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Abstract. This paper is a short retrospective review of the predictive methods of turbulent flows in Computa-
tional Fluid Dynamics over the last 50 years since the first development of computers. The different schools
of turbulence modeling are presented with the aim to guide both users and researchers involved in numerical
simulation of turbulent flows.
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1. Introduction

Most of the turbulence numerical predictions are based on fully or partially-averaged statistical
equations. Due to the turbulence closure problem, the equations to be solved more or less require
modeling. Although one can conceptually distinguish the physical modeling corresponding to
the constitutive laws of the turbulence from the numerical modeling corresponding to the
algorithmic technique of the computational problem to solve, the two concepts are closely linked
and progress together. The development of powerful computers allows solving more complex
models. This retrospective landscape tries to point out the capabilities of the different models
and the main cornerstones of their evolution in CFD research in relation to developments in
computational capabilities. Evidently this review cannot be exhaustive at all, and references are
given for the interested reader. One of the main properties of turbulence in fluids is an efficient
mixing, giving rise to many studies in heat and mass transfer and countless applications in
industrial and environmental flows.

2. Description and approaches in turbulent flows

The turbulent field is usually supposed to be an unsteady solution of the Navier–Stokes equations.
Direct numerical simulation (DNS) of turbulent flows requires huge computer power and even
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nowadays is not possible for complex real flows [1]. Statistical modeling such as the Reynolds-
averaged Navier–Stokes (RANS) equations has long been the main practical way to get useful flow
predictions in spite of some weaknesses. This is to this day often the main method used for the
simulation of turbulent flows encountered in engineering and industrial applications [2–4]. Large
eddy simulations (LES) have been developed in which the fine-grained eddies are modeled while
the filtered flow field is simulated. This modeling was initially developed to simulate atmospheric
and geophysical flows and is now more and more used to get particular details and some insights
on flow structures [5, 6]. The Scale resolving simulation (SRS) methods including DNS and LES
are beginning to be applied in aerospace industries [7, 8]. In the past two decades, more recent
hybrid RANS/LES models that combine in various ways the RANS and the LES methods have
been proposed for simulating turbulent flows of practical interest allowing a second life to RANS
closures. These models take into account the advantages of these two methodologies [9–11]. In
parallel with these methods, spectral turbulence models are applied in the spectral space that are
mainly used to study laboratory flows from a fundamental point of view with emphasis on the
physical aspects of turbulence [12, 13] based on two-point statistics. According to these authors,
each of these methods has its own respective advantages and limitations and specific field of
application so that they should be considered as complementary tools in computational fluid
dynamics. In that sense, the most appropriate tool does not depend merely on the intrinsic
performances of the method itself but more precisely on both the required computational
resources, the nature of the flow and the question to address.

2.1. Principles of RANS

RANS are based on statistical averaging of the instantaneous Navier–Stokes equations giving
rise to an open hierarchy of equations of moments. Numerous varieties of closure models
have been developed depending on the level of closure and the approximations of unknown
moments [2–5]. The mean value is theoretically defined as ensemble averaging and approximated
by time or space averaging in experiments. Each variable φ in incompressible turbulence, is then
decomposed into a mean part in a statistical sense 〈φ〉 and a fluctuation part φ′. The mean value
〈φ〉 is then computed in practice by means of time averaging

〈φ(x)〉 = 1

T

∫ T

0
φ(x , t )dt . (1)

In (1), the period of time T is assumed to be long in comparison with the characteristic turbulent
time scale τ = k/ε, where k denotes the turbulent kinetic energy and ε, its dissipation rate, i.e.,
T À τ. Physically, this method relies on the fact that each mean flow variable describing the
flow properties is associated to the integration of the entire energy density spectrum E(κ) over
the wave number range κ ∈ [0,∞[. In practice, the integration is being performed over all the
small to the large wave numbers so that individual eddy scales cannot be distinguished. The
transport equations (Reynolds equations) of the mean statistical velocity in incompressible flows,
reads

∂〈ui 〉
∂t

+ ∂

∂x j
(〈ui 〉〈u j 〉) =− 1

ρ

∂〈p〉
∂xi

+ν ∂
2〈ui 〉

∂x j∂x j
− ∂τij

∂x j
, (2)

where τij = 〈ui ui 〉−〈ui 〉〈u j 〉 is the Reynolds stress tensor. In (2), ν, ρ, p, ui , denote the molecular
viscosity, density, pressure, velocity component, respectively. The equations are then solved
numerically in conjunction with modeled equations of moments up to n’s order (n rarely exceeds
n = 2).
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2.2. Principles of LES

LES is based on the filtering process applied to the Navier–Stokes equations in order to distin-
guish large-scale fluctuations from the more universal fine-scale turbulence [5, 6]. Mean val-
ues are obtained from averaging the unsteady solution in a post-treatment. Large eddies and
Lagrangian tracers can be used to study the detailed behaviour of the flow. In this method, each
variable φ is then decomposed into a filtered part φ̄ and a small-scale fluctuation part φ>, but
as a result of importance, in general ¯̄φ 6= φ̄ and 〈φ>〉 6= 0. Contrarily to the RANS method, each
filtered variable is associated with the integration of the energy density spectrum E(κ) over the
wave number range κ ∈ [0,κc ] where κc is the cutoff wave number defined by means of the local
grid size ∆ as κc = π/∆, while the subgrid-scale (SGS) variable is computed from an integration
over the range [κc ,∞[. In practice, the largest wave number that can be simulated is given by
the smallest grid step size of the mesh spacing. The filtering operator [14] applied to the Navier–
Stokes equations allows to dissociate the simulated large eddies from the smaller eddies which
are modeled. These calculated large eddies being a part of the fluctuation are random and the fil-
tering process does not retain the nice operative properties of the statistical mean value [15–17].
The analytical definition of the filter in physical space is generally defined as

φ̄(x, t ) =
∫
R3

G[x−ξ,∆(x, t )]φ(ξ, t )dξ, (3)

which reduces to a simple convolution in homogeneous turbulence when the grid spacing ∆
becomes constant in space. Formally, the filtered motion equation then reads [16]

∂ūi

∂t
+ ∂(ūi ū j )

∂x j
=− 1

ρ

∂p̄

∂xi
+ν ∂2ūi

∂x j∂x j
− ∂(τij)sfs

∂x j
+E , (4)

where (τij)sfs = ui u j − ūi ū j is the subfilter-scale (SFS) stress tensor and

E = D∆

Dt

∂ūi

∂∆
+ 1

ρ

∂∆

∂xi

∂p̄

∂∆
−ν ∂2∆

∂x j∂x j

∂ūi

∂∆
−ν ∂∆

∂x j

∂∆

∂x j

∂2ūi

∂∆2 −2ν
∂∆

∂x j

∂2ūi

∂x j∂∆
, (5)

where D/Dt = ∂/∂t + ū j∂/∂x j .

2.3. Principles of hybrid RANS/LES

Hybrid RANS/LES reconciles the two previous methods by introducing a mechanism allowing to
switch from one method to the other depending of the zones of interest in the flow [9–11].

2.3.1. Mathematical framework of RANS and LES

As a result, the RANS and LES momentum equations (2) and (4) take exactly the same
mathematical form if the commutation terms appearing in the function E arising from the
filtering process in the material derivative of any variable are neglected [16–18]. In that sense,
the difference between the RANS and LES approaches relies in practice on the closure of the
equations and not on the basic equations themselves. In fact, a key difference is that SGS
models for LES usually depend on the grid spacing, but RANS models do not. The numerical
solution of (2) in RANS or (4) in LES requires to determine the turbulent stress τij or (τij)sfs

all along the calculation. This issue to address is known as the turbulence closure problem.
Two main basic levels of modeling are currently used in computational fluid dynamics and
transport processes. The first approach is based on the eddy viscosity models (EVM) known as
first-order models while the second refers to second-moment closure (SMC) known as second-
order models [2–4]. Although RANS, LES and hybrid RANS/LES methods have been developed
independently of each other, it is possible to see some connections between these different
schools of modeling [10]. This is a topic that is receiving more and more attention these days.
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From a numerical point of view, it is worth mentioning that RANS closures need robust numerical
methods to solve stiff turbulence transport equations while LES require high-precision methods
with good conservative properties to perform correctly.

3. The pre-computer era

The first attempts towards turbulent flow prediction based on the statistical closure of the
Reynolds equations were made by Taylor in 1915 [19] who introduced a turbulence eddy viscosity
represented as the product of a characteristic length and a characteristic velocity. But the well-
known Prandtl mixing length model introduced by Prandtl in 1925 [20] proved to be particularly
fruitful. It reads νt = l 2

m
√

(2SijSij) where Sij is the mean rate of strain and lm the mixing length
to be prescribed in each particular flow. In 1932, Taylor proposed that the shear stresses are
created by vorticity transfer rather than momentum [21]. A new theory of Prandtl in 1942 [22]
later represented eddy viscosity more simply by the product of the width of the mixing zone and
the difference in mean velocities across the shear layer. Also, Reichardt [23] supposed that the
shear stress was proportional to the gradient of momentum flow rate rather than the gradient
of mean velocity. All these methods can be viewed as algebraic eddy viscosity methods based
on intuitive physics. These are relatively simple and when joined with similarity hypotheses can
lead to analytical solutions of basic 2D flows. Such solutions flourished in this early period, before
around 1965. Many examples of such analytical solutions can be found in [24]. Another example
of simple representation is the well-known logarithmic boundary layer in which the shear stress
is uniform and can be related to the friction velocity at the wall.

4. The heroic early computer developments in RANS modeling

4.1. Extension of algebraic eddy viscosity and mixing length approaches to real flows

With the emergence of scientific computers, the numerical prediction of turbulent flows was de-
veloped in several research groups as a complement to experimental studies. The 1968 Stanford
conference [25] mainly devoted to 2D boundary layers was a strong reference point in which
many models based on eddy viscosity concept, as described before, were applied to various 2D
flows and their predictions compared. For low Reynolds number turbulence, the Van Driest cor-
rection is used for approaching a wall [26]. It was the time of emerging CFD computational codes
like the well-known Patankar and Spalding method [27] judiciously conceived to perform nu-
merical solutions of parabolic expanding flows like jets, wakes and boundary layers. Its efficiency
came from the use of the normalized stream function as a variable and the tridiagonal algorithm
as a solver in a finite volume framework.

4.2. One-equation RANS models

The algebraic EVM tuned for each different type of flow suffered from a lack of generality, the
mixing length had to be prescribed empirically in each case. So the route was open to introduce
transport modeling. The first step is to model the transport equation for the mean kinetic energy
of turbulence k, allowing to account for turbulent diffusion of energy, while the turbulence
viscosity was obtained from the Prandtl–Kolmogorov hypothesis [28] νt = Cµl

p
k. But as the

characteristic length scale l was still prescribed empirically, this model was soon abandoned for
the benefit of two-equation models. However, another one-equation model was singled out, the
Bradshaw model [29] which used a transport equation for the shear stress itself and was dedicated
essentially to boundary layer problems.



Roland Schiestel and Bruno Chaouat 5

5. Two-equation RANS modeling

The main idea underpinning the two-equation models is the need to get rid of empirical scale
specification and to provide a general means to get the characteristic length scale of turbulence
via an additional transport equation. For computer solvers, the Patankar and Spalding proce-
dure [27] could be easily extended to this kind of models in the case of plane or axisymmetric
parabolic flows with the boundary layer type approximations. Using the reduced stream function
ω as the variable, the equations to solve take the general form

∂Φ

∂X
+ (a +bω)

∂Φ

∂ω
= ∂

∂ω

(
c
∂Φ

∂ω

)
+S (6)

with a marching procedure in X . In the case of 2D or 3D recirculating flows, the equations to solve
become elliptic and they usually read

∂Φ

∂t
+ ∂

∂x j
(u jΦ) = ∂

∂x j

(
σij

∂Φ

∂xi

)
+S, (7)

where Φ is any scalar or tensorial fluid property. At that time, for calculating recirculating flows,
an elliptic solver was initiated in the group of Spalding [30] based on finite volume discretization
with staggered grids and the SIMPLE algorithm (semi-implicit method for pressure-linked equa-
tions) to solve pressure in incompressible flows and widely known as TEACH code (teaching el-
liptic axisymmetric characteristics heuristically). The technique has then been further developed
by Patankar [31] and a non-staggered grid version also exists with colocated arrangement. Most
of the applications in RANS modeling are solved using the finite volume method because of its
conservation properties and robustness for solving turbulence transport equations with domi-
nating source terms, even if the method is of first-order precision only. However, some research
works have used finite difference expansions for higher-order methods or finite element methods
for complex geometry applications.

5.1. The k–ε modeling

This is probably the most widespread and used turbulence model in practice. In its standard
original form coming from Jones and Launder [32], the modeled transport equation of the
turbulent kinetic energy at high turbulence Reynolds number reads

∂k

∂t
+ ∂

∂x j
(〈u j 〉k) = P −ε+ Jk , (8)

where the terms appearing in the right-hand side of this equation are identified as the processes
of production P , dissipation-rate ε and turbulent diffusion Jk . The modeled companion transport
equation of the dissipation rate reads

∂ε

∂t
+ ∂

∂x j
(〈u j 〉ε) = cε1

ε

k
P − cε2

ε2

k
+ Jε, (9)

where Jε is the turbulent diffusion, cε1 and cε2 are constant coefficients. The turbulent Reynolds
stress tensor is then computed as τij = (2/3)kδij −cµ(k2/ε)〈Sij〉 where cµ is a constant coefficient.
Still based on the turbulence viscosity concept, this model can be numerically solved efficiently
using generally finite volume techniques. The characteristic length scale of turbulence defined
as l = k3/2/ε is obtained from the modeled transport equation of the energy dissipation rate
which had been studied in the pioneering research work at Los Alamos laboratory [33]. The k–ε
model was also the starting point for some variant models (see hereafter) such as the k–ω model
developed by Wilcox [34] using the characteristic frequencyω= ε/(cµk) as well as the well-known
shear-stress transport (SST) model developed by Menter [35] that is a combination of k–ε and
k–ω models.
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5.1.1. Some improvements to the k–ε model

Numerical predictions of various flows had exhibited some lack of universality like in the well-
known round jet anomaly and the spreading rate of a wake. To improve the round jet prediction
without altering plane jets, several proposals have been made by adding extra terms in the
dissipation-rate equation [36] or by sensitizing the numerical coefficients to the second and
third invariants of anisotropy defined as A2 = aija j i and A3 = aija j k aki , respectively (Einstein’s
summation convention is used), where aij = (τij −2/3kδij)/k. In the search for more universality,
or more practical use, many variants have been introduced.

5.1.2. Additional term to improve detached flows

Another important correction to single out was needed in detached flows in which the length
scale predicted from the model was overestimated, implying discrepancies in associated heat
transfer calculations. Some noteworthy modifications to the basic k–ε model were made for this
purpose by introducing additional source terms in the dissipation rate ε-equation [37].

5.2. Other two-equation closures

The wall boundary conditions for the dissipation-rate ε corresponds to a constant value in the
immediate vicinity of the wall in the case where the detailed sublayer is fully resolved. However,
for coarse grid resolution, this procedure is no longer possible. A simple approach is then to
consider an equilibrium hypothesis between the production and the dissipation-rate (P ≈ ε)
when approaching the log law near the wall. These practical difficulties had led researchers to
develop alternate models using other quantities. Usually, the transport equation for the turbulent
energy k is considered in addition to a transport equation for a variable z defined in the general
case by z = km l n , the usual k–ε model is recovered for (m = 3/2,n =−1) but other combinations
may be easier to solve numerically. The length scale itself (m = 0,n = 1) or combined as (m = 1,
n = 1) has been proposed in the two-equation k–kl Rotta’s model [38, 39] and later by Rodi
and Spalding [40], or in the two-equation k–l model by Smith [41], or (m = 1,n = −2) in [42],
a characteristic frequency (m = 1/2,n = −1) in the k–ω model with ω = ε/(cµk) by Wilcox [4, 34]
used in many industrial flow predictions among others [4]. The series of models [35] proposed
by Menter combines the advantages of k–ω and k–ε models, the SST model widely used in
industries accounts in a simplified manner, for the influence of shear stress transport. Other
turbulence models have been devised replacing the length scale in the turbulence equations by
more complex quantities, such as for instance the one developed by Lin and Wolfshtein [43] using
a tensorial volume of turbulence.

5.3. Non-linear k–ε models

Non-linear k–ε models introduce additional terms in the constitutive relation of the Reynolds
stresses in which the gradient term with the eddy viscosity coefficient becomes the first term of
an extended development. These models were mainly developed for rotating and corner flows
and can be derived from the general formulation as

τij = 2

k
δij −2cµ

k2

ε
Sij +a1

k3

ε2

(
Si k Sk j −

1

3
SmnSmn

)
+a2

k3

ε2 (Si kΩk j +S j kΩki )+a3
k3

ε2

(
Ωi kΩk j −

1

3
ΩmnΩmn

)
, (10)

where Ωij denotes the vorticity tensor and ai are coefficients, eventually of functions of other
invariants. In its most elaborate form developed in the Manchester group [44], the model,
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now free from the pure gradient hypothesis, allows to consider more complex geometries includ-
ing, for instance, the effect of streamline curvature. This class of models, also studied in [45], in
the form k–l or k–ε, is valuable to predict secondary flows in non-circular ducts.

5.4. Wall treatment

Special wall treatments were necessary to reduce the number of discretization grid points at the
time of low capacity computers. The original wall functions treatment detailed in [27] is based
on the hypothesis of constant flux with log-law of the wall. More elaborate treatments have
been introduced subsequently, in particular Craft et al. [46] used an analytical method based on
integration of simplified mean flow and energy equations in the control volumes adjacent to the
wall, more general flows can thus be tackled and extended to roughness and heat transfer [47].
Low Reynolds number k–ε models, like for instance [48], allow accounting for the influence of
molecular viscosity and in particular to describe the details of the near-wall region including
the viscous sublayer and the buffer layer joining the logarithmic zone. Useful comparisons of
performances of various two-equation models are given in [49] and an up-to-date review of EVM
is given by Hanjalic and Launder [50].

6. Advanced RANS modeling

Several weaknesses appeared in two-equation modeling and in particular in axisymmetric flows,
in wake flows, in adverse pressure gradient boundary layers, separated flows, complex geome-
tries, rotating flows, and others, when the physics of energy transfer between the different com-
ponents of the velocity plays a crucial role in the determination of the flow. It soon appeared that
a full account of the effect of these complexities required a more advanced description of the tur-
bulence field. In particular the development of SMC that considers the transport equations of the
Reynolds stresses and their dissipation rate by solving the statistical equations of all the compo-
nents of the Reynolds stress tensor allowed gaining more generality. An overview of the numer-
ous advanced closure methods can be gained through several references [2,3,51–58]. The basis of
development of these models makes extensive use of tensor calculus, anisotropy developments
such as the Lumley’s invariant modeling [59, 60] together with fundamental phenomenology of
turbulence. Two major families of models have been developed, Reynolds stress models (RSM)
using a set of evolution equations and algebraic stress models (ASM) also called explicit alge-
braic Reynolds stress models (EARSM) that use an algebraic set of equations for the stress com-
ponents coupled with a two-equation transport model like a k–ε-type model, free of the eddy
viscosity hypothesis that is a simplification of RSM. However, despite its high degree of sophis-
tication, SMC did not always guarantee systematic improvements over high-end RANS models
and numerical difficulties were sometimes involved in the cases where the numerical procedure
was not appropriate. What is gained in universality is sometimes lost in precision for a specific
application. An important aspect in modeling turbulent stresses is the realizability constraints
ensuring that the modeled stresses are indeed moments of a probability law. There are two main
lines of study, the invariant theory approach [61] and the stochastic analysis based on Langevin
equations [62].

6.1. Reynolds stress models (RSM)

These models are known as second moment transport modeling closures, sometimes called
Differential stress models (DSM). Main physical hypotheses needed to close the model are related
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to the pressure–strain correlations, diffusion terms and the dissipation of the stress components.
The modeled transport equation of the turbulent stress τij can be written in a synthetic compact
form as

∂τij

∂t
+ ∂

∂xk
(〈uk〉τij) = Pij +Πij + Jij −εij, (11)

where in this equation, the different terms Pij, Πij, Jij, εij appearing in the right-hand side are
the production, redistribution, diffusion and dissipation rate, respectively. In this equation, the
redistribution term corresponds to the fluctuating pressure–strain correlation and plays a major
role in the correct prediction of the flow anisotropy. This term is decomposed into a slow and
a rapid contribution that characterize the return to isotropy. The first ideas in this respect were
proposed by the Los Alamos group in New Mexico [33, 63]. Hanjalic and Launder [64] as well as
Launder et al. [65] proposed the well-known set of hypotheses that is considered as the pioneer-
ing works in the formulation of the RSM models. Even to this day, their respective work serves
as a reference prototype for subsequent developments. The fundamentals of the methodology
can be found in Launder’s synthetic overview [51]. Indeed, many proposals can be found in the
literature, but broadly speaking, most of these models keep the same basic terms as in [64, 65]
and simply extend the developments by using higher-order approximations. The pressure–strain
correlation modeling is a determinant for a successful closure, it includes three contributions:
a linear one (rapid term), a non-linear one (slow term) and a wall reflection term (with rapid
and slow term counterparts). The emergence of some large computer centers in the 1970s al-
lowed handling the numerical solution of turbulent flows using second-order closures, for in-
stance on the well-known CDC7600 computer (10 up to 36 max Mflops and 512 K 60-bit words).
More advanced closures have subsequently been developed, including some refined features.
Low Reynolds number versions of RSM models have been developed and [66] can be consid-
ered as a prototype. The use of low Reynolds number correction functions were often useful
for approaching walls [67, 68]. More advanced forms of low Reynolds number models are more
complex, see for instance [69]. Besides, quadratic terms were first introduced in modeling the
pressure–strain correlation [70–72]. A thorough analysis based on invariant theory is developed
in [73]. Then, cubic terms give rise to the two-component limit (TCL) model [56] which is com-
patible with the tendency of turbulence to become 2D near a wall. The no wall-reflection redis-
tribution topographical terms allow discarding explicitly the wall distance in the approximations
using non-topographic wall detectors [74–77]. Extensive applications using these models can be
found in [78]. In practice, the numerical solution of the stress tensor equations brings in a new
difficulty because, in the absence of eddy viscosity, the momentum equation loses its diffusive
dominant form and becomes stiff. The problem can been solved by numerical stabilization prac-
tices such as a fourth shifted grid for shear stress discretization and introducing apparent viscosi-
ties in the discretized equations [79,80]. This procedure can be extended to non-shifted grids [81].
In order to illustrate the capabilities of these type of methods, Figure 1 shows some application
results of different closures made in the Leschziner Imperial College group to the supersonic fin
plate junction using the RANS-SST and the RANS-MCL (modified component limit) which is a
modification for compressible flow [82] of the TCL closure employing a cubic pressure–strain
model and entirely topology free. As a result of interest, these results show that only the second-
order closure is able to reproduce multiple separation/reattachments ahead of the fin. Figure 2
applies successfully the same MCL closure to the complex flow around a 3D afterbody with issu-
ing square jet which shows the advantages of the MCL closure over simpler models as discussed
in [83]. More generally, second-order closures are beneficial for dealing with complexities due to
geometry or interaction with other phenomena. Applications are numerous and widely repre-
sented in the scientific literature. Among them, some specific examples can be found in several
references [68, 84–91].
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Figure 1. Supersonic fin-plate-junction flow: flow structure in shock-affected region ahead
of fin (a) RANS-SST model; (b) RANS-MCL model. (Courtesy of Batten et al. [82].)

Figure 2. RANS-RSM solution of the flow around a 3D afterbody with square jet using the
MCL closure. (Courtesy of Leschziner et al. [83].)

6.2. Algebraic stress models (ASM)

First introduced intuitively by Rodi [92] and subsequently developed by Gatski and Speziale [93],
Durbin and Pettersson-Reif [94], these ASM models rely on two-equation models. They were
intialy developed with the aim to reduce computational costs in comparison with the one
required by RSM models that need to solve seven coupled equations. In its simplest form, the
ASM can be deduced from stress transport equations using the so-called Rodi hypothesis [92,95]
originally written as (

dτij

dt
− Jij

)
≈ τij

k

(
dk

dt
− Jk

)
(12)
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approximately equivalent in homogeneous turbulence to assuming that the flow anisotropy
remains constant along the streamline daij/dt = 0. Using (8) and (11), the ASM model then
consequently reads

Pij +Πij −εij =
τij

k
(P −ε). (13)

But despite the simplification of ASM in regards with RSM, it has been found in practice that
some problems in the numerical solution of the equations were still acute and even worsen in
some particular cases. In the framework of invariant modeling, it is worth noting the use of Rodi’s
hypothesis by Pope [96] to derive a non-linear viscosity model. The ASM model of Wallin and
Johansson [97] is developed in k–ω form including near-wall treatment ensuring realizability of
the stress components and particularly dedicated to compressible boundary layers.

6.3. Renormalization group theory

Turbulence models were also developed in the framework of the renormalization group (RNG)
theory by Yakhot [98] with scale expansions for the Reynolds stress and the source of dissipa-
tion terms as a complementary tool in turbulence modeling [99]. These methods allowed sug-
gesting new additional terms in existing models and also to give analytical expressions for the
coefficients. The k–ε–RNG model is a well-known example.

6.4. Compressible turbulent flows modeling

Several averaging procedures exist [100, 101], but there are mainly two approaches, the density-
weighted Favre-averaged equations [102] and Reynolds-averaged equations. In strongly com-
pressible flows extra terms are to be included in the model equations [100, 103, 104]. However,
in some cases, when density fluctuations are weak and can be neglected, modeling is greatly sim-
plified. An important change, with respect to CFD, is the type of numerical methods to be used
due to the fact that pressure acquires a thermodynamic meaning and is closely tied with the en-
ergy equation. In this case, the continuity equation is solved for density and pressure is obtained
from an equation of state, but this is not specific to turbulent flows.

6.5. Scalar transport modeling

Associated turbulent heat and/or mass transfer are treated using the same principles. In addi-
tion to the turbulent scalar fluxes, the scalar variance and its dissipation rate can be modeled
separately in the case of passive scalars θ. In its basic form [51, 70, 105], the model equations to
solve closely resemble their dynamic counterpart. More advanced closures [106, 107] have also
been developed subsequently. The generalized gradient diffusion hypothesis (GGDH) first intro-
duced by Daly and Harlow [33] is often applied in a first approximation to compute the heat flux
τiθ = 〈uiθ〉−〈ui 〉〈θ〉

τiθ =−cτθ (τi m)
k

ε

∂〈θ〉
∂xm

, (14)

where cτθ is a numerical coefficient. DNS still remains an useful tool to validate turbulence
models in this field [108,109]. The extension to the case of active scalar transport is also a practical
field for many applications, a typical example being the modeling of turbulence subjected
to buoyancy [110]. When dealing with turbulent fluxes of a transported scalar, realizability
constraints have also to be considered, like in dynamical problems. For instance the Langevin
equation approach [111] may give straightforward results.
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6.6. Elliptic relaxation models

The concept of elliptic relaxation was proposed by Durbin [112] to model non-homogeneous
turbulence by means of an additional elliptic equation that is coupled with the k–ε model.
This method was then extended to RSM models with the modeling of the pressure–strain cor-
relation term [113]. Complex geometries can be cleanly treated at the price of higher computa-
tional effort. A simplified approach consisting of the elliptic-blending second-order closure has
been then developed to alleviate the computational requirements [114,115]. This method entails
the solution of a single one-elliptic equation for a blending function which controls transition
between near-wall and far-from-the-wall pressure strain model (see [58]).

6.7. Multiple scale models

The fact that usual RANS closures are devised as single-scale closures is justified by the Kol-
mogorov theory of universal cascade determined by the dissipation-rate ε only. Departures from
this hypothesis are however expected when the turbulence is out of equilibrium. A first attempt to
distinguish fine dissipative scales from energetic scales was proposed by Schiestel [116] and later
developed in [117] and [118]. The analytic work made in [118, 119] explains the link with spectral
closures. The final equations are then obtained by partial integration of the spectral spectrum
with m = 1, n slices (n = 2 or 3 in practice) in the wave number ranges [κm−1,κm] and have the
same overall structure as standard models. For instance, the transport equation for the partial
turbulent stress τ(m)

ij reads [119]

∂τ(m)
ij

∂t
+ ∂

∂xk
(〈uk〉τ(m)

ij ) = P (m)
ij +F (m−1)

ij −F (m)
ij +Π(m)

ij + J (m)
ij −ε(m)

ij , (15)

where in this equation, the different terms P (m)
ij , F (m−1)

ij ,Π(m)
ij ,Πij, J (m)

ij ε(m)
ij appearing on the right-

hand side are the production, in and out transfer fluxes, redistribution, diffusion and dissipation
rate, respectively. This equation can be solved in conjunction with transport equations for the
transfer fluxes F (m), using the same numerical procedures as for usual statistical models. From
the present section to subsequent sections including statistical multiple scale models, statistical
spectral models, LES and hybrid subfilter models, an account of the differing eddy scales is
possible as opposed to single-scale closures, and these approaches can be viewed as various
multiscale and multiresolution methods [120].

6.8. What about URANS?

According to the acronym, URANS are unsteady solutions of RANS models, thus they produce
time varying statistical fields. Interesting results can be obtained in flows such as separated layers,
wakes, rotating flows, free convection [121] in which some periodic behaviour may happen. But,
in some cases the unsteadiness is irregular and non-periodic, looking like a macro-simulation of
turbulent large eddies, in this case, although the resulting calculation looks physically realistic,
it is an unsuited application of URANS in contradiction to its appellation. It can be viewed as a
large-scale eddy simulation without any reference to the grid, and thus the physical interpreta-
tion becomes difficult. For instance, true URANS allowed simulating self-sustained oscillations
of a turbulent plane jet issuing into a rectangular cavity [122] as well as the vortex shedding in
solid rocket motors [123]. The conceptual problem in URANS is that the separation of scales is
not always clearly possible. For instance vortex shedding in pure URANS may break down into
true turbulence (LES).
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7. Spectral turbulence models

In conjunction with the development of turbulence models in the physical space for users
involved in engineering or industrial applications, spectral turbulence models have also been
devised to study turbulent flows in the laboratory from a fundamental point of view with em-
phasis on the physical aspects of turbulence. All the methods of closure considered so far were
dealing with one-point statistics (except multiscale models, sometimes referred to as 1.5-point
closures). Two-point closures have been developed in a more theoretical framework mainly in
Fourier space giving rise to spectral modeling. Due to the increased complexities, most of these
models are originally limited to homogeneous and isotropic turbulence [12], though these limi-
tations have been removed now. These spectral theories initially developed by Jeandel et al. [13]
may be used to deduce simpler one-point closures from spectral integration and spherical aver-
aging showing a hierarchy in levels of description. Extension to anisotropic turbulence was con-
sidered in particular by Cambon et al. [124].

7.1. Early spectral theories

These theories limited to homogeneous isotropic turbulence have been introduced long ago
in order to approximate the spectral flux due to the inertial cascade and thus calculate the
mean energy spectrum compatible with the Kolmogorov spectrum in equilibrium flows. These
models are fully described in [125, 126] and rely on the equation of the two-point correlation
tensor φij = 〈û′

i (x ,κ)û′
j (x ,κ′)〉δ(κ+κ′), where û′

i denotes the Fourier transform of the fluctuating
velocity u′

i .

7.2. The EDQNM model

Among these spectral models, one of the most popular is the eddy damped quasi-normal Marko-
vianized (EDQNM) model [127] which focusses on the non-linear inertial terms of closure. Exten-
sion to non-homogeneous turbulence has been also considered [128]. This approach embodies
many important properties of the inertial cascade interactions that justifies its interest in funda-
mental laboratory studies. But its analytical complexities prevent more extended practical appli-
cations.

7.3. Models with hidden parameters

Stimulated by the peculiar properties of rotating turbulence, two-point closures were further
studied and developed by introducing two anisotropy tensors for the polarization anisotropy and
for the directional anisotropy in wave vector space [129–131] in order to figure out the complex
tensorial properties of the fluctuating turbulent field. A similar concept was also developed in
physical space [132]. Then, integrated in Fourier space to get a one-point closure, these models
known as structure-based models, introduce hidden parameters linked to the two types of
anisotropies mentioned earlier.

8. Later computer developments: direct and large eddy simulations

In this section we leave the purely statistical approach considered previously to perform numer-
ical simulation of a realization of the fluctuating turbulent flow either completely (DNS) or par-
tially (LES).
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8.1. Computational resources in fine grid simulations

Fine grid numerical simulations of turbulence require high computational resources. They can
be a priori estimated in the following way. For a DNS, the calculation must solve the smallest
flow eddies down to the Kolmogorov scale ηK . But also the dimensions of the computational
domain must be large enough to comprise the largest turbulence scales. Taking into account
these constraints, in the case of homogeneous turbulence in a box domain, the necessary number
of grid points is found to be N1N1N3 = 64R9/4

t , where Rt is the turbulence Reynolds number
(usually of order Re/10), the computational time being proportional to T ∝ R11/4

t . In the case
of LES, the number of necessary grid points is obviously reduced in the ratio (ηK /∆)3 where ∆
is the grid step. When considering real shear flows like boundary layers these estimates need
to be revised [133, 134]. These requirements can be checked against the evolution of computer
power [10]. From a practical point of view, the numerical methods suited for such calculation
are somehow different from the ones used in RANS modeling. RANS modeling with complex
transport equations and stiff source terms achieve stability with relatively low-order numerical
schemes. On the contrary, for fine grid simulations using either the pure Navier–Stokes equations
(DNS) or viscosity hypothesis (LES), the use of higher-order methods is necessary in order to get
precision, avoid numerical viscosity and dissipation.

8.2. Developments in LES

The very first LES calculation goes back to the 1970s with the pioneering works of Orszag and
Patterson [135] for homogeneous flows and Deardorff [136] for channel flow followed by the work
of Moin et al. [137] as a first milestone in LES development. Since that time, substantial progress
has been made by several groups summarised in [138,139]. Some thoughts about the conceptual
foundations in LES are discussed in [140].

8.2.1. The original Smagorinsky model and the dynamic Smagorinsky model

The aim of LES is to spare computer resources while simulating the non-universal large scales
as much as possible in order that only the most universal smaller scales corresponding to the
end of the energy spectrum are modeled. Physically, this means that the cutoff wave number
κc is placed in the region of the Kolmogorov law given by E(κ) = Cκε

2/3κ−5/3 where Cκ stands
for the Kolmogorov constant. So, simpler models are usually sufficient for a good account of
subfilter turbulence. The first to be considered and largely used is the well-known Smagorinsky
model [141,142] which looks like the mixing length hypothesis but the length scale being given by
the grid step. The SGS turbulent stress tensor is then computed using the Boussinesq hypothesis
as

(τij)sgs =−2νsgsS̄ij, (16)

where the modeling of the subgrid turbulent eddy viscosity inspired from the mixing length
hypothesis reads

νsgs = (Cs∆)2
√

2S̄ijS̄ij. (17)

In (17), Cs is the Smagorinsky coefficient that takes on a constant value [141] in the standard
Smagorinsky model. Germano et al. [143] developed the dynamic Smagorinsky version of the
model where the coefficient Cs is evaluated locally and dynamically in time and space by
introducing a superfilter used to estimate the Smagorinsky “constant” directly from the simulated
flow, allowing a far better universality. This approach was improved by Lilly [144] and often used
for highly resolved LES, like for instance in [145].
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8.2.2. The structure-function models

The “structure-function” models introduced by Lesieur’s team find their basic foundation in
the spectral space [6, 139]. These models indeed extend in physical space the model of spectral
viscosity [146] in Fourier space by the same research group. They have been developed in several
variants [6] with mainly the “selective structure function” model in which the viscosity is reduced
in near 2D turbulence and the “filtered structure function” model in which the large scales are
filtered out before computing viscosity to overcome the too dissipative behaviour of the pure
structure function model. This model was applied to simulate a large variety of flows [6] such as
for instance rotating channel flows [147] and mixing layers [148].

8.2.3. The Bardina model

The scale-similarity Bardina model [149] bases its formalism using twice filtering on the idea
that local interactions near the cutoff are dominant. In practice, the model proved to be not very
dissipative and it is mainly useful in combination with the Smagorinsky model. Indeed, while
viscosity-based models were efficient to account for the energetic dissipative effects in scales
interactions, the structural aspects of subfilter turbulence is better represented by scale-similarity
models.

8.2.4. Subfilter-scale transport models

Looking for more advanced turbulence description, more complex LES models have been
developed using transport equations. Yoshizawa and Horiuti [150] proposed a subfilter model
using a transport equation for the SGS turbulent energy ksgs where the length scale of turbulence
is given by the grid step size ∆. In fact, Deardorff’s work [151] involved with geophysical flows,
had the merit of considering early the transport equation of the SGS stress tensor (τij)sgs in its full
formulation, still with the use of ∆. These approaches however implicitly assume approximate
spectral equilibrium between the production and dissipation rate because ε is only deduced
from ∆, and has thus opened new routes in LES subgrid-scale modeling. All these types of
models have their advantages and drawbacks that can be explained on the basis of their statistical
properties [152].

8.3. The role of DNS

DNS has long been considered as a tool for analyzing detailed laboratory turbulent flows as a
substitute to expensive experiments. In this sense, it contributes to fundamental knowledge of
turbulent flows. Its use in practical real life situations such as engineering and environment
is more difficult, considering the additional geometric and physical complexities often present
and not always necessary with respect to the answers that are sought. DNS development began
with the pioneering works of the Stanford team [153, 154] with the investigation of the fully
developed turbulent channel flow. The statistics of the turbulent energy, dissipation rate and
correlations of the fluctuating velocities were worked out to determine the flow characteristics.
DNS data are often used for the validation of turbulence models to this day. This research
field is growing fast despite the difficulties and limitations imposed by the need for increased
power of the super-computers as well as the development of computational techniques including
vectorisation and parallelisation. But even with modern super-computers, the applicability of
DNS still remains limited to flows with relatively low or moderate Reynolds numbers [155–
157]. Besides investigating the detailed turbulence field in fundamental laboratory turbulent
flows, another important application of DNS is in providing reference tests and benchmarks for
evaluating simpler models. In many cases, DNS can be viewed as a complement or a substitute
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to experimental invertigations, the hot wire being replaced by the discretization point. DNS are
now a tool in turbulence research allowing to devise novel numerical experiments [134] that are
not possible in the real laboratory.

9. Developments in hybrid RANS/LES simulations

At the end of the 20th century, the concept of hybrid RANS/LES began to take shape. A detailed
up-to-date review of hybrid models can be found in [9–11] and examples for flow applications in
practice in [158, 159].

9.1. Two types of models: hybrid zonal and non-zonal models

Zonal methods split the computational domain into several subdomains in which different
models are applied with the hard problem of control of boundaries. The question that is raised
is then to match the different flow regions by means of artificial turbulent fluctuations [160].
Non-zonal methods may embody an automatic RANS-LES switch parameter or use a progressive
change in the model so that seamless coupling is achieved. An attempt to unify these respective
formalisms which encompass RANS and LES can be found in [161]. The important issue of non-
commutation errors mentioned above and coming from variable filtering in simulations may
be aggravated in hybrid models specially at the internal boundaries in zonal approaches. This
problem has been analyzed by Hamba [162] on the basis of DNS comparisons showing that
these non-commutation errors increase near the interface. Another aspect of this problem is the
log-law mismatch in near-wall flows for which Hamba [163] justifies additional filtering from
approximation of commutation terms.

9.2. Early hybrid modeling

An early contribution to hybrid models is the VLES proposed by Speziale [164], which combines
RANS and DNS by damping the turbulent stresses in regions where the grid step is finer so that the
calculation runs between RANS and DNS depending on the grid spacing. In VLES the unresolved
scales region embodies the energy containing eddies and unsteady closures are necessary.

9.3. The detached eddy simulation (DES)

One of the most popular hybrid models, widely applied in practical flow calculation and espe-
cially in aeronautics, is the detached eddy simulation (DES) developed by Spalart [53,165], Spalart
et al. [166]. This approach makes use of the Spalart–Allmaras RANS model using one-equation
transport of turbulent viscosity in the wall region in which the turbulence length scale is given by
the wall distance dw and is replaced by the grid step far from the wall

d̃ = min(dw ,CDES∆), (18)

where ∆ = max(∆1,∆2,∆3) and CDES is a constant coefficient. Since the same model is used in
both zones, their junction is continuous and hence the pure DES approach is no longer zonal.
This method has been extended to two-equation models using the SST k–ωmodel of Menter [35]
with some adaptations introduced in the sink term of the transport equation for the subgrid
turbulence energy. Another extension named delayed detached eddy simulation (DDES) [167]
uses a parameter to delay the LES function in boundary layers, including the molecular and
turbulent viscosity information into the switching mechanism. Then, the improved delayed
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Figure 3. Zonal RANS-DNS-IDDES of the transonic flow over axisymmetric bump
(Bachalo–Johnson experiment) on grid of 8.7 billion cells: instantaneous contours of |∇p|
in a meridian plane in the shock vicinity. (Courtesy of Spalart et al. [168].)

detached eddy simulation (IDDES) brings improved wall-modeling capabilities with also an
SST-IDDES variant. For purposes of illustration, Figure 3 shows an interesting application of the
transonic flow over an axisymmetric bump with shock-induced separation described in [168].
In order to get the precise description of the shock region a three zone RANS-DNS-IDDES
calculation has been performed using DNS in the shock region, RANS upstream and IDDES
downstream. Figure 4 displays an instantaneous view of the fine turbulent eddies in the shock
vicinity.

9.4. The partially integrated transport modeling (PITM)

Inspired from the multiple scale concept developed in spectral space, the partially integrated
transport modeling (PITM) method developed by Schiestel and Dejoan [169] for the subfilter-
scale ksfs–ε model and by Chaouat and Schiestel [16, 170–172] for the (τij)sfs–ε model can be
applied to almost any existing RANS model using the dissipation-rate transport equation. The
present modeling approach of the PITM method finds its basic foundations in the spectral space
by considering the transport equation of the the two-point fluctuating velocity correlations in
the physical space [161, 173]. This method was initially formulated in the case of anisotropic ho-
mogeneous flows and then extended to non-homogeneous flow considering the concept of the
tangent homogeneous space [17, 161]. Using the variational calculus, it has been demonstrated
that the properties of the model established in homogeneous turbulence can be extended mu-
tatis mutandis to the case of non-homogeneous turbulence [174]. Taking its Fourier transform
and averaging over spherical shells, the resulting spectral equation reads [119, 161]

∂ϕij(X ,κ)

∂t
+ ∂

∂xk
(ūkϕij(X ,κ)) =P ij(X ,κ)+Tij(X ,κ)+ψij(X ,κ)+Jij(X ,κ)−Eij(X ,κ), (19)

where the different terms appearing in the right-hand side of this equation are respectively
the production, transfer, redistribution, diffusion and dissipation contributions, acting in the
spectral space associated with the scalar wave number κ (modulus of the wave vector). Spectral
splitting with partial integration over [κc ,∞[ gives rise to the equation for subfilter-scale stresses
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Figure 4. Zonal RANS-DNS-IDDES of the transonic flow over axisymmetric bump
(Bachalo–Johnson experiment) on grid of 8.7 billion cells: instantaneous eddies in the shock
vicinity. (Courtesy of Spalart et al. [168].)

in the physical space after some algebra. The dissipation-rate transport equation derived using
the multiscale technique [119, 169] looks like (9)

∂ε

∂t
+ ∂

∂x j
(ū j ε) = cε1sfs

ε

ksfs
Psfs − cε2sfs

ε2

ksfs
+ Jεsfs , (20)

but the cε2sfs coefficient is variable and acts as a dynamical parameter to control the relative
amount of subfilter energy. More precisely, this coefficient is now a function of the grid-step
size of the mesh ∆ ratio to the turbulence length-scale l = k3/2/ε, so that cε2sfs = cε2sfs (ηc ), where
ηc = κc l = πl/∆ [170–172]. From a physical point of view, the dissipation rate interpreted here
as a flux of energy that is transferred from the large scale to the small scale remains the same as
the one returned by (9) because it is independent of the cutoff-wave number ∂ε/∂κc = 0 in the
equilibrium range.

9.4.1. Two-equation subfilter model

The two-equation subfilter method embodies a subfilter-scale EVM that has been first devel-
oped for applications in standard turbulent flows and engineering flows with ease of calculation.
It is simple to use in the framework of two-equation models and allows combining the advan-
tages of both RANS and LES in a practical manner. This model has simulated fairly well, for in-
stance, the turbulent pulsed channel flows [169, 175] and the mixing of turbulent flow streams
involving differing scales [175].

9.4.2. Subfilter stress transport model

This subfilter-scale stress model is more advanced in terms of modeling than EVM because
it relies on the transport equations for the subfilter stress (τij)sfs and the dissipation-rate ε. The
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Figure 5. Turbulent flow over periodic hills using PITM model. Vortical activity illustrated
by the Q-isosurfaces at Re = 37,000 [178].

transport equation for (τij)sfs reads

∂(τij)sfs

∂t
+ ∂

∂xk
(ūk (τij)sfs) = (Pij)sfs + (Πij)sfs + (Jij)sfs −εij, (21)

where the terms appearing in the right-hand side of this equation are identified as the subfilter
production, redistribution, diffusion and dissipation, respectively. The transport equation for
the dissipation-rate ε is still given by (20) but the diffusion term assumes now a tensorial
diffusivity hypothesis. The tensorial dissipation rate is approached by εij = 2/3εδij. This model
allows describing more accurately the physical mechanisms of the turbulence processes. In
particular, it encompasses the pressure–strain correlation term that redistributes the energy
among the stress components and the anisotropy of the dissipation in stress components for
reproducing the flow anisotropy [170–172]. This model was applied to a large variety of both
internal and external flows with success, accompanied by a drastic reduction of the grid-points
and computational time in comparison with standard LES models, thus showing promising
perspectives. Various applications were tackled, such as flow in a plane channel with appreciable
fluid injection through a permeable wall corresponding to the propellant burning in solid rocket
motors [170], rotating channel flows encountered in turbomachinery [176], flow over periodic
hills with separation and reattachment of the boundary layer at several Reynolds numbers as
shown in Figure 5 [177, 178] corresponding to the experiment reference [179], airfoil flows [180],
flow in small axisymmetric contraction [181]. The PITM method has been recently extended
to the turbulent transfer of a passive scalar including transport of variance and its dissipation
rate [182].

9.5. The partially-averaged Navier–Stokes (PANS)

The partially-averaged Navier–Stokes (PANS) model was introduced by Girimaji [183] and is
based on the transport equations for the SGS turbulent energy ksgs and its dissipation rate. The
first applications can be found in [184]. In this method, contrarily to the PITM method, the
ratio of subgrid modeled energy to the total energy fk = ksgs/k is rather imposed at a constant
arbitrary value. This hypothesis once inserted into the turbulence model, the resulting transport
equations formally look almost similar to the PITM ones in spite of a totally different approach.
Some applications handled by PANS have been summarized in the recent paper [185] such as
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for instance, the turbulent flows past a square and circular cylinder [186], the flow around a
rudimentary landing gear [187], swirling confined flows [188] as well as the flows over periodic
hills [189].

9.6. The scale adaptive simulation (SAS)

The scale adaptive simulation (SAS) was derived by Menter et al. [190, 191] from the concept of
the k–kl Rotta model. It adds another scale LνK using the second derivative of the velocity field
known as the Von Kármán length scale defined as

LνK = K

∣∣∣∣ U ′

U ′′

∣∣∣∣ with U ′ =
√

2S̄ij S̄ij and U ′′ =
√√√√∂2ūi

∂x2
k

∂2ūi

∂x2
j

(22)

to the traditional input of the velocity gradient tensor, K being the von Kármán constant. Contrar-
ily to previous models, there is no explicit dependency on the grid spatial resolution [190, 191].
There are essentially two variants of the approach, the KSKL-SAS (K-square-root-kL-SAS) two
equation model and the SST-SAS (shear-stress transport-SAS) model [190]. A typical example of
application, among many others, given in [191] and shown in Figure 6 allows to predict the inten-
sive mixing caused by the turbulence generated in the unstable regime in a combustion chamber.
More recently, Menter et al. [192] demonstrated that the stress-blended eddy simulation (SBES)
approach based on the blending of existing RANS and LES models using linearly-weighted stress
components is optimal for applications with a mix of boundary layers and free shear flows. The
case of the mixing layer displayed in Figure 7 shows how easily the SBES model develops fine-
grained turbulence eddies that are impossible to obtain with more standard approaches.

10. Numerical methods for the simulation of turbulent flows

Different types of numerical methods in fluids have been applied for the modeling and simula-
tion of turbulent flows that are essentially the finite volume method, the finite difference method,
and the finite element method [193]. Finite volumes and finite differences are the most popular
in practice while finite element methods using weight functions are more oriented towards math-
ematical properties of the numerical method. If the finite differences method is essentially used
in conjunction with structured grids in Cartesian or curvilinear coordinates [194], the finite vol-
ume method is now more and more used with unstructured grids, as obviously is the finite ele-
ment method. The numerical schemes differ from RANS to LES both in time and space. In RANS,
low-order upwind schemes are often applied considering that the flow is often steady. Mean while
in LES, high-order centered schemes are emphasised to accurately capture the unsteady regime
of the flow and the insight into the evolving turbulent structures [195, 196]. Besides explicit high-
order schemes in space, mention has to be made of the Hermitian and compact schemes [197]
that allow precision from implicit additional relations. Among the advanced methods developed
for the Navier–Stokes equations [196–204], various specific techniques have been adapted. In all
methodologies including transport equations of the turbulent stresses, a special numerical treat-
ment is necessary because of the mathematical complexity of solving these equations, which are
strongly coupled leading to a lack of robustness of the numerical scheme, both in cases of struc-
tured meshes [205–207] and unstructured meshes [208,209]. The use of spectral numerical meth-
ods (not to be confused with spectral closures) known for their high precision [199, 200] is use-
ful for DNS in relatively simple geometries, but their extensions to more complex models and
geometries is difficult. Spectral methods and spectral element methods are thus specialized for
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Figure 6. SAS solution for ITS combustion chamber, isosurface Ω2 − S2 = 107 s−2 with
reacting flow. (Courtesy of Egorov et al. [191].)

Figure 7. Isosurfaces of the Q-criterion using the SBES model with 2 million cells, Q =
1/2(Ω2 −S2) withΩ-vorticity and S-Strain rate. (Courtesy of Menter et al. [192].)
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applications in LES and DNS flows in simple geometries. As regards time integration, various ex-
plicit and implicit time discretization schemes are used, multilevel methods may have advan-
tages at the price of more complexity. Good precision of time advancement schemes is crucial
in DNS and LES calculations for which small spurious errors may compromise the long duration
simulation. Generally, it is advisable to avoid too dissipative schemes which smoothen out some
frequencies and introduce errors. Intensive use of vectorization and parallelization programming
allowed reducing the computational time required for the simulation. In particular, CFD codes
are now often optimized with computational techniques such as the message passing interface
(MPI).

11. Validation of turbulence models

In turbulent flow numerical predictions, the use of appropriate numerical methods is manda-
tory, but the inherent uncertainties of physical modeling (full statistics or subfilter statistics) has
also to be considered and appreciated. In former RANS calculations, the experimental reference
was the only reference to check the performance of a model, but as mentioned above, it is now
complemented by DNS. The requirements for successful simulation are thus twofold. Practical
examples are innumerable, benchmarks of well documented turbulent flows remain an invalu-
able reference. Isotropic homogeneous turbulence and the turbulent plane channel flow have
been very standard test cases. Among many others, we may cite here the flow over periodic hills
illustrated in Figure 5 studied in [179] and which led to extended testing of models [210]. On the
pure numerical point of view LES-type methods can be evaluated on “a priori” tests using data
from a previous DNS and “a posteriori” tests using the results of the LES calculation [211].

12. Concluding remarks and future prospects

The last 50 years of CFD turbulence development in the research area have seen a huge variety of
turbulent closures and associated numerical techniques roughly evolving from less statistical to
more simulational, following the constant increase in scientific computing power. LES has now
arrived at maturity. But in spite of the huge development of this computing power, many engi-
neering and environmental turbulent flows remain still out of scope of DNS full simulation and
even fine LES. The older and simpler RANS methods remain useful tools and can still be rec-
ommended as the starting point (and sometimes also the finishing point) for engineering sim-
ulations [159]. Higher-level closures allow to account for superimposed phenomena and com-
plex flows [3, 212] and even nowadays, RANS model developments are still needed. For this rea-
son, a large array of methods with different levels of description is necessary. Indeed, the choice
among the different methodologies available strongly depends on the physical problem consid-
ered and the type of answers which are expected. In particular the hybrid range of techniques,
considering its flexibility, can encompass many practical situations [10, 11, 213, 214] and are a
good alternative, with the accuracy of LES and the speed of RANS. Some problems like inter-
mittency would need more investigation. Many of the problems discussed are encountered in
aerospace industry in which CFD plays an increasingly crucial role [7] and in which various
types of methods have their place for different uses [8, 58, 215, 216]. The question is also open
whether modern data-driven techniques may be able to find optimal models in a user-defined
sense [217, 218].
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