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Abstract

Several ensemble-based Data Assimilation (DA) methods rely on a prop-
agate/update cycle, where a potentially compute intensive simulation code
propagates multiple states for several consecutive time steps, that are then
analyzed to update the states to be propagated for the next cycle. In this pa-
per we focus on DA methods where the update can be computed by gathering
only lightweight data obtained independently from each of the propagated
states. This encompasses particle filters where one weight is computed from
each state, but also methods like Approximate Bayesian Computation (ABC)
or Markov Chain Monte Carlo (MCMC). Such methods can be very compute
intensive and running efficiently at scale on supercomputers is challenging.

This paper proposes a framework based on an elastic and fault-tolerant
runner/server architecture minimizing data movements while enabling dy-
namic load balancing. Our approach relies on runners that load, propa-
gate and store particles from an asynchronously managed distributed particle
cache permitting particles to move from one runner to another in the back-
ground while particle propagation proceeds. The framework is validated
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with a bootstrap particle filter with the WRF simulation code. We handle
up to 2,555 particles on 20,442 compute cores. Compared to a file-based im-
plementation, our solution spends up to 2.84 less resources (cores×seconds)
per particle.

Keywords: Data Assimilation, Particle Filter, Ensemble Run, Resilience,
Elasticity

1. Introduction

Given an output and a transformation function, finding the input states
represents a so-called inverse problem. A wide range of approaches to
address this central problem exist. Statistical Bayesian methods stand out
as they provide uncertainty measures of the proposed input in the form of a
Probability Density Function (PDF). Particle Filters (PF) are a statistical
Bayesian method combining uncertainties of both, the dynamical system, and
observations, to estimate the system state. Several realizations of the dy-
namical system, called particles, with differently perturbed internal states,
are propagated up to a time where observation data are available. These
particles are then weighted based on their likelihood given the observations.
The weights are used to generate a new sample of particles representing the
state estimate including information obtained by the observations. The pro-
cess repeats while observations are available.

PF are used for several purposes, like Data Assimilation (DA) [1], prob-
abilistic programming [2, 3, 4], neural network optimization [5], localization
and navigation[6]. Particle filters stand by their ability to work with nonlin-
ear and/or non-Gaussian state space models and non-Gaussian observation
errors in opposition to techniques like Ensemble Kalman Filtering (EnKF) [7].
But the versatility of PF comes at the price of high sensitivity to the curse
of dimensionality [8, 9, 10]: the number of particles needs to grow exponen-
tially with the effective dimension of the assimilation problem. Dynamical
systems running parallel high-dimensional numerical model solvers, as some
geoscience applications, would quickly require a very large number of parti-
cles to avoid undersampling.

Addressing this, the research community has been, and still is, very ac-
tive in investigating PF variations that would be less sensitive to the curse
of dimensionality. Localization schemes and equal weight PF show promis-
ing results with reasonable sample sizes, that, in some aspects outperform
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traditional methods such as the Local Transform Ensemble Kalman Filter
(LETKF) [11]. The filter degeneration is not observed in those more ad-
vanced PF methods [1, 11, 12]. The same discussion as for other ensemble-
based DA methods still holds true for such PF: the number of particles has
to be large enough to provide results with sufficient skill.

Large scale DA with PF, leveraging localization [13, 14] or implicit equal
weight particle filtering (IEWPF) and its variants [11, 12, 15, 16] have been
successfully used in a number of geoscience studies.

Supercomputers, reaching Exascale, have the computing power to run a
very large number of particles. But using such resources efficiently, time-, and
energy-wise is challenging. Applications need to limit the use of the parallel
file system, a classical supercomputer bottleneck, and favor instead in situ
data processing as well as local data storage to reduce data movements, and
asynchronicity to overlap tasks whenever possible. Applications also need
to be flexible to adapt to changes during execution, requiring support for
resilience, elasticity, and dynamic load balancing.

In the landscape of ensemble-based DA, we can separate the different
approaches depending on the data from the particles (also called ensemble
members) that needs to be aggregated, to be combined with the observations:
Some methods aggregate the full or a significant part of the particle states,
or only very reduced representatives. EnKF needs the full ensemble member
states, while certain PF variants only require aggregating one weight per
particle state. From a parallel computing architecture point of view, the
associated data dependencies and thus data movements are so different that
it is worth investigating specific solutions for each category. In previous work,
we developed a framework for EnKF and alike solutions [17]. In this paper,
we focus on the PF category. Analyzing the actual filter to be used with this
criteria will guide the user towards the best-suited approach for maximum
performance.

Existing large-scale approaches for ensemble-based DA can be divided
into two types: online and offline approaches. Offline approaches use tem-
porary files to exchange data. To propagate one particle, one model instance
starts, loads the particle from a file, propagates it up to a given time, stores
the resulting particle back to a file, and shuts down. This approach is flexi-
ble, fault tolerance is easy to support, but, performance, especially at scale,
is impaired by the heavy use of the file system and the cost of starting a
new model instance for each propagation. Online approaches bypass the file
system and the repeated startup of model instances. They keep particles
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in memory and exchange them via network communication. The majority
of the existing implementations do so by running a large MPI application
that encompasses the full workflow. While saving I/O overheads, this ap-
proach loses flexibility. For instance, a numerical fault during a single particle
propagation that crashes a single compute core may stop the entire applica-
tion. Thus existing online approaches, as will be detailed in the related work
section (Section 2), usually do not support fault tolerance or dynamic load
balancing.

In this paper, we develop an alternate approach that leads to a highly-
efficient yet flexible framework, which might even be applied to further large
scale ensemble computations. The key to achieving this goal is the vir-
tualization of particle propagations. We turn a numerical model solver
instance into a runner capable of propagating several particles one after the
other with low overheads and idle times. We exploit the property of certain
PF variants, that particle states do not need to be centralized, and there-
fore, couple each runner to a node-local distributed state cache enabling fast
loads and stores of particles. The caches are asynchronously persisted in
the file system for checkpointing and load balancing between runners. Asyn-
chronous prefetching of particles into the cache enables overlapping particle
loads with particle propagation. A server organizes the work distribution to
the runners and performs the centralized tasks of the particle filter update
and (re-)sampling. Runners and server are each executed as independent
executables to support elasticity and facilitate fault tolerance. The associa-
tion of these different features, complemented with a fault tolerance protocol,
leads to an elastic and resilient framework, minimizing data movements while
enabling dynamic load balancing. Particle virtualization enables decoupling
the resource allocation from the number of particles. The number of run-
ners can vary during the execution either in reaction to failures and restarts,
or to adapt to changing resource availability dictated by external decision
processes. The proposed architecture is designed for running at extreme
scale, leveraging deep storage hierarchies and heterogeneous cluster designs
of current and future supercomputers.

To strain our framework and to show its use case, we use the Weather
Research and Forecasting Model (WRF) [18] with the simplest possible PF,
the bootstrap PF [19]. WRF is a widely used weather model for operational
forecasting and research, enabling testing with the complexity of a produc-
tion solver. The bootstrap PF, though known to fail for high dimensional
problems, due to the filter degeneracy and impoverishment [20], has the ad-
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vantage of its simplicity and enables us to focus on the development of our
framework. We are able to run 2,555 particles on 20,442 compute cores for
WRF simulations on a European domain with 87 % efficiency.

The rest of the paper is structured as follows: We review related work
in Section 2, Section 3 introduces the bootstrap PF. Section 4 presents the
architecture of our proposed approach, while Section 5 is dedicated to ex-
periments. The paper ends with a suitability analysis to other methods that
have compatible data flows such as the IEWPF, Markov chain Monte Carlo
(MCMC) methods, and Approximate Bayesian computation (ABC) Section 6
and a conclusion in Section 7.

2. Related Work

The DA domain encompasses a large variety of techniques and algorithms,
like nudging [21], kriging [22], Ensemble Kalman Filter [7], ensemble max-
imum likelihood filter [23], or particle filter [1]. For an overview, we refer
to [24, 25]. We focus here on statistical DA relying on an ensemble run of
the model to compute a statistical estimator (co-variance matrix for EnKF,
PDF via histogram for PF).

To aggregate the data produced by all members (i.e., particles) two main
groups of approaches are used. Either the data is stored to files and then
processed in a second step (offline mode), or the data is processed online
usually within a large MPI code in charge of running the members and data
processing. Frameworks relying on the offline mode include EnTK [26], with
the largest published DA use cases reaching 4,096 members for a molecular
dynamics application with an EnKF filter [27]. OpenDA also follows this
model, using NetCDF for data exchange with the NEMO code [28]. DART
supports both [29], with reports of large scale DA in offline mode in [30]
(about 1,000 members with an oceanic code), or [31, 32] (1,024 member,
LETKF filter, 6 M Fugaku cores). File-based approaches have the benefit of
their simplicity, providing fault tolerance and elasticity. But these solutions
do not support member virtualization, state caching, and prefetching. So
starting or restarting a member requires requesting a new resource alloca-
tion and launching a new instance of the model code with all the associated
start-up costs. Node-local persistent storage capabilities, for instance with
SSDs, can store intermediate files, avoiding the PFS to loosen the I/O bottle-
neck. They are used for member state storage in [31], but without a specific
fault tolerance mechanism. So if a node fails and the node-local storage be-
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comes unavailable, the lost member states need to be recomputed. Besides
leveraging the node storage for the distributed cache, using node storage
rather than the parallel file system as a globally shared file system layer is
one of our future goals.

The online mode avoids the I/O bottleneck. PDAF [33], which supports
both modes, has for instance been used online for the assimilation of ob-
servations into the regional Earth system model TerrSysMP. DA was based
on EnKF with up to 256 members [34]. In [35] ESIAS uses online DA via
particle filters with up to 4,096 particles on a wind power simulation for
Europe. Notice that we work with the same WRF component of ESIAS in
this paper, using a configuration on a similar domain but at a higher spatial
resolution and with more advanced and more time-consuming physics. We
also find ad hoc MPI codes for online DA as in [36] (atmospheric model,
10,240 members, Local ENKF filter, 4,608 compute nodes). But all these
MPI approaches lead to monolithic code without support for fault tolerance,
elasticity, or load balancing. In [37], various particle propagation scheduling
are analyzed, but, at a limited scale (6 compute nodes and 300 particles).

In [17], the authors propose an online processing framework relying on a
runner/server architecture for EnKF with support for load-balancing, fault-
tolerance and elasticity. Experiments use up to 16k members, 16 k cores for
DA with EnKF for the hydrology code Parflow. The approach proposed relies
on centralizing the member states on the server nodes, which is required by
EnKF to compute the covariance matrix, and next update these states before
redistribution to runners. In this paper we pivot on this architecture towards
a decentralized state storage model relying on a distributed state cache for
reducing data movements (subsection 6.1). This approach fits filters where
state processing can be performed mainly locally and only a reduced amount
of data needs to be centralized on the server. This is most of the time the
case for algorithms from the family of PF.

3. Particle Filters

In this section, we give a brief introduction to the PF formalism, focusing
on properties that we exploit in our proposal. For a comprehensive intro-
duction, we refer to [1, 19]. LetM be a numerical model, that propagates a
particle p from state xp,t−1 at time t − 1 to state xp,t at time t:

xp,t =M(xp,t−1) +βt, 1
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Figure 1: Initially particles are uniformly sampled. They are propagated to T1 where
they are weighted taking into account observation data. Resampling leads to discarding
some particles with low weights (top and bottom), while others with high weights become
parents of several ones (three here). (Inspired by [38], Figure 2)

where β is a random forcing representing errors in the model. Let H be the
projection operator from the state space to the observation space:

y = H(x) + εt, 2

where ε is a random vector, representing the measurement errors.
The particle filter formalism can be derived using Bayes’ theorem:

p(xt∣yt) =
p(yt∣xt)p(xt)

p(yt)
, 3

where p(xt∣yt) is the posterior PDF, p(xt) is the prior PDF, p(yt∣xt) is the
probability of observing yt if xt would represent the true state, and p(yt)
is the evidence available. The goal of the filtering formalism is to derive
the posterior p(xt∣yt), which describes the PDF of the state xt taking into
account the evidence yt.

3.1. The Bootstrap Particle Filter

In the bootstrap particle filter, the prior p(xt) is estimated assuming
equal weights for each of the P particles:

p(xt) =
1

P

P−1

∑
p=0

δ(xt − xp,t). 4
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The likelihood p(yt∣xt) is assumed to be known, estimated when calibrating
the sensor or from the error of the used observation operator. It is derived
from the PDF of ε applied to the distance between state and observation
yt −H(xt):

p(yt∣xt) = pε(yt −H(xt)). 5

The evidence p(yt) can be computed by:

p(yt) = ∫ p(yt∣xt)p(xt)dxt, 6

estimated using Equation 4 with:

p(yt) =
1

P

P−1

∑
p=0

p(yt∣xp,t). 7

Putting all together and replacing the expressions in Bayes’ theorem
(Equation 3) we arrive at the expression for the posterior [1]:

p(xt∣yt) ≈
P−1

∑
p=0

ŵp,t δ(xt − xp,t), 8

with ŵp,t being the normalized particle weights:

ŵp,t =
p(yt∣xp,t)

∑P−1q=0 p(yt∣xq,t)
= wp,t

∑P−1q=0 wq,t
, 9

and wp,t being the unnormalized particle weights:

wp,t = p(yt∣xp,t)wp,t−1. 10

Note that the initial weights are set equal to wp,0 = 1/P .
Especially for high-dimensional models, bootstrap particle filters suffer

from weight degeneration, i.e., one normalized weight is close to one and all
the others are close to zero. A classical approach weakening ensemble degen-
eration is Sequential Importance Resampling (SIR) [39, 40]. The procedure
of SIR consists of resampling particles from the posterior (Equation 8) after
weight calculation; P particles are randomly drawn, i.e., resampled, from the
existing particles, each with a probability wp,t. Low weighted particles be-
come discarded, while high-weighted particles can become the starting point
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Figure 2: Architecture overview.

of multiple particle propagations (Figure 1). More precisely, the resampling
leads to the multiset P defined by the ordered pair (Q,α). Where Q is the
set of unique particles q in P, and αq is the number of occurrences of q in P .
The particles q are hereinafter called parent particles.

The resampled particles are then all assigned the same weight of wp,t = 1/P
again so that the formalism can be applied at each filter step anew. Particles
departing from the same parent may need to become stochastically perturbed
if the model does not contain a stochastic component itself. Otherwise, the
trajectories of those particles would be identical.

4. Architecture

In this section, we detail the proposed architecture to run a large number
of particles with parallel numerical models. The algorithm, as presented in
Section 3, is a sequence of two main steps:

1. A first compute-intensive massively parallel step where particles can be
processed concurrently to:
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(a) propagate each state: xp,t =M(xp,t−1),
(b) compute each unnormalized weight from each state and observa-

tion data:

wp,t = pε(yt −H(xp,t)). 11

2. A second lightweight step that requires gathering all unnormalized
weights wp,t, usually one double per weight, for normalization and re-
sampling.

We attribute the first step work to runners and the second step to a server.
A runner is designed to propagate several particles one after the other with
low overheads and idle times (Figure 2). Each one is coupled with a node-
local distributed cache enabling fast loads and stores of particles. The caches
are asynchronously persisted to the global file system for checkpointing and
dynamic load balancing (i.e., ensuring global availability of the particles).
Because resampling can lead to discard some particles, or duplicate others
originating from the same parent (with a local perturbation if needed), states
need to be dynamically redistributed to runners to keep them evenly busy.
The server drives the dynamic distribution of particle propagation tasks to
runners. Runners use the distributed cache to load the missing states from
the file system. This design ensures low communications between the server
and runners, and reduced state movements. The runners and the server run
as independent executables, enabling to have a dynamically changing number
of runners. This is a key feature used for fault tolerance and elasticity.
Elasticity (sometimes also called malleability) is the ability to run under
changing resource availability, here a varying number of runners.

In the following, we detail this design: the runners (Section 4.1), the
server (Section 4.2), the distributed cache (Section 4.3), the workflow be-
tween these components (Section 4.4), the particle propagation scheduling
(Section 4.5), the job monitoring (Section 4.6), and the fault tolerance pro-
tocol (Section 4.7) before ending with additional implementation details (Sec-
tion 4.8).

4.1. Runners

Runners are built from the simulation code, often an advanced parallel
code or even a coupling of several parallel codes, with significant start-up
times to load and build the different internal data structures. To avoid
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paying the cost of a restart for each particle propagation, we augment the
simulation code with a mechanism to store and load particle states. This is
the base of particle virtualization: a runner can load a particle, propagate
it, store the result, and repeat this as many times as necessary. Runners are
associated with a distributed cache to accelerate state loads and stores as
detailled in Section 4.3. Runners also compute the associated weights wp,t.
Hence, each runner also needs to load the observations yt once per cycle.
Notice that the size of the observations is typically much smaller than the
size of the states xp,t.

Turning an existing simulation code into a runner relies on a minimalist
API, but requires a deep understanding of the simulation code and data
structures. The code needs to be instrumented to save the current particle
state at each process and load a new one. This includes all variables that
define a particle state, but also all additional variables required to reset
the simulation state to the time step the newly loaded particle needs to start
from, including all time-dependent boundary conditions and random number
generators that need to be seeded differently for each particle.

4.2. Server

The server is entrusted with multiple tasks. First, it is responsible for
scheduling the particle propagations to the runners (Section 4.5). Second,
it gathers the weights from the runners and performs the resampling at the
end of each assimilation cycle. Third, it controls the content of a distributed
particle cache (Section 4.3). To collect the weights wp,t, the server is mes-
saged from the runners after each propagation. If there are still particles to
propagate in the current cycle, the server responds to the message with an
id uniquely defining a particle (hereinafter called particle id) for the next
propagation. If not, the server performs the resampling and starts the new
cycle by scheduling the sampled particles to the runners. Very little data is
exchanged between a runner and the server. The runners send the particle id
(a single integer) and the corresponding weight (a single float), and the server
responds with the particle id next to propagate.

4.3. Distributed Particle Cache

To allow multiple propagations of one particle on different runners, it is
necessary to make them globally available. A straightforward approach is to
store particles on global storage. However, on supercomputers, global storage
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      Runner M

Node 1

Node n
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Figure 3: Internal runner architecture and interactions with the server and global storage
(PFS). Communications with the server combine MPI and ZMQ data exchanges.

is subject to large throughput variability due to the high workload and lim-
ited bandwidth. Node-local storage, on the other hand, is only used by the
processes that run on the nodes, and the bandwidth can be stacked. Storing
the particles locally results in scalable I/O performance, scaling linearly with
the number of nodes.

To leverage node-local storage while still providing the particles glob-
ally, runners rely on a distributed particle cache. Each runner executes
helper processes (one per node) in addition to the model processes,
where both groups of processes are associated with their own MPI commu-
nicator (Figure 3). The model processes propagate the particles and store
the associated states locally on the nodes allocated to the runner (RAM disk
or other node-local storage when available). The helper processes then stage
the states from local to global storage asynchronously, enabling to overlap
the associated I/O costs. Figure 4 shows this in a schematic Gantt chart.
With the exception of initial state propagations, states can be stored and
loaded from the persitant storage in the background, as well as the requests
to the server. Neither one is blocking the processors that perform useful
state propagation and weighting work. Also notice that persisting particles
to global storage acts as a particle checkpoint used by the fault tolerance
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protocol (Section 4.7).
Caching particles increases the probability to find a particle locally for fu-

ture propagations (i.e., during the next cycle). If available in its local cache,
a runner can propagate a particle without loading it from global storage. To
further minimize cache loads, runners implement an optimized cache eviction
strategy. The eviction strategy becomes especially important if the cache ca-
pacity is exceeded by the accumulated size of the particles propagated during
one cycle. Because the runners have no knowledge about the status of the
particle filtering (propagations, resampling), the evictions are controlled by
the server and directed to the runners. Dynamic load balancing (Section 4.5)
enables to turn the time gain of particle caching into a global performance
gain.

As explained in Section 4.4, each time a particle has been stored in the
cache by the model processes upon successful propagation, the helper pro-
cesses copy it in the background to global storage. Hence, all propagated
particle states can be selected for eviction, since they are safely stored on
global storage. When an eviction is required, the server selects a particle
from the cache in the following order:

1. A particle from the previous cycle discarded by resampling;

2. A parent particle from the current cycle for which all associated prop-
agations have been performed, and all weights received;

3. The particle with the lowest weight propagated during the current cy-
cle;

4. A randomly selected particle.

The particle states for cases 1 and 2 can safely be removed from cache since
those particles are not needed anymore for future propagations. In case 3, we
select the particle state with the lowest weight, as it has the lowest probability
of being selected for future cycles during the resampling.

4.4. Runners/Server Workflow

Once a runner job has started, it dynamically connects to the server and
requests a particle to propagate from it. The server selects the particle fol-
lowing a scheduling policy described in Section 4.5. The model checks the
location of the particle. If already located inside the local cache, the prop-
agation starts. Otherwise, the model processes request the helper processes

14



to load the state into the cache. The model processes block until the helper
processes fetched the particle into the cache, and afterwards start the prop-
agation.

Once a particle propagation finishes, the model computes the associated
weight wp and stores the particle in the cache. Further, the weight and
particle id are sent to the helper processes and a new particle is requested for
propagation. The helper processes, after receiving the weight from the model
processes, stage the particle from the cache to global storage and afterwards
send the weight and particle id to the server. This order ensures that the
server receives a weight only after the corresponding particle is propagated
and successfully stored on global storage.

The helper processes further prefetch particles in parallel to the propa-
gations (Figure 4). The goal is to avoid blocking the model processes while
waiting for a particle load from global storage (cache miss). Each time helper
processes send a weight to the server, they also request the next-to-next par-
ticle id to propagate. This particle is prefetched into the cache to become
locally available for the next to follow propagation. Prefetching is suspended
at the end of each propagation cycle, as propagation work for the next cycle
becomes only known after the server has performed the resampling of all par-
ticles. Notice that a helper may need to cancel prefetching if the prefetched
particle was in the meantime assigned to another runner, making idle the
model process while waiting for the next particle to propagate. When the
server makes such a decision to better balance the workload, it also takes
care of ensuring coherency between runners. Globally prefetching proved to
be very efficient for overlapping particle state loads with propagation (Sec-
tion 5.2).

4.5. Particle Propagation Scheduling

In this section, we present the scheduling algorithm implemented on the
server to distribute the particle propagations to the runners. The algorithm
aims to ensure an even load balancing between runners and minimize the
global particle loads, i.e. transfers of particles from global to local storage.

4.5.1. Static Scheduling

Let R be the number of runners. Let P be the number of particles to
propagate. Resampling may lead to have some parent particles drawn to be
propagated several times. Let Q be the number of parent particles q, and αq
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Compulsory state load Extra state load due to parallelization

Runner work lists

Figure 5: Two possible schedules of 24 propagation tasks of equal duration on 4 runners.
All particles propagated from the same parent particle state have the same color (9 parents
here). The top schedule is optimal with 9 compulsory loads (one per parent), and one for
the dark blue parent that cannot fit in one runner. The bottom schedule, with 2 more
state loads, is a possible one that our on-line scheduling algorithm can produce. This is
not optimal but still below the general Q +R − 1 bound as the algorithm ensures that no
more than R − 1 ”color cuts” occur and avoids the same runner loads more than once a
given parent particle state.

the number of times the particle q needs to be propagated. The total number
of particles to propagate is:

P = ∑
0≤q<Q

αq. 12

To assess the performance of our scheduling algorithm, we first derive a
lower and upper bound of the minimum number of particle loads c∗ for the
static case, where: (i) runners do not cache states, (ii) the number of runners
is constant, and (iii) all particle propagations take the same amount of time.
Under these conditions, each runner propagates P

R particles. Without local
cache, each parent particle q needs to be loaded at least once. Therefore,
the number of compulsory particle loads is Q. If αq = 1 for all q, that is,
every particle is drawn only once, then c∗ = P . Otherwise, parallelizing the
propagation on R runners may require some particles to be loaded by more
than one runner, accounting for extra particle loads beyond the compulsory
ones. Indeed, each particle q needs to be provided at least on sq runners,
where

sq =
⎡⎢⎢⎢⎢⎢

αq
P
R

⎤⎥⎥⎥⎥⎥
. 13

Distributed to R runners, the list of P particles is cut R − 1 times. Con-
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sequently, the extra particle loads are at most R − 1. This is visualized
in Figure 5. This upper bound occurs if all particles are propagated from a
single parent(Q = 1). Thus, the minimum number of particle loads is tightly
bound by

Q ≤ c∗ ≤ Q +R − 1. 14

We can apply a static schedule that respects the upper bound: distribute
P
R particles per runner, where each parent particle q is given to no more than
sq runners, and by imposing that runners do not switch to the next particle
before completing all propagations associated with the current one.

4.5.2. Dynamic List Scheduling

However, we target a more general case. We soften the initial assump-
tions now considering that the number of runners can vary, and the time
to propagate particles may vary significantly and is not known beforehand
(but we still have no cache). In this context we propose to rely on the clas-
sical dynamic list scheduling algorithm: when idle, a runner requests work
from the server that returns a particle id to propagate. In the general case,
the list scheduling algorithm guarantees to be at worst twice as long as the
optimal schedule that requires to know the particle propagation time in ad-
vance [41, 42]. Instead of blindly selecting the next particle to propagate,
we adapt the static scheduling strategy for particle selection with the goal of
limiting the number of particle loads. The scheduling is based on the split
factor sq (Equation 13). However, we adapt the static scheduling to the dy-
namic case by recomputing sq each time with the updated values of αq, P ,
and R. To implement this algorithm on the server, we need bookkeeping of
the number of runners Rq currently propagating particle q, and the number
αq of remaining propagations for particle q. Let r be the runner requesting a
particle for propagation, the particle distribution algorithm works as follows:

1: If αq > 0 for particle q last propagated by r, decrement αq and assign q
again. If αq = 0 continue with (2);

2: Select a different particle q′ with αq′ > 0;

3: Compute split factor sq′ . If Rq′ < sq′ assign q′, increment Rq′ , and decre-
ment αq′ . If Rq′ = sq′ continue with (2).

Notice that when the server recognizes the loss of one runner, it needs to
update the bookkeeping to reintegrate the particle that this runner was prop-
agating.
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In conditions of even propagation time and a static number of runners,
this algorithm leads to the same distribution as for the static schedule and
respects the upper bound of Equation 14.

4.5.3. Cache Aware Scheduling

We now remove the last assumption to propose a scheduling strategy that
takes into consideration the particle cache. This is a heuristic build upon the
previous strategy and validated though several experiments. The particle
selection strategy is:

1. Select a parent particle pi already loaded in the runner cache (cache
hit);

2. Select a parent particle pi that is in no runner cache (cache miss);

3. Select a particle pi fulfilling the split factor criterion (cache miss);

4. Select a parent particle pi with maximal split factor si (even if voids
the split factor) (cache miss).

The three first items comply with the scheduling proposed in Section 4.5.2.
The first item gives priority to particles already in the cache, before they may
be evicted to provide space for a particle load. The next two items pursue
the strategy of Section 4.5.2, favoring particles with no previous propagation.
The rationale is to start as soon as possible with new parent particles and,
once in a cache, propagate them as often as required, and intend to reduce the
need for splitting. The last item departs from the strategy of Section 4.5.2,
but its addition proved efficient by our experiments. This case occurs when
reaching the end of a cycle. It proved to be an efficient strategy to keep
runners busy, even at the cost of extra loads, to improve load balancing and
so completion time.

4.6. Job Submission and Monitoring

The workflow is controlled by the launcher. The launcher is the user
entry point to configure and start the application. The launcher starts first
and is responsible to start and monitor the runner and server instances,
that all run in separate executables/jobs. The launcher is also in charge of
killing and restarting the runners or server as requested by the fault tolerance
protocol (Section 4.7), or for elasticity purposes.
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The launcher tightly interacts with the job scheduler (Slurm or OAR
for instance) of the machine. The launcher can be configured to submit
one job per runner and server to the batch scheduler. This strategy offers
the maximum flexibility for the batch scheduler to optimize the machine
resource allocation, but the execution progress becomes very dependent on
the machine’s availability. The user may need more control over the number
of concurrently running runners. In that case, the launcher can be set to
request to the batch scheduler one or several large resource allocations and
fit several runner instances in each one. To support this feature the launcher
relies on a combination of Slurm salloc/srun [43], or OAR containers[44].
For even more flexible schemes, we plan to support workflow pilot-based
schedulers like Radical-Pilot [45] or QCG-PilotJob [46].

4.7. Fault Tolerance

The fault tolerance relies on the fast identification of failures from run-
ner and server instances. Runner failures are detected in two different ways.
Runner crashes are recognized by the launcher, which is monitoring their
execution using the cluster scheduler. Unresponsive runners are identified
by the server relying on timeouts for the particle propagations. If propaga-
tions exceed the timeout, the server requests the launcher to terminate the
respective runner. In both cases, the launcher eventually starts a new runner
instance. The new runner connects to the server and requests work. If a
runner fails, the server cancels the ongoing propagation, and the time spent
in the propagation plus the time to recognize the runner failure is lost.

Server failures are detected similarly, either directly if the server crashes,
or if the server exceeds a timeout. The timeout is mediated by a periodical
exchange of signals between launcher and server (heartbeats). If the server
fails, the launcher terminates all runner instances and restarts the framework
as a whole. The server frequently stores the status of the propagations in
checkpoints, and in case of failures, the framework can recover to the point
of the last successful propagations.

Finally, a launcher failure is detected by the server monitoring the heart-
beat connection between launcher and server. In case of a missing heartbeat,
the server checkpoints the current particle state and shuts down. In parallel,
the runners detect the server crash and shut down, again using timeouts.
While runner or server failures lead to an automatic restart, the framework
needs to be restarted manually if the launcher fails.
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4.8. Implementation Details

The launcher and server are developed in Python. The runner relies on the
simulation code instrumented with our framework API, supporting C/C++,
Fortran, and Python. The implementation reuses some software compo-
nents, like the launcher, from the framework developed for EnKF DA [17].
The distributed cache implementation relies on the Fault Tolerance Interface
(FTI) [47]. FTI is a multilevel checkpoint-restart library supporting asyn-
chronous checkpointing to the global storage. One of the main modifications
performed to FTI is related to its event loop. Events are triggered using MPI
communications between the application and FTI processes. The events are
identified by tags. To extend this mechanism, we enabled to register a call-
back function. This callback function is called inside the event loop and can
trigger user-defined events using unique tags. With this, it becomes possible
to use the application checkpointing into all available levels of reliability that
FTI provides and to implement the cache management on the dedicated FTI
processes.

The communication between helper and model processes relies on asyn-
chronous MPI messages. Communications with the server are implemented
in two steps for efficiency purposes. Only rank 0 (master) of the applica-
tion (i.e., model) communicator and rank 0 (master) of the helper process
communicator communicate with the server. As a dynamic connection is
needed, each master connects to the server using a socket through the ZMQ
library [48]. The ZMQ library simplifies the implementation of asynchronous
messaging by providing various communication patterns on top of different
transport protocols like TCP. Information that need to be propagated be-
tween helper or model processes relies on MPI collective communications in
the associated communicator (Figure 3).

The framework code with support for EnKF and Particle Filter is avail-
able at https://gitlab.inria.fr/melissa/melissa-da and is part of the
Melissa framework for large ensemble runs https://gitlab.inria.fr/melissa.

5. Experiments

The experiments in this section are meant to evaluate the computational
performance of our framework. We use WRF to demonstrate the potential of
our approach within the context of a complex production code. WRF is used
with the bootstrap PF for a very limited number of cycles to fit our compute
hours budget, and our tests are focused on the scalability, efficiency, and
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reliability and not the numerical quality of the assimilation. Many studies
have shown that the bootstrap PF fails for high-dimensional DA applications.
In our case, the short operation time did not lead to filter degeneration, but
this is an important point to consider when projecting our experimental
results to real production runs, which will need to rely on advanced PF
methods more robust to degeneration and impoverishment on long runs.

We also push the number of particles to thousands to test scalability
beyond standard DA practice that usually runs at a few hundreds as a trade-
off between compute costs and assimilation quality.

For access to further technical details and reproducibility purpose the
instrumented code of WRF is publicly available at https://gitlab.inria.
fr/melissa/wrf-melissa-da.

5.1. WRF Use Case

Experiments rely on an established Numerical Weather Prediction (NWP)
system – the Weather Research and Forecasting Model (WRF, V3.7.1)[18].
The core of Weather Research and Forecasting Model (WRF) is based on
solving fully compressible non-hydrostatic equations with complete Coriolis
and curvature terms, and a large set of physics options. The simulated spa-
tial domain covers most of Europe (See Figure 6) and is composed of 220
by 220 grid cells with a horizontal resolution of 15 km and 49 vertical levels
with uneven thickness.

We perform one day-ahead weather forecasting (24 hours of initial time
plus 48 hours of production time) of an arbitrary date (2018-10-12) with 100-
second time steps. The model employs the following physics options: WSM6
microphysics [49], MYNN2 boundary layer physics [50], Grell-3D cumulus
parameterization, which is an improved version of [51], Eta Monin-Obukhov
similarity surface layer processes, which is based on the Monin-Obukhov
similarity theory [52] using Zilitinkevich thermal roughness length [53], and
the RUC land surface model [54]. Also, the non-hydrostatics are activated
to provide more details in simulated clouds and precipitation. The input,
initial, and boundary conditions are based on the reanalyzed ERA5 dataset
from the European Center for Medium-Range Weather Forecasts (ECMWF),
which is updated every 3 hours.

DA is performed using the Cloud fraction variable (CFRACT), which
represents the fraction of cloud coverage over the 2D plane of the modeled
grid. The particle weights are determined by comparison with the observed
cloud mask obtained from the EUMETSAT Level-2 satellite data, which is
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validated to have good agreement with ground-based observation [55]. Fol-
lowing the method in [56], the simulated cloud fraction (a floating-point
number between 0 and 1, unitless) is converted into a binary cloud mask (0
for cloud-free and 1 for cloudy) and rescaled, to match the format and grid
of the observed cloud mask data.

The observation data is available hourly, thus, one assimilation cycle com-
prises 36 model time steps (36 × 100 s =̂ 1 h).

Figure 6: The topography of the target domain of Europe for the simulation.

The experiments presented in this article leverage our proposed PF im-
plementation with a sample size of up to 2,555 particles on the European
domain. In that case, we utilize 20,442 compute cores on 512 Nodes of the
Jean-Zay supercomputer. The compute nodes are equipped with 2 Intel
Cascade Lake 6,248 processors, summing up to 40 cores with 2.5 GHz and
192 GiB RAM per node. Intel Omni-Path (100 GB/s) connects the com-
pute nodes, and the global file system is an IBM Spectrum Scale (ex-GPFS)
parallel file system with SSD disks (GridScaler GS18K SSD). For all exper-
iments, the node-local caches were stored on RAM disk. In Table 1 we list
the parameters of our main experiments.

The meteorological state of the European domain associated to one par-
ticle comprises 2.5 GiB of data. Hence, the data from 2,555 particles for
the full simulation period of 48h (48 assimilation cycles) corresponds to an
aggregated size of about 300 TiB. The experiments performed for this arti-
cle, including small beta-stage experiments, account for about 900,000 CPU
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hours split between the JUWELS, Jean-Zay, and Marenostrum supercom-
puters.

Experimental Setup

Particles 315 635 1,275 2,555
Number of runners 63 127 255 511
Number of nodes 64 128 256 512
Model processes 2,457 4,953 9,945 19,929
Particles per runner (avg.) 5 5 5 5
Particle state size (GiB) 2.5 2.5 2.5 2.5

Performance Data

Scaling efficiency 92% 91% 92% 87%
Resampling (ms) 2.21 4.06 8.16 16.37
Assimilation cycle (s) 136 138 139 146
Propagation (s) 25.1 25.2 25.1 25.0
Load particle state
from PFS to cache (s)

2.1 2.1 2.4 4.1

Write particle state
from cache to PFS (s)

1.4 1.6 1.8 2.3

Writes to PFS per cycle (TiB) 0.77 1.55 3.11 6.24
Reads from PFS per cycle (TiB) 0.30-0.40 0.64-0.79 1.27-1.79 2.54-3.82

Table 1: Experimental setting and performance overview at 4 different scales. The times
are given as average in all cases. Model time steps were set to 100 seconds.

5.2. Runner Activity

The benefit of the local cache in combination with the cache-aware schedul-
ing leads to a drastic reduction in transfers from global to local file system
layers. The cache hit ratio, i.e., the ratio of particles found inside the cache
to the total number of particle loads, depends on the cache size and the ratio
of particles per runner. Figure 7 shows how the cache misses develop for
different cache sizes. Our experiments demonstrate a cache-hit ratio of 88 %
for 128 particles, 32 runners, and a cache size of 9 particles. This translates
to a saving of 88 % in transfers from global to local storage. The pattern of
cache hits and misses is visualized in Figure 8. The initial phase is dominated
by starting up the runners, and all the particles are fetched from the global
storage (cache warm up). But beginning with the next assimilation cycle,
the low transfer ratio from global to local storage starts to establish.
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Figure 7: Cache hit ratio for different cache sizes on each runner. In total 128 particles
run on 32 runners. The first and last assimilation cycles were disregarded to remove
warm up effects and not fully recorded cycles.
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Figure 8: Gantt chart of particle propagations executed by the 32 runners over 15
assimilation cycles. Tasks are green if the associated parent particle state was already
present in the runner cache and did not require a load from the PFS (red otherwise). For
more than 97% of the cache misses (red), particle prefetching (Figure 4) is effective to load
it from storage with enough anticipation not to delay its propagation.

Runners are designed to separate I/O operations to the PFS from other
tasks: model processes only perform local I/O operations. We observe in
our experiments that this leads to high computational efficiency. The local
I/O accesses are negligible compared to the computational tasks (< 0.1 s
compared to up to 6 s). Some general idle periods can be observed between
assimilation cycles when runners are waiting for the last propagations of one
cycle to finish so that the server can normalize weights, resample and start to
distribute work again. This is illustrated in Figure 9 where we show a trace
recorded from the execution of an arbitrary runner. The trace illustrates the
efficiency of the runners in performing the actual tasks of the simulation,
particle propagation, and weight calculation, while the I/O tasks are moved
to the background.

A global parallelization of the computational tasks is achieved by dynami-
cally distributing the particle propagations to the available runners. The fully
parallelized case corresponds to R = P , i.e., the number of runners matches
the number of particles. The sequential case corresponds to R = 1, i.e., all
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Figure 9: Trace detailing the activity of a runner over the course of an assimilation cycle.
Helper processes enable to keep model processes busy with particle propagation, except at
the end of assimilation cycles when they wait for the server to finish particle resampling
(dark blue). Some activities are so thin that they are not visible here (state copies from
cache to model).

propagations are performed by only one runner. However, The best parallel
efficiency is achieved at values between those limits. Because WRF propa-
gates particles with very low time variability (maximum variability of 10%),
we observe an even distribution of propagations to runners when R divides P
(Figure 8). A single-particle propagation takes between 24 and 26.5 seconds,
globally making from 87% to 92% of an average assimilation cycle. Calcu-
lating weights takes 1% of the time and communicating with the server from
7%to 12% including the idle time at the end of each cycle (Table 1 – Perfor-
mance Data). The extra resources for helper processes, one core per runner
node, and the server, 1 node, comprise only 2.7% for our largest experiment
at 512 nodes. On the other hand, leveraging the runner’s particle cache, and
the cache-aware dynamic scheduling on the server, move > 97% of the state
loads completely into the background. Loading and writing particle states
synchronously would otherwise add about 6.4 seconds to each single-particle
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propagation corresponding to 14% of the average propagation time (Table 1
– 2,555 particles).

Note that in contrast to the traditional offline approach, we start-up the
numerical simulation code only once for several particle propagations. The
setup involves the request and allocation of the runner job and initializing
the simulation code. On the other hand, the traditional offline approach
associates each particle propagation with a different job, and the start-up has
to be performed anew for each particle propagation. Starting up the WRF
model on the European domain on one node until the first model propagation
begins takes 3-4 s, excluding the provisioning of the job allocation via the
cluster scheduler.

5.3. Server Activity

We further measured the server responsivity to runner requests. The
response time is always in the order of a few hundred microseconds, except
for some job requests that take up to a few seconds (Figure 10). However,
these are outliers at the end of the assimilation cycle, resulting from idle
times due to the load balancing and the particle filter update, i.e. resampling.
During our largest experiments with 511 runners, the server processes 676
requests per second at maximum load. This shows that the server is fast
enough to support this scale, even though it is a sequential python code.
Simple optimizations are at reach if the server needs to be accelerated (e.g.,
adding parallelization).

5.4. State Transfers To/From PFS

Next, we take a closer look at the particle loads from the PFS (Figure 11).
With a sample size of 1024 particles, leveraging 256 runners, and a local cache
size of 9 particles, between 121 and 248 particles are loaded to the cache
during each cycle. The number of distinct parent particles Q propagated per
cycle lies between 813 and 889. Each one is propagated at most 5 times to
sum to a total of 1024 particles. The cache enables to achieve significantly
fewer loads than the Q +R − 1 upper bound expected with static scheduling
and no cache (Equation 14).

The access times to the Parallel File System (PFS) (load/store) vary sig-
nificantly and increase with the number of runners (Figure 12), showing that
our application alone can stress the PFS 1. Each particle is associated with

1these numbers may also be impacted by other jobs on the cluster
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Figure 10: Server response times on runner requests.

2.5 GiB of data. During each assimilation cycle, all the propagated parti-
cles are written to the PFS for supporting fault tolerance and dynamic load
balancing. For our experiments at 512 nodes with 2,555 particles, this accu-
mulates to about 6.2 TiB of data each cycle (compare Table 1). However,
our experiments on the Jean-Zay and JUWELS supercomputer demonstrate
that our framework performs most of those transfers asynchronously (Sec-
tion 5.2). In less than 2% of the cases, the model processes wait more than
0.1 seconds for a particle to be loaded corresponding to cases where helper
processes do not (entirely) finish prefetching. The time to perform the local
loads and stores from the cache shows a constant average independent of the
number of runners (Figure 13).
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Figure 11: Number of parent particles Q, particles loads from the PFS to the cache,
and Q + R − 1 upper bound from Equation 14 for different ensemble sizes, a cache size
of 9 particles with 4 particles per runner.
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Figure 12: Mean time (and standard deviation bars) to load or store particle states of
2.5 GiB from/to the PFS with different numbers of runners.

5.5. Fault Tolerance, Elasticity, and Load Balancing

Fault tolerance relies on 1) persisting the particle to the PFS 2) the
framework elasticity enabling to adjust dynamically the number of runners.
If a runner fails, the launcher requests the execution of a new one, so as to
maintain a constant number of runners. Once this new runner connects to
the server, it asks for a particle to propagate to the server, assigned according
to the load balancing algorithm.

We tested the fault tolerance and elasticity in an experiment with 63
runners provoking the crash of 2 runners (Figure 14). First, notice that the
fault tolerance algorithm reacts appropriately as it restarts a new runner after
each crash. The first crash (runner #53) occurs in the worst-case situation:
just when propagating the last particle of the current cycle, leading to a
significant idle period. The idle period is caused first because the server
needs to wait for the timeout (set to 60 s) to acknowledge that runner #53 is
unresponsive and second, there is no work left except the particle that runner
#53 was propagating, which is re-assigned to runner #44. Meanwhile, all
other runners stay idle until the beginning of the next cycle. If the crash
happens earlier during a cycle, smaller idle periods appear. This can be
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Figure 13: Box plot of the time spent for loads and stores from/to the local cache with
different numbers of particles.

observed during the second crash (runner #48), as the other runners are
kept busy with propagation work. We generally observe an efficient load
balancing, as the workload is kept well distributed amongst runners, even
when their number varies.

5.6. Scaling

We evaluated the performance of the particle filter in a strong scaling sce-
nario (constant number of runners while increasing the number of particles),
and a weak scaling scenario (constant particle-to-runner ratio while increas-
ing the number of runners). In the strong scaling scenario we observe that
the runner utilization shows an upwards trend when increasing the number
of particles per runner, with a plateau at about 96% (Figure 15). As global
I/O operations are almost completely shadowed, thanks to the asynchronous
prefetching, increasing the number of particles per runner mainly enables to
better amortize the cost of the synchronization associated with resampling.
We observe an almost constant time for the assimilation cycle, demonstrat-
ing a desirable weak scaling behavior. The time for the cycles increases only
by 8% from 63 to 511 runners, indicating an efficient scaling behavior of the
framework up to production scale (Figure 16).
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Figure 14: Gantt chart of particle propagations executed by the 63 runners over 8
assimilation cycles. After runners #48 and #53 crashed (black cross), two new ones
restarted (top 2 runners #63 and #64).

This Publication ESIAS-met ESIAS-met/This Publication
part. cores time (s) core×s/part. cores time(s) core×s/part. resource usage ratio
128 384 1062 3186 1536 267 3204 1.01
256 768 1062 3186 3072 317 3804 1.19
512 1536 1068 3204 6144 422 5064 1.58

1024 3072 1071 3213 12288 761 9132 2.84

Table 2: Comparing the resource usage (core×second/particle) per cycle for our approach
and ESIAS-met (file-based) runs.

5.7. Comparison to a File-based Approach

We compare our approach with the file-based approach ESIAS-met [56]
using the same simulation code WRF (V3.7.1), and the same input data. For
the same number of particles, both approaches use a very different number
of cores (Table 2). With ESIAS-met, each particle propagation requires
to start a dedicated instance of WRF. Each time it includes the cost of
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Figure 15: Scaling efficiency using different numbers of particles with 63 runners. One
runner sets the reference case.

loading and storing the particle state from/to a file. At 1,024 particles ESIAS-
met uses 12,288 cores while our approach just needs 3,072 cores as runners
propagate several particles each. ESIAS-met’s execution time is thus shorter,
as highly parallelized, but, the resource usage (core×second/particle/cycle) is
2.84 times lower for our approach due to the combined strategies developed to
improve efficiency. The gain increases with the number of particles, showing
that our approach is particularly beneficial when targeting large ensemble
sizes.

5.8. Experiment Discussions

In Section 5.1 we derived that the total amount of data resulting from
48 time steps of particle filtering on the European domain with 2,555 particles
accumulates to about 300 TiB. Not all these intermediate states need to
be saved and our framework can easily be extended with an extra server
dedicated to computing summary statistics for instance as in [57].

The particle propagation time in our experiments with WRF is relatively
even, showing at most a 10% variability. Situations with more variability
are possible using different physics in WRF, with other simulation codes, or,
if runners execute on heterogeneous resources. For instance, some runners
could propagate faster than others by leveraging GPUs.
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Figure 16: Weak scaling performance test: assimilation cycle duration for different num-
bers of runners, but always 5 particles per runner.

We only considered the case where the propagation time is longer than
the time for loading states from the PFS. Reducing the assimilation cycle
length may lower the time to calculate the model propagation as well. If the
propagation time becomes shorter than the time necessary for state loads and
stores (I/O) cannot be further overlapped by model propagations. This will
reduce the efficiency of our proposal. To minimize state loading and storing
times further, permitting shorter assimilation cycles with large model states,
we are evaluating approaches leveraging node-local persistent storage as a
globally shared storage layer. Solutions for this are readily available in the
form of distributed ad hoc file-systems [58] such as BeeOND, GekkoFS, and
BurstFS. We have also experimented with connecting the runners, establish-
ing a peer-to-peer network, where runners can exchange directly the required
states with each other.

6. Beyond the (bootstrap) PF

We presented our framework and experiments using the bootstrap PF.
The PF was chosen for its simplicity to keep the paper focused on the archi-
tectural design. In this section, we discuss support for other ensemble-based
methods.

6.1. Distributed versus Centralized State Store

In a previous work [17], we developed a solution for DA where a large
fraction of the particle states needs to be aggregated to compute the update.
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Figure 17: Distributed state store (left - this paper) versus centralized state store (right
- [17]). In both cases the server is in charge of 1) computing the update phase and 2) load
balancing the particle propagation to the different workers. The centralized approach is
well adapted to filters requiring to gather a significant portion of the states (e.g. EnkF
filters), while the distributed approach is adapted to filters where only a lightweight frac-
tion or a summary of each state is required for the update phase.

This is typically the case for DA methods from the EnKF family, where com-
puting the Kalman Gain requires computing the sample covariance from the
ensemble of states. Let us call it the centralized design, compared to the ar-
chitecture of this paper that we call the distributed design (Figure 17). Both
frameworks rely on the same software base and share various components.
We stress here the main differences. The centralized design gathers all the
particle states on the server. When all particle propagations are done for
the current cycle, the server computes the state update and redistributes dy-
namically the modified states to runners to load-balance the propagations for
the next cycle. For checkpointing purposes, the server persists the states to
the parallel file system [59]. Because states are memory-consuming and the
associated computations are significant, the server is in that case a parallel
code running on several nodes. For instance, we support PDAF [33] as DA
engine for the server. Refer to [17] for details. The centralized design is very
generic and can support a wide variety of ensemble-based DA methods. But
moving back and forth the particle states is time-consuming, and actually
not always required by the data dependencies of the used method, as in the
case of the bootstrap PF. Therefore, the distributed design proposed here
enables saving these state movements, caching the states locally at each run-
ner. Hence, by analyzing the data dependencies associated with a given DA
method, one can identify the most suitable design and improve efficiency. To
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Distributed Design
(this work)

Centralized
Design [17]

Conventional Online
Approach

Offline Approach

Model initializa-
tion only once

+ + + -

State Exchange File System Network Network File System

Load-balancing + + - +

Fault Tolerance + + - +

State Movements Local cache + PFS Gather/Scatter Gather/Scatter PFS

Table 3: Comparison of the properties of existing approaches. We assume a conventional
online approach that gathers all member (i.e. particle) states for the DA update (i.e.
resampling) and scatters them again afterwards.

comply with the distributed design, DA methods need to fulfill the following
properties:

(a) The propagation of particle p depends only on the associated state xp,t
and can be performed independently of other particles.

(b) The reduction during the DA update only depends on weights wp,t or
similar scalar variables, and not on the particles and associated states.

(c) The scalar values that need to be aggregated during the update phase,
i.e., the weights wp,t, depend only on the associated particle p and ob-
servation vector yt, and can be computed independently of other weights
and particles.

(d) The states xp,t associated with the particles p remain unchanged during
the filter update, or the particle’s state transformation only depends on
local information, such as observations, or xp,t−1 and wp,t−1.

We can compare the centralized and distributed designs with the tra-
ditional online and offline approaches. As shown in Table 3, the two new
designs mix features from offline and conventional online approaches. This
work can either be seen as an online approach that circumvents gathering
the full state ensemble for the DA update step, or as an offline approach that
avoids simulation code startup costs thanks to runners as well as I/O delays
using a distributed cache and prefetching. In addition, our framework sup-
ports dynamic load-balancing enabling it to adapt to execution variabilities,
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even in the presence of failures. In the following, we make a deeper analysis
of methods that are good candidates to be ported to the framework for the
distributed workflow.

6.2. Particle Filters Analysis

We discuss how various PF methods fit the different properties (subsec-
tion 6.1) and so the distributed state store proposed in this paper. Implicit
Equal Weights Particle Filter (IEWPF) is discussed appart in Section 6.2.1.

Property (a) is typically fulfilled by most PF variants. Property (c) is ful-
filled if we can compute the weights according to Equation 10. If the method
allows decoupling the weight calculation from the filter update, property (b)
is fulfilled. Finally, property (d) is fullfilled when particles are either with-
drawn or selected, but not changed, as for the bootstrap PF with SIR, as well
as other flavors of SIR and resampling algorithms, like residual or stratified
resampling [60, 61]. If the states are transformed but no global information
is used for the transformation, property (d) is fulfilled as well, as for the
IEWPF discussed in the following section.

However, the properties exclude certain classes of PF. For instance, PF
that use localization [13, 14, 62], as the transformation of the particle depends
on segments of other particle states from the ensemble, and the ensemble
mean. Furthermore, hybrid particle filters like the weighted EnKF [63] are
not supported due to the necessity of computing the Kalman Gain which
involves the sample covariance matrix of the ensemble states. The centralized
design is well adapted for these types of filters.

Other PF methods that try to reduce the impact of the centralized up-
date could fit the distributed design with some adaptations. This include
Island PF that groups particles hierarchically to reduce ensemble-wide syn-
chronization [64]. To remove any remaining synchronization, anytime or
asynchronous PF decide on a particle-by-particle basis if it is resampled [65].
For constant ensemble sizes, the DA accuracy may vary over time. Thus
adaptive resampling of fewer or more particles might be another extension
for our framework to guarantee result quality at optimal runtimes, avoiding
oversampling [66, 67].

6.2.1. Implicit Equal Weights Particle Filter

IEWPF [11], in contrast to the bootstrap PF, does not suffer from weight
degeneration, as all the particles are assigned the same weight, and therefore,
each particle has the same probability to be drawn. In fact, most IEWPF
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implementations do not perform resampling at all. Instead, the particle
state undergoes a transformation to fulfill the equal-weights-condition, and
the transformed ensemble is kept.

The idea behind the IEWPF is based on drawing the particles from a
Gaussian-shaped proposal distribution, q(ξ), instead of the original one. For
this, the particle state is transformed by:

xp,t = xap,t + α
1/2

p,tP
1/2ξp,t 15

ξp,t ∼ N(0,P), 16

where xap is the mode and P, the covariance of ξp,t, is a measure of the
width of the optimal proposal distribution p(xp,t∣xp,t−1,yt). The scalar αp,t
is obtained during each update step by solving the equal-weights-condition:

wp,t =
p (xp,t ∣ xp,t−1,yt)p (yt ∣ xp,t−1)

q(ξ) ∥ dx

dξ
∥ ⋅wp,t−1 != ŵt, 17

where ŵt is the target weight, and ∥ dx
dξ∥ the absolute value of the determi-

nant of the Jacobean from the transformation in Equation 15. Note that
p(xp,t∣xp,t−1,yt), as well as P and xap,t only depend on the corresponding par-
ticle state and observations. The transformation in Equation 15 ensures that
with the appropriate αp,t, determined by solving Equation 17, each parti-
cle takes on the same distance to the observations, hence, obtains the same
weight as the other particles. In opposition to the boostrap filter, IEWPF
performs a state update, but this update (Equation 15) only requires local
information, observations and the scalar αp,t obtained from Equation 17,
fullfiling the property b) and d). The only centralized operation is the com-
putation of the target weight (Equation 17) that also relies on scalar values,
fullfilling property c). Thus IEWPF is suitable for the distributed design.

6.3. MCMC and ABC

Our framework is well suited for a certain class of PFs as we have ex-
plained in the preceding sections. However, it is not constrained to PFs
and geoscience applications. In the following two paragraphs we want to
introduce two important techniques that can be ported to our framework as
well.
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6.3.1. MCMC

In the last decade, Markov Chain Monte Carlo (MCMC) algorithms
played an important role in solving high dimensional integrals in statistics,
econometrics, physics, and computing science [68, 69, 70, 71]. MCMC, for
instance, is the only known general solution to calculate the volume of a
d-dimensional convex body [72].

MCMC is a probabilistic method. Its solutions take the form of a PDF.
The MCMC algorithm samples N first guesses x10, x

2
0, . . . , x

N
0 and propagates

them M times through a Markov transition M(⋅). Note that the state vari-
ables x may be scalars up to high-dimensional state vectors. The stationary
distribution of the resulting Markov processes, i.e., of all samples xin after
applying multiple times the Markov transition, must converge against the
PDF of the integral in question P (x∗) [73].

xin+1 =M(xin) 18

P (x∗) ∼ 1

N
lim

n→∞,N→∞

N

∑
i=0

δ(xin − x∗), 19

with δ defined as the Dirac delta function.
Basic MCMC methods, as PF too2, rely on two-phase workflows. After

sampling multiple first guesses xin, each is propagated repeatedly through the
given Markov transition until stationary. Note that this can take different
iteration counts and therefore different runtimes per initial first guess, leading
to load imbalance when parallelized naively. Sampling and propagation of
new first guesses xi0 is repeated until convergence, e.g., of a distribution
histogram that represents the solution of the integral as a PDF P (x∗).

Multiple types of Markov processes, like Metropolis-Hasting or Hamilto-
nian Monte Carlo processes, can be used in MCMC. Refer to surveys like [74]
for more details on these methods and how to find suitable Markov processes
with stationary distributions converging against the searched integral.

The approach developed in this paper can be adapted to MCMC algo-
rithms in high-dimensional spaces with computationally expensive transition
functions. Instead of instrumenting the simulation code to become a runner,
the runner can be used to embed the execution of Markov processes. After a
first guess propagated through the transitionM(⋅) until it converged against
stationarity, the resulting state vector xin or a summary statistic of it can be

2Note that PF can also be seen as an MCMC method itself.
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sent to the server which then decides if the runner should propagate a new
initial guess or if the run is finished. The load balancing between runners
intrinsic to our framework will enable to cope with variations in computation
times of different propagations due to different iteration counts needed until
different Markov processes are completed. The distributed state store will
enable handling large state vector sizes for xin beyond the memory capacity
of the supporting compute nodes.

6.3.2. ABC

Another important tool used for Bayesian inference to sample from impos-
sible or difficult-to-compute i.e., intractable PDFs, is Approximate Bayesian
Computation (ABC) [75, 76]. It finds applications from cognitive science [77]
over genetics [78] to finance [79].

ABC infers

π(θ∣y) = π(y∣θ)π(θ)
π(y) , 20

where likelihood π(y∣θ) and π(y) are unknown. ABC draws θ from the
prior π(⋅) and accepts it with the probability π(y∣θ). Accepted θ thus are
independent draws from the posterior distribution π(θ∣y). For ABC to work
there must be a way to simulate y:

ysim =M(θ). 21

Instead of the evaluation of the unknown π(y∣θ) one can thus draw θ from
the prior π(⋅) and then accept it if y = ysim. If y is continuous rarely any θ
are accepted. Thus an approximate version is used accepting θ if y and ysim
are close. For instance, accept θ if ∣y − ysim∣ is smaller than a given threshold
value.

ABC can be implemented within the framework as follows: each runner
simulates with a different parameter drawn from the prior distribution π(θ).
Only if the result ysim is accepted, it is sent to the server. Otherwise, the
runner draws another input parameter and tries again.

7. Conclusion

In this article, we proposed an architecture for handling very large ensem-
bles for a variety of PF. The architecture is designed to address the challenge
of exascale computing that will allow massive ensemble runs [80]. This is
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part of a larger effort to develop an open source solution, called Melissa, for
supporting online data processing of large ensemble runs for different DA
schemes as well as sensibility analysis and deep surrogate training3.

The proposed architecture is based on a server/runner model where run-
ners support a distributed cache and virtualization of particle propagation,
while the server aggregates the weights computed by the runners and ensures
the dynamic balancing of the workload. Particle propagation is virtualized
so the required number of runners is decoupled from the particle number.
With the addition of a distributed checkpointing mechanism, the architec-
ture supports dynamic changes in the number of runners during execution for
fault tolerance and elasticity. Experiments with the WRF weather simula-
tion code show that our framework can run at least 2,555 particles on 20,442
cores with a 87% scaling efficiency. Dynamic particle-propagation scheduling
and caching enable to avoid 88% of the global I/O operations. Compared
to the ESIAS-met file-based approach, our proposal improves resource usage
2.83 times at 1,024 particles.

We plan to extend the distributed cache and fault tolerance algorithm
of the framework to fully avoid the centralized file system and only rely on
node-local SSDs for particle storage for further performance improvements.
Future work also includes experimenting with other PF such as IEWPF,
adaptive or anytime PF, MCMC and ABC.
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