IT) measurements are then projected along the line of
sight as

Mmax
wantr) = [ &ty . ®)
We use TREECORR? (Jarvis, Bernstein & Jain 2004) for all two-
point measurements with bin_slop = 0.0. We use 20 logarithmically
spaced bins in rp, over the range 0.1-200 h~! Mpc. For the line-
of-sight binning we set I, = 100 2~' Mpc, with 20 linearly
spaced bins between £I1,,,,. The resulting data vectors are shown
in Fig. 5. For parts of our analysis, we also use data vectors in bins
of luminosity. These are shown in Fig. 6. The shaded regions here
indicate physical scales excluded from our fiducial analysis. Further
discussion of the fits to these data can be found in Section 6. The
choice of Il is driven by signal-to-noise considerations in the
photometric samples, and follows Singh et al. (2015). We also note
that since we are including a galaxy—galaxy lensing (Section 4) term

Zhttp://rmjarvis.github.io/TreeCorr (version 4.1.1)
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in our model, our choice here is not limited by the need to suppress
such contributions.

The DES shape catalogues use a technique called METACALIBRA-
TION for accurately inferring an underlying shear signal from galaxy
shape estimates. We apply response corrections in exactly the same
way as in the DES Y3 cosmology analyses (Gatti et al. 2021). That
is, we have a mean scale-independent factor (R), which is applied at
the level of the two-point measurements as

1 1
Eer — ﬁsg+v i — (R)ZSH’ )

where the angular brackets indicate an average over galaxies, and
(R) = (R, + Ry), or the sum of a shear response and a selection
term for the shape sample in question.

Note that Ry corrects only for shape catalogue selection cuts.
Since we do not have either redMaGiC re-runs or the eBOSS selection
on sheared images, any bias induced by the basic sample selection
is not included in this correction. That said, the estimated selection
response for an early/late split of the DES Y1 catalogues was found
to be of the order of 107*, which is easily subdominant to our
uncertainties (see Samuroff et al. 2019 Section 4.1). We thus judge
it safe to ignore this missing correction for the purposes of our
analysis.

4 MODELLING AND ANALYSIS CHOICES

The following section sets out our theoretical modelling choices.
Our aim here is to connect an observed joint data vector, wg, +
w, + + wy, with underlying physical quantities, which can be
calculated from theory. Each of these data vector components is a
combination of two observable fields 6;, and p, or the observed galaxy
overdensity in counts and shapes. If we assume the former is the
sum of contributions from gravitational clustering and magnification,
8¢ = 8¢ + 8, and the latter is the combination of intrinsic shape
alignments and lensing, 7 = ¥’ + y%, we have a total of four
correlations contributing to each observable. The sections below will
set out how we evaluate these model ingredients

In reality, the observed shear is weighted by the overdensity of
shape galaxies, y — (1 + §,5)7 (see e.g. Hirata & Seljak 2004
equation (6)). This contributes an additional IA term, which is
explicitly included in TATT (although not NLA; Blazek et al. 2019).
For conciseness, we absorb this factor into the definition of y’
when discussing the TATT model. Note that since the overdensity
weighting applies to the total observed shear, not just the intrinsic
component, it also gives rise to terms that scale as y% x 8.5, an
effect known as source clustering. An analogous effect called source
magnification enters in a similar way. These extra terms, however,
are expected to be small at the level of projected observables, and
so we neglect them here (see e.g. Krause et al. 2021 section 5B and
Schmidt et al. 2009 for discussion).

We start in Sections 4.1-4.3 by describing how we calculate the
3D power spectra that enter each of our models. Section 4.4 then sets
out how these are combined and projected to give predictions for
the observable correlations. We discuss how the covariance matrix
of the data is estimated in Section 4.5. Finally, Section 4.6 discusses
how we choose a set of scale cuts, which restrict our analysis to the
regime where our model is thought to be sufficient.

When it is necessary to assume a background cosmology, we
use a flat Lambda cold dark matter (ACDM) model peos = (R,
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Figure 5. IA correlations measured from DES Y3 and eBOSS. The rows show (top/bottom) position—shape and shape—shape correlations, as defined in the text.
The shaded bands indicate scales excluded from our NLA (light grey) and TATT (darker grey) fits. The strong scale dependence in the measured wg 4 on small
scales is thought to arise from a combination of one-halo IA correlations and non-linear galaxy bias, both of which become significant at r, < ~1 h~! Mpc. The
solid lines are the best-fitting NLA predictions for each data set at r, > 6 h~1 Mpc. We also show the sum of the terms arising from lensing and magnification
separately (the dashed lines); for clarity, this sub-dominant contribution is scaled up by a factor of 10. Note that the vertical axes vary between panels.
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Figure 6. The measured galaxy—shape correlations from redMaGiC and eBOSS LRGs. The columns (left to right) show bins of k + e-corrected r-band
luminosity (as defined in Table 4). The rows show (top to bottom, colours the same as in Fig. 5) redMaGiC low-z (purple), redMaGiC high-z (red), CMASS
(green), and LRGs (pink). Note that the luminosity bins are not the same in the three cases; we use the LX notation for convenience, but the bin edges and widths
are defined for a particular sample (shown in the upper left of each panel; see also Section 3.5 for discussion of how the luminosity bins are defined). We also
show the best-fitting NLA model prediction for each measurement (solid line). As above, points within the shaded grey regions are excluded from the fits. Note
that we do not fit the TATT model to our luminosity-binned measurements and so, unlike in Fig. 5, there is only one set of grey bands shown here.
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Qy, 03, h, ng, Q,h%) = (0.3, 0.048, 0.82, 0.69, 0.97, 0.00083%).
Although our results are not strongly cosmology dependent, we do
quantify the impact of this choice in Section 6. The linear matter
power spectrum is computed using the Boltzmann code camB*
(Lewis, Challinor & Lasenby 2000), with non-linear corrections
using HALOFIT (Takahashi et al. 2012) (this choice is not expected
to have a significant bearing on our results, given our scale cuts;
see the tests in Section 4.6). Parameter inference is performed
within CoSMOSIS® (Zuntz et al. 2015) using the MULTINEST nested
sampling algorithm® (Feroz et al. 2019).

4.1 IA power spectra

To model the power spectra of the intrinsic alignment GI and II
signals (respectively, the correlation between y’ and yS, and y’
with itself), we use the TATT model (Blazek et al. 2019). The
basic idea is that the intrinsic shape field ¥’ can be expressed as
an expansion in powers of the background tidal field s and matter
overdensity &:

yi;' = Cls,-j +C]3(SS,'J' +C223ikskj + - (10)
k

Note that while § is a scalar at any given position x, ¥’ and s are
3 x 3 tensors. The above expansion can be propagated to the two-
point level to give expressions for Pg and Py (see Blazek et al. 2019).
Our implementation of the TATT model is identical to that of Secco
et al. (2022) and Krause et al. (2021). We refer the reader to those
papers for specifics, and in particular Section D2 and equations (21)
and (22) of Secco et al. (2022) for the full expressions.

The TATT model has three free parameters, which we refer to as
Ay, Ay, and bra. One can also parametrize the redshift dependence of
all the contributions, if desired, as in previous cosmological analyses.
Since our individual samples do not have a particularly wide redshift
range, however, this is not an especially useful thing to do in our case.
On the other hand, one can look at the evolution between samples.
Considering galaxies with similar colour and luminosity properties in
Appendix E, we find no evidence for z evolution over a significantly
wider range than the coverage of any one of our samples alone. The
two amplitudes modulate the strength of IA contributions that are
linear and quadratic in s:

pcritQmCI CZ — A2 5locritQmC—'l i (11)

D(z) D(2)
where D(z) is the linear growth factor, p. is the critical density,
and C; is a constant, which by convention is fixed to a value of
5 x 107'*Mg Mpc? h=2.7 The other parameter, brs, is known as the

Ci=-4

3This corresponds to a total sum of the neutrino masses, > m, = 0.077 eV.
“http://camb.info/

Shttps://bitbucket.org/joezuntz/cosmosis/wiki/Home; v1.6, ‘des-y3’ branch
of cosmosis-standard-library, ‘develop’ branch of cosmosis

6v3.6; efficiency = 0.3, live_points = 500

"Note that there are versions of this equation in the literature that feature
the rescaled growth factor D(z) = (1 + z)D(z) in place of the unweighted
D(z). They are, however, consistent with the formulation shown here. One
can work back from e.g. the pre-factor in equation (18) of Hirata & Seljak
(2004) by making the substitution p = perit X 2m(1 + 23 anda = 1/(1 + 2).
The factors of (1 + z) cancel, and we are left with the left-hand expression
in equation (11). Note that there is a subtle distinction in the normalization
convention. Although Hirata & Seljak (2004) normalize D to equal 1 during
the epoch of matter domination, more recent work (including this one and
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Table 2. The free parameters and priors for the models discussed in this
paper. The upper three rows are IA model parameters, while the lower two
describe galaxy bias. We include two sets of priors here: one for our TATT
model analyses (which extends to rp > 2 h~! Mpc), and one for NLA (rp >
6 h~! Mpc).

Parameter Description TATT Prior ~ NLA Prior
Aq Lin. TA amplitude U[-38, 8] U[-8, 8]
Ay Quadratic IA amplitude U[-38, 8] 8[0]
bta Density wt. coefficient U[-6, 6] 8[0]

by Lin. galaxy bias Ulo, 3] uU[o0, 3]
by Second-order galaxy bias U[-3, 3] U[-3, 3]

density weighting coefficient, and controls the size of the Cs term
above as Clg = bTACI.

We also consider a nested subspace of the full TATT model. The
simplest subspace, known as the NLA model (Bridle & King 2007;
Hirata et al. 2007), has only one free parameter, A;. The y/ field is
assumed to be purely linear in the tidal field (effectively setting C, =
0, Ci5 = 0 in equation (10)), and so the IA power spectra have the
same shape as the non-linear matter power spectra, but with a scaling
factor applied.

In all samples considered, we vary the IA parameters with wide
flat priors, as given in Table 2.5

4.2 Galaxy power spectrum

Galaxy bias, or the mapping between the matter and galaxy overden-
sity fields, is an important source of uncertainty in any analysis that
relies on galaxy—shape correlations. Similar to y/ in Section 4.1, one
can expand the galaxy overdensity in terms of § (McDonald 2006;
Baldauf et al. 2010; Saito et al. 2014):

1 1
ag=ma+5m(ﬁ—wﬁn+§mdﬁ—w¥»+bmw+u~
(12)

Here, v is the sum of several different third-order terms with the
same scaling (see Saito et al. 2014). On large enough scales, it is
often sufficient to assume a simple linear relation §, = b4; in this
case the galaxy power spectrum is simply

Py, (k, 2) = by Ps(k, 2), (13)

where the galaxy bias b; depends on the galaxy sample, but is
independent of wave number. P;s is the non-linear matter power
spectrum. Unfortunately, we see evidence of the need for a more
sophisticated approach in some of our samples. This is discussed
further in Section 4.6, where we see that redMaGiC high-z and
eBOSS LRGs favour a more complicated bias model, even on
relatively large scales.

Using equation (12) one can write down a more complete expres-
sion for Ps, (e.g. in Krause et al. 2021 equation 38). Our fiducial
model for the galaxy power spectrum includes all terms in the
expansion above, for which we use the implementation in FASTPT

Bridle & King 2007) have tended to impose D(z = 0) = 1. This has a roughly
30 per cent impact on the magnitude of Cj.

8Note that these differ slightly from those used in Dark Energy Survey
Collaboration (2022). Although the DES Y3 priors were chosen to be
uninformative for that particular sample, we are considering significantly
different (often much redder) populations of galaxies. We thus opt to allow
for more extreme IA values.
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(McEwen et al. 2016). Assuming co-evolution, however, we can re-
duce the number of free parameters to two, with b = —4/7(1 — by)
and b3y, = by — 1 (see Saito et al. 2014, and also Pandey et al. 2020
and Krause et al. 2021 for further discussion). For all samples, we
marginalize over these galaxy bias parameters with wide flat priors
b, =[0.05, 3], b, =[-3, 3].

For the power spectra entering w, 4 we assume linear bias (despite
using equation (12) for Ps,):

Psa(k, z) = by Pai(k, 2), (14)
and similarly,
Ps5(k, 2) = by Ps(k, 2), (15)

where b, is the same as in equation (12) above. In principle, non-
linear galaxy bias, and also various cross terms between TATT
parameters and higher order bias are expected to contribute to wyg 4.
In all cases considered here, however, w, ;. has significantly lower
signal-to-noise ratio than the equivalent galaxy—galaxy correlations,
and thus the latter dominate the fits for galaxy bias. To within the
level of uncertainty the TATT model is able to sufficiently describe
the potential impact of correlations between non-linear galaxy bias
and IA through the free brs parameter (see the similarity of these
non-linear terms in Blazek et al. 2015). For fits using the NLA model,
we exclude scales where non-linear bias correlations are significant
(see Section 4.6 for discussion of how the scale cuts are chosen).
Although brs cannot absorb the non-linear bias contributions to the
galaxy—galaxy lensing signal §,G so easily, this term is subdominant
on all scales and for all samples (~ 5-10 per cent of the total w,
signal; see Section 6.3). We test the impact on the galaxy—galaxy
lensing signal by substituting the non-linear bias expression from
equation (12) into Ps,s, in place of the approximation in equation
(15). Using the best fit bias parameters for each of our samples, we
find a roughly 10 percent change in ws,g on scales <6h~! Mpc;
compared to the full signal including IA, however, the impact is at
the sub- percentage level. Implementing a fully consistent non-linear
model is a work in progress, but we do not expect this to have a
significant impact given the statistical uncertainties in current data
sets.

4.3 Magnification and lensing power spectra

As well as contributions due to galaxy clustering and intrinsic
shape correlations, magnification can have an effect on direct 1A
measurements. Its impact is to alter the observed galaxy number
density in a patch of sky as Sg = 8, + 6,,. Similarly, the observed
shear in a set of galaxies has both an IA contribution, and one from
cosmological lensing: 7 = y! + y 5. At the two-point level, one has
two additional terms in the gg correlation (galaxy-magnification and
magnification-magnification; §,6, and §,,8,,), and two in the galaxy—
shape correlation (magnification-intrinsic and magnification-lensing;
8,y'and 8,y %). Similarly, w,, has contributions from the standard
II and GI power spectra, but also a pure cosmic shear term y9y©.
On large scales, the additional magnification power spectra are all
related to galaxy and IA power spectra via magnification coefficients
o (see Table 3, and Joachimi & Bridle 2010; Joachimi et al. 2021;
von Wietersheim-Kramsta et al. 2021; Elvin-Poole et al. 2023 for
discussion).

A number of different methods for constraining o have been
discussed in the literature. We describe how we estimate o for each
density sample in Section 3.3. In short, our fiducial estimates are
obtained by artificially perturbing the observed galaxy magnitudes
(i.e. a flux-only estimate). For the two redMaGiC samples, we

IAs with DES and eBOSS 2205

Table 3. A summary of the various contributing terms to our observables
Wgg, Wg 4, and w4 4. The kernel column lists all the possible combinations
for q(",ql{ in equation (23) (where each g is either the lensing kernel g or the
galaxy PDF p). For each one we show the kernel (either lensing efficiency
or redshift distribution), and the relevant power spectrum included in the
Limber integral. The pre-factors « are magnification coefficients, which
are defined in Section 3.3. Note that in later sections we refer to these
terms simply by their subscripts (e.g. ppu for magnification—magnification
correlations).

Correlation Kernel Power Spectrum Correlation Function
5y o By g
8.8, gy 4(a' — (& — 1)Ps Wy
8.8g g'p 2(ad = 1) Ps,s Wee
Sev” p'p Ps 1 We 4
SMVI glP/ Z(OCi — DPgi Wg +
8y r'g Psys W+
8y ¢ g'¢ 2a" = 1P e+
viy! i Py Wt
yoy! g Pgr Wt
yoy@ g'¢ P Wy

have estimates from BALROG, which we use for validation (see
Section 6.2.3).

4.4 Modelling projected correlation functions

4.4.1 Modelling spectroscopic data

Given power spectra from any model, one can convert into projected
correlation functions of the sort discussed in Section 3.6 via Hankel
transforms. In the case of perfect knowledge of individual galaxy
redshifts (i.e. spectroscopic redshifts) one has:

. ’ dk k
w (rp) = — / dzW (2) / 5 Tatkur) Pty 2), (16)

with the Roman indices indicating the two galaxy samples, and J,
being a Bessel function of the first kind of order v. The projection
kernel is given by (see Mandelbaum et al. 2011’s Appendix A)

Gy @@ { / n @ (2) ]‘
P x2()dy Az dZ)(2(Z)d)</dz '

In the above, n'(z) is the estimated redshift distribution for sample i,
and x(z) is the comoving line-of-sight distance corresponding to a
redshift z. The other two-point correlations follow by analogy as:

. - . dk  k
wlhry = bip [ [ S

and

wi (ry) = / Az (2)

a7

Jolkrp) Ps, (k1, 2), (18)

dk  k
X / zinl [Jo(klrp)+J4(kLrp)j| Pu(ky, 7). (19)

In each case, the theory prediction amounts to a projection of a power
spectrum along the redshift axis, and then a Bessel integral.

4.4.2 Modelling IA correlations in the presence of photo-z error

When dealing with spectroscopic galaxy samples, one can in general
safely assume that the associated redshift error is much smaller than
the distance scales of interest. This assumption does not hold for
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photometric samples such as redMaGiC, which means the modelling
is slightly more complicated. The impact of redshift error is to
scatter galaxies along the line of sight; this in effect shuffles galaxies
between IT bins and so redistributes power out along the line of
sight. In principle the effect should wash out when integrating
over a sufficiently large range in II. In reality, however, one must
choose finite IT limits, and widening the integration range to large
separations is not necessarily desirable, since it can degrade the
signal-to-noise ratio of the measurement. This leads to an overall
suppression of the measured correlations due to photo-z scatter.
Another impact of photo-z error is that it can boost additional (non-
IA) signals. That is, galaxy pairs allocated to small IT bins may
actually be physically quite distant. Such pairs carry little local 11
signal, but they do tend to increase the lensing and magnification
contributions. The consequence of this is that one must account
for the IT cut-off in the model. To do so we follow the method
set out in Joachimi et al. (2011), of which we provide an outline
below.

To begin, we compute angular spectra from the IA and galaxy—
galaxy power spectra. Incorporating all of the magnification and
lensing contributions to number counts and shear, one has:

ij o _ ij ij ij
Cis, = Csgo, + Coo, + Cs, + Cis, (20)
ij _ ol ij ij ij
ng? = Cagyl + Cs#yl + ngyG + CauyG 21
C;jf = C;j’yl + C;,jlyc + C;,ijl + C;jcyo, (22)

where the subscripts §,, y’, 8, and 9 indicate magnification,
intrinsic shape, gravitationally induced galaxy overdensity and
gravitational shear’ Implicitly, the II term here is the E-mode
autocorrelation, CEF ;. In principle, one could also include CEE ,,
which can be calculated assuming a particular IA model. We do not
include this in our model because (a) typically any IA induced B
modes are small (Hirata & Seljak 2004; Blazek et al. 2019) and (b)
they contribute only to w, ., where the signal-to-noise ratio of our
measurements is low. The Limber integrals used to compute each of
the angular power spectra then have the form:

(X'1x@D) gi (x'Ix(z2))

72

i Xhor ,Qé
Cihllzi, 22) = / dx
0 X

X Pup (k = ¢ _;f)'s,z(x’)) . (23)

The kernel ¢ is either the lensing efficiency g, or the error
distribution p, according to Table 3. The power spectrum P,
corresponding to a given C(¢) are also shown in Table 3. Here,
pi(z'|z) is the conditional probability distribution for the true redshift
of a galaxy from sample i, which has a best-estimate redshift at z.
The estimates for p at any given z are obtained using the method
described in Section 3.4. Note that this is different from the more
common form of the Limber integral in the context of cosmological
lensing, which uses the ensemble redshift distribution n(z), not the
per-galaxy PDF. One can then transform from harmonic to angular
space as follows:

. Lo
£ 0121 22) = / deeT,(60)Ca (0121, 2), 24)
0

9Note that in the following sections, when discussing the various contributions
to our observables, we will refer to some of these terms by their subscripts
(i.e. u for magnification, I for intrinsic shapes, G for lensing-induced shear).
This helps to simplify the notation by avoiding too many double-subscripts
and makes the discussion clearer later on.
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where the order of the Bessel function v depends on the type of
correlation (v = 0 for ab = §,8,, v = 2 for ab=14§,p or v =
(0, 4) for ab = py), as in Section 4.4.1. As argued in Joachimi
et al. (2011), from here one can obtain the photometric correlation
function ééj,,(rp, I1, z,) using a simple coordinate transformation
(see equation A1l in that paper, which also defines z,, = (z; +
72)/2). Finally, the projected correlation function as a function of
perpendicular physical separation is expressed as,

Mmax ..

way(rp) = / dIl / dzm W (zm)€, (1, T1, Zm) (25
—IMmax

With these ingredients, the recipe for generating a theory prediction

for the cross correlation between photometric samples i and j is as

follows.

(i) Choose an initial value of Il and z,. Use Joachimi et al.
(2011)’s equation A11 to obtain z; and z,, and evaluate the per-galaxy
error distributions for the two samples at these redshift values.

(ii) Carry out the Limber integral in equation (23) with these error
distributions to obtain C(£|zy, z7).

(iii) Carry out the Hankel transform in equation (24) with the
appropriate Bessel kernel to obtain £(0|z;, z2).

(iv) Perform the coordinate transform, such that £(0|z;, z2) —
&(n, p [T, Zm).

(v) Repeat the above steps with varying IT and z,,, to give a three-
dimensional grid & (ry, I1, zim).

(vi) Integrate over the redshift kernel Y/(z) and then over line-of-
sight separation with the appropriate Iy, to obtain w (7).

We confirm that our implementation of this method returns the
same results as equations (16)—(19) in the limit of narrow photo-z
distributions and wide IT bounds. We also verify that, with a matching
cosmology and set of input parameters, our modelling code can
reproduce fig. 5 from Joachimi et al. (2011). Our fiducial modelling
set-up is to use the steps above to predict w, 4 and w 4.

For w,,, however, it is not sufficient to assume RSDs have
negligible impact (see Appendix A and Fig. Al). For this reason,
we instead choose to use a sum over multipoles to obtain the
anisotropic galaxy—galaxy correlation &4, which we then integrate
over IT (equation (A1)-(A6)). We do, however, still need to account
for lensing, magnification and photo-z suppression. Unlike with w, .,
where the combined impact of these effects are seen to have some
non-trivial scale dependence, this is much less true for wg,; using
the recipe set out above, we generate theory data vectors for each
sample with and without photo-z scatter, lensing, and magnification,
finding that correction factor, a(r,) = wz‘;” /Wy, is flat with r, to
good approximation over scales 2 < r, < 70h~! Mpc. Given this,
we derive a single multiplicative factor for each sample, which
we apply to the theory predictions as wg,, — awg,. We obtain
agmy = 0.83 and agyp = 0.87 for our two redMaGiC samples,
respectively.

4.5 Covariance matrix

We estimate the covariance of our data using an analytic prescription.
This approach has a number of advantages over data-based estimators
such as jackknife, which have been widely used in the past (Hirata
et al. 2007; Joachimi et al. 2011; Mandelbaum et al. 2011; Singh
et al. 2015; Fortuna et al. 2021b). For example, it can be used
on large scales where jackknife breaks down, and it is unaffected
by noise in the data. Note, though, we are assuming here that the
covariance of our data is dominated by the Gaussian component, and
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any connected 4pt and super sample covariance contributions are neg-
ligible for our purposes (see e.g. Takada & Jain 2009; Takada & Hu
2013).

The covariance is assumed to be dominated by two components:
one from cosmic variance, and one from shape and shot noise Cov =
Cov® + CovSN. For any two elements of our data vector in scale
bins centred on ry, ,, and 7, ,,, the cosmic variance part is given by:

COVCV [wij (rp.m)wkl(rp,n)]
1 kdk
A(Z(_‘) / ﬁe)” (krp,m)®k[(krp,n)
x [P (k)Pji(k) + Py(k) Py (k)] , (26)

where the lower indices define the tracer type (i.e. g or +). The
term ©y(x) is a Bessel function of the first kind (or a sum of two);
specifically J,, Jo and Jy + J4 for ij = g +, gg and ++ respectively.
The power spectra are Ps,; for ij = g +, Ps, for gg and Py for
++. Note that we do not include secondary contributions from
magnification and lensing, but this is not expected to significantly
change our results. The pre-factor A is the projected comoving area
of the footprint (including masking), at a characteristic redshift z,.

The noise contribution is simply given by (Schneider et al. 2002;
Hu & Jain 2004; Joachimi & Bridle 2010):

0.2

CovSN [wng (rp,nl)wg+(rp,n)] = Sn % > 27
NP
1
COVSN [wgg(rp,m)wgg (rp.n)] = 8 Ws (28)
p
SN ol
Cov [w++(rp.m)w++(rp,n)] = 5mn@a (29)

for our three observables respectively. Since our measurements with
TREECORR give us the number of galaxy pairs in each bin Ny(rp, n)
without extra computational cost, we use these exact numbers here.
The shape dispersion o, is measured for each sample, using the
Heymans et al. (2012) definition, and incorporating the correct
response weighting (see Gatti et al. 2021 equation 13).

We perform initial fits using a preliminary covariance matrix,
which we then replace with an updated version with the best-fitting
values of Ay, by, and b, entering equation (26) above. Since w, 4
is shape noise dominated for all samples and on all but the largest
scales (and w. entirely so, on all scales), this update makes little
difference to the final IA parameter constraints.

We compare our analytic predictions with jackknife estimates in
Appendix C, and find good agreement on scales 2 2~! Mpc < rp <
70 h~" Mpc.

4.6 Scale cuts

We impose scale cuts on all three of our measured correlations when
fitting, to mitigate model uncertainty. In brief, our minimum scales
are rp min = (2, 6, 6) h~! Mpc for NLA and Tp, min = (2,2,2) h~!' Mpc
for TATT (where the ordering is wgg, W, 4, w44 ). For the latter two
this is driven by the fact that we know our IA models start to break
down on certain scales, and rely on assumptions that are valid only
in specific regimes (NLA on scales above ~5 — 10 h~! Mpc, TATT
down to ~1-2 h~! Mpc; Bridle & King 2007; Blazek et al. 2015).
The motivation behind the w,, scale cuts is discussed in more detail
in Section 4.6.1.

We also impose an upper cut at 70 2~! Mpc, a choice motivated
by the null tests in Appendix B. This maximum scale is applied to
all three correlations for all samples. Large-scale systematics, most
prominently PSF modelling error, are known to modulate galaxy

IAs with DES and eBOSS 2207

number counts at large r,,, but are difficult to model analytically. We
thus choose to remove the affected scales.

4.6.1 Galaxy clustering

Since scale cuts are designed to mitigate modelling uncertainty, the
choice of 7, min for wg, is unavoidably connected to the choice of
galaxy bias model. We first seek to test whether there are a set of
cuts that will allow us to use a simple, scale-independent linear
bias model. For each of our samples, one can estimate an effective
bias

Wy, (rp)

by(ry) = :
§rv) wss(rp)

(30)
where W,, is the measured projected galaxy—galaxy correlation.
The matter—matter correlation in the denominator is the theoretical
prediction, and so assumes a particular cosmology; we test the impact
of switching between reasonably different cosmologies (specifically,
the best-fitting values from DES Y1 and Planck 2018), and find our
results are only very weakly sensitive to this choice. For each sample,
we fit b;, twice, once using a scale-independent constant b;,(rp) =b,
and again using a linear-exponential function b;,(rp) =ae ™ +b.
Although this is not a physically motivated bias model, it has
qualitatively the correct behaviour, increasing rapidly on small scales
and converging to a constant on large scales. The exact form was
motivated by fig. D1 of Samuroff et al. (2021), where the bias in
MustrisTNG is seen to scale roughly as e™"» plus a constant. In
each case, we compute the Bayesian Information Criterion (Schwarz
1978),

BIC = klogNys + 7%, (31

where k is the number of model parameters (either 1 or 2, in the
constant/log-linear cases, respectively) and Ny is the number of data
points included in the fit. The x 2 for model M is computed using the
full data covariance matrix, as X},Z,I = [y, — b;’Mw&;]C_'[ti)gg —
b;.,’ »Wss]. The difference ABIC then gives us an indicator of which
model is preferred by the data — that is, whether linear bias is
sufficient, in a statistical sense, to describe the measured w,,. We
repeat this process using a range of lower scale cuts rp pin, resulting
in the curves shown in Fig. 7. Although eBOSS ELGs and redMaGiC
low-z appear to be relatively consistent with a linear bias model, even
down to small scales, this is not true in all of our samples. The picture
is slightly different in the case of redMaGiC high-z and eBOSS
LRGs, with the latter in particular preferring the more complicated
bias scaling for almost any choice of minimum scale.

The above test indicates that, at least for some of our samples,
even at relatively large scales (above 6 h~! Mpc), the linear bias
approximation does not provide a good description of the data.
Motivated by these findings, our fiducial scale cuts are as follows.
We fit w, for all samples down to 7, min = 2 h! Mpc, with a model
that includes non-linear galaxy bias (as described in Section 4.4). At
2 h~! Mpc we are still well outside the one-halo regime, even for
the largest objects in our samples, and so the perturbative expansion
in equation (12) may still be sufficiently accurate. To help further
validate this choice, we perform additional fits to wg, alone, using
very large scales (>10 2~! Mpc) and linear bias. For each sample, we
calculate the shift relative to the b, value obtained using the fiducial
set-up, and verify that it is not sufficient to produce an appreciable
bias in w, 4.
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Figure 7. The difference in Bayesian Information Criterion between two
simple models of effective galaxy bias, as a function of the lower scale cut
Tp, min applied to w .. Negative values indicate that the linear bias assumption
is justified by the data; positive values, on the contrary, indicate that the dark-
matter-only correlation wgs with a scale-independent multiplicative factor
is not a good representation of wge. The different colours show fits to the
galaxy—galaxy correlation from various DES and eBOSS samples. As in Fig.
5, the shaded region shows scales excluded in our fiducial analysis set-up.

4.6.2 IA correlations

For w4 and w,iy, rpmin = 6 h! Mpc for our NLA fits (see
Section 6), primarily driven by IA modelling uncertainty. The TATT
model allows us to push to slightly smaller scales, and so here we
adopt 7, min = 2 h~' Mpc.

We test the robustness of our chosen w, . cuts to a number of
unmodelled effects in Fig. 8. Specifically, we generate theory data
vectors containing (a) a matter power spectrum contaminated with
OWLS-like baryonic feedback (considered as an extreme scenario;
see the next paragraph); (b) a one-halo IA signal, and (c) projection
effects in the 3D correlation function. In each case, we choose a
reference IA model A; = 3.5 (roughly the NLA best fit for redMaGiC
in Section 6). We do this using both redMaGiC high-z and redMaGiC
low-z redshift distributions, since these are representative of the range
in z covered by our samples. The fractional differences in Fig. 8 are
calculated relative to a reference data vector, which does not contain
the contamination.

For (a), we follow Krause et al. (2021) in taking the OWLS-
AGN scenario (Schaye et al. 2010; van Daalen et al. 2011) as
an upper limit on the extremity of baryon feedback in the late-
time matter power spectrum (see also Secco et al. 2022 fig. 5 and
the accompanying discussion). The baseline matter power spectrum
from CAMB is modified in such a way as to preserve the original
cosmology but introduce high-k distortions which mimic the impact
of baryons in the OWLS hydrodynamic simulations (Dark Energy
Survey Collaboration 2016, equation 8). As we can see in Fig. 8,
baryonic feedback is entirely negligible at r,, > 6 h~! Mpc. Its impact
increases rapidly in the intermediate (2 A~' Mpc < r, < 6 h~! Mpc)
window, but is still only ~ 2 — 5 per cent at r, = 2 h~' Mpc, which
is well below the level of statistical error on these scales. If we
take the TATT best fit from each redMaGiC sample (fit on scales
rp > 2 h™' Mpc; see Section 6.2.2), we obtain A xzyy = 0.05 and
Axgy = 0.45.

We carry out a similar exercise with small scale alignments. To get
a rough gauge of the impact of one-halo contributions, we use the
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fitting formulae provided by Schneider & Bridle (2010). We choose
to update the overall amplitude of the model to the value found by
Singh et al. (2015) (a, = 0.08); since this matches LOWZ LRGs,
which are somewhat brighter and redder than any of our samples,
we expect this to be an upper estimate for the impact of intra-halo
physics. Shown by the dotted line in Fig. 8, we again see the effect
to be vanishing on scales r, > 6 h~' Mpc and slightly larger but still
subdominant to errors at r, > 2 h~' Mpc.

Finally, we also test the impact of a kind of projection effect
that induces anisotropy in &, 1 (r,, IT) (dashed lines in Fig. 8). First
identified by Singh & Mandelbaum (2016), the idea is that galaxy
alignments along the IT direction cannot be measured using shapes
measured in 2D projected space; the result is a suppression of the
observed alignment signal that scales as f =r, /(rlf + 1'[2)%. As
one might intuitively expect from the geometry, f diverges from
1 as TIT increases, at fixed r,. Looking at Fig. 8 we can see that
the impact is primarily at large r,. To understand this, consider
the fact that particular IT scales do not contribute equally to the
projected correlation at all r, (for an illustration of this, see Singh &
Mandelbaum 2016 fig. 10c). That is, at r, = 1 h~'Mpc, even
considerable suppression at large IT matters very little; that regime
contributes almost nothing to the line-of-sight integral, since &,
scales approximately as 1/72, which at small rp and large IT is
essentially 1/T1%. At r, = 30 A~ Mpc, on the other hand, large T
scales contribute much more. Although the geometric suppression at
a given IT is less important for this larger r,value, the background
scaling of &, dominates, and so the overall impact on wg, is
larger. This can be modelled in an analogous way to RSDs in galaxy
clustering. Although not included in our fiducial model, we can
assess the impact in the NLA case using the recipe set out in Singh &
Mandelbaum (2016), section 2.3. Fortunately we see the impact
is largely contained at separations above r, > 70 h~! Mpc, which
are already removed by the upper r,cut. Within the range of scales
used for our fits, the impact is comfortably smaller than our error
bars.

5 PIPELINE TESTING

In this section, we describe the various tests of the analysis pipeline,
and the measurements themselves. These include tests of the theory
predictions by comparing different code implementations. We seek
to validate the pipeline by reanalysing an existing data set and
comparing with published results. Finally, we discuss null tests on
the data, designed to be sensitive to residual systematics.

5.1 Reanalysing LOWZ

For the purposes of validating our measurements and demonstrating
comparability with previous results, we partially reanalyse the BOSS
LOWZ catalogues of Singh et al. (2015) (see also Section 2). LOWZ
makes a good test data set for several reasons — not least that it has
documented, relatively high-signal-to-noise ratio w, , measurements
in the literature, and the redshift catalogue is publicly available. We
repeat all measurement steps downstream from shape catalogues
using our pipeline, and then fit the resulting correlation functions
with our modelling set-up. At the level of data vectors, our pipeline
can reproduce the galaxy clustering and galaxy—shape correlations,
wg, and wy 4, of Singh et al. (2015) to sub- percent precision on
scales [2,70] A~ Mpc.

We also analyse the LOWZ data on large scales, and compare our
results to those of Singh et al. (2015); when matching their analysis
choices exactly (NLA model, linear bias, r, > 6 h~! Mpc), we recover
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Figure 8. The impact of higher order effects on galaxy—shape correlations. We include both redMaGiC high-z and redMaGiC low-z to show that our conclusions
hold across the redshift range of our samples. As before, the shaded bands indicate scales removed in our fiducial NLA (light grey) and TATT (dark grey)
analyses. We include here the impact of baryonic feedback, as represented by OWLS-AGN (solid line); the impact of one-halo alignment physics, as represented
by the model of Schneider & Bridle (2010) (dotted), and signal boosting due to anisotropy in the 3D correlation (Singh & Mandelbaum 2016; dashed).
In all cases, the unmodelled effects appear at the level of a few percent or less on the scales we use, which is below the level of our statistical precision

(Owg, /wg+ ~ 10-15 per cent on scales rp > 2 h~! Mpc).

their reported best fit in the A; — b; plane to <<lo. Our fiducial
analysis configuration differs from the published LOWZ paper in a
number of ways. Most significantly, these include:

(i) Our assumed cosmology is that set out in Section 4, instead of
WMAPY (Hinshaw et al. 2013). This results in a slight increase in
the amplitude of the matter power spectrum, which in turn results
in a slightly lower alignment amplitude. Note that our fiducial
cosmology includes massive neutrinos, which modify the non-linear
P(k) slightly. The difference in /4 also alters the measurement of the
two-point functions earlier in the pipeline (via the redshift to distance
conversion), although this difference is minimal.

(i) Our fiducial data vector includes galaxy—galaxy, galaxy-—
shape, and shape—shape correlations, whereas Singh et al. (2015)
include only the former two.

(iii) We use the Takahashi et al. (2012) version of halofit to
compute the non-linear matter power spectrum, whereas Singh et al.
(2015) use a slightly older release (Smith et al. 2003).

(iv) We use an analytic calculation to estimate the data vector co-
variance matrix, instead of jackknife. While the two agree relatively
well, slight differences in the relative weighting of different scales in
both w,, and w . are apparent.

(v) We include contributions from lensing and magnification
in our model. Although this has little impact on a low-redshift
spectroscopic data set such as LOWZ, it has a larger bearing on
our eBOSS and redMaGiC samples.

We show a more detailed comparison at the parameter level in
Appendix C. In short, when matching the analysis choices of Singh
et al. (2015), we can reproduce their published IA results almost
exactly. Switching to our fiducial NLA set-up produces a very similar
result, with a small reduction in the size of the error bars.

5.2 Null tests

A number of systematics (e.g. PSF modelling errors) can lead to a
non-zero mean shear. Unlike multiplicative biases, we can look for
such effects directly using the data. We find no evidence of such a
signal in any of the samples considered here, with |{e;)| ~ 10~ in
all cases. A number of other tests for systematic induced signals are
presented in Gatti et al. (2021); they find no evidence for correlations
between the response-corrected shear and PSF shape and size, or for
a statistically significant B-mode signal.

We also measure one additional null signal. Constructing w, x
involves the same basic quantities as w, ., but measuring the shape
component that is rotated 45 deg with respect to the radial/tangential
direction. Like lensing, astrophysical processes such as IAs, to
first order, should induce only tangential/radial correlations.'? Non-
zero detection of a cross signal, then, is a red flag for residual
measurement systematics. For all samples considered, we find these
additional measurements to be consistent with zero within the scales
r, < 70 h~' Mpe. Details of the measurements can be found in
Appendix B.

6 RESULTS

This section presents the results of our analyses on the various
samples. Although we will focus on IAs, it is worth bearing in mind
that each analysis also includes two free galaxy bias parameters. The

10 Although some IA models predict a non-zero B-mode contribution (see e.g.
Catelan et al. 2001; Hirata & Seljak 2004; Blazek et al. 2019), which translates
into correlations in the cross ellipticity component, such effects appear only
in the II alignment spectra. Given that our constraints are dominated by g
+ correlations, these terms are thought to be easily subdominant to noise in
current surveys.

MNRAS 524, 2195-2223 (2023)

20z Iudy gg uo 3senb Aq zz2.2022./5612/2/72S/210ne/seiu/wod dno-olwapede//:sdjy Wwoij papeojumoq



2210  S. Samuroff et al.

DES Y3 RMH (r, > 2Mpc/h)
DES Y3 RML (r, > 2Mpc/h)

5 L
<0
_5 J
N .
1 L
= \
Nw)
0
N\
-5 0 5 0 1 2
A bra

Figure 10. 68 percent and 95 percent confidence intervals for the TATT
model constraints from our two DES Y3 redMaGiC samples, on scales Tp
> 2 h~! Mpc. As before, we show redMaGiC high-z in red and redMaGiC
low-z in purple. For comparison, the marginalized NLA constraints on A;
are shown as dashed curves in the upper left panel. Note that the scales here
differ from the fiducial NLA analyses, and so the best fits are different from
those shown in Table 4. The dotted black lines mark the zero-points for the
non-NLA parameters.

constraints on the bias parameters are strongly dominated by w,,
and so they contribute relatively little to the marginal uncertainties
on IA parameters. The bias does, however, also enter w, 1, and so
it is important to model it accurately. In every case, the linear bias
falls within the bounds of expectation from previous studies (b; ~
1.5-2.0, depending on the sample), and b, is small (b, ~ 0-0.3). We
note that all samples appear to be fit reasonably well by our model
(as quantified by the best x? obtained from fits to the joint wg, +
Wg 4+ + w4y data vector). For more detail on the bias constraints,
see Appendix D. It is also worth bearing in mind that all parameters
(bias and IA) are constrained within the prior bounds. As we note
below, although some samples provide only weak constraints, the
priors in Table 2 are sufficiently wide to allow the contours to close
in all cases. In Section 6.1, we discuss our results on ELGs, which
amount to a null detection. We then move on to the various red
samples in Section 6.2, presenting first large-scale results using NLA
in Section 6.2.1, and then extending to slightly smaller scales with
TATT in Section 6.2.2. Section 6.3 then considers more carefully the
level of contribution from lensing and magnification.

6.1 Emission-line galaxies

Our first, and perhaps easiest to interpret, results are based on eBOSS
ELGs. The data vector is shown in blue in Fig. 5. We fit the NLA
model on large scales (the unshaded region in Fig. 5), and obtain a

null detection,
ATO = —0425030  (rp, > 6h7'Mpc) (32)

with x2/dof = 1.17 (with a corresponding p-value p = 0.32). This
is expected, given the sample: a non-zero IA signal has never been
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detected in ELGs (or in any colour-selected sample of blue galaxies
more generally; Mandelbaum et al. 2011; Johnston et al. 2019;
Samuroff et al. 2019). The additional (non §,I) terms are also seen to
be small, for a number of reasons: first, the magnification coefficient
is small (¢ — 1) ~ 0.1, for ELGs, which scales down the ul and uG
contributions. Second, the limits of the line-of-sight integral tend
to suppress the lensing contributions to the signal; integrated out to
M = 1000 471 Mpc, 1G tends to dominate on larger scales. In
practice, however, with integral limits at +100 4~' Mpc, the largest
term by some way is 8,1, with ws 1/(ws,G + wuc + wyr) ~ 14 at 6
h~! Mpc (as evaluated at the best-fitting parameters). Similarly, for
the shape—shape correlation, the ratio of II to other terms is ~18. The
end result is a combined best-fitting theory prediction that is below
the level of shape noise.

Since the signal-to-noise is relatively low, and there is no visible
structure in w,, we also repeat our NLA fits with slightly less
stringent cuts, r, > 2 h~' Mpec. This tightens the bounds on the
alignment amplitude to
AYC = 0071035 (rp > 2k 'Mpo) (33)
Indeed, even considering scales down to 0.1 ~~! Mpc in Fig. 5, we
still see no hints of signal in w, 4 or w. Computing the null x2
on all scales r, < 70 h~!' Mpc, we find x2 = 17.5 for 16 data points
(p = 0.42). This is interesting, since it suggests that there is not a
strongly scale-dependent one halo (1h) signal of the sort seen in the
redMaGiC and CMASS samples (or at least, not one that is detectable
above the level of shape noise).

In terms of sample, the closest results in the literature are those
of Mandelbaum et al. (2011) and Tonegawa et al. (2018). These
both use blue ELGs, from WiggleZ and Subaru, respectively, and
also make null detections of AM'" = 0.157]03 and AT'® = 0.4973-3¢,
respectively. Our results tighten the null constraint, imposing an
upper limit of |[A;| < 0.78 at 95 per cent CL. In terms of redshift, our
eBOSS ELG measurements sits between the earlier two (z ~ 0.8,
compared with z ~ 0.5 for WiggleZ and z ~ 1.4 for Subaru). It is
worth exercising some caution here, however, since in both cases it
is not clear that the sample matches ours closely. In particular, the
Mandelbaum et al. (2011) sample is a relatively bright selection
of starburst galaxies with specific colour cuts (see their section
3.1). That said, the best-fitting bias values are relatively similar
to our own (b; ~ 1.4 for eBOSS ELGs, b; ~ 1.5 for WiggleZ).
The Tonegawa et al. (2018) sample on the other hand has both a
complicated spectroscopic selection function, and additional shape
catalogue cuts that remove ~ 50 per cent of objects. Although all
three results (including our own) present IA results consistent with
zero in blue-ish samples across a range of redshifts, it is not clear the
results are directly equivalent.

It is also worth stressing here that although very different from
(and much bluer than) an LRG or redMaGiC type sample, eBOSS
ELGs are not exactly representative of a typical weak lensing
catalogue either. Indeed, the eBOSS ELG selection is designed to
facilitate a high S/N BAO measurement, and is based on the presence
of particular emission lines, as determined via a complex set of
magnitude and colour cuts (Raichoor et al. 2017). The completeness
of the sample given the cut is difficult to quantify (Guo et al. 2019). In
contrast, lensing samples tend to have much simpler (if any) colour
selection, and cuts designed to minimize lensing measurement biases
and optimize a weak lensing measurement. The two are designed for
different scientific purposes, and so we should not expect them to
match. For this reason, caution is required when trying to extrapolate
these results.
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Figure 11. The impact of lensing and magnification on our best-fitting theory data vectors. Each contribution to wg 4 is shown as a fraction of the total
signal (841 + 8gG + G + ul). Clockwise from top left, we have redMaGiC low-z (purple), CMASS (green), eBOSS LRGs (pink), eBOSS ELGs (blue), and
redMaGiC high-z (red). In the left-hand column we show our two photometric samples, which are more strongly affected by lensing and magnification. On the
right are our three spectroscopic samples. Within each column, the samples are arranged vertically by redshift, starting with low-redshift samples at the top. As
in previous figures, the shaded bands represent scales excluded from fits to these data vectors. Different line styles indicate different signal components, with
the sum of the non 8,1 terms shown as a solid line. Note that the i1 term is negligible on all scales and for all samples, and so we do not show it separately. In
the two redMaGiC cases, we include a second solid line (black). This demonstrates the impact of using an alternative estimate for the magnification coefficients
«, obtained using BALROG source injection. Unlike in the other samples, the CMASS nG term is positive. This is because the magnification coefficient for this
particular sample is small (¢ < 1, see Section 3.3); in physical terms this means the geometric effect from magnification, which expands the apparent area of a
patch of sky, outweighs the boost in number density due to the brightening of the apparent galaxy fluxes. Note that the scale on the vertical axis differs between
panels.
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Table 4. NLA model constraints from the various red galaxy samples
discussed in this work, as a function of r-band luminosity. The upper four
rows refer to the full samples, while the lower 12 refer to subsets in luminosity
bins, as defined in Section 3.5 and Fig. 6. The first three columns show the
mean luminosity, redshift, and rest-frame colour of each sample. The final
two are the posterior mean IA amplitude, and the corresponding p-value. In
all cases the model is seen to provide a reasonable fit to the data. These fits
were performed using large scales only (r, > 6h~! Mpc) in Wey and wy 4.

Sample (L)L (z) (M, = M) Ay PG x%)
RMH (all L) 068  0.78 0.43 3.54101% 0.20
RML (all L) 040 046 0.43 3.34%013 0.12
CMASS (all L) 0.84  0.52 0.36 2724047 0.10
LRGs (all L) 120 075 0.39 57811108 0.89
RMH L0 049  0.77 0.44 3.47703% 0.11
RMH L1 063 077 0.42 3.01793) 0.52
RMH L2 083  0.78 0.44 4137533 0.15
RMH L3 116  0.78 0.45 522711 0.40
RML L0 019 032 0.50 1957033 0.28
RML L1 026 043 0.42 2.867029 0.22
RML L2 035 047 0.40 3.01132 0.62
RML L3 049 050 0.40 4.39%020 0.79
RML L4 073 053 0.40 5.007939 0.14
CMASS L0 052 048 0.42 2.2370%2 047
CMASS L1 079 052 0.36 3.00798 047
CMASS L2 124 055 0.29 378104 0.70

6.2 Red Galaxies

6.2.1 Constraints on large-scale IAs

We next consider our other galaxy samples, redMaGiC, eBOSS
LRGs, and CMASS, which we fit on large scales (again, >6 2~! Mpc)
using NLA. In each case, we find a clear detection, with our three-
parameter model of the joint data vector (A, by, by) providing a
good x2/dof. The constraints and the goodness-of-fit statistics can
be found in the upper four rows of Table 4. Defining the signal-to-
noise according to equation (2) of Becker et al. (2016),!" we find
S/N = 22 in redMaGiC low-z and S/N = 18 in redMaGiC high-
z. Given the smaller area, the detections in our SDSS samples are
slightly weaker, at S/N = 6 for CMASS and S/N = 5 for eBOSS
LRGs. The best-fitting model predictions can be seen in Fig. 5. As
we saw with the ELGs in Section 6.1, CMASS and eBOSS LRGs are
dominated by the primary IA signal (8,1 for w, ., II for w4 ). For
redMaGiC, however, the picture is slightly different; photo-z scatter
tends to increase the maximum distance galaxies can be physically
separated (by shifting well-separated objects below I1.x), and so
boosts the lensing and magnification terms. With redMaGiC low-z
this is partly cancelled out by the fact that « is very close to 1,
and that the mean redshift is relatively low. These things are less
true for redMaGiC high-z, however, and so we see a stronger §,G
contribution. The §,I signal is also slightly stronger, however, and

"'The expression is S/N = (WC™! wmodely /(yymodel -1 w"“’dC])% , where W is
the observed (noisy) data vector, wm°%! is the best-fitting theory prediction,
and C~! is the inverted covariance matrix. This is slightly different from the
common definition using W only, which is known to be biased high if noise

is present.
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Figure 9. IA strength as a function of k + e-corrected r-band luminosity in
red galaxies. By convention, the luminosities are defined relative to a pivot
Ly, which corresponds to an absolute magnitude M, = —22. Open points
show previous results from the literature (as indicated in the legend). For
illustrative purposes we also show two power-law fits from the literature,
one fit to GAMA + SDSS at low-mid L (dotted blue), and the other to
MegaZ at high L (solid purple). The filled points show our measurements
on redMaGiC low-z (stars; five points), redMaGiC high-z (red dots, four
points), eBOSS LRGs (pink triangle; one point), and CMASS (green upside
down triangles; three points). Note that all results shown here assume the
one-parameter NLA model.

the additional terms still account for only order of a few per cent of
the total signal.

Another useful exercise is to divide the samples into luminosity
bins, and map out the dependence of the alignment signal. For
each of the bins shown in Figs 3 and 6, we fit an NLA amplitude
(we also fit for galaxy bias, but since we only split the shape
sample by luminosity, that does not change significantly between
L bins). The results are shown in Fig. 9, with numerical parameter
constraints in Table 4. Note that we also include a selection of
previous measurements from the literature, denoted by open points.
There are a number of trends worth considering here. First, taken
naively, our results are consistent with the qualitative picture of a
broken power-law dependence on luminosity: the trend in A; below
logL/Ly ~ —0.2 is much shallower than above it. The (L/Ly)? power-
law parametrization was first introduced as an empirical scaling by
Joachimi et al. (2011). Although there is little physical motivation, it
has been adopted relatively widely both in direct IA measurements
(Singh et al. 2015; Johnston et al. 2019; Fortuna et al. 2021b)
and in forecasts (Krause, Eifler & Blazek 2016; Fortuna et al.
2021a), as it was simple to implement and appeared to fit the
available data relatively well. In recent years, the picture has become
more complicated, as evidence has begun to emerge of a weaker
relationship at low L (see e.g. Johnston et al. 2019). Again, however,
this is empirical, and there is no first-principles reason to expect
a double power law in particular (or any other form). Our results
appear to reinforce that evidence. Our redMaGiC low-z sample in
particular provides a significant improvement in the constraints on the
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fainter end of the A;—L relation (by a factor of 3 or more in the error
bars). At the brighter end, our CMASS, LRG, and redMaGiC high-z
samples also appear qualitatively consistent with previous results,
following a considerably steeper slope. Taken at face value, given
the error bars, we could interpret this as ruling out a single power law
with relatively high significance. We stress, however, that it is worth
being cautious here. Despite all being ‘red’, there are differences
between the composition of the samples, as we will come to below —
it is possible these population differences may be partly responsible
for the apparent trends in L-A; space. For this reason, we do not
present the best-fitting constraints on 8, but rather a more qualitative
discussion of how to interpret our results.

It is noticeable that CMASS (and to a lesser extent redMaGiC
high-z) tends to lie roughly ~1-30 below the best-fitting single
power law from the literature (the purple line in Fig. 9). Since the
error bars here are mostly shape noise dominated and the luminosity
bins are disjoint, the points should also be uncorrelated to good
approximation, meaning it is unlikely this is random scatter. We can
perhaps understand these trends in terms of colour differences. In the
upper panel of Fig. 4 we can see that CMASS is considerably bluer
than LOWZ. Indeed, while most extreme for CMASS, all of our
samples tend to peak lower than LOWZ in M, — M, space. Not only
this, there is also some difference in colour between luminosity bins
for a given sample. For example, the galaxies in the upper CMASS
bin (L2), on average, have slightly bluer rest-frame magnitudes than
the lower two bins. Although for the sake of convenience, it has been
useful to split galaxies into binary ‘red’ and ‘blue’ categories, our
results suggest that this may be an oversimplification for modelling
purposes, given the precision of current data sets. They suggest that
a more sophisticated modelling may be needed, which accounts for
colour and luminosity (and potentially other properties such as satel-
lite fraction) simultaneously. This will be the focus of future work.

We can compare these results with those of Singh et al. (2015),
who consider colour bins within the LOWZ LRG sample. Although
that work reported no clear trend across five bins in g — i rest-frame
colour, it should be noted that LOWZ covers a fairly narrow range
in colour space (see the black contour in Fig. 4). Even the bluest bin
in that paper still represents a relatively bright red sample compared
with the galaxies considered here. It seems plausible that our wider
coverage allows us to see a trend that is not detectable in a relatively
homogeneous sample like LOWZ. We thus consider the two results
qualitatively consistent.

One other feature worth mentioning, although we do not seek to
quantify it, is the behaviour of w, ; on very small scales. Both red-
MaGiC samples appear to exhibit a strongly luminosity-dependent
1h contribution to w, 4 (Fig. 5, purple and red). Noticeably, the RML
L3 and RMH L0 bins, though having very similar mean luminosities,
have qualitatively different one halo signals. In the case of eBOSS
LRGs and CMASS we see no such trends, but this is quite possibly
simply the result of low S/N, even on smaller scales. In all of these
cases, it is worth bearing in mind that the density tracer samples
differ. Although the differences between the small scale behaviour
of w, 4 in the various bins/samples could be a result of the 1h IA
signals, they could also be partly down to differences in the small-
scale galaxy—halo connection. A full halo model that includes 1A
could potentially distinguish these effects — we leave this topic for
future investigation.

We also briefly test for redshift evolution in our red galaxy
samples. Since we are interested in isolating inherent evolution
in the IA signal (as opposed to changes in sample composition),
we compare samples at roughly the same luminosity. Specifically,
we define two narrow bins in Fig. 9 (one in the low-luminosity
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regime, at logL/Ly ~ —0.3, and the other at higher L, logL/Ly ~
—0.05). Plotting out A;(z) in these two slices, we find no evidence
for redshift evolution over the range z = [0.25, 0.8]. Although we
see the same trend with CMASS being slightly lower than other
samples at the same L, there is no evidence that this is the result of
an underlying redshift trend. Since there is no statistically significant
correlation, we do not include the figure in the main body of the
paper; for completeness, however, it is shown along with redshift
power-law constraints in Appendix E, Fig. E1.

6.2.2 Model comparison: NLA and TATT

In Section 6.2.1, we explored the behaviour of IAs on very large
scales, where the NLA model is thought to be sufficient. We next
turn to a slightly different question: on what scales precisely does
the simple model break down? Based on theory, there is thought to
be an intermediate regime, outside the one halo regime, but where
higher order correlations (such as those included in the TATT model)
become significant. It is still, however, and open question as to how
significant and on exactly which scales.

To explore this, we repeat our analysis with the minimum scale
reduced slightly to r, > 2 h™'Mpc in w,; and w,. Note that
the cuts on w,, are fixed, and the modelling there does not change
(i.e. there are always two free galaxy bias parameters). For each
sample, we fit both NLA (one free IA parameter) and TATT (three
IA parameters). Our results are summarized in Fig. 10.

Unsurprisingly given Fig. 5, CMASS, eBOSS ELGs, and eBOSS
LRGs provide very broad constraints on the TATT parameters,
and so are not shown. The signal-to-noise in these samples is still
relatively low. Although one can fit a single amplitude relatively
well, there is little constraining power left for the shape of the
correlation function. The picture is slightly different, however, in our
redMaGiC samples. The cosmological volume here is significantly
larger, and the S/N higher. Starting with the slightly larger sample,
redMaGiC low-z, we find

ARML — 1 047078 pRML — _0.437018. (34)

In words, our measurements favour (albeit relatively weakly) a
combination A; > 0 and bya < 0. Comparing with the NLA fits
on the same scales, we find p(> Ax?) = 0.01 (x3 , =31.2 and
Kir = 21.9).

In the case of redMaGiC high-z, the data appear to prefer a non-
zero bty at the level of roughly 2.50, with

ARMH — 367165 pRMH — .92*041. (35)

Again, comparing the TATT and NLA fits, we obtain p(> Ax?) =
0.00004, suggesting a statistically significant preference for TATT on
these scales; the respective goodness-of-fit statistics are x2, , = 33.9
and xZ,pr = 13.6, and Adof = 2.

Interestingly, the deviations from NLA manifest in quite different
ways at the data vector level (see Fig. 5). In the case of redMaGiC
high-z, the positive b increases the power on intermediate scales
(2 ' Mpc < r, < 10 h~' Mpe), resulting in a significantly flatter
w, +. For redMaGiC low-z, on the other hand, we see the opposite
effect; a reduction in the amplitude of w,  in the (2 h~! Mpc < r,
< 6 h~! Mpc) range is accompanied by a slight increase around 20—
30 A~! Mpc. This gives a slightly steeper theory prediction, which
matches the shape of the measured correlation relatively well. Taken
together, this amounts to a ~3.8¢ difference in brs between the two
redMaGiC samples.

Although interesting, it is worth being cautious here. Since TATT
is a relatively flexible model (albeit a physically motivated one), it
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is possible that non-zero A, and bya values could arise due to other
untreated systematics. Baryonic physics, for example, tends to appear
on small-intermediate scales, and modulates the power spectrum in
a scale-dependent way. It is also true, however, that baryons tend
to suppress power on smaller scales; this is the case in (almost) all
hydrodynamic simulations at all redshifts. Since redMaGiC high-
z prefers a TATT model that does the opposite (relative to NLA),
it seems unlikely that baryons are driving the non-zero brs value
here. Even considering the redMaGiC low-z case, it seems very
unlikely that we are simply seeing residual baryonic feedback. In
Section 4.6, we saw that the OWLS-AGN scenario (itself an extreme
case) produced at most A x2 = 0.45 at the TATT best fits quoted
above. The difference between the NLA and TATT goodness of fit
are more than an order of magnitude larger than this; for baryonic
feedback alone to explain the non-zero TATT parameters would
require a significantly more extreme scenario than OWLS-AGN.

Another possible effect here is non-linear galaxy bias. Our model
for it is incomplete in the sense that while we include non-linear bias
in our w,, model, only b, enters the w, , prediction. Incorporating
non-linear bias, and all the TATT-bias cross terms, into the wg
model is the focus of ongoing work. We can, however, make a rough
estimate for the impact based on our w, fits. For redMaGiC low-z,
we find the data consistent with linear bias (b, = —0.09 4= 0.07). The
equivalent value for redMaGiC high-z is slightly larger, but still small
by = 0.39 & 0.08. Since the additional terms contributing to w, 4
will be proportional to b, multiplied by the various IA coefficients, it
seems likely that they should be relatively small compared with the
IA-only contributions.

Finally, we also consider the possibility that our results here could
be the result of a non-local lensing contribution from small scales.
Such contributions add to the galaxy—galaxy lensing (gG) term,
and tend to boost its power on small to intermediate scales (see
e.g. Baldauf et al. 2010; MacCrann et al. 2020). Fortunately, even
considerably different halo mass profiles produce approximately the
same contribution on scales well outside the virial radius, behaving
effectively as an enclosed point mass and scaling as 1/r2. To test this,
we generate NLA-only theory data vectors from the NLA fits on large
scales; we add a point mass term (equations 7 and 8 of MacCrann et al.
2020), and adjust M until the NLA + PM theory prediction for w,
matches the data on scales 2 /="' Mpc > r, > 6 h~' Mpc. Although
al /rlf scaling can match the data in the redMaGiC high-z case, we
find the mass required to do this is ~3 x 10> Mg A~!, which is
much larger than the typical halo mass expected for DES redMaGiC
(see, for example, Pandey et al. 2022; Zacharegkas et al. 2022). This
would also require the point mass contribution to dominate gG out
to scales of ~20 h~! Mpc, which again is not thought to be realistic.
Moreover, the point mass explanation should lead to an excess w,
on small scales for both redMaGiC samples, contrary to the observed
behaviour. For all of these reasons, we conclude that a point mass
term cannot explain the deviations from NLA on small scales for
redMaGiC high-z.

Overall, these tests seem to suggest a real IA signal (or, at
least, a significant systematic that we have not considered). This is
interesting from a modelling perspective. It implies some dependence
in the TATT parameters with galaxy properties (bya most obviously,
going from negative in redMaGiC low-z to positive in redMaGiC
high-z, but also potentially A,). As we discussed in the previous
section, the redMaGiC high- and low-z samples differ in redshift,
but also in galaxy properties like colour and luminosity. Although,
given this, differences somewhat expected, this is not something on
which there are previous results to guide us. Disentangling what
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exactly is driving the differences is an interesting question, but a
potentially difficult one to answer. We leave this for future work.

6.2.3 Robustness to cosmology and X s

In this section, we seek to test the robustness of our analysis to
various sources of systematic error. One such potential contaminant
is the effect known as Xjens. One can find extensive early discussion
in the DES Y3 results papers (Dark Energy Survey Collaboration
2022; Pandey et al. 2022), but essentially Xjeps is a multiplicative
factor of unknown origin between the amplitudes of the galaxy—
galaxy lensing and galaxy clustering measurements. This offset
was seen to be scale- and redshift-independent, and to impact only
Y3 redMaGiC, and not the fiducial magnitude-limited lens sample,
MAGLIM. Subsequent tests have pointed towards a systematic in the
photometry, which affects the redMaGiC selection (see Pandey et al.
2022 Sec. VG). The magnitude of Xjeys 1S constrained relatively well
by the 3 x 2pt data in Dark Energy Survey Collaboration 2022,
to Xiens = 0.877f8:8f8, which is roughly the size of the fractional
error bar, (wg — 0y, )/ Wy, for our redMaGiC samples in the
range 2 h~! Mpc < r, < 70 h~! Mpc. Since it is scale-independent,
we expect the impact to be completely degenerate with A;. Given
these things, we do not expect X5 to have a qualitative impact
on our results. Although it may modulate the best fit A; in our
redMaGiC (not CMASS or eBOSS) at the level of ~ 10 per cent,
comparison between samples is already uncertain to at least this level
due to differences in colour space. Given that the TATT parameters
primarily alter the shape of w, ,, we do not expect X, to alter the
findings of Section 6.2.2.

We also briefly consider the impact of our choice of cosmology;
to fit for IAs, we need to assume a particular set of cosmological
parameters (e.g. for calculating the matter power spectrum). As
discussed in Section 4, we assume a flat ACDM universe with
massive neutrinos and a clustering amplitude og similar to that
reported by Planck. For each of our samples, in addition to the
best-fitting NLA data vector, we generate a second with a perturbed
cosmology; for this we choose the DES Y3 1 x 2pt best fit. By
comparing w,, at the two cosmologies, we can compute an effective
shift in large-scale bias Ab;. This in hand, plus the observed impact
on wg 4, we can estimate the shift in the best fit A;. The end result
is a change of at most one or two per cent. That is, the difference
between plausible cosmologies is not sufficient to significantly affect
our results.

6.3 Assessing the contribution of magnification and lensing

In addition to the main IA signal, our measurements have contribu-
tions from lensing and magnification (see the discussion in Section 4).
These are always included in our modelling, but it is interesting to
briefly discuss their effect. The fractional impact of the various terms
is shown in Fig. 11. Note that the data vectors here are evaluated at
the NLA best fit for each sample, and so b, and A; differ somewhat
between the panels.

Consider first the two photometric samples, redMaGiC low-z and
redMaGiC high-z (upper two panels, purple and red in Fig. 11). Here,
we see a total non-6,I contribution of roughly 8 per cent and 4 per cent
in the high- and low-z samples, respectively. For context, the 1o
uncertainty on A; in these samples is ~ 4-5 per cent (see Table 4);
including these effects in the modelling of w, .. is clearly necessary
to avoid bias at the current precision. The closest comparison in the
literature is fig. 5 in Joachimi et al. (2011); again, we confirm that
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our pipeline can reproduce those results. We see a similar ordering
of the terms to their figure, with §,G dominant, followed by 1G, and
with I the smallest, at sub- per cent level (although note there are
some important differences between the comparison in Fig. 11 and
that of Joachimi et al. 2011, and so one should not expect the details
to match perfectly).

In the two left-hand panels, we also show the results of the
same exercise, but using alternative estimates for the magnification
coefficients from BALROG (black lines; see Section 3.3 for the
actual values). Note that « is the only quantity that changes here;
we do not refit the data vectors, and so the dominant §,I term
in the denominator is fixed. The new « values are thought to
include additional effects omitted by the flux-only method described
in Section 3.3. Unfortunately, however, we do not have BALROG
injections covering the whole DES footprint, and so the resulting
estimates are noisy. We also cannot easily produce BALROG mocks
closely matching our CMASS and eBOSS samples, which somewhat
limits its use for our purposes. The overall impact, however, is seen to
be relatively small. That is, while ignoring magnification altogether
could have a significant impact on our results, the choice of one «
estimate over another is unlikely to.

Although it is common to assume spectroscopic IA measurements
are immune to lensing effects, we see in Fig. 11 that this is not entirely
the case. The two main terms are the same as with redMaGiC: uG and
8,G. It is interesting that the latter (dashed) still dominates; even in
the case of very narrow per-galaxy redshift distributions, where p(z)
— §,, the ensemble redshift distribution is sufficiently broad to allow
a non-negligible galaxy—galaxy lensing contribution. The uG term
(dotted), we also note, does not depend on the quality of the redshifts.
Galaxies along the same line of sight are affected by magnification
and lensing due to the same foreground structure, which modulates
w, 4+ at the level of a few percent at z ~ 0.8.

Itis worth briefly considering what these results mean for future [A
measurements. The Stage IV spectroscopic survey DESI is expected
to obtain spectra for a sample of LRGs over a comparable redshift
range to ours, but for a considerably wider area and greater number
density (n, ~ 6 x 107* h* Mpc= over 14000 square deg; Zhou
et al. 2020). Similarly, one can expect at least an order of magnitude
increase in the number of ELGs available for the type of measurement
we perform here (Raichoor et al. 2020). Euclid and the Roman
Space Telescope will also have spectroscopic instruments, which
will further add to the pool of data available for IA measurements.
Likewise, Stage IV photometric surveys such as Rubin, Euclid,
and Roman will probe a similar selection of galaxies to DES, but
over a much wider area and to a greater depth (see, for example,
Euclid Collaboration 2021). These will allow measurements using
a redMaGiC-like sample similar to ours, but with significantly
improved S/N and finer binning in colour/redshift/luminosity. Used
together — with photometry providing shape inference, and accu-
rate redshift information from either spectroscopic data or high-
quality photometric measurements — the next generation of sur-
veys will provide a powerful tool for studying IAs. Given what
we see here, it seems very likely that direct IA measurements
using these upcoming data will need to account for lensing and
magnification.

It is finally worth noting that any data-based estimates of mag-
nification will have some level of noise; this is most obvious for
our BALROG estimates (due to the limited area), but it is also true
at some level for the flux-only method. As future data sets become
more constraining it will likely be necessary to properly charac-
terize this uncertainty, and marginalize over « either directly or
analytically.
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7 CONCLUSIONS

This paper presents direct constraints on IAs from the Dark En-
ergy Survey Year 3 shape catalogues. The Y3 METACALIBRATION
catalogue is used to provide shape estimates for 2.4M redMaGiC
galaxies from across the DES footprint, as well as ~50 000 CMASS
galaxies, ~22 000 eBOSS LRGs, and ~100000 ELGs. We make a
high significance detection of IAs in all of these samples, with the
exception of eBOSS ELGs, where we place upper bounds on the
magnitude of the possible alignment amplitude.
The key conclusions of this paper are:

(i) Fitting for A; in red galaxies, our data support the qualitative
picture of a broken power law in r-band luminosity of the form
Ay oc LP, with B differing between high and low L. Our redMaGiC
low—z sample provides a significant improvement constraints at the
faint end of the A;—L relation, where the slope is shallower than at
the bright end (by a factor of several; see Fig. 9).

(i) Amongst red galaxy samples, however, we find noticeable
colour dependence in the IJA—luminosity trend. This is most obvious
in CMASS and redMaGiC high-z, which both lie below the bulk
of previous measurements at a similar L. These differences can be
qualitatively explained by differences in the colour space distribu-
tions. This raises potential questions about the sufficiency of a simple
red/blue binary split for modelling IAs, and whether joint modelling
of luminosity and colour dependence may be needed.

(iii) We find no statistically significant signal in our ELG sample
on any scale. Using the combination of w, + and w,, we impose
an upper limit on the large-scale NLA amplitude in ELGs at |A;| <
0.3 (68 per cent CL). This is an improvement on the null constraint
from WiggleZ at |A;| < 1.03 (Mandelbaum et al. 2011).

(iv) The one-parameter NLA model is seen to fit all of our
red galaxy samples reasonably on scales r, > 6 h~!'Mpec. In our
redMaGiC samples, which give the highest signal-to-noise measure-
ments, we do see deviations from the NLA prediction in the range
2-6 h~! Mpc. These deviations are more pronounced in the higher
redMaGiC redshift sample.

(v) Allowing additional flexibility via the TATT model, we can
obtain a good fit to both redMaGiC samples on intermediate scales,
r, = 2-6 h~'Mpc. We thus place constraints on the additional
parameters (see Fig. 10).

(vi) We show that lensing and magnification can have a potentially
significant impact on direct IA measurements. The extra terms are
dominated by a galaxy—galaxy lensing like contribution §,G, and the
magnification-lensing cross correlation, §, G. Together they make up
~ 2-20 per cent of the total signal, depending on the sample. This is
relevant for our higher S/N samples, and will certainly be significant
for future measurements of a similar kind, even those relying only
on spectroscopic samples.

A weak lensing cosmology analysis is underway using the Dark
Energy Survey Year 6 data, and similar efforts are ongoing on
the KiDS legacy and HSC Y3 results. Understanding astrophysical
systematics such as IAs, on both large and small scales, will clearly
be important for the success of these ongoing cosmology projects, as
well as future surveys such as the Vera C. Rubin Observatory Legacy
Survey of Space and Time (LSST), Euclid, and the Nancy Grace
Roman Space Telescope. Our ability to accurately model IAs and
mitigate their impact is, however, still somewhat limited; even given
detailed information about the redshift and rest-frame colour of a
sample (which typically is not available in a photometric survey), we
do not have sufficient a priori understanding of the physical processes
to predict the IA signal for an arbitrary selection of galaxies. We can,
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however, make measurements of IAs in a range of samples, and map
out the dependence on galaxy properties. In this way, we can start
to build up a phenomenological understanding of IAs, which will
feed into the next generation of analyses. The longer term goal is to
develop more accurate models of IAs on all scales but also, ideally,
to derive informative priors on their parameters. This paper aims to
contribute to this task using some of the most constraining current
data sets.

Our results provide a small step towards a more complete under-
standing of IAs in lensing surveys. In particular, we present results
from new data sets that allow a substantially improved constraint on
the faint end of the LA, relation, and at intermediate redshifts. This
is important, as the extrapolation into this regime is still a significant
uncertainty in both model building and model sufficiency testing
for future surveys. There are also a number of natural extensions to
the work presented here. One obvious example is the development
of a simple model that can account for both colour and redshift
dependence in our red samples simultaneously. This is the focus of
ongoing work.
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APPENDIX A: MODELLING REDSHIFT SPACE DISTORTIONS AND IA ANISOTROPY

In this appendix we set out the formalism used to estimate the impact of RSDs and anisotropic IAs on our results (see also Singh & Mandelbaum
2016). One can write the redshift-space galaxy—galaxy power spectrum in terms of the (isotropic) real space equivalent in the form

Pog s (k) = (1 + Bapt) (1 4 Byit) Pgg(k), (AD)

with galaxy samples a, b and 8, = f(z)/b,, ,, the ratio of the logarithmic growth rate to the linear galaxy bias. The factor u is the cosine of the
angle between mode k and the axis of the line of sight Z, u = k - 2. This is an approximation that applies on linear scales, but begins to break
down at large k (Kaiser 1987). In general, one can decompose equation (A1) in terms of Legendre polynomials Py,

Pyy(k). (A2)

2
Py (k) = {Z sy Pae
=0

That is, the sum of monopole, quadrupole, and hexadecupole contributions. Note that in the case that £ = 0, § = 0, the above reverts to the
isotropic case and Py, ; = Pg,. The coefficients have the same form as equations 48—50 of Baldauf et al. (2010) for even values of ¢,

L+ 2B+ B) + LBy £=0

s = § F(Ba+ Bo) + 5By L =1 : (A3)
£BuBy £=2
and are zero otherwise. The configuration space equivalent of equation (A2) has a similar form
2

Eges(rp T =Y a8 Parkge 2e(rp, T, (A4)

=0
with

=D [, .
Eag.20(rp, T = ——= [ k" Peg (k) jac(kr)dk. (AS)

The integration kernel j,, is a spherical Bessel function of the first kind of order u, and it is this that determines the shape of each term. Putting
these pieces together, and integrating over line-of-sight separation, one finally obtains the expression

2

D¢ Mmax
Wee(rp) = Z( ) a2 Pa / / K2 Pyg (k) joe(kr)dkdTT (A6)

2
=0 T

Mmax

Although RSDs themselves do not have a significant impact on w, ;. (see Singh et al. 2015), there is an analogous effect due to the projection
of 3D shapes into 2D space. This suppresses the observed alignment strength at |IT| > 0, and so alters the shape of &, in the r, — IT plane

10"
E redMaGiC high-z gg
100 _; ---- redMaGiC high-z g+ 7~
E redMaGiC low-z gg A
10! _; redMaGiC low-z g+ ,"
-2 |
5 10 3 ’/
: 1
1079 i
3 i
] i
107" i
3 i
L] :
107 4 !
h LELILRRE | T T T T T LB LY | T LB LR T
10°1 10° 10 102
rp / b~ Mpe

Figure Al. The fractional impact of RSDs and projection effects on projected galaxy—galaxy and galaxy—shape correlation functions. Note that the difference
is defined as the magnitude of the difference between theory predictions (in either wg 4 or wgg, as labelled) with and without RSDs/projection effects
Awgp = |wl‘fbSD —whp RSD| The theory predictions are generated at our fiducial cosmology and A; = 1. We show both high- and low-z redMaGiC samples to

illustrate the impact of (quite significant) differences in the redshift distributions.
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(see the discussion in Section 4.6.2). The impact can be modelled in a very similar way to with RSDs (Singh & Mandelbaum 2016, section
2.3 and equation 13).

Fig. A1 shows the absolute impact of the additional RSD signal and the projection effect described above (note that RSDs and IA anisotropy
work in opposite directions, and so the sign of the two eddects in Fig. Al are different). RSDs have an impact on w,, at the level of tens
of per cent on scales r, > 6 A~ Mpc. We thus expect to be sensitive to their impact, and include them in our fiducial model. In the case of w, 4
we see an impact on very large scales, dropping away below ~70 h~! Mpc. Given that we impose an upper scale cut at r, = 70 4~ Mpc, due
to possible large-scale systematics, we do not consider it necessary to include IA anisotropy in our fiducial model for w, .

APPENDIX B: NULL TESTS

Before carrying out our analysis, we carried our various validation tests. Among those was a null test, constructed by repeating our w4
measurements, but using shapes measured at 45 deg to the tangential/radial direction. In the absence of systematics, this should return no
signal.
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Figure B1. Cross shear correlations. The measurements shown are computed in the same way as wg  (see equation (16)), but with the galaxy shapes rotated
by 45 deg. This is meant as a null test, since to first order neither IAs nor gravitational lensing produce such correlations. The coloured shaded regions show the
estimated shape + shot noise uncertainty for each sample. The grey shaded bands indicate scales discarded in our two analysis set-ups. In each case, the quoted
null x2 is computed on all scales rp <70 h~! Mpc.

The results for our five samples are shown in Fig. B1. The error bands here are calculated assuming shape (and shot) noise only, using the
observed number of galaxy pairs in each r, bin. In the case of the two redMaGiC samples, we see a slight increase in (negative) power on very
large scales. The reason for this apparent signal is not known for certain. We treat it as an unknown systematic, and simply choose to remove
the affected scales. After imposing an upper limit at r, < 70 A~ Mpc, we find w, « to be consistent with zero on all surviving scales. The null
x? values are shown for each sample in Fig. B1. Even in the case with the worst goodness of fit, redMaGiC high z, we find a x?/dof = 24.1/16,
giving a corresponding p-value p = 0.09.

APPENDIX C: COMPARISON WITH LOWZ

As discussed in Section 5, we carry out several layers of pipeline testing and validation using LOWZ. The LOWZ LRG sample is useful for
this, in that it is a relatively well-understood data set, which gives a high signal-to-noise w, , signal. Crucially, there are also published IA
measurements to which we can compare (Singh et al. 2015).

In addition to the data vector level comparison described in Section 5, we also use the LOWZ data to help validate our analytic covariance
estimates. LOWZ covers a broad more or less contiguous footprint, making jackknife estimates viable. We divide that footprint into 100
patches using a k-means algorithm, and iteratively remeasure the whole data vector (wg, + w4 + w44) in each. The diagonal elements of the
resulting jackknife covariance matrix are compared to our analytic estimate in Fig. C1. As expected the latter is somewhat smoother. The two
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Figure C1. A comparison of the square root of the LOWZ covariance diagonals obtained using two methods. From top we show wg 4, wge, and w4 1. In each
case the shaded grey regions indicate scales excluded from our large-scale IA fits. We see very good agreement between the two estimates on the scales of
interest.

diverge slightly on very large scales, where the approximations behind the jackknife method break down. On the scales of interest, however,
we see very good agreement.

We also carry out an end-to-end reanalysis of LOWZ using our pipeline. Starting with galaxy catalogues and randoms, we remeasure the
joint data vector. Using our analytic covariance matrix, and the modelling pipeline set out in Section 4, we obtain parameter constraints. The
results of this exercise are summarized in Fig. C2. In black we show the published IA and bias results from Singh et al. (2015); note that the
fits for b; and A, were performed serially, and so we have a point with error bars instead of a full contour. The open blue contour shows the
result of analysing the LOWZ data using our pipeline, but with all the analysis choices matched to those of Singh et al. (2015). These are
detailed in Section 5, but include the choice of cosmology and the version of HALOFIT. We see good agreement in both parameters.

The filled contours then show the impact of switching to our analysis choices, assuming the NLA and TATT models. The former (dark
purple) gives a very similar A; constraint to the original Singh et al. (2015) analysis. This is reassuring, in the sense that it suggests the
new results from our pipeline are readily comparable with those in the literature. The lighter purple contours show the impact of opening
up the TATT parameter space, and also extending the minimum scale in w, 4 and w down to 2 2~' Mpc. The marginalized A; constraint
is broadened and shifted downwards slightly, primarily due to the degeneracy with A,. It is interesting to briefly note here that although the
contours on the extra parameters (A, and bra) are not symmetric about zero, they are totally consistent with zero. That is, the LOWZ data do
not appear to require additional terms beyond the NLA model to describe scales down to 2i2~! Mpc.
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NLA, 6 Mpc/h

Singh 15 analysis choices
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Figure C2. 68 percent and 95 per cent confidence intervals from our reanalysis of the SDSS LOWZ data. The black cross represents the published constraint
on A; and galaxy bias from Singh et al. (2015). In blue (open contours) we show the result of fitting the LOWZ data vector using analysis choices matched to
those of Singh et al. (2015). We recover the best-fitting A; well. The filled contours then show the result of switching to our preferred analysis settings, using
the NLA and TATT models.

APPENDIX D: CONSTRAINTS ON GALAXY BIAS

In all samples, and for all fits, we include in our model free parameters for galaxy bias. Although the bias constraints are almost entirely
dominated by the w, part of the data vector, we allow bias to vary alongside our IA parameters. Justified by the exercise in Section 4.6.1, our
model includes two free parameters: b, and b, (there are additional terms in the expression for Ps,, but the model is fully specified by the two
values; see Section 4.2).

The main galaxy bias results from each of our samples are presented in Table D1. In each case, the model provides a reasonable fit to the
joint data vector. The redMaGiC numbers here are qualitatively consistent with those presented in the upper panel of Dark Energy Survey
Collaboration (2022)’s fig. 8 (the pale purple points). That there are some small differences in the actual numbers in not surprising, given the
different nature of the analysis (e.g. we are assuming a particular fixed cosmology). The values are roughly in line with the expectation for
these sorts of galaxy samples.

Table D1. Constraints on galaxy bias from our various density
tracer samples.

Sample by bs

redMaGiC low-z 1.59+091 —0.0970.%7
redMaGiC high-z 1814001 0.39%06
¢BOSS LRGs 2201003 0.3410-17
¢BOSS ELGs 1.37+99¢ —0.8410.74
CMASS 1.97+0:02 0.017913
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APPENDIX E: REDSHIFT DEPENDENCE OF ALIGNMENTS IN RED GALAXIES

In this appendix we illustrate the redshift dependence of our red samples. Fig. E1 is the counterpart to Fig. 9, but showing the trend with
redshift rather than luminosity. The colour scheme for the different samples is the same in the two.

For the sake of comparability, we define two narrow bins in L,, and consider the redshift dependence in each. As explained in Section 6.2.1,
these are centred on logL/Ly ~ —0.3 and logL/Ly, ~ —0.05, respectively. The samples included in these two bins are shown in the upper/lower
panels of Fig. E1 (labelled ‘Low L’ and ‘High L’). The idea here is to separate inherent evolution in redshift (i.e. in a fixed sample with
unchanging observable properties) from the evolution of galaxy selection with z.

As we can see here, there is no clear trend over the baseline of the samples, in either luminosity bin. If one fits a slope in redshift of the form
A1(z) < [(1 4+ 2)/(1 + z0)]™, where zo = 0.62, the results are consistent with n; = 0. Specifically, we find n; = —0.37 £ 0.94 in the lower L
bin, and 1; = —0.05 £ 0.73 in the upper L bin.

CMASS (this work)
DES Y3 RMH (this work) LOW L

v
®
101 F Y% DES Y3 RML (this work)
w  KiDS-1000 (Fortuna et al 2021)

Al(z)

100 L

eBOSS LRGs (this work) .
O GAMA + SDSS (Johnston et al 2019) High L
101 F O LOWZ (Singh et al 2015)

Ay(2)
N

-0}
°

100 L

0.0 0.2 0.4 0.6 0.8
z

Figure E1. IA strength as a function of estimated mean redshift in red galaxies. To avoid complication due to evolution in galaxy properties, we take only points
within two narrow bands in L/Ly. See Section 6.2.1 for discussion. We show the best-fitting power-law slopes, fit to each panel; in both cases the power-law
index 7 is consistent with zero to <lo.
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