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Abstract
Policies and measures to control pandemics are often failing. While biological factors controlling transmission are 
usu-ally well explored, little is known about the environmental drivers of transmission and infection. For instance, 
respiratory droplets and aerosol particles are crucial vectors for the airborne transmission of the severe acute 
respiratory syndrome coronavirus 2, the causation agent of the coronavirus 2019 pandemic (COVID-19). Once 
expectorated, respiratory droplets interact with atmospheric particulates that influence the viability and transmission of the 
novel coronavirus, yet there is little knowledge on this process or its consequences on virus transmission and infection. Here 
we review the effects of atmospheric particulate properties, vortex zones, and air pollution on virus survivability and 
transmission. We found that particle size, chemical constituents, electrostatic charges, and the moisture content of 
airborne particles can have notable effects on virus transmission, with higher survival generally associated with larger 
particles, yet some viruses are better preserved on small particles. Some chemical constituents and surface-adsorbed 
chemical species may damage peptide bonds in viral proteins and impair virus stability. Electrostatic charges and water 
content of atmospheric particulates may affect the adherence of virion particles and possibly their viability. In addition, 
vortex zones and human thermal plumes are major environmental factors altering the aerodynamics of buoyant particles 
in air, which can strongly influence the transport of airborne particles and the transmission of associated viruses. Insights 
into these factors may provide explanations for the widely observed positive correlations between COVID-19 infection 
and mortality with air pollution, of which particulate matter is a common constituent that may have a central role in the 
airborne transmission of the novel coronavirus.
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Introduction

Airborne transmission of diseases is a well-known phe-
nomenon, yet the precise environmental mechanisms 
controlling transmission and further infection are poorly 
known. As a consequence, measures and policies to con-
trol pandemics, suggested by scientists and enforced 
by authorities, are not fully efficient, as observed dur-
ing the coronavirus 2019 pandemic (COVID-19). While 
biological factors controlling disease transmission have 
been well studied, environmental factors have not been 
explored in depth (Sharma et al. 2020). COVID-19 can 
spread via respiratory droplets through inhalation or con-
tact with fomites (CDC 2021; WHO 2020). At least one 
meter or six feet of social distancing is recommended for 
mitigating the transmission of the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2, CDC 2022; 
WHO 2022). However, cases of human-to-human infec-
tion at longer distances make these guidelines questionable 
(Li et al. 2021; Morawska and Cao 2020; Morawska and 
Milton 2020; Wang and Han 2022; Wang et al. 2021a). 
Moreover, when virus-laden aerosols remain buoyant in 

air, these aerosols can travel far beyond the recommended 
safe social distances.

Most respiratory droplets from human respiratory activi-
ties are small enough to evaporate into droplet nuclei, of 
less than 5 μm, within a few seconds (Johnson et al. 2009; 
Morawska 2006; Nicas et al. 2005; Vejerano et al. 2018). 
Both droplets and nuclei carrying coronaviruses could inter-
act with airborne particulate matter that is often abundantly 
present in the ambient air. Airborne fine particulate matter 
contains complex, partly unknown mixtures of organo-min-
eral matter with varying physicochemical properties (Dael-
lenbach et al. 2020; Guo et al. 2014). These could influence 
the aerodynamics, deposition, and possibly the viability of 
the viruses, yet little is known about the underlying mecha-
nisms. The physicochemical properties of virus-laden aero-
sols include size, viral load, infectivity, and other chemi-
cal components such as electrolytes, proteins, surfactants, 
pH value, electrical charge, and properties on the air/liquid 
interfaces (Fig. 1). The questions remain on that (i) whether 
the association with airborne particulates would alter the 
aerodynamics of the viral particles (the answer is most 
definitely yes due to a change of size and density in the 
substrate of the viral particle, e.g., from droplet nuclei to 
airborne particulates, and perhaps their surface charges and 

Fig. 1  The fate of human respiratory viruses after being expectorated 
from the respiratory tract. Top: virus-laden droplets or droplet nuclei 
remain buoyant in air and progressively lose their infectivity. Middle: 
chemical interactions between droplets or droplet nuclei and chemi-
cal species e.g., radicals on the surface of buoyant fine particulates 
in air, which may affect the viability of the viruses. Bottom: physical 
interactions e.g., electrostatic interactions between droplets or droplet 
nuclei and buoyant fine particulates in air, which affect the transport, 

deposition, and possibly the viability of viruses. Physicochemical 
properties of virus-laden aerosols include size, viral load and infectiv-
ity, other chemical components such as electrolytes, proteins, and sur-
factants, pH value, electrical charge, and properties on the air/liquid 
interfaces (Klein et al. 2022; Wang et al. 2021a, b, c). The enlarged 
illustration of the virus-laden aerosol is adapted from Wang et  al. 
(2021a, b, c)



moisture contents as well, and (ii) whether the association 
with airborne particulates would affect the persistence of 
the viruses. Even though there are plenty of discussions and 
speculations on the latter (Ahlawat et al. 2020, 2022; Bozic 
and Kanduc 2021; Drossinos et al. 2022; Huynh et al. 2022; 
Lin et al. 2020; Luo et al. 2022; Niazi et al. 2021), the ques-
tion remains unanswered in the present scientific literature.

The viability and infectivity of the virus associated with 
aerosols have  recently attracted attention following the 
growing risk of COVID-19 airborne transmission (Hu et al. 
2020; Morawska and Cao 2020; Morawska et al. 2021). For 
instance, SARS-CoV-2 remained experimentally viable for 
three hours in aerosols at room temperature, with a reduction 
in infectious titer from  103.5 to  102.7 in 50% tissue culture 
infectious dose per liter of air (van Doremalen et al. 2020). 
Likewise, laboratory experiments showed that SARS-CoV-2 
maintained infectivity for 16 h in aerosol particles within an 
inhalable size range (Fears et al. 2020). There is, however, 
limited evidence on whether the size of aerosol particles has 
major effects on the viability and infectivity of SARS-CoV-2 
(Chen et al. 2021; Sun et al. 2021). Further, the chemical 
constituents of airborne particulates, including airborne 
pollutants and radicals adsorbed or generated on particle 
surfaces, are likely to affect the viability of transported 
viruses. Moreover, how particle electrostatic charges, which 
are abundant on airborne particles, influence viral viability 
is largely unknown. Here we review the recent research on 
the role of airborne particulates in the viability and airborne 
transmission of COVID-19, with a focus on the physical and 
chemical properties of particulate matter such as particle 
size, chemical constituents, and electrostatic charges. We 
also discuss the influence of environmental factors such as 
localized flow fields e.g., vortex zones, human body ther-
mal plumes, and the cofounding effects of air pollutants on 
COVID-19 infection.

Particle size

Particle size highly influences the airborne transmission 
of viral diseases (Gralton et al. 2011). In general, particles 
with larger sizes often settle in a shorter time, whereas 
small-sized particles remain buoyant in air for longer 
time periods. Therefore, small-sized particles potentially 
allow the transmission to hosts located at long distances 
from the source (Xie et al. 2007). For example, Lindsley 
et al. (2010) reported that spherical particles with small 
sizes of 1 μm, took eight hours to settle one meter in still 
air, compared with larger particles, of 4 μm, which took 
only 33 min. Particle size is also a predominant factor 
affecting the vertical distribution of particles in calm air. 
Simulations on vertical concentration gradients of influ-
enza viruses in re-suspended air dust showed that viral 

concentration at one meter above the ground was up to 
40% higher than those measured at two meters and above, 
due to the higher settling velocities of particles with sizes 
larger than 20 μm (Khare and Marr 2015).

Particle size also influences the persistence of viruses 
associated with particles (Appert et al. 2012; Stilianakis 
and Drossinos 2010). For instance, virus infectivity and 
survivability depend on the size of their particle carriers 
(Zuo et al. 2013). Results showed that the capacity of a 
particle to carry viruses generally increased with particle 
size, while the survivability depends both on virus type 
and particle size (Fig. 2). With the exception of the MS2 
bacteriophage, the survivability of three animal viruses, 
the transmissible gastroenteritis virus, the swine influenza 
virus, and the avian influenza virus, was lower on par-
ticles with sizes comparable to virions, of 100–200 nm, 
compared with viruses carried on larger-size particles 
of 300–450 nm. The authors explained this observation 
by the shielding effects by larger particles. This physi-
cal protection is supported by the slower transformation 
of organic compounds that are encapsulated in complex 
organo-mineral media such as soils (Lichtfouse et al. 1998; 
Lichtfouse 1999, 2012). The protective effect of organo-
mineral media is also demonstrated by the persistence of 
the plague bacterium Yersinia Pestis in soils under natural 
conditions, yet the underlying mechanisms are unknown 
(Eisen et al. 2008). Another indirect evidence for organo-
mineral protection is the decrease in microplastic toxic-
ity when microplastics are covered by soil particles (Liu 
et al. 2022a). By contrast, viruses should be more eas-
ily impaired on smaller size particles owing to the larger 
specific surface energies of particles, resulting in reduced 
virus survivability (Weber and Stilianakis 2008). 

A study of viral survivability of three pig viruses of var-
ious transmission routes, the influenza A virus, the porcine 
reproductive and respiratory syndrome virus, and the por-
cine epidemic diarrhea virus, showed that viral viability 
was generally higher in larger-size particles (Alonso et al. 
2015). Other reports revealed that particle size influences 
viral survivability and varies greatly with the type of virus. 
For instance, rhinovirus survived longer on coarse parti-
cles larger than 9 μm than on smaller particles of 0–4 μm 
(Tyrrell 1967). By contrast, the infectivity of adenovirus 
was better preserved on smaller, 0.5–1.9 μm particles, 
compared with larger, 1.9–10 μm particles (Appert et al. 
2012). Noteworthy, a similar effect is observed in soils 
where organic compounds are older, and thus better pre-
served, in small, clay-like particles (Cayet and Lichtfouse 
2001). Overall, particle size has notable effects on viral 
infectivity and transmission, with higher survival associ-
ated with larger particles in general, yet some viruses are 
better preserved on small particles.



Chemical constituents

Airborne particulate matter consists of a complex mixture 
of constituents from various sources (Almeida et al. 2005; 
Daellenbach et  al. 2020). The composition of airborne 

particulates generally includes soil crusts, minerals and 
salts, and metal species (Daellenbach et al. 2020; Mikrut 
et al. 2018). Using an aerosol mass spectrometer, Guo et al. 
(2014) measured the mass fractions of organics, nitrates, and 
sulfates in fine particulate matter that have a diameter of less 
than 2.5 µm  (PM2.5) in Beijing, China. The authors found 
that particle compositions in Beijing exhibited similarities to 
those commonly measured in many areas around the globe, 
consistent with the chemical constituents dominated by 
secondary aerosol formation (Fig. 3). In addition, airborne 
particulates often contain abundant inorganic and organic 
contaminants adsorbed from the surrounding environment 
or natively associated with their sources of emission (Dael-
lenbach et al. 2020; Huang et al. 2014). These pollutants 
are often related to emissions from anthropogenic sources 
(Huang et al. 2014). Organic pollutants and metal species 
generally dominate the surface reactivity, acidity or alkalin-
ity, and redox potential of airborne particulates, which in 
turn may affect the viability of viruses associated with these 
particulates.

Combination with airborne dust and particulate mat-
ter has been postulated to improve virus stability and even 
facilitate the long-range transport of COVID-19 (Qu et al. 
2020; Wathore et al. 2020), although no definitive evidence 
has been reported to date to support these hypotheses or 
elucidate their underlying mechanism (Chen et al. 2021). By 
contrast, earlier reports suggested that some common prop-
erties of airborne particulates may, in fact, decrease virus 
stability. For instance, surface-adsorbed organic substances 
may undergo photochemical reactions to generate oxidizing 
radicals, which in turn could damage peptide bonds in viral 
proteins and impair virus viability (Fig. 1; Gehling and Del-
linger 2013; Ram et al. 2021). Groulx et al. (2018) reported 
a 44% reduction in infectivity of bacteriophage Φ6, a virus 
similar to COVID-19, by contact with airborne particles col-
lected near a major high-traffic street in Toronto, Canada, 
compared to the virus in purified air.

Radicals may also impair virus survival. For instance, 
secondary organic aerosols or organic precursors adsorbed 
on particles often contain persistent free radicals and reac-
tive oxidant species such as hydroxyl radicals, semiquinone 
radicals, and peroxides, which can potentially oxidize or 
inactivate viruses (Djellabi et al. 2021; Yoo 2018). Redox-
active transition metals and irradiated conditions in open 
environments can further increase the concentrations of 
reactive oxidant species on airborne particulates (Gehling 
and Dellinger 2013; Mokrzynski et al. 2021; Tong et al. 
2018). Reactive oxidant species can react with saturated 
lipids and then impair the integrity of virions by lipid per-
oxidation and the alteration of surrounding proteins and 
nucleic acids such as guanine (Imani et al. 2020). Therefore, 
common chemical contaminants in airborne particulates are 
likely to reduce the survival of associated virions.
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Fig. 2  Top: infectious virus and total virus carried per particle as a 
function of particle size for airborne bacteriophage MS2, a model 
virus used in the study. Equations and R2-values of the curve fitting 
and the 95% confidence intervals of the slopes, where x represents 
particle size and y represents the amount of infectious virus or total 
virus carried per particle. Bottom: survivability of airborne viruses. 
Each bars represent standard deviations from geometric means. PFU, 
plague forming unit; MS2, bacteriophage MS2, the model virus; 
TGEV, transmissible gastroenteritis virus; SIV, swine influenza virus; 
AIV, avian influenza virus. Asterisk (*) denotes cases where no infec-
tious virus could be recovered. The pound sign (#) denotes that infec-
tious virus was recovered in only one of the three samples. Modi-
fied after Zuo et al (2013). Equations: red dashed fitting (top graph): 
y = (7.77 ×  10−12)*x3.77; R2 = 0.95; C.I. (confidence intervals): 3.2–4.3; 
blue solid fitting (top graph): y = (9.97 ×  10−11)*x3.23; R2 = 0.89; C.I.: 
2.6–4.0. Discrepancies exist between graph reading values and the 
calculated results of the second equation (blue solid fitting)



Chemical constituents can also affect the acidity of par-
ticulate matter (Zhang et al. 2012). Depending on their 
sources of emission, airborne particulates may be acidic, 
e.g., pH 3–5, due to the presence of sulfate compounds (Gao
et al. 2020; Shi et al. 2017; Weber et al. 2016). Geographic
location, local climate, and anthropogenic activities also
strongly influence the acidity of airborne particulate matter.
For instance, Karydis et al. (2021) investigated the acidity
of global aerosols from 1970 to 2020. They found that the
acidity of aerosol particles generally decreased in Europe
and North America in the past few decades. Nonetheless,
aerosols collected in the eastern part of the United States
and Europe, and in Southeast Asia still show strong acidity
with a pH lower than 4 in 2011–2020.

Figure 4 shows that the survivability of SARS-CoV-2 
decreases under high acidity. For example, SARS-CoV-2 
can be detected at pH 5–10 for several days, whereas the 
virus loses infectivity within one day at pH 2–3. As a con-
sequence, adherence to highly acidic aerosols may result in 
rapid virus inactivation for SARS-CoV-2. Furthermore, low 
pH also facilitates the formation of secondary aerosols and 
increases the presence of soluble transition metals in particu-
lates—the latter could catalyze viral inactivation by form-
ing reactive oxygen species (Charrier and Anastasio 2015; 
Chen et al. 2019; Ingall et al. 2018; Tong et al. 2018). The 

chemical constituents of airborne particulate matter need to 
be better considered when probing the survival of SARS-
CoV-2 on aerosol particles in laboratory studies (Fears et al. 
2020; van Doremalen et al. 2020). Some airborne particu-
lates emitted from common anthropogenic sources show 
distinct physical and chemical properties, which affect their 
surface reactivity, acidity, charges, or redox potential, and 
these could have a major influence on the survival of their 
associated virions (Chen et al. 2021; He and Han 2021).

Electrostatic charges

The role of surface charges on airborne particles in SARS-
CoV-2 infectivity has been overlooked. Indeed, electrostatic 
charge is a major property of airborne particulate matter. 
For instance, electrostatic charges strongly influence parti-
cle coagulation and interactions with other airborne matter 
(Pushpawela et al. 2018; Wei and Gu 2015; Zhang et al. 
2016). The effects of surface charges between solids and 
viruses have been extensively studied in some environmen-
tal media such as water, sediments, and soils (Bitton 1975; 
Gerba 1984; Michen and Graule 2010; Redman et al. 1997; 
Shields and Farrah 1983). Reports on airborne particles have 
focused on the effect of surface charges on the adsorption of 

Fig. 3  Particle chemical compositions during the clean, transition, 
and polluted periods for the 25–29 September and 2–7 October epi-
sodes. SOA, secondary organic aerosol; POA, primary organic aero-
sols. (A–C) Chemical compositions for 80-nm (A), 100-nm (B), and 
240-nm (C) particles were measured by the aerosol mass spectrom-
eter at 1500 h on 25 September, 1200 h on 27 September, and 1800 h
on 28 September, respectively. The three particle sizes (i.e., close to
the mean size) are selected to represent the dominant features in the
chemical composition during the clean, transition, and polluted peri-

ods. The numbers for the colors denote the mass concentrations of 
the aerosol constituents, i.e., light green for secondary organics, dark 
green for primary organics, blue for nitrate, red for sulfate, yellow for 
ammonium, and purple for chloride. The ammonium (yellow) mass 
fractions are 5% (A), 18% (B), 13% (C), 4% (D), 7% (E), and 14% 
(F), and the chloride (purple) mass fractions are 4% (A), 2% (B), 7% 
(C), 1% (D), 2% (E), and 1% (F). Reprinted with permission of the 
National Academy of Sciences from Guo et al. (2014)



virions on particles. For instance, many viruses have protein 
polypeptide coats containing amino acids with weakly acidic 
and basic groups, which, upon ionization, give the viral 
capsid an electrical charge (Gerba 1984). Like other solid 
matter, viral surface charges show strong pH dependence, 
which also varies with the type or strain of the virus (Burge 
and Enkiri 1978; Gerba 1984). Michen and Graule (2010) 
reviewed the isoelectric point measurements of viruses that 
replicate in hosts of kingdom plantae, bacteria, and anima-
lia. They found that the isoelectric points of viruses were 
found in the pH range of 1.9–8.4 and most frequently, their 
isoelectric points were measured to be within the range of 
3.5–7.0, although the data appeared to be scattered widely 
within single virus species (Michen and Graule 2010).

Some researchers reported that solids with high iso-
electric points were generally better adsorbents for viruses 
(Gerba 1984; Murray and Parks 1980), although this needs 
to be assessed for different virus-particle systems. Zerda 
et al. (1985) studied the adsorption of five viruses, namely, 
the bacteriophage MS-2 (Emesvirus zinderi), enterobacteria 
phage T2, and reovirus type 1, all with isoelectric points near 
pH 4.0, and poliovirus strains LSc and Brunhilde which had 
isoelectric points of 6.6 and 7.1, to surface-modified silica 

particles under different pH. The study showed that when 
pH conditions were favorable to a positive surface charge on 
the virions, all viruses were adsorbed exclusively on nega-
tively charged silica, whereas all of them were adsorbed to 
positively charged silica when the pH increased above their 
isoelectric points.

Similar effects of electric charges are likely to occur 
between SARS-CoV-2 and the associated particulate mat-
ter. For example, the pH of airborne particulates typically 
lies in the acidic to a neutral range (Karydis et al. 2021). 
As a consequence, particles with low isoelectric points and 
negatively charged surfaces are more likely to adsorb SARS-
CoV-2 virions, which have isoelectric points in the neutral to 
alkaline range. Indeed, isoelectric points of 8.24–9.32 for the 
SARS-CoV-2 receptor‐binding domain with Fc-tag protein, 
7.36–9.88 for its receptor‐binding domain with His-tag pro-
tein, and 7.30–8.37 for the S1 subunit with His-tag protein, 
have been observed in commercially available SARS-CoV-2 
proteins (Krebs et al. 2021).

Since the surface charges of virion particles vary with 
pH, the control of electrostatic interactions between viral 
particles and environmental surfaces may be a viable strat-
egy to alter their deposition and persistence in the environ-
ment (Gerba 1984; Vasickova et al. 2010). Whether surface 
charges could impair the proteins of viruses carried on par-
ticulates and affect their infectivity when deposited into new 
hosts is a further question for future investigations. In this 
vein, modeling results suggest that charge-laden particulates 
could reach deeper regions of the human respiratory tract 
compared with non-charged counterparts of equivalent sizes 
(Koullapis et al. 2016). Overall, the association between viri-
ons and particles via electrostatic charges depends on both 
their isoelectric points and the pH conditions, which vary in 
different virion-particle systems and particle charges may 
affect the viability of associated virions and the deposition 
of particles in human airways.

Moisture

The humidity of the ambient environment is a common fac-
tor potentially affecting the survival and transmission of air-
borne pathogens (Lin and Marr 2020; Prussin et al. 2018; 
Yang et al. 2012). Some researchers proposed that the inci-
dence of respiratory tract infections can be reduced by con-
trolling relative humidity at a level that is not conducive to 
the survival and spread of viruses in the environment (Gel-
perin 1973; Reiman et al. 2018; Sale 1972). Moce-Llivina 
et al. (2006) reported that viruses with higher lipid contents 
tend to be more persistent at low relative humidity. Vasick-
ova et al. (2010) showed that enveloped viruses were gener-
ally more stable under low relative humidity. These early 
findings received considerable interest during the COVID-19 

Fig. 4  Survival of the  severe acute respiratory syndrome coronavi-
rus-2 (SARS-CoV-2) under different pH conditions. Include untreated 
virus stock solution as the viral load for the positive control median 
tissue culture infectious dose/mL = 6.50 ± 0.61. Column colors: red, 
day 1; yellow, day 3; blue, day 6. Faded colors denote negative cul-
ture (i.e.,  log10 reduction = 6.50). All tests were neutralized before 
testing and performed in triplicate. Modified after Chan et al. (2020). 
Original data are provided in a tabulated format in the Supplementary 
Information (Table S1)



pandemic as indoor humidity can be easily regulated and 
monitored by home appliances.

Statistical analyses on meteorological factors and 
COVID-19 incidence revealed that COVID-19 transmission 
decreases with rising humidity (Qi et al. 2020; Wu et al. 
2020a). Indeed, the water contents in airborne particulates 
may deter the adhesion of the coronavirus, given the fact that 
the spike protein has an N-terminal peptide that is strongly 
hydrophobic (Baron 2021; Robson 2020). Particles with 
high moisture contents could, in theory, deter viral adher-
ence, which could be the reason for the apparent resistance 
to the first wave of COVID-19 dominated by viral Clade D in 
coastal cities (Baron 2021). This may not be the case in the 
second wave of COVID-19 which was dominated by Clade 
G of SARS-CoV-2. The different orientations of spike pro-
tein peptides may have influenced their hydrophobicity and 
adherence to airborne particulates (Baron 2021). Overall, 
there is a need to validate earlier hypotheses on the correla-
tions between particle moisture content and virus adherence 
or viability and the correlation between virus persistence 
and relative humidity, given that SARS-CoV-2 originates 
from respiratory droplets and that humidity is a ubiquitous 
environmental factor.

Localized flow fields

COVID-19 is rapidly inactivated when exposed to simu-
lated sunlight (Ratnesar-Shumate et  al. 2020; Wondrak 
et al. 2021). Localized flow fields, such as thermophoresis 
and vortex zones, are common in ambient airflows which 
can have dominant effects on the aerodynamics of buoy-
ant particulates in air, especially in indoor environments. In 
general, expiratory aerosols are transmitted in two stages, 
namely, the expiratory flow and the secondary stage of dis-
persion through airflows, which can result in short-range and 
long-range airborne transmission of respiratory pathogens, 
respectively (Wei and Li 2016). There are two main sources 
of flow fields in the indoor atmospheric environment, 
namely, natural or forced air ventilation and human thermal 
plumes (Mittal et al. 2020). Many studies adopted computa-
tional fluid dynamics models to simulate the indoor transport 
of respiratory pathogens in various settings such as hospitals 
(Zorzi et al. 2022), flight cabins (Zhang et al. 2021a, b), 
subway trains (Armand and Tâche 2022), elevators (Nouri 
et al. 2021), and offices (Srivastava et al. 2021). Particularly, 
localized flow fields generated by differences in temperature, 
pressure, and movements may prolong the buoyance and 
travel distance of aerosol particles in air (Zhao et al. 2022). 
In addition, the human body constantly generates upward 
thermal plumes which bring buoyant particulates from the 
lower atmosphere to the breathing zone (Sun et al. 2021). 
Thermal plumes are created by the constant exchange of 

heat between the human body and the surrounding environ-
ment, where the human body generally has higher tempera-
tures than that of the air it is surrounded by. When the air 
approaches a heat source, it rises along the surface of the 
source, forming a constant plume that carries buoyant aero-
sol particles in air. Liu et al. (2022b) found that the upward 
airflow caused by the thermal plume disrupted the indoor 
unidirectional airflow and result in the diffusion of indoor 
pollutants in the operating room microenvironment. Thermal 
body plumes create re-circulatory motions in the room and 
as a result, aerosol clouds generated from coughing and talk-
ing move upwards with their concentrations reduced along 
their movements (Hossain et al. 2022). While the impact of 
indoor ventilation systems on COVID-19 transmission has 
been extensively discussed, vortex flows received less atten-
tion (Biryukov et al. 2021; Han et al. 2021; Sharma et al. 
2020; Valsamatzi-Panagiotou and Penchovsky 2022; Wang 
et al. 2021b). In reality, both outdoor and indoor environ-
ments have time-varying and spatially distributed localized 
flow fields, including vortex zones (Ma et al. 2021). The 
vortex zone is strongly associated with the concentration 
of bioaerosol particles in air (Liu et al. 2020). The vortex, 
which weakens the carrying capacity for buoyant particles 
by airflows, can result in the shedding of bioaerosol parti-
cles, forming high-concentration localized areas (Wang et al. 
2022). Airborne particles tend to accumulate in vortex zones 
where elevated loadings of virus-laden particles can increase 
the risk of airborne transmission of respiratory pathogens 
(Khmelev et al. 2021; Lin and Marr 2020; Prussin et al. 
2018; Yang et al. 2012). Overall, localized indoor flow fields 
can significantly influence the transport of airborne particles 
and the respiratory viruses associated with those particles.

Correlations between air pollution 
and COVID‑19 spread

Since early in the pandemic, researchers have observed that 
COVID-19 hospitalization and mortality rates increased 
with air pollution levels (Magazzino et al. 2020; Meo et al. 
2021; Yao et al. 2020a, 2020b; Zhang et al. 2021a, b; Zhu 
et al. 2020; Zoran et al. 2020). Recent data from Germany, 
Italy, and China showed that populations chronically breath-
ing polluted air were at risk of having worsened effects from 
COVID-19 infection (Konduracka and Rostoff 2022; Li et al 
2022; Prinz and Richter 2022; Veronesi et al. 2022). On the 
contrary, lower mortality rates were reported in Italian for-
ested areas (Roviello and Roviello 2021, 2022).

The Harvard T.H. Chan School of Public Health has com-
piled a list of studies on the association between air pollu-
tion and COVID-19 (Harvard Chan C-CHANGE 2021). In 
Europe, several studies reported that short-term air pollu-
tion exposure was positively associated with an increased 



risk of COVID-19 infection in young adults (n = 425) in 
Sweden, and similar results were reported in England and 
Netherlands (Cole et al. 2020; Travaglio et al. 2021; Yu 
et al. 2022). The UK Office for National Statistics found that 
long-term exposure to fine particulate matter could increase 
the risk of contracting and dying from COVID-19 by up to 
7% (ONS UK 2020). Higher death rates from COVID-19 
infection were reported in areas with air pollution in Italy, 
Spain, France, and Germany (Conticini et al. 2020; Ogen 
et al. 2020). In China, it was also reported that  NO2 con-
centration was positively associated with the transmission 
ability of COVID-19 and that air pollution was positively 
associated with fatality rates (Yao et al. 2020a, b, 2021; Zhu 
et al. 2020). Despite these widely observed correlations, 
the question remains as to how prior or concurrent expo-
sure to air pollutants contributes to COVID-19 infection, 
severity, or mortality. While the underlying mechanisms are 
under debate (Ishmatov 2022; Sunyer et al. 2021), several 
hypotheses were put forward for these widely observed cor-
relations. For instance, some researchers proposed that the 
airborne transmission of COVID-19 could be facilitated by 
airborne particulate matter (Ishmatov 2022; Qu et al. 2020). 
Others emphasized the fact that long-term prior exposure to 
air pollutants is known to compromise the human respira-
tory system, which could induce specific vulnerabilities to 
pathogenic infections (Kutter et al. 2021; Setti et al. 2020a, 
b; Srivatava 2021; Tian et al. 2021). Some researchers pos-
tulated that exposure to elevated levels of particulate matter 
smaller than 2.5 µm  (PM2.5) could cause the overexpres-
sion of alveolar angiotensin-converting enzyme 2 (ACE-2) 
receptors on the human airway epithelial cells, the major cell 
entry receptor for SARS-CoV-2, and the exhaustion of Th2 

immune responses which facilitates viral penetration and 
increases host susceptibility to infections (Fig. 5; Frontera 
et al. 2020; Naidoo et al. 2021; Paital and Agrawal 2021; 
Wu et al. 2020b). In addition to the effects caused by inhaled 
fine particulates themselves, chemical pollutants, reactive 
oxidant species, and redox-active transition metals that are 
inhaled or carried by these airborne particulates can undergo 
biotransformation in vivo and elicit oxidative stress in the 
human respiratory tract. To conclude, positive correlations 
have been widely observed between COVID-19 infection 
and mortality and air pollution, of which airborne particulate 
matter is a major component and may have a central role in 
these cause-and-effect correlations.

The types of air pollutants investigated in those corre-
lation analyses included particulate matter 2.5 (PM2.5), 
particulate matter 10 (PM10),  SO2, CO,  NO2, and  NOx, 
ozone, lead, and volatile organic compounds (VOCs), which 
showed positive correlations with the confirmed cases of 
COVID-19 infections in areas investigated by the research-
ers (Zhu et al. 2020; Fattorini et al., 2020; Coccia, 2020; 
Travaglio et al. 2021; Bashir et al. 2020; Zoran et al. 2020) 
or in other cases, the mortality and morbidity rates after 
COVID-19 infection (Wu et al. 2020a, b; Travaglio et al. 
2021; Pozzer et al. 2020; Yao et al. 2020a, b). A tabulated 
summary of the relevant information reviewed is available in 
the Supplementary Information (Table S2). In the scenario 
of long-term exposure, individuals exposed to air pollution 
were prone to chronic respiratory diseases which in turn 
increased their susceptibility to viral infection by SARS-
CoV-2 (Conticini et al. 2020). For instance, long exposure 
to  NO2 was the suspected driving factor of the high mortality 
rates observed in 66 administrative regions in Italy, Spain, 

Fig. 5  Chronic exposure to fine particulate matter may cause overex-
pression of alveolar angiotensin-converting enzyme 2 (ACE2) recep-
tors. This could increase viral loads in patients previously exposed 
to air pollutants and subsequently cause depletion of ACE2 recep-

tors and impairment of host defenses. Additionally, exposure to high 
concentrations of airborne nitrogen dioxide may cause more severe 
symptoms after infection by SARS-CoV-2 in  the lungs. Modified 
after Frontera et al. (2020)



France, and Germany (Ogen 2020). In a recent review, Sun 
et al. (2022) analyzed the findings of 67 studies. The authors 
concluded that the majority of existing studies (n = 49, or 
73%) reported positive correlations between PM2.5 levels 
and the prevalence of COVID-19, while nine studies (n = 9) 
observed negative correlations. The rest of the studies (n = 9) 
reviewed by Sun et al. (2022) did not find a definitive corre-
lation between PM2.5 levels and COVID-19 infection. Also, 
a study in Switzerland found that the first wave of severe 
cases of COVID-19 infections was positively correlated with 
the exposure of individuals with prior exposure to particu-
late matter and nitrogen dioxide, while such trends were not 
evident in the second wave of COVID-19 infection (Belo-
coni and Vounatsou 2023). The different findings reported in 
those studies were confounded by the models, meteorologi-
cal conditions, and socioeconomic developments in the areas 
or communities of interest (Moriyama et al. 2020). There 
is a need for a standardized, rigorous approach in correla-
tion analyses to provide more robust, consistent, and even 
comparable results between different studies (Bourdrel et al. 
2021; Cao et al. 2014; Chen et al. 2010; Chirizzi et al. 2021; 
de la Fuente et al. 2022; Hsiao et al. 2022; Kayalar et al. 
2021; Sharma and Balyan 2020; Stern et al. 2021; Tao et al. 
2022). Further, the fundamental insights into such correla-
tions need to be gained to probe the underlying mechanisms 
of these statistical correlations and to validate the current 
hypotheses (Comunian et al. 2020; Frontera et al. 2020).

Conclusion

The novel coronavirus disease 2019 (COVID-19) is primar-
ily transmitted by respiratory droplets. Despite the intensive 
research efforts in the past two and a half years, many ques-
tions remain unanswered to date. Of these, understanding 
how viruses in respiratory droplets and droplet nuclei inter-
act with airborne particulates present in the ambient air is 
a priority, given the abundance of the latter in the airborne 
environment and their potential effects on virus viability and 
airborne transmission. In this domain, major knowledge gaps 
exist in understanding how the physiochemical attributes and 
electrostatic charges of airborne particulates could affect the 
viability of SARS-CoV-2 associated with them and further 
the transmission through ambient air. Here, environmental 
factors are also important to consider given the fact that after 
exhalation from respiratory airways, the viability of viruses 
carried on droplets or particulates is closely related to the 
environmental conditions to which they are exposed. Studies 
on animal viruses generally found higher virus survivability 
on larger-sized particles, which are more easily impaired on 
smaller size particles due to the high surface reactivity of 
the latter. Chemical constituents of fine particulate matter, 
including contaminants emitted from anthropogenic sources 

and adsorbed on particles, could damage peptide bonds in 
viral proteins and impair virus viability by releasing radicals, 
increasing particle acidity and the solubility of metal species 
in particulates. In addition, many airborne particulates carry 
electrostatic charges, which influence their coagulation and 
association with virions. Surface charges of particles and 
virions are strongly influenced by pH conditions. Isoelec-
tric point measurements on SARS-CoV-2 receptor-binding 
domains are generally in the neutral to alkaline range. Water 
contents in airborne particulates have been hypothesized to 
deter viral adherence, given the fact that that the spike pro-
tein has an N-terminal peptide that is strongly hydrophobic. 
Two of the less studied factors, vortex zones and human 
thermal plumes, which are common in airborne environ-
ments, have a strong influence on the transport of airborne 
particles and the transmission of the viruses associated with 
these particles. The widely observed positive correlations 
between air pollution and COVID-19 infection and mortality 
necessitate studies on the role of airborne particulates, which 
represents a common and key component of air pollutants, 
in effectuating the transmission and symptom aggravation 
of COVID-19.

Supplementary Information is available below and at https:// doi. org/ 
10. 1007/ s10311- 022- 01557-z.
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Method S1. The underlying idea of this article is to conduct a critical analysis of the existing evidence, consensuses 
(including preliminary conclusions), and scholarly discussions (including debates) revolving around the airborne 
transmission of COVID-19—an important but previously under-appreciated route of transmission of COVID-19—
and then, based on the authors’ own research experience and expertise in relevant research domains, to articulate 
the questions and knowledge gaps that have not been addressed or adequately addressed in the current literature. 

 
To achieve these goals, we first looked at current review articles and analyzed the compilation, syntheses, and critical 
assessments of the existing literature. We then expanded our searches to original articles, including publications that are 
categorized as articles (research articles), letters, case reports, data papers, thesis dissertation to analyze the frequencies 
of keywords that appeared in those publications as well as the inter-connections between those keywords. We then 
selected publications with the most prominent keywords and the highest degree of relevance to the topics discussed in 
our article and conducted a further analysis of these publications. 

Below are the search keywords, databases, search results, inclusion criteria, and the strategies we used when 
analyzing evidence and scholarly discussions on the topics discussed in the article. 

Databases: Clarivate Web of Science, all databases, including all of the following: 
• Web of Science Core Collection 
• BIOSIS Citation Index 
• Chinese Science Citation Database 
• Derwent Innovation Index 
• Inspec® 
• KCI-Korean Journal Database 
• MEDLINE® 
• SciELO Citation Index 

 
Search keywords: 

Topic: "Severe Acute Respiratory Syndrome” OR "SARS" OR "coronavirus" OR "CoV” OR covid OR 
"COVID-19" OR "Human Coronaviruses" OR "HCoV" OR "Severe Acute Respiratory Syndrome- 
Coronaviruses” OR “SARS-CoV” OR “Severe Acute Respiratory Syndrome- Coronaviruses-2” OR 
"SARS-CoV-2" OR "new coronavirus" OR “Novel Coronaviruses" OR "nCov" OR "2019 Novel 
Coronavirus" OR "2019-nCoV" 

 
AND 

 
Topic: Particle* OR “Particulate Matter” OR “PM” OR “PM10” OR “PM2.5” OR "air pollut*" OR 
"environmental factor*" 



AND 
 

Topic: airborn* OR transmit* OR spread* 
 

Inclusion criteria: 
• Year of publication: 2020 or 2021 or 2022 or 2023 
• Article type: Review article 

 
Search results: 

• 669 
 

Preliminary analysis: 
• We then analyzed the titles and abstracts of these articles. 
• A total of 120 review articles were selected for detailed analysis, based on their relevance to the topics of 

discussion in our article. 
 

Detailed analysis: 
• After conducting a detailed analysis, we found that the selected 120 review articles mainly 

revolved around five broad topics: 
o 42 articles: virus-laden aerosols, including their generation, spread in the air, and virus 

transmission, and the underlying mechanisms 
o 42 articles: influence of environmental factors including temperature, humidity, and sunlight 

on the survival of SARS-CoV-2 
o 19 articles: effects on human respiratory and immune systems by air pollutants including 

particulate matter, ozone, and nitrogen oxide 
o 13 articles: correlations between local air pollution and the numbers of confirmed cases of 

COVID-19 infection, mortality rates, and morbidity rates after infection 
o 3 articles: airborne particulates and aerosols as potential carriers of SARS-CoV-2 and the 

interactions between viruses and particle or aerosol substrates 
• It is clear that most of the current syntheses of scholarly publications on the airborne transmission of 

COVID-19 have focused on the first two sub-topics and to a similar extent, the third and the fourth topics, 
i.e., the correlations between air pollution and COVID-19 infection or symptom aggravation. After 
analyzing the review articles on the last topic listed above, we found that currently there is only one review 
article that has compiled the existing evidence, theories, and opinions on airborne particulates and aerosols 
as potential carriers of SARS-CoV-2 and possible interactions between viruses and their associated particle 
or aerosol substrates. The authors, however, only presented a brief discussion on these topics in the article 
(Bourdrel et al. 2021). Below is an excerpt of the relevant texts in this reference. 



o “When the air and virus mixture was previously filtered through a high-efficiency particulate 
absorbing filter, which removes a large fraction of fine particles, the activity of the viruses on the 
host bacteria was significantly modified: for some  
viruses, the presence of fine particles had a potentiating effect on viral infection, whereas for 
other viruses, fine particles significantly reduced viral replication [73]. This study illustrates the 
fact that the chemical and electrical characteristics of both particles and viruses play an important 
role in virus–particulate matter interactions.” 

▪ Ref.: Bourdrel et al. 2021. The impact of outdoor air pollution on COVID- 19: a review 
of evidence from in vitro, animal, and human studies. European Respiratory Review 30 
(159) 200242. 

 
Below is the visualized map of the keywords of non-review type publications in our phase-two literature analysis, 
using the search keywords and databases listed above. We then analyzed the significance and inter-relations of the 
keywords and hand-selected about 120 original articles that are most relevant to the topics discussed in the article. A 
majority of these articles are cited and discussed in our article and listed in the reference section. 



Method S2. In mid-December 2022, the authors searched in the Clarivate Web of Science® database using keywords 
“air pollut*” AND “covid OR sars-cov-2 OR “novel coronavirus*”, and then ranked the search results by their total 
number of times cited by articles indexed in the database. The authors then manually screened the 150 top cited articles, 
of which nine articles identified positive correlations between the occurrence or magnitude of local air pollution and the 
rates of local infection as well as the mortality and morbidity rates of COVID-19. 

The types of air pollutants investigated in those correlation analyses included particulate matter 2.5 (PM2.5), particulate 
matter 10 (PM10), SO2, CO, NO2 and NOx, ozone, lead, and volatile organic compounds (VOCs), which showed 
positive correlations with the confirmed cases of COVID-19 infections in areas investigated by the researchers (Zhu et 
al., 2020; Fattorini et al., 2020; Coccia M, 2020; Travaglio et al., 2021; Bashir et al., 2020; Zoran et al., 2020) or in other 
cases, the mortality and morbidity rates after COVID-19 infection (Wu et al., 2020; Travaglio et al., 2021; Pozzer et al., 
2020; Yao et al., 2020). A tabulated summary of the relevant information reviewed is available in the Supplementary 
Information (Table S2). In the scenario of long-term exposure, individuals exposed to air pollution were prone to chronic 
respiratory diseases which in turn increased their susceptibility to viral infection by SARS-CoV-2 (Conticini et al. 2020). 
For instance, long exposure to NO2 was the suspected driving factor of the high mortality rates observed in 66 
administrative regions in Italy, Spain, France, and Germany (Ogen 2020). In a recent review, Sun et al. (2022) analyzed the 
findings in 67 studies. The authors concluded that the majority of existing studies (n = 49, or 73%) reported positive 
correlations between PM2.5 levels and the prevalence of COVID-19, while nine studies (n = 9) observed negative 
correlations. The rest of those studies (n = 9) reviewed by Sun et al. (2022) did not find a definitive correlation between 
PM2.5 levels and COVID-19 infection. Also, a study in Switzerland found that the first wave of severe cases of COVID-19 
infections was positively correlated to the exposure of the individuals with prior exposure to particulate matter and nitrogen 
dioxide, while such trends were not evident in the second wave of COVID-19 infection (Beloconi and Vounatsou 2022). 
The different findings reported in those studies were confounded by the models, meteorological conditions, and 
socioeconomic developments in the areas or communities of interest. There is a need for a standardized, rigorous 
approach in correlation analyses to provide more robust, consistent, even comparable results between different studies. 
Further, the fundamental insights into such correlations need to be gained to probe the underlying mechanisms of these 
statistical correlations and toi validate the current hypotheses (Comunian et al. 2020; Frontera et al. 2020). 

 
Evidence analysis. There are already over a handful of peer-reviewed studies showing that, in real environments and 
specifically for SARS-CoV-2, there were viruses associated with airborne particulates. These studies were conducted in 
different countries and real-life settings and reported by different groups of authors. Please see below for a list of 
references. 

The first group of references below reported the detection of SARS-CoV-2 on airborne particulates. Overall, the results 
showed that viral loadings were generally low on particulates, and further studies are needed to measure their infectivity. 

 
• Tao et al., 2022. SARS-CoV-2 and other airborne respiratory viruses in outdoor aerosols in three Swiss cities 

before and during the first wave of the COVID-19 pandemic. Environment International 164, 107266. 
“Therefore, in this study, we collected airborne particulate matter (PM) samples from November 2019 to April 
2020 in Bern, Lugano, and Zurich. Among 14 detected viruses, influenza A, HCoV-NL63, HCoV-HKU1, and 
HCoV-229E were abundant in air. SARS-CoV-2 and enterovirus were moderately common, while the remaining 
viruses occurred only in low concentrations. SARS-CoV-2 was detected in PM10 (PM below 10 µm) samples 
of Bern and Zurich, and PM2.5 (PM below 2.5 µm) samples of Bern which exhibited a concentration 
positively correlated with the local COVID-19 case number. The concentration was also correlated with the 
concentration of enterovirus which raised the concern of coinfection.” 

 
• Kayalar et al., 2021. Existence of SARS-CoV-2 RNA on ambient particulate matter samples: A nationwide 

study in Turkey. Science of The Total Environment 789, 147976. 
“A total of 203 daily samples (TSP, n = 80; PM2.5, n = 33; PM2.5–10, n = 23; PM10µm, n = 19; and 6 size 
segregated PM, n = 48) were collected using various samplers. The N1 gene and RdRP gene expressions were 
analyzed for the presence of SARS-CoV-2, as suggested by the Centers for Disease Control and Prevention 
(CDC). According to real time (RT)-PCR and three-dimensional (3D) digital (d) PCR analysis, dual RdRP and 
N1 gene positivity were detected in 20 (9.8%) samples. Ambient PM-bound SARS-CoV-2 was analyzed 
quantitatively and the air concentrations of the virus ranged from 0.1 copies/m3 to 23 copies/m3.” 

 
• Stern et al., 2021. Levels and particle size distribution of airborne SARS-CoV-2 at a healthcare 

facility in Kuwait. Science of The Total Environment 782, 146799. 
“Providing the largest dataset of size-fractionated airborne SARS-CoV-2 RNA to date, we showed that SARS-
CoV-2 RNA is present with airborne particles ≤2.5 µm, 2.5–10 µm, and 
≥10 µm.” 

 

• Chirizzi et al., 2021. SARS-CoV-2 concentrations and virus-laden aerosol size distributions in outdoor air in 
north and south of Italy. Environment International 146, 106255. 
“The results found indicate that outdoor atmospheric concentrations of SARS-CoV-2 were very small (<0.8 



copies m3) in both northern and southern Italy. The same applies for each size range investigated with the 
impactor, which gave virus-laden aerosol concentrations 
<0.4 copies m3.” 

• Sharma AK, Balyan P, 2020. Air pollution and COVID-19: Is the connect worth its weight? 
Indian Journal of Public Health 64, S132-S134. 
“SARS-CoV-2 positive detection was only obtained from one fine fraction (PM2.5) sample, corresponding to 
one occupancy room, where a patient with positive PCR and cough was present.” 

 
• Setti et al., 2020. SARS-Cov-2 RNA found on particulate matter of Bergamo in Northern Italy: First 

evidence. Environmental Research 188, 109754. 
“This is the first evidence that SARS-CoV-2 RNA can be present on outdoor particulate matter in 
defined conditions of atmospheric stability and high concentrations of PM10, thus suggesting a possible 
use of this test as indicator of epidemic recurrence.” 

 

The second group of references are two earlier studies which showed that respiratory pathogens could travel long 
distances in air along with airborne particulates they were associated with. 

• Cao et al., 2014. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog 
Event. Environmental Science & Technology 48(3) 1499–1507. 
“Among the identified microbial species, several are known to cause human allergies and respiratory 
diseases, including Streptococcus pneumoniae, Aspergillus fumigatus, and human adenovirus C (with 
average genome coverage of 2.0%, 14.5%, and 6.5%, respectively)…Its representation within the entire 
bacteria community (analyzed by MetaPhlAn) was 0.012% in PM2.5 samples and 0.017% in PM10 samples, 
and the normalized number of hit reads (hit abundance) appeared to have increased by ∼2 fold from an 
average of 0.024% during the first 2 less polluted days to an average of 0.05 ± 0.02% in the 5 heavily polluted 
days in PM2.5 samples (Figure 4A)… The hit abundance of adenovirus in our samples also appeared to have 
increased during the heavily polluted days, though with more daily variations than those of S. pneumonia and 
A. fumigates (SI Figure S5).” 

 
• Chen et al., 2010. Ambient Influenza and Avian Influenza Virus during Dust Storm Days and Background 

Days. Environmental Health Perspectives 118(9), 1211-1216. 
“Previous virus survival studies report a relationship between particle association/attachment and enhanced 
survival, thus suggesting that the attachment of infectious viruses to dust particles moving across the ocean 
might enhance long-range host- to-host transport (Chung and Sobsey 1993; Cox 1995; Labelle and Gerba 
1981; Rao et al. 1984). In the present study, we successfully quantified ambient influenza A virus during both 
ADS days and background days. Our data showed that ambient influenza virus concentration during ADS 
days was 21 and 31 times higher at the Wan-Li and Shin- Jhuang air monitoring stations, respectively, than 
that during background days.” 



Table S1 Effects of different pH conditions on infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2)a. Reprinted from Chan et al. (2020). 

 

pH Day 1 

(𝒍𝒐𝒈𝟏𝟎!𝒓𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏!"!𝑺𝑫) 

Day 3 

(𝒍𝒐𝒈𝟏𝟎!𝒓𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏!"!𝑺𝑫) 

Day 6 

(𝒍𝒐𝒈𝟏𝟎!𝒓𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏!"!𝑺𝑫) 

2 Negative (6.50"#$##) Negative (6.50"#$##) ND 

3 Negative (6.50"#$##) Negative (6.50"#$##) ND 

4 Positive (2.67"#$%&) Negative (6.50"#$##) Negative (6.50"#$##) 

5 Positive (1.08"#$'%) Positive (2.33"#$%&) Positive (3.50"#$'#) 

6 Positive (1.00"#$'#) Positive (1.67"#$'() Positive (4.10"#$(') 

7 Positive (0.67"#$%&) Positive (1.50"#$'#) Positive (2.90"#$&)) 

8 Positive (1.23"#$%') Positive (2.73"#$)*) Positive (3.92"#$)+) 

9 Positive (1.50"#$(,) Positive (3.23"#$)() Positive (5.33"#$'() 

10 Positive (2.40"#$+)) Positive (5.13"#$*#) Negative (6.50"#$##) 

11 Positive (3.00"#$,#) Negative (6.50"#$##) Negative (6.50"#$##) 

12 Negative (6.50"#$##) Negative (6.50"#$##) ND 

13 Negative (6.50"#$##) Negative (6.50"#$##) ND 

Notes: (a) Include untreated virus stock solution as the viral load for the positive control median tissue culture infectious 
dose/mL = 6.50 ± 0.61. All tests were neutralized before testing and performed in triplicate. Abbreviations used in the 
table: Positive, culture positive; negative, culture negative; ND, not done; SD, standard deviation. 



Table S2. Summary of findings reported in nine relevant studies in the top 150 most cited peer-reviewed journal articles on 
correlation analyses between air pollution and COVID-19 as of mid-December 2022 

Countries and regions Types of air pollutants Result Ref. 

120 cities were obtained from 
January 23, 2020 to 
February 29, 2020 in 
China 

PM2.5, PM10, SO2, CO, 
NO2 and O3 

Significant positive associations of 
PM2.5, PM10, NO2 and O3 in the last 
two weeks with newly COVID-19 
confirmed cases. 

Zhu et al. 
2020 

in up to 71 Italian 
provinces 

during the last 4 years 

NO2, O3, PM2.5 and 
PM10 

Long-term air-quality data significantly 
correlated with cases of COVID-19 

Fattorini et 
al. 2020 

N = 55 Italian provincial 
capitals, considering variables 
in 2018–2019– 2020 to 
explain the relationships 
between diffusion of COVID-
19, demographic, 
geographical and 
environmental variables. 

PM10 or ozone The acceleration of transmission dynamics 
of COVID-19 has a high association with 
air pollution of cities measured with days 
exceeding the limits set for PM10 or 
ozone. 

Coccia 
2020 

in the United States 

averaged from 2000 to 
2016) 

from an established exposure 
prediction model 

PM2.5 Higher historical PM2.5 exposures are 
positively associated with higher county-
level COVID-19 mortality rates after 
accounting for many area-level 
confounders. 

Wu et al. 
2020 

England 

from 2018 to 2019 

Nitrogen dioxide, nitrogen 
oxide and ozone, PM2.5 and 
PM10 

PM2.5 was a major contributor to 
COVID-19 cases, a small increase in air 
pollution leads to a large increase in the 
COVID-19 infectivity and mortality rate 
in England 

Travaglio et 
al. 2021 

March 4, 2020, to April 
24, 2020 

Spearman and Kendall 
correlation tests to analyze the 
association of PM 2.5, PM 10, 
SO2, NO2, Pb, VOC, and CO 
with COVID-19 cases in 
California 

Environmental pollutants such as PM10, 
PM2.5, SO2, NO2, and CO 
have a significant correlation with the 
COVID-19 epidemic in California 

Bashir et al. 
2020 

 



Milan metropolitan area, 
Lombardy region, Italy 

Daily average 
concentrations of inhalable 
particulate matter (PM) in 
two size fractions PM2.5, 
PM10 and maxima PM10 
ground level atmospheric 
pollutants together air 
quality and climate 
variables (daily average 
temperature, relative 
humidity, wind speed, 
atmospheric pressure field 
and Planetary Boundary 
Layer-PBL height) 
collected during 1 January–
30 April 2020 were 
analyzed. 

The strong influence of daily 
averaged ground levels of particulate 
matter concentrations, positively 
associated with average surface air 
temperature and inversely related to 
air relative humidity on COVID-19 
cases outbreak in Milan. 

Zoran et al. 
2020 

We applied a global 
atmospheric chemistry 
general circulation model 
(EMAC) which 
comprehensively simulates 
atmospheric chemical and 
meteorological processes 
and interactions with the 
oceans and the biosphere, in 
the same set-up as in recent 
studies on climate change, 
air pollution, and public 
health. 

The annual atmospheric 
near-surface PM2.5 
concentrations were taken 
from model-integrated 
satellite data, for the year 
2019 

We estimate that particulate air 
pollution contributed -15% (95% 
confidence interval 7–33%) to 
COVID-19 mortality worldwide, 27% 
(13 – 46%) in East Asia, 19% 
(8–41%) in Europe, and 17% (6– 
39%) in North America. Globally, 
-50–60% of the attributable, 
anthropogenic fraction is related to 
fossil fuel use, up to 70–80% in 
Europe, West Asia, and North 
America. 

Pozzer et 
al. 2020 

Associations between 
particulate matter (PM) 
concentrations and the case 
fatality rate (CFR) of 
COVID-19 in 49 Chinese 
cities, including the 
epicenter of Wuhan. 

PM2.5 and PM10 

Average PM 
concentrations from 
January 15, 2020 to 
February 29, 2020 

Positive associations between PM 
pollution and COVID-19 CFR in 
cities both inside and outside Hubei 
Province. For every 10 µg/m3 
increase in PM2.5 and PM10 
concentrations, the COVID- 19 CFR 
increased by 0.24% 
(0.01%–0.48%) and 0.26% 
(0.00%–0.51%), respectively. 

Yao et al. 
2020 
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