SUPPORTING INFORMATION

Carbonylmetallates as versatile 2-, 4- or 6-Electron Donor Metalloligands in Transition-Metal Complexes and Clusters: A Global Approach

Noura Naili,^[a,b] Samia Kahlal,^[c] Bachir Zouchoune,^[a,d] Jean-Yves Saillard,^[c] and Pierre Braunstein^[e]

^[a] Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université Constantine (Mentouri), 25000 Constantine (Algeria)

^[b] Département de Chimie, Faculté des Sciences, Université de Skikda, 21000 Skikda (Algeria)

^[c] Université de Rennes, CNRS, ISCR-UMR 6226, 35000 Rennes (France)

E-mail : jean-yves.saillard@univ-rennes1.fr

^[d] Laboratoire de Chimie appliquée et Technologie des Matériaux, Université Larbi Ben M'Hidi- Oum El Bouaghi, 04000 Oum El Bouaghi (Algeria)

^[e] Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg (France)

E-mail: braunstein@unistra.fr

Computational details

Density functional theory (DFT) calculations were carried out by using the Amsterdam Density Functional (ADF2020) program suite,^[1,2] using the BP86 functional^[3-5] and a Slatertype orbital basis sets of triple-zeta plus two polarization functions quality (STO-TZ2P).^[6] The numerical integration procedure applied for the calculations was developed by te Velde et al.^[7] The frozen-core approximation was used to treat the core shells up to 1s for C, N and O, 2p for P and Cl, 3p for Co and 4p for Mo and Pd. For the heavier Mo and Pd elements, the scalar relativistic zero-order regular approximation (ZORA) was used with the associated optimized valence basis set.^[8-10] Full geometry optimizations were carried out using the analytical gradient method implemented by Versluis and Ziegler.^[11] Vibrational frequency calculations^[12,13] were performed on all the studied compounds to ascertain that the optimized structures correspond to energy minima. The bonding between the X⁻ and $M_x L_n^+$ fragments in the investigated $[M_xXL_n]$ complexes was analyzed using the Morokuma-Ziegler energy decomposition analysis (EDA) approach.^[14-17] This analysis allows to explore the nature of the interaction between the fragments through the decomposition of the total bonding energy in three components: TBE = E_{Pauli} + E_{Elec} + E_{Orb} , which describe the Pauli repulsion, the electrostatic interaction and the orbital interaction, respectively.^[18] Molecular orbitals and molecular structures were represented using the ADF-GUI^[2] and Molekel programs,^[19] respectively.

	[AuCl ₂] ⁻		[Au{Co(CO) ₄ } ₂] ⁻		[Au{MoCp(CO) ₃ } ₂] ⁻	
Symmetry	$C_{\infty u}$		C_2		C_i	
HOMO-LUMO gap	3.45		2.87		2.98	
Fragments	AuCl + Cl ⁻		$Au[Co(CO)_4] + [Co(CO)_4]^{-1}$		Au[MoCp(CO) ₃]+ [MoCp(CO) ₃] ⁻	
E _{Pauli}	4.65		6.19		6.63	
E _{Elec}	-5.48		-5.61		-6.87	
E _{orb} symmetry components	$\sigma \ \pi$	-2.39 -0.46	Fragmentati C1 syn	on treated in nmetry	Fragmentation treated in C ₁ symmetry	
Eorb	-2.53		-3.10		-3.09	
TBE	-3.36		-2.52		-2.33	
X ⁻ frontier orbital occupations	3p _σ 3p _π	1.62 2 x 1.93	$egin{array}{c} \sigma \ \pi_{\perp} \ \pi_{\prime\prime} \end{array}$	1.63 1.94 1.99	σ π _⊥ π//	1.49 1.99 1.98

Table S1. Relevant computed data for the $[AuX_2]^-(X = Cl, Co(CO)_4, MoCp(CO)_3)$ series. All energies are in eV.

Table S2. Relevant computed data for the *trans*- $[Pd(CNMe)_2X_2]$ (X = Cl, Co(CO)₄, MoCp(CO)₃) series. All energies are in eV.

	PdCl ₂ (CNMe) ₂		Pd(CNMe)2[Co(CO)4]2		Pd(CNMe)2[MoCp(CO)3]2	
Symmetry	C_{2v}		C_s		C_{2h}	
HOMO- LUMO gap	2.26		1.71		1.83	
Fragments	$[PdCl(CNMe)_2]^+ + Cl^-$		$[Pd(CNMe)_{2}{Co(CO)_{4}}]^{+}$ + $[Co(CO)_{4}]^{-}$		$[Pd(CNMe)_2\{MoCp(CO)_3\}]^+ + [MoCp(CO)_3]^-$	
EPauli	3.89		3.65		4.71	
E _{Elec}	-7.32		-5.73		-6.29	
Eorb symmetry components	$a_1 \\ a_2$	-2.41 -0.05	Fragmentation treated in C_1 symmetry		Fragmentation treated in Cs symmetry	
	$egin{array}{c} b_1 \ b_2 \end{array}$	-0.24 -0.24			a' a''	-2.80 -0.41
Eorb	-2.94		-2.86		-3.21	
TBE	-6.37		-4.94		-4.79	
X ⁻ frontier orbital occupations	$3p_{\sigma} (a_{1})$ $3p_{\pi\perp} (b_{1})$ $3p_{\pi/\prime} (b_{2})$	1.50 1.94 1.96	σ π⊥ π//	1.33 1.95 1.99	$\sigma\left(a^{\prime} ight) \pi_{\perp}\left(a^{\prime} ight) \pi_{\prime\prime}\left(a^{\prime\prime} ight)$	1.32 1.98 1.97

	Pd ₂ (PI	H_3) ₂ Cl_2	Pd ₂ (PH ₃)	$\mathbf{I}_{s}_{s}_{s}[\mathbf{Co}(\mathbf{CO})_{s}]_{s} \qquad \mathbf{Pd}_{s}(\mathbf{PH}_{s})_{s}[\mathbf{MoCp}(\mathbf{CO})_{s}]_{s}$		H ₃) ₂ [MoCp(CO) ₃] ₂
Symmetry	C_{i}		C_{i}		C_{i}	
HOMO- LUMO gap	2.56		2.40		2.55	
Fragments	$[Pd_2(PH_3)_2Cl]^* + Cl^2$		$[Pd_2(PH_3)_2\{Co(CO)_4\}]^{+}$		$[Pd_2(PH_3)_2\{MoCp(CO)_3\}]^+$	
			+ $[Co(CO)_{4}]^{-}$		+ $[MoCp(CO)_{3}]^{-}$	
$\mathbf{E}_{\scriptscriptstyle \mathrm{Pauli}}$	8.04		17.18		12.17	
$\mathbf{E}_{ ext{\tiny Elec}}$	-11.12		-12.17		-12.51	
$\mathbf{E}_{ ext{orb}}$	-3.90		-5.39		-5.91	
TBE	-6.98		-6.38		-6.25	
X [.] frontier	σ	1.64	σ	1.40	σ	1.48
orbital	π_{\perp}	1.69	π_{\perp}	1.72	π_{\perp}	1.68
occupations	$\pi_{''}$	1.91	$\pi_{''}$	1.95	$\pi_{\prime\prime}$	1.92

Table S3. Relevant computed data for the $Pd_2(PH_3)_2(\mu-X)_2$ (X = Cl, Co(CO)₄, MoCp(CO)₃) series. All energies are in eV.

References

- [1] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, *J. Comput. Chem.* **2001**, *22*, 931-967.
- [2] ADF2020, Theoretical Chemistry, VrijeUniversiteit: Amsterdam, The Netherlands; <u>http://www.scm.com</u>.
- [3] J. P. Perdew, *Phys. Rev.* **1986**, *B33*, 8822–8824.
- [4] J. P. Perdew, *Phys. Rev.* **1986**, *B34*, 7406–7406.
- [5] A. D. Becke, *Phys. Rev.* **1988**, *A38*, 3098–3100.
- [6] E. van Lenthe, E. J. Baerends, J. Comput. Chem. 2003, 24, 1142–1156.
- [7] G. te Velde, F. M. Bickelhaupt, C. Fonseca Guerra, S. J. A. van Gisbergen, E. J. Baerends, J. G. Snijders, T. Ziegler, *J. Comput. Chem.* **2001**, *22*, 1–967.
- [8] E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597–4610.
- [9] E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1994, 101, 9783–9792.
- [10] E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1999, 110, 8943–8953.
- [11] L. Versluis, T. Ziegler, J. Chem. Phys. 1988, 88, 322–329.
- [12] L. Fan, T. Ziegler, J. Chem. Phys. 1992, 96, 6937–6941.
- [13] L. Fan, T. Ziegler, J. Chem. Phys. 1992, 96, 9005–9012.
- [14] K. Morokuma, J. Chem. Phys. 1971, 55, 1236–1244.
- [15] K. Kitaura, K. Morokuma, Int. J. Quantum Chem 1976, 10, 325-340.
- [16] T. Ziegler, A. Rauk, *Inorg. Chem.* **1979**, *18*, 1558-1565.
- [17] T. Ziegler, A. Rauk, *Inorg. Chem.* **1979**, *18*, 1755-1759.
- [18] F. M. Bickelhaupt, E. J. Baerends, Rev. Comput. Chem. 2000, 15, 1-86.
- [19] P. Flükiger, H. P. Lüthi, S. Portmann, J. Weber, J. MOLEKEL, Version 4.3.win32, Swiss Center for Scientific Computing (CSCS), Switzerland, **2000–2002**.