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Abstract

Particle filters are a group of algorithms to solve inverse problems through
statistical Bayesian methods when the model does not comply with the lin-
ear and Gaussian hypothesis. Particle filters are used in domains like data
assimilation, probabilistic programming, neural network optimization, local-
ization and navigation. Particle filters estimate the probability distribution
of model states by running a large number of model instances, the so called
particles. The ability to handle a very large number of particles is critical
for high dimensional models. This paper proposes a novel paradigm to run
very large ensembles of parallel model instances on supercomputers. The
approach combines an elastic and fault tolerant runner/server model min-
imizing data movements while enabling dynamic load balancing. Particle
weights are computed locally on each runner and transmitted when available
to a server that normalizes them, resamples new particles based on their
weight, and redistributes dynamically the work to runners to react to load
imbalance. Our approach relies on a an asynchronously managed distributed
particle cache permitting particles to move from one runner to another in the
background while particle propagation goes on. This also enables the num-
ber of runners to vary during the execution either in reaction to failures and
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restarts, or to adapt to changing resource availability dictated by external de-
cision processes. The approach is experimented with the Weather Research
and Forecasting (WRF) model, to assess its performance for probabilistic
weather forecasting. Up to 2,555 particles on 20,442 compute cores are used
to assimilate cloud cover observations into short—range weather forecasts over
Europe.

Keywords: 1s Data Assimilation, Particle Filter, Ensemble Run, Resilience,
Elasticity

1. introduction

Given an output and a transformation function, finding the input states
represents a so called inverse problem. A wide range of approaches to ad-
dress this central problem exist. Statistical Bayesian methods stand out as
they provide uncertainty measures of the proposed input in form of probabil-
ity density functions. In this paper, we consider particle filters, a statistical
Bayesian method combining uncertainties of both the dynamical system and
observations, to estimate the system state. Several realizations of the dy-
namical system, called particles, with differently perturbed internal states,
are propagated up to a time where observation data are available. These
particles are then weighted corresponding to their distance to the obser-
vations. The weights are used to generate a new sample of particles that
better matches the observations. This process repeats while observations are
available.

Particle filters are used for several purposes, like Data Assimilation (DA) [1],
probabilistic programming [2, [3, 4], neural network optimization [5], local-
ization and navigation[6]. Particle filters stands by their ability to work with
nonlinear and/or non-Gaussian state space models in opposition to technics
like Ensemble Kalman Filtering (EnKF). But this ability comes with a need
to run larger number of particles. If the dynamical system is an advanced
parallel high-dimensional numerical model solver, as for geoscience applica-
tions, thousands of particles may be necessary to avoid undersampling and
degeneracy. While high-dimensional large-scale solvers are compute intense
already, the execution of several thousands of instances adds orders of magni-
tude of calculations. Large scale DA with particle filters is for instance used
for geoscience applications such as weather forecasting [7]. Supercomputers,
reaching today Exascale, have the compute power to support very large scale



particle filters. But using such resources efficiently, time and energy wise, is
challenging. Applications need to limit the use of the Parallel File System
(PFS), a classical supercomputer bottleneck, and favor instead in situ data
processing as well as local data storage to reduce data movements, asyn-
chronism to overlap tasks whenever possible. Applications also need to be
flexible to adapt to changes during execution, requiring support for resilience,
elasticity and dynamics load balancing.

Existing large scale approaches can be divided into two types: online
and offline approaches. Offline approaches use temporary files to exchange
data. To propagate one particle, one model instance starts, loads the particle
from a file, propagates it up to a given time, stores the resulting particle back
to a file and shuts down. This approach is flexible, fault tolerance is easy
to support, but performance, especially at scale is impaired by the heavy
use of the file system and the cost of starting a new model instance for each
propagation. Online approaches bypass the file system by running a large
MPI application that encompasses the full workflow, where the particles are
distributed to the different model instances through the network via MPI
communications. While saving I/O overheads, this approach loses flexibility.
For instance, a fault during a single particle propagation stops the entire
application. Thus existing online approaches, as will be detailled in the
related work section (Section @, usually do not support fault tolerance or
dynamic load balancing.

In this paper we develop an alternate approach that leads to a high ef-
ficient yet flexible framework. The key to achieve this goal is the virtual-
ization of particle propagations. We turn a numerical model solver instance
into a runner capable of propagating several particles one after the other
with low overheads and idle times. Each runner is coupled with a node-local
distributed state cache enabling fast loads and stores of particles. The caches
are asynchronously persisted to the file system for checkpointing and load bal-
ancing between runners. Asynchronous prefetching of particles into the cache
enables overlapping particle loads with the particle propagation. A server
organizes the work distribution to the runners and performs the centralized
tasks of the particle filter update and (re-)sampling. Runners and server are
each executed as independent executables to support elasticity and facilitate
fault tolerance. The association of these different features complemented
with a fault tolerance protocol, leads to an elastic and resilient framework,
minimizing data movements while enabling dynamic load balancing. Parti-
cle virtualization enables to decouple resource allocation from the number
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Figure 1: Initially particles are uniformly sampled. They are propagated to 77 where
they are weighted taking into account observation data. Resampling leads to discard some
particles with low weights (top and bottom), while others with high weights become parent
of several ones (3 here).

of particles. The number of runners can vary during the execution either
in reaction to failures and restarts, or to adapt to changing resource avail-
ability dictated by external decision processes. The proposed architecture
is designed for running at extreme scale, leveraging deep storage hierarchies
and heterogeneous cluster designs of current and future supercomputers.

We strain our proposed particle filter framework with a realistic use-case,
interfacing with the Weather Research and Forecasting (WRF, version 3.7.1)
model [8]. WRF is a widely used weather model for operational forecasting
and research. Using our particle filter, we are able to run 2,555 particles on
20,442 compute cores for WRF simulations on a European domain with 87 %
efficiency.

The rest of the paper is structured as follows: Section [2] reviews the
principles of particle filters and the associated workflow. Section [3| presents
the architecture of our proposed approach, while Section [4] is dedicated to
experiments and Section [5| to discussion. The papers ends with related work
in Section [6l and a conclusion in Section [7l

2. Particle Filters

In this section, we give a brief introduction on the particle filter formalism,
focusing on properties that we exploit in our proposal. For a comprehensive



introduction, we refer to [1,[9]. Let M be a numerical model, that propagates
a particle p from state x,,_; at time ¢t — 1 to state x,; at time ¢:

Xpt = M(Xp,t71> + Bt 1

Where 3 is a random forcing representing errors in the model. Let H be the
projection operator from the state space to the observation space:

y = H(x) + € 2

Where € is a random vector, representing the measurement errors.

The bootstrap particle filter formalism can be derived using Bayes’ the-
orem:
p(yelx:) p(x4)

p(y)
Where p(x:|y,) is the posterior Probability Density Function (PDF), p(x;) is
the prior PDF, p(y,|x;) is the likelihood of observing y, if x; would represent
the true state, and p(y,) is the evidence available. The goal of the filtering
formalism is to derive the posterior p(x;|y,), which describes the PDF of the
state x; taking into account the evidence y,.

In the bootstrap particle filter, the prior p(x;) is estimated via sampling
an ensemble of P particles x,; representing different model states

p(xely;) = 3
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The likelihood p(y,|x;) is assumed to be known, estimated when calibrating
the sensor. It is derived from the PDF of € applied to the distance between
state and observation y, — H(x;):

p(yelxe) = pe(y, = H(xt)) b
The evidence p(y,) can be computed by:

p(y:) = / Py |xe)p(xe) dx 6
P-1 1
= FP(Yt’Xp,t) 7
p=0
8

ot



Putting all together and replacing the expressions in Bayes’ theorem (Equa-
tion [3|) we arrive to the expression for the posterior [1]:

v
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p(xey;) = Wy, 6(X¢ — Xpz) 9
p

I
o

With @, being the normalized particle weights:

b, = Pyl Xp.) N Wyt 10
Pt — P-1 o P-1
Zq:[) p(yelxgs) quo Waq,t
and w,; being the unnormalized particle weights:
Wyt = P(Yi[Xpt) Wpi—1 11

Note that the initial weights are set equal to w,o = 1/P.

Especially for high dimensional models, particle filters tend to suffer from
weight degeneration, i.e., one normalized weight is close to one and all the
others are close to zero. A classical approach against ensemble degeneration
is Sequential Importance Resampling (SIR) [10, I1]. The procedure of SIR
consists in resampling particles from the posterior (Equation E[) at the end of
the propagation step; P particles are randomly drawn, resampled, from the
existing particles, each with a probability w,,. Low weighted particles be-
come discarded, while high weighted particles can become the starting point
of multiple particle propagations (Figure . More precisely, the resampling
leads to the multiset P defined by the ordered pair (@, ). Where @ is the
set of unique particles ¢ in P, and «a, the number of the occurrences of ¢ in
P. The particles g are hereinafter called parent particles.

The resampled particles are all assigned the same weight of w,; = 1/P
again. Particles departing from the same parent may need to become stochas-
tically perturbed if the model does not contain a stochastic component itself.
Otherwise, the trajectories of those particles would be identical.

Different flavors of SIR and resampling algorithms, like Residual Resam-
pling, exist [I12]. Some perform a resampling step after each propagation
phase, while others make this dependent on criteria like the variance of the
weights. In this paper we rely on SIR with resampling after each propagation
phase.



(a) The propagation of particle p depends only on the associated state
Xp,t and can be performed independently of other particles.

(b) Weights w,; depend only on the associated particle p and observa-
tion vector y;, and can be computed independently of other weights
and particles.

(c) The filter update only depends on the weights wy,;, and not on the
particles and associated states.

(d) The states x, ¢ associated to the particles p remain unchanged during
the filter update.

Box [1] lists the properties of particle filters that are the basis for our
implementation.

We exploit property (d): In contrast to other DA techniques, such as
EnKF, particle states remain unchanged during the filter update. Parti-
cles that have departed too much from the observations (low weights) are
discarded, and the sample set is narrowed around the best particles (high
weights). The associated states, however, are not changed. Property (a)
follows directly from Equation . Property (b) results from decoupling
the weight calculation from the filter update (decentralization). The update
itself, only consist of the weight normalization and particle resampling. Fi-
nally, property (c) is an intrinsic property of the bootstrap particle filter,
since particles are either withdrawn or selected, but not changed. In the fol-
lowing sections, we will show how we can exploit those properties to improve
efficiency of and resilience particle filter implementations.

3. Architecture

In this section we detail the proposed architecture to run a large number
of particles with parallel numerical models. The algorithm, as presented in
Section [2] is a sequence of two main steps:

1. A first compute intensive massively parallel step where particles can be
processed concurrently to:

(a) propagate each sate: x,; = M(x,:-1),
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Figure 2: Architecture overview.

(b) compute each unormalized weight from each state and observation
data:

wpt = Pe(Ye = H(Xpr)) 12

2. A second lightweight step that requires to gather all unormalized weights
wp ¢, usually one double per weight, for normalization and resampling.

We attribute the first step work to runners and the second step to a server.
A runner is designed to propagate several particles one after the other with
low overheads and idle times (Figure [2). Each one is coupled with a node-
local distributed cache enabling fast loads and stores of particles. The caches
are asynchronously persisted to the global file system for checkpointing and
dynamic load balancing (i.e., ensure global availability of the particles). Be-
cause resampling can lead to discard some particles, or duplicate others orig-
inating from the same parent (with a local perturbation if needed), states
need to be dynamically redistributed to runners to keep them evenly busy.
The server drives the dynamic distribution of particle propagation tasks to
runners. Runners use the distributed cache to load from the file system the
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missing states. This design ensures low communications between the server
and runners, and reduced state movements. The runners and the server run
as independent executables, enabling to have a dynamically changing number
of runners. This is a key feature used for fault tolerance and elasticity. Elas-
ticity (sometimes also called maleability) is the ability to run under changing
resource availability, here varying number of runners.

In the following we detail this design: the runners (Section [3.1]), the
server (Section [3.2)), the distributed cache (Section [3.3)), the workflow be-
tween these components (Section , the particle propagation scheduling
(Section [3.5)), the jobs monitoring (Section [3.6), and the fault tolerance pro-
tocol (Section[3.7)) before ending with additional implementation details (Sec-

tion .

3.1. Runners

Runners are built from the simulation code, often an advanced parallel
code or even a coupling of several parallel codes, with significant start-up
times to load and build the different internal data structures. To avoid
paying the cost of a restart for each particle propagation, we augment the
simulation code with a mechanism to store and load particle states. This is
the base of particle virtualization: a runner can load a particle, propagate
it, store the result, and repeat this as many times as necessary. Runners are
associated with a distributed cache to accelerate state loads and stores as
detailled in Section . Runners also compute the associated weights w,, ;.
Hence, each runner also needs to load the observations y, once per cycle.
Notice that the size of the observations is typically much smaller than the
size of the states x,;.

3.2. Server

The server is entrusted with multiple tasks. First, it is responsible for
scheduling the particle propagations to the runners (Section . Second,
it gathers the weights from the runners and performs the resampling at the
end of each assimilation cycle. Third, it controls the content of a distributed
particle cache (Section [3.3). To collect the weights w,,, the server is mes-
saged from the runners after each propagation. If there are still particles
to propagate in the current cycle, the server responds to the message with
an id uniquely defining a particle (hereinafter called particle-id) for the next
propagation. If not, the server performs the resampling and starts the new
cycle by scheduling the sampled particles to the runners. Very little data is

9
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Figure 3: Internal runner architecture and interactions with the server and global storage
(PFS). Communications with the server combine MPI and ZMQ data exchanges.

exchanged between a runner and server. The runners send the particle-id
(a single int) and the corresponding weight (a single float), and the server
responds with the particle-id next to propagate.

3.3. Distributed Particle Cache

To allow multiple propagations of one particle on different runners, it is
necessary to make them globally available. A straight forward approach is to
store particles on global storage. However, on supercomputers global storage
is subject to large throughput variability due to the high workload and the
limited bandwidth. Node-local storage, on the other hand, is only used by the
processes that run on the nodes, and the bandwidth can be stacked. Storing
the particles locally results in scalable I/O performance, scaling linearly with
the number of nodes.

To leverage node-local storage while still providing the particles globally,
runners rely on a distributed particle cache. Each runner executes helper
processes (one per node) in addition to the model processes, where both
groups of processes are associated with its own MPI communicator (Figure [3)).
The model processes propagate the particles and store the associated states
locally on the nodes allocated to the runner (RAM disk or other node-local
storage when available). The helper processes then stage the states from local

10
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Figure 4: Schematic Gantt diagram showing the activity of two runners (initialization
followed by two assimilation cycles). Focus on how the helper process asynchronous loads
and stores enables to shadow the parallel file system accesses. For sake of simplicity no
cache is used here.
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to global storage asynchronously, enabling to overlap the associated 1/O costs
(Figure . Also notice that persisting particles to global storage acts as a
particle checkpoint used by the fault tolerance protocol (Section .

We allow keeping a number of particles in each of the runner caches
to exploit property (d) from Box [I} resampling does not change the parti-
cle states. Hence, keeping propagated particles in the cache, increases the
probability to find a particle locally for future propagations (i.e., during the
next cycle). If available in its local cache, a runner can propagate a parti-
cle without loading it from global storage. To further minimize cache loads,
runners implement an optimized cache eviction strategy. The eviction strat-
egy becomes especially important if the cache capacity is exceeded by the
accumulated size of the particles propagated during one cycle. Because the
runners have no knowledge about the status of the particle filtering (propa-
gations, resampling), the evictions are controlled by the server and directed
to the runners.

As explained in Section [3.4] each time a particle has been stored in the
cache by the model processes upon successful propagation, the helper pro-
cesses copy it in the background to global storage. Hence, all propagated
particle states can be selected for eviction, since they are safely stored on
global storage. When an eviction is required, the server selects a particle
from the cache in the following order:

1. A particle from the previous cycle discarded by resampling;

2. A parent particle from the current cycle for which all associated prop-
agations have been performed, and all weights received;

3. The particle with the lowest weight propagated during the current cy-
cle;

4. A randomly selected particle.

The particle states for cases 1 and 2 can safely be removed from cache, since
those particle are not needed anymore for future propagations. In case 3, we
select the particle state with the lowest weight, as it has the lowest probability
of being selected for future cycles during the resampling.

3.4. Runners/Server Workflow

Once a runner job has started, it dynamically connects to the server and
requests a particle to propagate from it. The server selects the particle fol-

12



lowing a scheduling policy described in Section [3.5. The model checks the
location of the particle. If already located inside the local cache, the prop-
agation starts. Otherwise, the model processes request the helper processes
to load the state into the cache. The model processes block until the helper
processes fetched the particle into the cache, and afterwards start the prop-
agation.

Once a particle propagation finishes, the model computes the associated
weight w, and stores the particle into the cache. Further, the weight and
particle-id are sent to the helper processes and a new particle is requested for
propagation. The helper processes, after receiving the weight from the model
processes, stage the particle from the cache to global storage and afterwards
sends the weight and particle-id to the server. This order ensures that the
server receives a weight only after the corresponding particle is propagated
and successfully stored on global storage.

The helper processes further prefetch particles in parallel to the propa-
gations (Figure [4]). The goal is to avoid blocking the model processes while
waiting for a particle load from global storage (cache miss). Each time helper
processes send a weight to the server, they also request the next-to-next
particle-id to propagate. This particle is prefetched into the cache to become
locally available for the next to follow propagation. Prefetching is suspended
at the end of each propagation cycle, as propagation work for the next cycle
becomes only known after the server has performed the resampling of all par-
ticles. Notice that a helper may need to cancel prefetching if the prefetched
particle was in the meantime assigned to another runner, making idle the
model process while waiting for the next particle to propagate. When the
server makes such a decision to better balance the work load, it also takes
care of ensuring coherency between runners. Globally prefetching proved to
be very efficient for overlapping particle state loads with propagation (Sec-

tion .

3.5. Particle Propagation Scheduling

In this section, we present the scheduling algorithm implemented on the
server to distribute the particle propagations to the runners. The algorithm
aims to ensure an even load balancing between runners and minimizing the
global particle loads, i.e. transfers of particles from global to local storage.

13
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Figure 5: Two possible schedules of 24 propagation tasks of equal duration on 4 runners.
All particles propagated from the same parent particle state have the same color (9 parents
here). Top schedule is optimal with 9 compulsory loads (one per parent), and one for the
dark blue parent that cannot fit in one runner. The bottom schedule, with 2 more sate
loads, is a possible one that our on-line scheduling algorithm can produce. This is not
optimal but still below the general Q + R —1 bound as the algorithm ensures that no more
than R — 1 "color cuts” occur and avoids the same runner loads more than once a given
parent particle state.

3.5.1. Static Scheduling

Let R be the number of runners. Let P be the number of particles to
propagate. Resampling may lead to have some parent particles drawn to be
propagated several times. Let () the number of parent particles ¢, and o the
number of times the particle ¢ needs to be propagated. The total number of
particles to propagate is:

Z Qg 13

0<g<Q

To assess the performance of our scheduling algorithm, we first derive a
lower and upper bound of the minimum number of particle loads ¢* for the
static case, where: (i) runners do not cache states, (ii) the number of runners
is constant, and (iii) all particle propagations take the same amount of time.
Under these conditions, each runner propagates % particles. Without local
cache, each parent particle ¢ needs to be loaded at least once. Therefore,
the number of compulsory particle loads is Q). If o, = 1 for all ¢, that is,
every particle is drawn only once, then ¢* = P. Otherwise, parallelizing the
propagation on R runners may require some particles to be loaded by more
than one runner, accounting for extra particle loads beyond the compulsory
ones. Indeed, each particle ¢ needs to be provided at least on s, runners,

14



where

e {%w . 14
7

Distributed to R runners, the list of P particles is cut R — 1 times. Con-
sequently, the extra particle loads are at most R — 1. This is visualized
in Figure [f] This upper bound occurs if all particles are propagated from a
single parent(@) = 1). Thus, the minimum number of particle loads is tightly
bound by

QLc<Q+R-1 15

We can apply a static schedule that respects the upper bound: distribute
% particles per runner, where each parent particle ¢ is given to no more than
54 runners, and by imposing that runners do not switch to the next particle
before completing all propagations associated to the current one.

3.5.2. Dynamics List Scheduling

However, we target a more general case. We soften the initial assump-
tions now considering that the number of runners can vary, and the time
to propagate particles may vary significantly and is not known beforehand
(but we still have no cache). In this context we propose to rely on the clas-
sical dynamic list scheduling algorithm: when idle, a runner requests work
from the server that returns a particle-id to propagate. In the general case
the list scheduling algorithm guarantees to be at worst twice as long as the
optimal schedule that requires to know the particle propagation time in ad-
vance [13] [14]. Instead of blindly selecting the next particle to propagate,
we adapt the static scheduling strategy for particle selection with the goal of
limiting the number of particle loads. The scheduling is based on the split
factor s, (Equation . However, we adapt the static scheduling to the dy-
namic case by recomputing s, each time with the updated values of «y, P,
and R. To implement this algorithm on the server, we need a bookkeeping of
the number of runners R, currently propagating particle ¢, and the number
o, of remaining propagations for particle ¢. Let r be the runner requesting a
particle for propagation, the particle distribution algorithm works as follows:

1: If oy > 0O for particle ¢ last propagated by r, decrement o, and assign ¢
again. If a, = 0 continue with (2);

2: Select a different particle ¢’ with oy > 0;

15



3: Compute split factor s,. If Ry < s, assign ¢/, increment R, and decre-
ment a,. If Ry = s, continue with (2).

Notice that when the server recognizes the loss of one runner, it needs to
update the bookkeeping to reintegrate the particle that this runner was prop-
agating.

In conditions of even propagation time and a static number of runners,
this algorithm leads to the same distribution as for the static schedule and
respects the upper bound of Equation

3.5.3. Cache Aware Scheduling

We now remove the last assumption to propose a scheduling strategy that
takes into consideration the particle cache. This is a heuristic build upon the
previous strategy and validated though several experiments. The particle
selection strategy is:

1. Select a parent particle p; already loaded in the runner cache (cache
hit);

2. Select a parent particle p; that is in no runner cache (cache miss);
3. Select a particle p; fulfilling the split factor criterion (cache miss);

4. Select a parent particle p; with maximal split factor s; (even if voids
the split factor) (cache miss).

The three first items comply with the scheduling proposed in Section [3.5.2]
The first item gives priority to particles already in the cache, before they may
be evicted to provide space for a particle load. The next two items pursue
with the strategy of Section [3.5.2] favoring particles with no previous propa-
gation. The rational is to start as soon as possible with new parent particles
and, once in a cache, propagate them has often as required, and intend to
reduce the need for splitting. The last item departs from the strategy of
Section [3.5.2] but its addition proved efficient by our experiments. This case
occurs when reaching the end of a cycle. It proved to be an efficient strat-
egy to keep runners busy, even at the cost of extra loads, to improve load
balancing and so completion time.
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3.6. Job Submission and Monitoring

The workflow is controlled by the launcher. The launcher is the user
entry point to configure and start the application. The launcher starts first
and is responsible to start and monitor the runner and server instances,
that all run in separate executables/jobs. The launcher is also in charge of
killing and restarting the runners or server as requested by the fault tolerance
protocol (Section , or for elasticity purpose.

The launcher tightly interacts with the job scheduler (Slurm or OAR
for instance) of the machine. The launcher can be configured to submit
one job per runner and server to the batch scheduler. This strategy offers
the maximum flexibility for the batch scheduler to optimize the machine
ressource allocation, but the execution progress becomes very dependent on
the machine availability. The user may need more control on the number of
concurrently running runners. In that case the launcher can be set to request
to the batch scheduler one or several large resource allocations and fit several
runner instances in each one. To support this feature the launcher relies on
a combination of Slurm salloc/srun [15], or OAR containers[16]. For even
more flexible schemes, we plan to support workflow pilot-based schedulers

like Radical-Pilot [17] or QCG-PilotJob [18].

3.7. Fault Tolerance

The fault tolerance relies on the fast identification of failures from run-
ner and server instances. Runner failures are detected in two different ways.
Runner crashes are recognized by the launcher, which is monitoring their
execution using the cluster scheduler. Unresponsive runners are identified
by the server relying on timeouts for the particle propagations. If propaga-
tions exceed the timeout, the server requests the launcher to terminate the
respective runner. In both cases, the launcher eventually starts a new runner
instance. The new runner connects to the server and requests work. If a
runner fails, the server cancels the on-going propagation, and the time spent
in the propagation plus the time to recognize the runner failure is lost.

Server failures are detected similarly, either directly if the server crashes,
or if the server exceeds a timeout. The timeout is mediated by a periodical
exchange of signals between launcher and server (heartbeats). If the server
fails, the launcher terminates all runner instances and restarts the framework
as a whole. The server frequently stores the status of the propagations in
checkpoints, and in case of failures, the framework can recover to the point
of the last successful propagations.
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Finally, a launcher failure is detected by the server monitoring the heart-
beat connection between launcher and server. In case of a missing heartbeat,
the server checkpoints the current particle state and shuts down. In parallel,
the runners detect the server crash and shut down, again using timeouts.
While runner or server failures lead to an automatic restart, the framework
needs to be restarted manually if the launcher fails.

3.8. Implementation Details

The launcher and server are developed in Python. The runner relies
on the simulation code instrumented with our framework API, supporting
C/C++, Fortran and Python. The implementation reuses some software
components, like the launcher, from the framework developed for EnKF
DA [19]. The distributed cache implementation relies on the Fault Tolerance
Interface (FTT) [20]. FTI is a multilevel checkpoint-restart library supporting
asynchronous checkpointing to global storage. One of the main modification
performed to F'TT is related to its event loop. Events are triggered in form of
MPI communication between the application and FTT processes. The events
are identified by tags. To extend this mechanism, we enabled to register a
callback function. This callback function is called inside the event loop and
can trigger user defined events using unique tags. With this, it becomes pos-
sible to use the application checkpointing into all available levels of reliability
FTI provides, and to implement the cache mangement on the dedicated FTI
processes.

The communication between helper and model processes relies on asyn-
chronous MPI messages. Communications with the server are implemented
in two steps for efficiency purpose. Only rank 0 (master) of the application
(i.e., model) communicator and the rank 0 (master) of the helper process
communicator communicate with the server. As a dynamic connection is
needed, each master connects to the server using a socket through the ZMQ
library. Information that needs to be propagated between helper or model
processes relies on MPI collective communications in the associated commu-
nicator (Figure [3)).

The framework code is available at https://gitlab.inria.fr/melissa/
melissa-da.

4. Experiments
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4.1. WRF Use Case

Experiments rely on an established Numerical Weather Prediction (NWP)
system; the Weather Research and Forecasting Model (WRF) (V3.7.1)[g].
The core of WRF is based on solving fully compressible non-hydrostatic equa-
tions with complete Coriolis and curvature terms, and a large set of physics
options. The simulation domain covers most of Europe (See Figure @ and is
composed of 220 by 220 grid cells with a horizontal resolution of 15km and
49 vertical levels with uneven thickness. We perform one day-ahead weather
forecasting (24 hours of initial time plus 48 hours of production time) of an
arbitrary date (2018-10-12) with 24-seconds or 100-seconds time steps. The
model employs the WSM6 microphysics, MYNN2 boundary layer physics,
Grell-3 cumulus parameterization, Eta Monin-Obukhov similarity surface
layer processes, and RUC land surface model. Also non-hydrostatics are
activated to provide more details in simulated clouds and precipitation. The
input, initial, and boundary conditions are based on the reanalyzed ERA5
dataset from the Furopean Center for Medium-Range Weather Forecasts
(ECMWF), which is updated every 3 hours. Data assimilation is performed
using the cloud fraction (CFRACT). The particle weights are determined by
comparison against the observed cloud mask obtained from the EUMETSAT
Level-2 satellite data of the cloud mask. The simulated cloud fraction is con-
verted into cloud mask and the observed cloud mask data is upscaling to the
size of the model gridcells for the further applications. The data is hourly
available, thus, one assimilation cycle comprises 150 (36) model time steps
(150 x 24s = 1hor 36 x 100s = 1h).

The experiments presented in this article leverage our proposed Particle
Filtering (PF) implementation with a sample size of up to 2,555 particles
on the European domain. In that case, we utilize 20,442 compute cores on
512 Nodes of the Jean-Zay supercomputer. The compute nodes are equipped
with 2 Intel Cascade Lake 6,248 processors, summing up to 40 cores with
2.5 GHz and 192 GiB RAM per node. Intel Omni-Path (100 GB/s) connects
the compute nodes, and the global file system is an IBM Spectrum Scale
(ex-GPFS) parallel file system with SSD disks (GridScaler GS18K SSD). For
all experiments the node-local caches were stored on RAM disk. In Table
we list the parameters of our main experiments.

The meteorological state of the European domain associated to one par-
ticle comprises 2.5 GiB of data. Hence, the data from 2,555 particles for the
full simulation period of 48h (48 time steps) correspond to an aggregated
size of about 300 TiB. The experiments performed for this article, including
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Figure 6: The topography of the target domain of Europe for the simulation.

small beta-stage experiments, account for about 900,000 CPU hours split
between the JUWELS, Jean-Zay and Marenostrum supercomputers.

4.2. Runner Activity

The benefit of the local cache in combination with the cache-aware schedul-
ing leads to a drastic reduction in transfers from global to local file system
layers. The cache hit ratio, i.e., the ratio of particles found inside the cache
to the total number of particle loads, depends on the cache size and the ratio
of particles per runner. Figure [7] shows how the cache misses develop for
different cache sizes. Our experiments demonstrate a cache hit ratio of 88 %
for 128 particles, 32 runners, and a cache size of 9 particles. This translates
to a saving of 83 % in transfers from global to local storage. The pattern of
cache hits and misses is visualized in Figure[§] The initial phase is dominated
by starting up the runners, and all the particles are fetched from the global
storage (cache warm up). But beginning with the next assimilation cycle,
the low transfer ratio from global to local storage starts to establish.

Runners are designed to separate I/O operations to the PFS from other
tasks: model processes only perform local 1/O operations. We observe in
our experiments that this leads to a high computational efficiency. The local
I/O accesses are negligible compared to the computational tasks (< 0.1 s
compared to up to 6s). Some general idle periods can be observed between
assimilation cycles when runners are waiting for the last propagations of one
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Figure 7: Cache miss ratio for different cache sizes on each runner. In total 128 particles
run on 32 runners. First and last assimilation cycles were disregarded to remove warm up
effects and not fully recorded cycles.
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Experimental Setup

Particles 315 635 1,275 2,555
Number of runners 63 127 255 511
Number of nodes 64 128 256 512
Model processes 2,457 4,953 9,945 19,929
Particles per runner (avg.) 5 5 5 5
Particle state size (GiB) 2.5 2.5 2.5 2.5
Performance Data
Scaling efficiency 92% 91% 92% 87%
Resampling (ms) 2.21 4.06 8.16 16.37
Assimilation cycle (s) 136 138 139 146
Propagation (s) 25.1 25.2 25.1 25.0
Load particle state
from PFS to cache (s) 2.1 2.1 24 41
Write particle state
from cache to PFS (s) L4 1.6 18 23
Writes to PFS per cycle (TiB) 0.77 1.55 3.11 6.24

Reads from PFS per cycle (TiB)  0.30-0.40 0.64-0.79 1.27-1.79 2.54-3.82

Table 1: Experimental setting and performance overview at 4 different scales. The times
are given as average in all cases. Model time steps were set to 100 seconds.

cycle to finish so that the server can normalize weights, resample and start to
distribute work again. This is illustrated in Figure [J] where we show a trace
recorded from the execution of an arbitrary runner. The trace illustrates the
efficiency of the runners in performing the actual tasks of the simulation,
particle propagation and weight calculation, while the I/O tasks are moved
to the background.

A global parallelization of the computational tasks is achieved by dynami-
cally distributing the particle propagations to the available runners. The fully
parallelized case corresponds to R = P, i.e., the number of runners matches
the number of particles. The sequential case corresponds to R = 1, i.e., all
propagations are performed by only one runner. However, The best parallel
efficiency is achieved at values between those limits. Because WRF propa-
gates particles with very low time variability (maximum variation of 10%),
we observe an even distribution of propagations to runners when R divides P
(Figure . A single-particle propagation takes between 24 and 26.5 seconds,
globally making from 87% to 92% of an average assimilation cycle. Calcu-
lating weights takes 1% of the time and communicating with the server from
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Figure 8: Gantt chart of particle propagations executed by the 32 runners over 15
assimilation cycles. Tasks are green if the associated parent particle state was already
present in the runner cache and did not require a load from the PFS (red otherwise).

7%to 12% including the idle time at the end of each cycle (Table[l]- Perfor-
mance Data). The extra resources for helper processes, one core per runner
node, and the server, 1 node, comprise only 2.7% for our largest experiment
at 512 nodes. On the other hand, leveraging the runner’s particle cache, and
the cache aware dynamic scheduling on the server, move > 97% of the state
loads completely into the background. Loading and writing particle states
synchronously would otherwise add about 6.4 seconds to each single-particle
propagation corresponding to 14% of the average propagation time (Table
— 2,555 particles).

Note that in contrast to the traditional offline approach, we start-up the
numerical simulation code only once for several particle propagations. The
setup involves the request and allocation of the runner job and initializing
the simulation code. On the other hand, the traditional offline approach
associates each particle propagation with a different job, and the start-up
has to be performed anew for each particle. Starting up the WRF model on
the European domain on one node until the first model propagation begins
takes 3-4s, excluding the provisioning of the job allocation via the cluster
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Figure 9: Trace detailing the activity of a runner over the course of an assimilation cycle.
Helper processes enable to keep model processes busy with particle propagation, except at
the end of assimilation cycles when they wait for the server to finish particle resampling
(dark blue). Some activities are so thin that they are not visible here (state copies from
cache to model).

scheduler.

4.3. Server Activity

We further measured the server responsivity to runner requests. The
response time is always in the order of a few hundred microseconds, except
for some job requests that take up to a few seconds (Figure . However,
these are outliers at the end of the assimilation cycle, resulting from idle times
due to the load balancing and the particle filter update. During our largest
experiments with 511 runners, the server processes 676 requests per second
at maximum load. This shows that the server is fast enough to support this
scale, even though it is a sequential python code. Simple optimizations are
at reach if the server needs to be accelerated (e.g., adding parallelization).
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Figure 10: Server response times on runner requests.

4.4. State Transfers To/From PFS

Next, we take a closer look at the particle loads from the PFS (Figure .
With a sample size of 1024 particles, leveraging 256 runners, and a local cache
size of 9 particles, between 121 and 248 particles are loaded to the cache
during each cycle. The number of distinct parent particles () propagated per
cycle lies between 813 and 889. Each one is propagated at most 5 times to
sum to a total of 1024 particles. The cache enables to achieve significantly
less loads than the ) + R — 1 upper bound expected with static scheduling
and no cache (Equation [17)).

The access times to the Parallel File System (PFS) (load/store) vary sig-
nificantly and increase with the number of runners (Figure , showing that
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Figure 11: Number of parent particles @, particles loads from the PFS to the cache,
and @ + R — 1 upper bound from Equation [L5| for different ensemble sizes, a cache size
of 9 particles with 4 particles per runner.
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our application alone can stress the PFS E| Each particle is associated with
2.5 GiB of data. During each assimilation cycle, all the propagated parti-
cles are written to the PFS for supporting fault-tolerance and dynamic load
balancing. For our experiments at 512 nodes with 2,555 particles, this accu-
mulates to about 6.2 TiB of data each cycle (compare Table. However, our
experiments on the Jean-Zay and JUWELS supercomputer demonstrate that
our framework performs most of those transfers asynchronously (Section.
In less than 2% of the cases, the model processes wait more than 0.1 seconds
for a particle to be loaded corresponding to cases where helper processes do
not (entirely) finish prefetching. Time to perform the local loads and stores
from the cache shows a constant average independently on the number of

runners (Figure [13).

Write state from
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Figure 12: Mean time to load or store particle states of 2.5 GiB from / to the PFS with
different numbers of runners.

4.5. Fault Tolerance, Elasticity and Load Balancing
Fault tolerance relies on 1) persisting the particle to the PFS 2) the
framework elasticity enabling to adjust dynamically the number of runners.

lthese numbers may also be impacted by other jobs on the cluster

27



=
-
|
L L L

£ Load from local cache
le-2-
Store to local cache

duration [s]

le-4-

128 256 512 1024
members

Figure 13: Box plot of the time spent for loads and stores from/to the local cache with
different numbers of particles.

If a runner fails, the launcher requests the execution of a new one, so as to
maintain a constant number of runners. Once this new runner connects to
the server, it asks for a particle to propagate to the server, assigned according
to the load balancing algorithm.

We tested the fault tolerance and elasticity on an experiment with 63
runners provoking the crash of 2 runners (Figure . First, notice that the
fault tolerance algorithm reacts appropriately as it restarts a new runner after
each crash. The first crash (runner #53) occurs in the worst-case situation:
just when propagating the last particle of the current cycle, leading to a
significant idle period. The idle period is caused first, because the server
needs to wait for the timeout (set to 60s) to acknowledge that runner #53
is unresponsive and second, there is no work left except the particle that
runner #53 was propagating, which is re-assigned to runner #44. Meanwhile
all other runners stay idle until the beginning of the next cycle. If the crash
happens earlier during a cycle, smaller idle periods appear. This can be
observed during the second crash (runner #48), as the other runners are
kept busy with propagation work. =~ We generally observe an efficient load
balancing, as the work load is kept well distributed amongst runners, even
when their number varies.
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Figure 14: Gantt chart of particle propagations executed by the 63 runners over 8
assimilation cycles. After runners #48 and #53 crashed (black cross), two new ones
restarted (top 2 runners #63 and #64).

4.6. Scaling

We evaluated the performance of the particle filter in a strong scaling
scenario, constant number of runners while increasing the number of particles,
and a weak scaling scenario, constant particle-to-runner ratio while increasing
the number of runners. In the strong scaling scenario we observe that the
runner utilization shows an upwards trend when increasing the number of
particles per runner, with a plateau at about 96% (Figure . As global
I/O operations are almost completely shadowed, thanks to the asynchronous
prefetching, increasing the number of particles per runner mainly enables to
better amortize the cost of the synchronization associated with resampling.
We observe an almost constant time for the assimilation cycle, demonstrating
a desirable weak scaling behavior. The time for the cycles increase only by
8% from 63 to 511 runners, indicating an efficient scaling behavior of the

29



framework up to production scale (Figure . Particle filtering with WRF
on a European domain for short-range weather prediction at this scale is
an important advancement of the previous work done by Berndt et. al. [21].
Moreover, besides assimilating at a higher frequency, our proposal offers fault
tolerance, automatic load balancing and elasticity while minimizing the 1/0
cost and time to calculate weights.

Scaling efficiency

Figure 15: Scaling efficiency using different numbers of particles with 63 runners. One
runner sets the reference case.

4.7. Comparison to a File-based Approach

Melissa ESIAS-met ESIAS-met/Melissa

part. | cores | time (s) | core.s/part. cores | time(s) | core.s/part. | resource usage ratio
128 384 1062 3186 1536 267 3204 1.01
256 768 1062 3186 3072 317 3804 1.19
512 1536 1068 3204 6144 422 5064 1.58
1024 3072 1071 3213 | 12288 761 9132 2.84

Table 2: Comparing the resource usage (core.second/particle) per cycle for Melissa and
ESTAS-met (file-based) runs.

We compare Melissa with the file-based approach ESIAS-met [22] using
the same simulation code WRF (V3.7.1) and the same data set. For the
same number of particle, both approaches use a very different amount of
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Figure 16: Weak scaling performance test: assimilation cycle duration for different num-
bers of runners, but always 5 particles per runner.

cores (Table . With ESTAS-met each particle propagation requires to start
a dedicated instance of WRF. Each time it includes the cost from loading
and storing the particle state from/to a file. At 1024 particles ESIAS-met
uses 12288 cores while Melissa just needs 3072 cores as runners propagate
several particles each. ESIAS-met execution time is thus shorter as highly
parallelized, but the resource usage (core.second/particle/cycle) is 2.84 times
improved for Melissa due to the combined strategies developed to improve
efficiency. The gain increases with the number of particles, showing that the
Melissa approach is particularly beneficial when targeting the large ensemble
size.

5. Discussion

in Section we derived that the total amount of data resulting from
48 time-steps of particle filtering on the european domain with 2,555 parti-
cles accumulates to about 300 TiB. Post processing this amount of data is
challenging. Our framework could be extended using in situ data processing
techniques as presented in Terraz et. al. [23].

We only considered the case where the propagation time is longer than
the time for loading states from the PFS; while applications where propaga-
tions are shorter than loading the states would limit our proposal efficiency,
as we cannot further hide the I/O cost in that case. On the other hand,
we already have short propagation times in the WRF context as we per-
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form hourly resampling. We chose this frequency primarily to stress our
proposal. Production runs usually do not require such a high frequency, and
rather have even longer propagation times as in our experiments. However,
to minimize transfer times further, we are evaluating approaches leveraging
node-local persistent storage as globally shared storage layer. Solutions for
this are readily available in form of distributed ad hoc file-systems [24] such
as BeeOND, GekkoFS, and BurstF'S. We have also experimented with con-
necting the runners, establishing a peer to peer network, where runners can
exchange directly the required states between each other.

The particle propagation time in our experiments with WRF is relatively
even, showing at most a 10% variability. Situations with more variability are
possible using different physics in WRF, with other simulation codes, or, if
runners execute on heterogeneous resources, some runners propagating faster
than others by leveraging GPUs for instance. Also use cases from other con-
texts such as Simulation Based Inference (SIB) and ensemble classification,
which can be performed using our framework, might lead to vastly different
propagation times. Therefore, testing our framework under such conditions
is an important future work.

Our proposal currently relies on filters that do not compute internal mem-
ber state corrections. Extending our approach to such particle filters [I]
would possibly require aggregating more than just the particle weights to the
server. Exploring the requirements to align our framework to such cases is
the goal of a future implementation of the particle filter that we propose. We
validated our proposal with the SIR particle filter, but many variations exist
and are active research topics [25, 26]. One challenge is the exponentially
growing required particle number with the dimension of the problem [27] 2§].
This is particularly acute for geoscience use cases that, as in this paper, work
in high dimensional spaces. The survey [I] gives an extensive overlook of DA
by particle filters for geoscience and ways to cope with dimensionality issues.

Particle filters, as used here, require a synchronization point at the end
of each assimilation cycle. For our framework, this is the major remaining
source of inefficiency. Loosening this requirement needs revisiting the particle
filtering algorithm, which constitutes an active topic of research [29] [30} 31].

6. Related Work

The DA domain encompasses a large variety of techniques and algorithms,
like nudging [32], kriging [33], ensemble Kalman Filter [34], ensemble max-
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imum likelihood filter [35], or particle filter [36]. For an overview, we refer
to [37, [38]. We focus here on statistical DA relying on an ensemble run of
the model to compute a statistical estimator (co-variance matrix for EnKF,
PDF for particle filters).

To aggregate the data produced by all members (i.e., particles) two main
groups of approaches are used. Either the data is stored to files and then
processed in a second step (off-line mode), or the data is processed on-line
usually within a large MPI code in charge of running the members and data
processing. Frameworks relying on the off-line mode include EnTK [39], with
the largest published DA use cases reaching 4,096 members for a molecular
dynamics application with an EnKF filter [40]. OpenDA also follows this
model, using NetCDF for data exchange with the NEMO code [41]. DART
supports both [42], with reports of large scale DA in off-line mode in [43]
(about 1,000 members with an oceanic code), or [44, 45] (1,024 member,
LETKEF filter, 6 M Fugaku cores). File based approaches have the benefit of
their simplicity, providing fault tolerance and elasticity. But these solutions
do not support member virtualization, state caching and prefetching. So
starting or restarting a member requires to request a new resource allocation
launching a new instance of the model code with all the associated start-up
costs. Node-local persistent storage capabilities, for instance with SSDs, can
store intermediate files, avoiding the PF'S to loosen the I/O bottleneck. They
are used for member state storage in [44], but without specific fault tolerance
mechanism. So if a node fails and the node-local storage becomes unavailable,
the lost member states need to be recomputed. Besides leveraging the node
storage for the distributed cache, using node-storage rather than the parallel
file system as a globally shared file system layer is one of our future goals.

The on-line mode avoids the I/O bottleneck. PDAF [46], which supports
both modes, has for instance been used on-line for the assimilation of ob-
servations into the regional earth system model TerrSysMP. DA was based
on EnKF with up to 256 members [47]. ESIAS uses on-line DA via particle
filters with up to 4,096 particles on a wind power simulation on Europe [21].
Notice that we work with the same WRF component of ESIAS in this paper,
using a configuration on a similar domain but at higher spatial resolution and
with more advanced and more time consuming physics. We also find ad hoc
MPI codes for on-line DA as in [48] (atmospheric model, 10,240 members,
Local ENKF filter, 4,608 compute nodes). But all these MPI approaches
lead to monolithic code without support for fault tolerance, elasticity or load
balancing. In [49], the authors analyze various particle propagation schedul-

33



ing but at limited scale (6 compute nodes and 300 particles). We performed
experiments on a similar architecture as our proposed one, but for EnKF in-
stead of PF [19]. We demonstrated fault-tolerance, elasticity and scalability
for experiments using up to 16 k members, 16 k cores for DA with EnKF for
the hydrology code Parflow. In contrast to our novel proposal, EnKF re-
quires a centralized filter update, gathering the full ensemble of states at the
central instance for the assimilation of observations. In our novel proposal
for PF, we exploit certain properties of particle filters to suppress the server
bottleneck and significantly reduce data movements.

7. Conclusion

In this article we proposed an architecture for handling very large en-
sembles for particle filters. The architecture was designed to address the
challenge of exascale computing that will allow massive ensemble runs [50].
The architecture is based on a server/runner model where runners support a
distributed cache and virtualization of particle propagation, while the server
aggregates the weights computed by the runners and ensures the dynamic
balancing of the work load. Particle propagation is virtualized so the re-
quired number of runners is decoupled from the particle number. With the
addition of a distributed checkpointing mechanism, the architecture supports
dynamic changes in the number of runners during execution for fault toler-
ance and elasticity. Experiments with the WRF weather simulation code
show that our framework can run at least 2,555 particles on 20,442 cores
with a 87% scaling efficiency. Dynamic particle-propagation scheduling and
caching enable to avoid 88% of the global 1/O operations. Compared to the
ESIAS file based approach, Melissa improves resource usage 2.83 times at
1024 particles.

Future work includes experimenting with adaptive or localized particle
filters as well as combining particle and Kalman filter. We also plan to
extend the distributed cache and fault tolerance algorithm to fully avoid the
centralized file system and only rely on node-local SSDs for particle storage.
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