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Abstract To tackle the cloud-provider lock-in, the Open
Grid Forum is developing the Open Cloud Computing Inter-
face (OCCI), a standardized interface for managing any kind
of cloud resources. Besides the OCCI Core model, which
defines the basic modeling elements for cloud resources,
further standardised extensions exist that reflect the require-
ments of different cloud service levels, such as infrastructure
and platform elements. However, so far the OCCI platform
extension is very coarse-grained and lacks supporting use
cases and implementations. Especially, it does not define
how the components of the application itself can be man-
aged. In this paper, we discuss the features of MoDMaCAO,
a model-driven framework that extends the OCCI platform
extension. The users of the framework are able to design
and validate cloud application topologies and subsequently
deploy them on OCCI compliant clouds by using configura-
tion management tools.
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1 INTRODUCTION

With the broad proliferation of cloud computing in the in-
dustry and academia, many different cloud service providers
have emerged, that offer different service levels and inter-
faces to the customer. This heterogeneity of cloud provider
interfaces makes it hard to migrate applications between dif-
ferent cloud providers or combine different offerings. To
tackle this problem, two different strategies can be identi-
fied in the literature: 1) the use of code libraries that pro-
vide a common software development kit for different cloud
providers, e.g., Apache jclouds1,2 or fog3, or, 2) the resort
to common standards, e.g., the Topology and Orchestration
Specification for Cloud Applications (TOSCA)4, and Open
Cloud Computing Interface (OCCI) [1] integrated with model-
driven techniques to decouple the cloud applications from
the technical peculiarities of the different target platforms.
In this context, multiple IDEs have emerged such as OC-
CIware [2], Cloudify5 and Alien4Cloud6. In this paper, we
focus on OCCI, which is developed by the Open Grid Fo-
rum (OGF) and aims to standardize an interface for the man-
agement of any kind of cloud resources. The OCCI standard
comprises several parts, including the OCCI Core model and
model extensions for the infrastructure and platform layer
managing Infrastructure-as-a-Service (IaaS) and Platform-
as-a-Service (PaaS) resources respectively. Several imple-
mentations and use cases for the infrastructure extension al-
ready exist, which demonstrate its feasibility. However, im-
plementations and use cases for the platform extension are
rare. This might be due to the fact that it only provides a

1All URLs have been last retrieved on 6th January, 2023.
2http://www.jclouds.org
3http://fog.io
4https://www.oasis-open.org/committees/tosca/
5https://cloudify.co/
6https://alien4cloud.github.io
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very rough definition of cloud applications and their compo-
nents, that does not include how these cloud applications can
be configured and managed. Furthermore, it does not define
how application components are connected to the hosting
infrastructure, such as, which component gets deployed on
which virtual machine. This kind of situation forces cloud
developers to manually find the appropriate deployment plan
for their applications which is a tedious task when the appli-
cation has a considerable size and multiple components. To
close these gaps, we introduced improvements to the OCCI
platform extension to allow the deployment and manage-
ment of modeled platform elements, e.g., application and
components, on top of IaaS resources. We implemented and
validated these extensions with the Model-Driven Configu-
ration Management of Cloud Applications with OCCI (MoDMaCAO)
framework [3]. The initial version of MoDMaCAO provides
several improvements to the OCCI platform extension to
complete its lifecycle model and allow the use of configu-
ration management tools for managing cloud applications
at runtime. In this paper, we provide an overview of the
MoDMaCAO framework and extend its features in the fol-
lowing ways:

1. We provide visualization and design capabilities for cloud
application topologies based on OCCI.

2. We integrate the definition of constraints on cloud re-
source types to allow for the verification of defined cloud
application topologies at design time.

3. We introduce capabilities to generate configuration man-
agement artifact skeletons from the defined cloud appli-
cation topologies to reduce the effort for implementing
its lifecycle operations.

The remainder of this paper is structured as follows. We in-
troduce OCCI and the OCCIware tool chain as a basis for
our work in Section 2. Afterwards, in Section 3, we identify
the problems we want to address and the contributions intro-
duced in the paper. Subsequently, in Section 4, we give an
overview of the MoDMaCAO framework and its extended
features. Furthermore, we demonstrate how MoDMaCAO
can be used to model the popular LAMP stack and a Mon-
goDB cluster and how it integrates with configuration man-
agement tools in Section 5. Thereafter, in Section 6, we dis-
cuss our results and observations. Finally, we present related
work in Section 7, and we conclude this paper and provide
an overview on future work in Section 8.

2 BACKGROUND

In the following, we provide a brief overview of the OCCI
standard, the extensions we made to the OCCI Platform ex-
tension and the general features of MoDMaCAO, our model-
driven tool chain to the design, validation, and configuration
management of cloud applications.

2.1 Open Cloud Computing Interface

The OCCI Core model [1] is composed of eight elements
(grey boxes in Fig. 1). Category is the base type for all other
classes and provides the necessary identification mechanisms.
Categories can be uniquely identified by associated Uni-
form Resource Identifiers (URIs). They have Attributes
that are used to define the properties of a certain class, e.g.,
the IP address of a virtual machine. Three classes are de-
rived from Category: Kind, Action, and Mixin. A Kind
defines the type of a cloud entity, e.g., a compute resource,
and Mixins define how an entity can be extended at run-
time. Both have Actions that define which behaviours can
be executed on an entity. The cloud entities themselves are
modeled by the class Entity, which provides the base class
for cloud Resources, e.g., virtual machines, and Links that
define how the resources are connected. In the remainder
of this article we use the terms OCCIware Extension and
OCCIware Configuration instead of OCCI extension and
OCCI Configuration to refer to the extension and the config-
uration based on OCCIware metamodel.

The OCCI Core model is accompanied with several ex-
tensions. The OCCI Platform extension [4] defines the two
specialized kinds of Resource: Application and Component
and a new Link kind ComponentLink (see Fig. 2). The Appli
cation thereby represents the user accessible part of the
overall cloud application. The Application itself is com-
posed of several Components, that implement its function-
ality, e.g., through microservices. Components can be linked
with help of ComponentLinks to establish a connections be-
tween them.
An Application or Component can be in the state Active,
Inactive or Error. A transition from the Inactive to the
Active state can be triggered by calling the start action
on the specific Application or Component, and a transi-
tion from Active to Inactive can be triggered by calling
the stop action. The Error state can be reached at any time,
in case an error occurs in the Application or Component.

2.2 OCCIware Tool Chain

OCCI has been proposed as a generic model and an inter-
face for managing any kind of cloud computing resources.
However, OCCI suffers from the lack of a precise definition
of its concepts and a modeling framework to model, verify,
validate, document, deploy and manage OCCI artifacts. To
resolve the first issue, a metamodel from OCCI, named OC-
CIWARE METAMODEL (see Fig. 1), has been proposed in [5]
and enhanced in [6]. It defines a precise semantics of OCCI
concepts and introduces, among others, two key concepts:
Extension and Configuration. An OCCI Extension rep-
resents a specific application domain, e.g., inter-cloud net-
working extension [7], infrastructure extension [8], platform
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Fig. 1 A subset of OCCIWARE METAMODEL.

extension [9,10,4], application extension [10], etc. An OCCI
Configuration defines a running system. It represents an
instantiation of one or several OCCI extensions. In addition,
the OCCIWARE METAMODEL introduces the Constraint
notion allowing the cloud architect to express business con-
straints related to each cloud computing domain. The con-
straints can be expressed on OCCI kinds and mixins. In
addition, the OCCIWARE METAMODEL integrates the Fi-
nite State Machine (FSM) model. This mechanism allows
to describe the behavior of each OCCI kind/mixin. Finally,
AnnotatedElement and Annotation allow to design non-
OCCI information to deal with non-functional needs such as
visualization and documentation.

To resolve the second issue, a model-driven tool chain
for OCCI, named OCCIWARE STUDIO, has been proposed
[6]. It is built based on the OCCIWARE METAMODEL and
proposed as a set of plugins for the Eclipse IDE. OCCI-
WARE STUDIO allows both cloud architects and users to
encode OCCI extensions and configurations, respectively,
graphically via the OCCI Designer tool, and textually via
the OCCI Editor tool. They can also automatically verify

the consistency of these extensions and configurations via
the OCCI Validator tool. In addition, OCCIWARE STUDIO

provides a tool, named Connector Generator, that gener-
ates the Java code associated to an OCCI extension. This
connector code must be completed by cloud developers to
implement concretely how OCCI CRUD operations and ac-
tions must be executed on a real cloud infrastructure. Later
on, this generated connector is deployed on the OCCIware
Runtime7.

3 PROBLEM STATEMENT

As stated above, there are several use cases and implemen-
tations of the OCCI Infrastructure extension available, while
the OCCI Platform extension has not reached a widespread
adoption yet. We identify the following reasons for this sit-
uation:

– No precise modeling framework for OCCI (P1): The
current version of OCCI lacks of formality and concepts
7https://github.com/occiware/MartServer
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Fig. 2 Enhanced OCCI Platform kinds.

for the design of cloud applications. Subsequently, no
tooling is available that allows to graphically design cloud
applications, their lifecycles, and their underlying infras-
tructure based on OCCI models. One issue is that no
connection between infrastructure and platform models
is defined. In fact, the OGF provides two separate OCCI
extensions for the infrastructure and platform layers, but
it misses to define the connection between them. Ac-
cording to the specification it is hence not possible to
connect a Component or Application to a Compute re-
source of the OCCI Infrastructure extension. In addition,
a generic interface is currently missing from the standard
that allows to couple state of the art configuration man-
agement tools with OCCI. Moreover, the lifecycle for
the Component and Application resources as defined
in the OCCI specification is incomplete. Components
can either be inactive or active, but the specification does
not allow to model information about the installation or
configuration states. This incomplete lifecycle informa-
tion inhibits cloud developers to finely observe the exe-
cution of their cloud resource.

– Lack of verification for designed cloud applications
(P2): Currently, the only manner to be sure that a cloud
application will run correctly is to provision and deploy
it in the cloud. Thus, when errors occur, a correction is
made and the deployment task must be repeated several
times before the application becomes operational. This
process is cumbersome and supporting tooling is neces-
sary to spot errors as early as possible.

– Lack of IDEs for Infrastructure as Code (P3): With
cloud orchestration and configuration management tools
it is possible to encode the configuration of whole dat-
acenters inside reusable artifacts. Thereby, lightweight
and human readable serialization formats based on YAML

or JSON are commonly used. However, there is a lack of
supportive tooling to create and edit these artifacts.

To overcome P1, we proposed the MoDMaCAO frame-
work [3]. The MoDMaCAO framework is based on an im-
proved version of the OCCI Platform extension which pro-
vides an extended lifecyle model. Furthermore, we intro-
duced a connection between both OCCI Infrastructure and
Platform extensions and offered an integration mechanism
for configuration management tools. By using a generic in-
terface, several configuration management tools can be cou-
pled with the MoDMaCAO framework. Hereby, we make
use of model-driven techniques to support the development
and runtime management of cloud applications. For exam-
ple, configuration management script skeletons and variable
files that reflect information about the runtime state of the
cloud can be generated. To further improve our solution for
P1 and provide solutions for P2 and P3, we extend the MoDMaCAO
framework in the following way:

– Deployment model visualization and design (C1): We
extend the MoDMaCAO modeling framework by adding
facilities to generate customized graphical designers for
defined cloud resource types. In addition, we revisit the
different runtime elements (actions, states, and state ma-
chines) by completing the missing ones and propose a
complete lifecycle for each cloud resource type (cf. P1).

– Deployment model verification (C2): The custom cloud
resource types can be annotated with constraints at de-
sign time. When designing configurations based on the
defined resource types, the MoDMaCAO framework can
subsequently be used to check if the defined constraints
are fulfilled. This helps to already spot errors during the
design process and thus addresses P2.

– Configuration management artifact generation (C3):
MoDMaCAO defines an integration mechanism for con-
figuration management tools. We extend this approach
by supporting the generation of configuration manage-
ment artifact skeletons from the modeled cloud resource
types which can then be further manually extended to
implement the management of the resources at runtime.
Thereby, we reduce the effort necessary to edit these ar-
tifacts. The generation process is integrated as part of the
MoDMaCAO modeling framework and thus provides a
step towards an IDE for Infrastructure as Code (cf. P3).

4 MODMACAO

In the following, we will introduce the building blocks of
the MoDMaCAO framework [3] and how it addresses the
shortcomings of the OCCI platform extension.
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Fig. 3 Overall Architecture.

4.1 Overall Architecture

The overall architecture of the proposed MoDMaCAO frame-
work and its contributions are depicted in Fig. 3. The fea-
tures, we discuss in this paper are numbered. Our first con-
tribution 1a , initially presented in [3], is to address P1
by enhancing the OCCI Platform extension via additional
lifecycle states and actions, introducing a new OCCI Link
kind to be able to connect Components of the OCCI Plat-
form extension to Compute resources of the OCCI Infras-
tructure extension, and defining a new OCCI extension to be
able to model application components that are managed with
help of a configuration management tool. For this, we form a
configuration management interface that is based on the in-
troduced extensions lifecycle actions. This interface allows
to plug-in state of the art implementations of current con-
figuration management tools like Ansible with minmal ef-
fort. In this improved version of MoDMaCAO framework,
we introduce the following features: At first, we propose an
approach to ease the visualization of MoDMaCAO config-
urations. It consists in annotating the MoDMaCAO exten-
sions with visualization annotations (for example, show a
resource inside another, hide an attribute information, etc.).
Then, we extended the Designer Generator of the OCCI-
ware Studio 1b to support these annotations and generate
pre-customized graphical designers. Furthermore, we intro-
duce a verification mechanism based on the Object Con-
straint Language (OCL)8 to assess the wellformedness of
application configurations 2 . This feature allows to define
domain-specific invariants related to a particular MoDMaCAO

8https://www.omg.org/spec/OCL/

domain and to verify whether conforming configurations re-
spect these invariants (addressing P2). Finally, we demon-
strate the feasibility of the defined extension by modeling
two different distributed cloud applications with MoDMaCAO
and provide a framework for implementing model-driven
configuration management with different configuration man-
agement tools 3 , thereby addressing P3.

4.2 MoDMaCAO Modeling Framework

Experimenting with the OCCI Platform extension in real use
cases shows several hidden lacks. The OCCI Platform ex-
tension provides only inactive, active, and error states
with two actions: start and stop. This design assumes
that a component is already installed and configured which
might not be the case. For instance, an application compo-
nent, e.g., a software component, like a database or an ap-
plication server, will first be installed (“deployed”), and con-
figured, prior to managing it (start/stop etc.). Therefore, we
argue that the lifecycle of the Component and Application
kinds is not expressive enough and does not define all possi-
ble states of a resource (compare P1). To resolve this issue,
we propose an enhancement of the OCCI Platform extension
as shown in Fig. 2.

The different improvements are colored in blue. We pro-
pose to add two additional states in the Status enumeration
type: undeployed and deployed. In addition, we define
three new actions for each kind: configure, deploy, and
undeploy. Finally, we enhance the FSMs of both kinds by
integrating the new provided states and actions, and adding
eleven new transitions. Fig. 4 shows the enhanced FSM for
Component and Application kinds. Therefore, a Component
or Application resource is initially undeployed. Once the
deploy action is triggered, the resource is deployed. By trig-
gering the configure action, the resource is configured. We
treat this configuration as a rather intermediate state which
directly transfers to the inactive state originally defined
by the standard. As a result, a distinct configured state is not
covered in the FSM. Finally, a Component or Application
can reach the active state by triggering the start action.

Fig. 5 depicts the definition of a new link kind named
PlacementLink addressing the missing connection between
the OCCI Platform extension and the OCCI Infrastructure
extension. As a specialization of the generic Link kind, the
PlacementLink provides the user with an additional con-
straint to restrict the selection of the source and target re-
sources. Now, thanks to the PlacementLink, we can con-
nect a Component resource (from the Platform extension)
as its source, to a Compute resource (from the Infrastruc-
ture extension) as its target, and hence allows us to model
the placement of an application component on a virtual ma-
chine. In addition, the PlacementLink type allows us to
easily query the model, using the uniform and standardized
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Fig. 4 Enhanced OCCI Platform FSMs.

OCCI interface, based on the link type instead of deducing
it from the type of source and target resources.

The MoDMaCAO modeling framework is based on the
OCCIware tool chain presented in Section 2.2 and allows
cloud architects to:

1. design abstract types modeling cloud applications and
their components,

2. model configured instances of cloud applications, and,
3. check the validity of instances of cloud applications.

Firstly, as shown in Fig. 6, the MoDMaCAO modeling
framework defines the following set of abstract types:

– The Application mixin type abstracts the notion of a
cloud application. This mixin applies to OCCI Platform
Application resources. A cloud application is composed
of one or more cloud application components as enforced
by the OneOrMoreComponents constraint. Then, mod-
eling specific cloud applications requires to design new
mixin types inheriting from Application, e.g., Cluster
and ClientServer types. These new types could de-
fine their own attributes and constraints. For instance,
a client-server application has only one server compo-
nent (i.e., OnlyOneServer constraint) and some client
components (i.e., OneOrMoreClients constraint).

Fig. 5 New OCCI Placement Extension.

Fig. 6 The MoDMaCAO Modeling Framework.

– The Cluster mixin type abstracts the notion of a clus-
tered cloud application.

– The Component mixin type abstracts the notion of a
cloud application component. This mixin applies to OCCI
Platform Component resources. Each component has an
optional immutable modmacao.component.version at-
tribute representing the version of the component used at
runtime, and must be placed on only one OCCI Compute
resource (i.e., OnlyOnePlacementLink constraint). Then,
modeling specific cloud application components requires
to define new mixin types inheriting from Component,
e.g., Client and Server types. These new component
types can define their own attributes and constraints. For
instance, a server component has a network port on which
it listens to client requests (i.e., server.port immutable
attribute) and a client component must be connected to
a server component (i.e., OneServerDependency con-
straint).

– The Version data type defines the valid string pattern for
version values, i.e., <major>.<minor>.

– The Port data type defines the valid network port values,
i.e., range from 0 to 65535.

– The Dependency mixin type abstracts the notion of a
dependency between two cloud application components.
This mixin applies to OCCI Platform ComponentLink
links. Both SourceMustBeComponent and TargetMust
BeComponent constraints enforce that a dependency link
connects two Component instances. Then, modeling spe-
cific dependencies requires to define new mixin types in-
heriting from Dependency, e.g., InstallationDepen-
dency, ExecutionDependency, or ServerDependency.
These sub-mixins can be added as needed to capture
other types of dependency while defining their own at-
tributes and constraints. For instance, ServerDependency
defines two constraints enforcing the dependency source
to be a client component and the dependency target to be
a server component.
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Fig. 7 Modeling a Client/Server Application with MoDMaCAO.

– The InstallationDependency mixin type abstracts an in-
stallation dependency, i.e., the deploy action can only
be successfully executed on the source component when
the target component is already in the deployed state.

– The ExecutionDependency mixin type abstracts an ex-
ecution dependency, i.e., the source component can only
be started when the target component is already in the
active state. For instance, the ServerDependency type
abstracts the execution dependency from a client and a
server component, i.e., the client component can not start
until the server component is active.

Secondly, the MoDMaCAO modeling framework allows ar-
chitects to model configured instances of cloud applications
and their components. As illustration, Fig. 7 shows the model
of a client-server application composed of three client com-
ponents (client1 to client3) and one server component
(server) deployed on four virtual machines (vm1 to vm4).
OCCI resources and links are represented by boxes in yel-
low and orange color, respectively. The application re-
source is connected to the four component resources via
componentlinks. Each client component is connected to
the server component via a componentlink associated with
a serverdependency mixin. The network port of the server
component is set to 8080. Each component is placed on one
virtual machine via a placementlink. Finally, the architec-
ture, the number of cores, the host name, and the memory of
each virtual machine are configured.

4.3 MoDMaCAO Verification

Thanks to the OCCIware metamodel, we can now define
business constraints related to a cloud domain. These con-
straints are defined in the OCCIware extension and must be
later respected by the conforming configurations. For the
MoDMaCAO approach, we have defined a set of generic
OCL constraints in the MoDMaCAO extension. Listing 1

shows the different implemented OCL constraints for the
MoDMACAO framework. These constraints can be extended
with additional ones that are specific to a MoDMaCAO use
case.

context Application
inv OneOrMoreComponents : self . entity .oclAsType(occi : :

Resource) . links−>collect ( l : occi : : Link | l . target )−>
select ( rs : occi : : Resource | rs . oclIsTypeOf(platform : :
Component) )−>size ()>=1

context Component
inv OnlyOnePlacementLink : self . entity .oclAsType(occi : :

Resource) . links−>select ( l : occi : : Link | l . oclIsTypeOf(
placement : : PlacementLink) )−>size ()=1

context Dependency
inv SourceMustBeComponent : self . entity .oclAsType(occi : :

Link) . source . oclIsTypeOf(platform : :Component)

context Dependency
inv TargetMustBeComponent : self . entity .oclAsType(occi : :

Link) . target . oclIsTypeOf(platform : :Component)

Listing 1 OCL constraints of MoDMaCAO framework

MoDMaCAO checks the validity of cloud application
configurations by evaluating the constraints defined by used
abstract types. For the client-server application, MoDMaCAO
evaluates that the Application resource is connected to
some Component resources (OneOrMoreComponents con-
straint), some client components (OneOrMoreClients), and
only one server component (OnlyOneServer), all Component
resources are placed on only one Compute resource (OnlyOne
PlacementLink), each client is connected to one server
(OneServerDependency), the value of the network port of
the server component is in the valid range (0 to 65535),
each componentlinkmust connect two Component resources
(SourceMustBeComponent and TargetMustBeComponent),
and each componentlink associated with serverdepen-
dency mixin must connect a client to a server compo-
nent (SourceMustBeClient and TargetMustBeServer).
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As long as a constraint is false, the architect must correct
its cloud application configuration. When all the constraints
are fulfilled, the cloud application can be deployed by the
MoDMaCAO implementation framework.

4.4 MoDMaCAO Designers

The approach of MoDMaCAO aims to ease the design of
cloud applications using the OCCIware toolchain. It allows
to design multiple types of cloud applications and to instan-
tiate them inside configurations which represent the running
applications. Currently, the design of these running appli-
cations is done inside the generic OCCIware Designer as
shown for example in Fig. 7. The elements shown in this
kind of configurations are the instances of OCCI Resource
and Link concepts. Therefore, the graphical representation
does not reflect the concrete running system in the cloud. So,
it is necessary to have a designer which (1) allows to instan-
tiate the extension concepts and (2) can be customized to be
as near as possible to the visual aspect of the designed ap-
plication. To deal with this issue, the Designer Generator
of the OCCIware toolchain allows us to generate a graph-
ical designer for each OCCIware extension. However, the
generated designer must be customized. To deal with this is-
sue, we proceeded as following. At first, we have referred
to the Annotation mechanism defined in the extended ver-
sion of the OCCIware metamodel [11]. This feature allows
us to design non-functional information such as visualiza-
tion and documentation. The Annotation mechanism con-
sists of key-value pairs. Several information can be modeled
using this mechanism, such as the containment between re-
sources, the ability to show/hide an attribute and highlight
an edge. Then, we have extended the Designer Genera-
tor in order to support the defined annotations and gener-
ate a pre-configured designer implementing the specified an-
notations. For example, in the ComponentLink kind of the
platform extension, we can associate a Containment an-
notation claiming that an “Application contains Component”
(see Fig. 8). Based on this annotation, the generated designer
will allow the architect to draw a Component resource inside
an Application resource.

Originally, the Designer Generator of OCCIware Stu-
dio allows us to automatically obtain multiple graphical de-
signers, and each one is specific to the domain of the appli-
cation to design. The drawback of these generated graphical

Fig. 8 Annotation mechanism.
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Fig. 9 MoDMaCAO Implementation Class Diagram.

designers is they allow to create flat diagrams, i.e., an ap-
plication is linked to a component, a component is linked to
a compute, etc. Thanks to our annotation mechanism pro-
posed in the MoDMaCAO framework, we can now, for each
cloud domain, generate multiple graphical designers, and
each one shows the system from a different point of view
with a hierarchically manner. For example, we can visualize
a system from a “Compute-viewpoint" where we show the
different components deployed in a Compute resource. Or,
we can visualize the system from an “Application-viewpoint”
where the different components are shown inside the consti-
tuting Application.

4.5 The MoDMaCAO Implementation Framework

The MoDMaCAO implementation framework achieves the
whole provisioning – i.e., installation, configuration then ex-
ecution – of model-based cloud application instances on top
of diverse configuration management tools such as Ansible,
Saltstack and Puppet by using model interpretation. As illus-
trated in Fig. 9, this framework is split into two main parts: a
generic part independent of any configuration management
tool and a plugin part specific to each supported configura-
tion management tool.

For the generic part, we used OCCIware Studio to auto-
matically generate the skeleton of the framework from our
three proposed OCCI extensions – enhanced OCCI Platform,
Placement, and MoDMaCAO – and only implemented the
five lifecycle actions – deploy, undeploy, configure, start,
and stop – of both Application and Component kinds re-
specting their finite state machine. The following paragraphs
describe the key behaviour we implemented.

The implementation of Application orchestrates the
provisioning of all the components linked to an application.
When the state of an application is undeployed, the imple-
mentation of deploy computes the order in which all the
application components must be deployed according to their
dependency links. Components connected by Installation
Dependency links will be deployed sequentially, otherwise,
components will be deployed in parallel. For instance, the
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four components of the client-server application shown in
Fig. 7 are deployed in parallel because they have no in-
stallation dependencies. When the state is deployed, the
implementation of configure consists of configuring all
the application components in parallel. When the state is
inactive, the implementation of start computes the order
on which all the application components must be started ac-
cording to their ExecutionDependency links. For instance
in the client-server application, the server component is
started before the three client components can be started in
parallel. When the state is active, the implementation of
stop consists of stopping all the application components in
the reverse order of their starting. For instance, client com-
ponents are stopped before the server component is stopped.
When the state is inactive, the implementation of undeploy
consists of uninstalling all the application components in the
reverse order of their deployment.

The implementation of Component implements the FSM
of the Component kind and checks that the Compute re-
source where the component is placed, is already started be-
fore orchestrating the provisioning of the component.

Finally, the generic part delegates the calls to the plu-
gin part specific to the used configuration management tool.
Each plugin must implement the ConfigurationManagerTool
interface shown in Fig. 9. For instance, the implementation
of start(Application) called by the generic part must fi-
nalize the starting of a given application after all its compo-
nents have been started. This implementation is specific to
the used configuration management tool.

To provision the infrastructure resources to be config-
ured by MoDMaCAO, a connector is required to translate
incoming OCCI infrastructure requests to the interface of
the cloud provider. While this translation can be done for
arbitrary infrastructures, we implemented a connector9 for a
private Openstack cloud to perform our case studies.
In the following, we briefly discuss the implementation for
the configuration management tool, Ansible, with help of
the MoDMaCAO implementation framework. We also dis-
cuss how MoDMaCAO can be used to generate skeletons
for Ansible artifacts.

We implemented an Ansible-specific plugin that imple-
ments the ConfigurationManagementTool interface. For
each of the defined Mixins, an Ansible role10 is created. It
bundles the steps and files that are necessary to manage the
corresponding software component on a specific machine.
MoDMaCAO can assist with developing these roles by the
generation of role skeletons from OCCI Extensions. For the
prototypical implementation, we assume that these roles are
already accessible from the OCCIware Runtime. When ex-

9https://github.com/occiware/MoDMaCAO/tree/master/
plugins/org.modmacao.openstack.connector

10https://docs.ansible.com/ansible/2.4/playbooks_
reuse_roles.html

infrastructure

NetworkInterface IpNetworkInterface

AnsibleEndpoint

Fig. 10 Ansible-specific OCCI Extension.

ecuting an action, the corresponding Ansible-tasks are exe-
cuted on the machine. The latter is target of the PlacementLink
of the corresponding Component instance. The AttributeStates
defined in the Components and from all connected Components
are used to generate Ansible variable files, that can be con-
sumed by the Ansible roles to make their values available
to the configuration management at runtime. Furthermore,
we defined an additional OCCI Extension that allows to tag
specific instances of the OCCI NetworkInterface as end-
points to be used by Ansible.

The Extension is depicted in Fig. 10. It proved to be use-
ful in environments where virtual machines are connected
to several networks. Based on the Mixins defined with help
of the MoDMaCAO modeling framework, we can gener-
ate skeletons for configuration management scripts that can
be later on extended and executed with Ansible. Listing 2
shows an excerpt from an Ansible playbook generated for
the general Component Kind.

- name: Deploy Component
block:

- debug: msg="Operation deploy not implemented."
when: task = ="DEPLOY"
become: yes

- name: Configure Component
block:

- debug: msg="Operation configure not implemented."
when: task = ="CONFIGURE"
become: yes

. . .

Listing 2 Excerpt of Ansible playbook skeleton generated for the Component
Mixin.

For each of the Actions defined for the lifecycle of the
Component Kind, a code block is generated that can be sub-
sequently executed at runtime. This skeleton must be manu-
ally refined to actually implement the desired behavior.
Furthermore, to pass the model information at runtime to the
configuration management tool, files that contain the infor-
mation as variables can be generated. We provide examples
for generated and extended artifacts in Section 5.

Currently, we have started to extend our approach by
supporting the Saltstack11 configuration management tool.

11https://www.saltstack.com
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In the future, we plan to extend our approach by supporting
an additional tools such as Puppet12.

5 USE CASES

In the following, we present two use cases to demonstrate
the capabilities of the MoDMaCAO framework: a distributed
MongoDB database13 and the popular LAMP Web applica-
tion stack14. While complementary work exists that allows
to deploy OCCI configurations using several cloud providers [12],
we performed our case studies on a private Openstack cloud.
For this we used an OCCI deployment engine [13] which
compares the desired cloud deployment model with the cloud
runtime state to derive and send OCCI requests to adapt
the cloud. As the OCCI interface, to which the requests of
the engine are send, an OCCIWare runtime server instance
is used. This server serves as a middleware that translates
the incoming OCCI infrastructure request to the interface
of the Openstack cloud. To manage the lifecycle of mod-
eled components we use the configuration management ca-
pabilities provided by MoDMaCAO, focusing on the ansi-
ble implementation. After the presentation of both use cases,
we provide a discussion about the capabilities provided by
the enhanced OCCI platform extension and the use of the
MoDMaCAO framework for application design, verification
and deployment.

5.1 MongoDB

MongoDB is a NoSQL database that can be highly scaled
and is often used in cloud environments. To achieve scala-
bility, it supports the concept of sharding, i.e., the decom-
position and distributed storage of a data collection to sev-
eral machines. Furthermore, replication sets can be used, to
provide redundancy and high availability in case a machine
experiences a failure.

5.1.1 Design

Fig. 11 depicts how we specialize the mixin types defined by
the MoDMaCAO framework to be able to model MongoDB
clusters:

– The MongoDBComponent mixin type is the base type
for all other MongoDB-specific Component mixin types.
It defines the mongodb.bindip and mongodb.port at-
tributes that specify the IP address and port on which
the MongoDB service should be listening.

12https://puppet.com
13https://www.mongodb.com/
14https://help.ubuntu.com/community/ApacheMySQLPHP

Fig. 11 Modeling MongoDB with MoDMaCAO.

– The ReplicableMongoDBComponent mixin type de-
fines the base type for components that can be repli-
cated. It defines the mongodb.replication.set.name
attribute that is used to assign a component to a cer-
tain replication set. MongoDB components belonging to
the same replication set are synchronized copies of each
other.

– The Router mixin type abstracts the notion of a router in
the MongoDB cluster. A router implements the compo-
nent to which the user connects. It forwards the requests
of the user to the machines that actually hold the data.

– The ConfigServer mixin type abstracts the notion of a
config server of a MongoDB cluster. A config server
stores the metadata, including the state and organization
of the data. It is also responsible to store authentication
configuration information.

– The Shard mixin type abstracts the notion of a shard in
the MongoDB cluster. The shards are used to store the
actual data of the database. Each shard holds a subset of
the overall data.

– The Cluster mixin type defines constraints for a Mon-
goDB cluster: A cluster must contain at least one router
(i.e., OneOrMoreRouters), at least one shard (i.e., OneOr
MoreShards), and at least one config server (i.e., OneOr
MoreConfigServer).

– The ConfigServerDependency mixin type abstracts the
execution dependency between MongoDBComponents and
a ConfigServer, to ensure that the ConfigServer is
started, before the other components get started.

A model for a MongoDB cluster with three shards and
no replication is depicted in Fig. 12. For the sake of brevity,
we omit the depiction of Attributes. The MongoDB cluster
consists of the components router, configserver, and the
three shards, shard1 to shard3. The router and shard1 to
shard3 have an execution dependency to the configserver.
Moreover, the router has an execution dependency to each
shard. The components are placed on five different virtual
machines, vm1 to vm5, using PlacementLinks, which are
connected to a network using NetworkInterfaces.

Fig. 12 shows a MongoDB cluster designed with the
MongoDB designer, generated using the Designer Gener-
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Fig. 12 Modeling a MongoDB Cluster with MoDMaCAO.

ator. As we can see, the designed configuration follows the
containment annotation defined in Section 4.4. So, different
components are shown inside the MongoDB cluster appli-
cation.

5.1.2 Verification

To ensure the well-formedness of MongoDB configurations,
MoDMaCAO approach allows to extend the generic OCL
constraints by ones specific to the business of the application
to design. Listing 3 shows the different implemented con-
straints for the MongoDB use case. So, a MongoDB applica-
tion must have at least one router (OneOrMoreRouters), one
shard (OneOrMoreShards), and one configuration server (OneOrMoreConfigServers).

context Cluster
inv OneOrMoreRouters :
self . entity .oclAsType(occi : : Resource) . links−>collect ( l :

occi : : Link | l . target )−>collect (c : occi : : Resource | c .
parts )−>select (mb: occi : : MixinBase |mb. oclIsTypeOf(
mongodb: : Router) )−>size ()>=1

inv OneOrMoreShards :
self . entity .oclAsType(occi : : Resource) . links−>collect ( l :

occi : : Link | l . target )−>collect (c : occi : : Resource | c .
parts )−>select (mb: occi : : MixinBase |mb. oclIsTypeOf(
mongodb: : Shard) )−>size ()>=1

inv OneOrMoreConfigServers : self . entity .oclAsType(occi : :
Resource) . links−>collect ( l : occi : : Link | l . target )−>
collect (c : occi : : Resource | c . parts )−>select (mb: occi : :
MixinBase |mb. oclIsTypeOf(mongodb: : Configserver ) )−>
size ()>=1

Listing 3 OCL constraints of MongoDB use case

5.1.3 Configuration Management Artifact Generation

The MongoDB OCCI extension defined above can be used
as a basis for the generation of configuration management
artifact skeletons. Thereby, for each of the Mixin types that
can be applied to Resources of Kind Component, a skeleton
for a configuration management script is generated. List-
ing 4 shows a configuration management skeleton gener-
ated (the blue parts) and extended for the MongoDB Router
Mixin of the MongoDB extension. Hereby, the block in-
cluding its name, e.g., Deploy Router, as well as when
the block should be executed, task == "DEPLOY", is gen-
erated. The individual modules describing the logic of what
to deploy, e.g., apt, has to be manually set by the user which
in this case deploys a router component of a MongoDB.

- name: Deploy Router
block:
- apt_key:

keyserver: hkp: / / keyserver . ubuntu .com:80
id: 9DA31620334BD75D9DCB49F368818C72E52529D4
state: present

- apt_repository:
repo: deb [ arch=amd64 ] https: / / repo .mongodb. org / apt

/ubuntu bionic /mongodb-org/4.0 multiverse
state: present

- apt:
name: mongodb-org
update_cache: yes
state: present

when: task == "DEPLOY"
become: yes

- name: Configure Router
block:
- name: Copy startup script

template: src=mongos_init . j2 dest=/etc / in i t /mongos.
conf owner=mongodb

- name: Copy configuration f i l e template
template: src=mongos. conf . j2 dest=/etc /mongos. conf

owner=mongodb
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when: task == "CONFIGURE"
become: yes

Listing 4 Excerpt from Ansible playbook generated and extended for MongoDB
router.

Listing 4 shows a variables file that is generated at runtime
and can be consumed by Ansible when configuring the soft-
ware component router of the defined MongoDB cluster.
From this variable file, the IP address of the configuration
server can be read by Ansible for the configuration of the
router.

id: b6fc880a-0571-46ba-86db-a206c0d13675
kind: component
ipaddresses:

- 10.0.0.31
mixins:

- name: Router
. . .

attributes:
occi . core . id: b6fc880a-0571-46ba-86db-a206c0d13675
occi . core . t i t l e : router
occi . core .summary: MongoDB cluster router
occi .component. state: undeployed

links:
- id: 4b9a6567-7cc8-4643-98a6-533068062b55

kind: componentlink
target:

id: b6fc880a-0571-46ba-86db-a206c0d13679
kind: component
mixins:

- name: ConfigServer
. . .

ipaddresses:
- 10.0.0.24

Listing 5 Excerpt from Ansible variables file generated for MongoDB router at
runtime.

Once the Ansible artifacts have been generated, they are
later executed on our Openstack cloud. A demonstration,
available here15, shows the deployment process of the Mon-
goDB cluster.

5.2 LAMP

This second use case addresses LAMP, which is an open
source Web development platform that uses Linux as the
operating system, Apache as the Web server, MySQL as
the relational database management system and PHP, Perl
or Python as the object-oriented scripting language.

5.2.1 Design

The LAMP Web application can be modeled with help of
the following mixins:

15https://github.com/occiware/MoDMaCAO/blob/master/
videos/MongoDB-Cluster

Fig. 13 Modeling LAMP with MoDMaCAO.

– The LAMP mixin type abstracts the notion of a LAMP
application and depends on MoDMaCAO Application
mixin. A LAMP application is accessible via only one
ApacheServer as enforced by the OnlyOneApacheServ-
er constraint. It is deployed using one or more Tomcat
container (i.e., OneOrMoreTomcats constraint). More-
over, the persistent data of a LAMP application are stored
in only one MySQL database (i.e., OnlyOneMySQL con-
straint).

– The ApacheServer mixin type abstracts the notion of
a LAMP Web server. It inherits from the Component
mixin of the MoDMaCAO modeling framework. It de-
fines OneOrMoreTomcatDependencies constraint enforc-
ing that the ApacheServer instance cannot run if it is
not linked to at least one Tomcat instance.

– The Tomcat mixin type abstracts the notion of a LAMP
application container. It inherits from MoDMaCAO Com-
ponent mixin. Each Tomcat instance is executed if it is
connected to only one MySQL instance (i.e., OnlyOneMy-
SQLDependency constraint).

– The MySQL mixin type abstracts the notion of a LAMP
MySQL database and also inherits from MoDMaCAO
Component mixin.

– The TomcatDependency mixin type abstracts a LAMP
execution dependency by always connecting a Component
instance to a Tomcat instance (TargetMustBeTomcat).

– The MySQLDependency mixin type abstracts a LAMP
execution dependency by always connecting a Component
instance to a MySQL instance (TargetMustBeMySQL).

Fig. 14 shows a LAMP stack designed with the LAMP
designer, generated using the Designer Generator. As we
can see, the designed configuration follows the containment
annotation defined in Section 4.4. So, different components
are shown inside the LAMP application.

5.2.2 Verification

Before the deployment of the LAMP stack, it is necessary
to verify the defined configuration. The approach of MoD-
MaCAO allows to extend the generic OCL constraints by
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Fig. 14 Modeling a LAMP stack with MoDMaCAO.

ones specific to the business of the application to design.
Listing 6 shows the different implemented constraints for
the LAMP use case. For example, a LAMP application must
have exactly one Apache server (OnlyOneApacheServer),
one MySQL database (OnlyOneMySQL) and at least one Tom-
cat server (OneOrMoreTomcats).

context LAMP
inv OnlyOneApacheServer :
self . entity .oclAsType(occi : : Resource) . links−>collect ( l :

occi : : Link | l . target )−>collect (c : occi : : Resource | c .
parts )−>select (mb: occi : : MixinBase |mb. oclIsTypeOf(lamp
: : Apacheserver) )−>size ()=1

inv OnlyOneMySQL :
self . entity .oclAsType(occi : : Resource) . links−>collect ( l :

occi : : Link | l . target )−>collect (c : occi : : Resource | c .
parts )−>select (mb: occi : : MixinBase |mb. oclIsTypeOf(lamp
: :Mysql) )−>size ()=1

inv OneOrMoreTomcats :
self . entity .oclAsType(occi : : Resource) . links−>collect ( l :

occi : : Link | l . target )−>collect (c : occi : : Resource | c .
parts )−>select (mb: occi : : MixinBase |mb. oclIsTypeOf(lamp
: :Tomcat) )−>size ()>=1

context Tomcat
inv OnlyOneMySQLDependency :
self . entity .oclAsType(occi : : Resource) . links−>select ( l : occi

: : Link | l . oclIsTypeOf(platform : : Componentlink) )−>
collect ( l : occi : : Link | l . parts )−>select (mb: occi : :
MixinBase |mb. oclIsTypeOf(lamp: : Mysqldependency) )−>
size ()>=1

context ApacheServer
inv OneOrMoreTomcatDependencies :
self . entity .oclAsType(occi : : Resource) . links−>select ( l : occi

: : Link | l . oclIsTypeOf(platform : : Componentlink) )−>
collect ( l : occi : : Link | l . parts )−>select (mb: occi : :
MixinBase |mb. oclIsTypeOf(lamp: : Tomcatdependency) )−>
size ()>=1

context TomcatDependency
inv TargetMustBeTomcat :

self . entity .oclAsType(occi : : Link) . target .oclAsType(occi : :
Resource) . parts−>exists (m|m. oclIsTypeOf(lamp: :Tomcat)
)

context MySQLDependency
inv TargetMustBeMySQL :
self . entity .oclAsType(occi : : Link) . target .oclAsType(occi : :

Resource) . parts−>exists (m|m. oclIsTypeOf(lamp: :Mysql) )

Listing 6 OCL constraints of LAMP use case

5.2.3 Configuration Management Artifact Generation

The capabilities of MoDMaCAO to generate Ansible play-
book skeletons are used for the defined LAMP extension.
Listing 7 shows the generated Ansible playbook (the blue
parts) extended with a block from the deploy operation of
the Tomcat mixin. The unarchive and copy mechanisms within
the script (black parts) are manually filled by the developer.

- name: Deploy Tomcat
block:

- yum: name=java - 1.8.0 -openjdk-devel state=present
- unarchive:

src: https: / /www-eu . apache . org / dist / tomcat / tomcat- 9/
v9.0.14/ bin /apache-tomcat- 9.0.14. tar . gz

dest: /tmp
remote_src: yes

- f i l e :
path: / opt / tomcat /
state: directory

- shell: cp - r /tmp/apache-tomcat- 9.0.14/* / opt / tomcat /
when: task == "DEPLOY"
become: yes

Listing 7 Ansible task for LAMP Tomcat Deploy operation.

Once the Ansible artifacts have been generated, they are
later executed on our Openstack cloud. A demonstration,
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available here16, shows the deployment process of the LAMP
stack.

6 Discussion

In this section, we discuss the applicability of the proposed
approach and how it contributes to the OCCI standard, as
well as the model driven cloud domain. Similarly to the
problem statements, the contributions can be separated to
the creation and extension of a precise modeling framework
for OCCI (P1), the benefits of verifying cloud application
models at design time (P2), and the combination of infras-
tructure as code tools and model-driven engineering (P3).

To address the problem of a missing precise modeling
framework (P1), we extended the OCCI platform extension
and built a framework around it. We introduced capabilities
to the standard that allows to deploy components on IaaS
resources that can be managed at runtime. In MoDMaCAO,
we enhanced the OCCI Application and Component def-
inition by adding three additional lifecycle operations. Our
use cases confirmed that these extensions are able to reflect
the requirements for the deployment of the selected applica-
tions. Furthermore, by providing the notion of a PlacementLink,
we are able to establish a connection between the OCCI
Platform extension and the OCCI Infrastructure extension.
The PlacementLink is used in the implementations to de-
rive the IP address of the hosting virtual machines to be able
to connect to them for the configuration management. To ex-
tend the modeling capabilities of MoDMaCAO, we demon-
strated how customized designers can be created for defined
cloud resource types. We have shown that the utilization of
simple annotation mechanisms allows to greatly improve the
automated generation of graphical editors, especially when
viewpoints for different hierarchies are required.

To verify designed cloud applications prior to a live de-
ployment (P2), we annotated OCCI cloud resource types
with OCL constraints. For the basic platform elements in
MoDMaCAO, we introduced generic constraints to check
whether basic structures of the standard are adhered to. This
comprises, e.g., constraints to check whether an Application
has OneOrMoreComponents. In our use cases we demon-
strated how the MoDMaCAO framework can be easily ex-
tended for customized resource and component types allow-
ing designers to incorporate their own OCL well-formedness
rules. Throughout the creation of the case studies the valida-
tion reduced the overall development time as errors within
the structure of the modeled application are directly detected.
Still, only constraints regarding the structure or attribute con-
figuration within the OCCI configuration can be checked.

Finally, to address the lack of IDEs for Infrastructure
as Code (P3), we coupled model-driven engineering tech-

16https://github.com/occiware/MoDMaCAO/tree/master/
videos/LAMP-Stack

niques with configuration management. We separated the
configuration management tool-specific logic from the generic
provisioning order. In this way, only a minimal set of tool-
specific code needs to be provided for each configuration
management tool. While we tested the integration of Salt-
Stack and simple Bash scripts with MoDMaCAO, our case
studies focused on the integration of the Ansible configura-
tion management tool into the OCCI ecosystem. The com-
bination of configuration management tools with a model-
driven approach supported not only the design time, but also
the runtime management of the modeled components. At de-
sign time, the generation of the artifact skeletons allowed to
immediately start with directives to describe the deployment
of newly modeled component types. At runtime, variable
files accompanying the script can be generated which pro-
vides these directives access to the current state of the cloud
application. Moreover, the direct connection of component
lifecycle actions to individual blocks in the script allowed
for smaller iterations when refining the configuration man-
agement scripts which greatly supported the development
process.

In comparison to the original OCCI platform extension,
the cloud developer would have created manually coded de-
ployment artifacts for each application to deploy. This ac-
tivity is very hard, increases drastically defects in final code
and decreases the productivity of developers. In addition, the
developer needs to check all functional constraints such as
the necessity to have a link between a compute resource and
a component one. Furthermore, the cloud developer needs
to perform all previously listed tasks without any visual sup-
port such as a graphical editor. This situation affects the un-
derstandability of the designed systems and complicates its
reusability, maintenance and evolution. All these enhance-
ments provided in MoDMACAO avoid users manually cre-
ating infrastructure codes and deploying applications with-
out any guarantee of a successful execution.

The case studies presented in this paper only cover a
small subset of application possibilities for MoDMaCAO.
The original work additionally covers the modeling of a dis-
tributed Apache Cassandra database and an Apache Spark
cluster [3]. In addition, MoDMaCAO has already been suc-
cessfully applied in scope of resource deployment for sci-
entific workflows in the cloud [14] and for adaptive sensor
management [15].

7 RELATED WORK

As already mentioned in Section 1 and as explained in [16],
there are two strategies to address the heterogeneity between
cloud offerings. Since the first strategy, which is multi-cloud
libraries, is only focused on the infrastructure interoperabil-
ity, we detail in the following the state-of-the-art of the sec-
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ond remaining strategy, especially the solutions that tackle
the management of applications.

1) MDE for the cloud: Nowadays, model-based solu-
tions are becoming increasingly popular in cloud comput-
ing. Some of them are commercial application provisioning
solutions enabling developers and administrators to specify
deployment artifacts and dependencies. Notable examples
include Ubuntu juju17 that targets the modeling of applica-
tions and their hybrid deployment. In the same vein of this
commercial graphical interface, several research projects are
providing domain-specific modeling languages and frame-
works that enable architects to describe and manage cloud
platforms. Among these model-based solutions, we identify
OCCIware [2] [6], which our work is an extension of. OC-
CIware has been successfully applied for the management
of resources from different domains, including the manage-
ment of Docker containers [12], and the management of mo-
bile robots [17]. COAPS [18] is a PaaS interface for man-
aging cloud applications. It extends the OCCI Core model,
i.e., the Resource and Link concepts, without extending the
OCCI platform extension. Moreover, COAPS complies to
the previous, non-enhanced version of the OCCI standard,
hence it lacks of the resource state management and the con-
formance verification provided by the OCCIware tool chain
and MoDMaCAO. SALOON [19] is a model-driven multi-
cloud configurator. It uses feature models to represent in-
frastructure and platform variability, as well as ontologies to
describe the cloud applications requirements. SALOON tar-
gets four PaaS providers and the authors claim it can be ex-
tensible by adding new provider models that conform to the
metamodel they define. However, this can be difficult and
error-prone since this framework is not based on a standard,
nor on some formal specification. TUNe [20] is a manage-
ment system that is based on the Fractal component model
for describing the software encapsulation and on two UML
profiles, one for the deployment of legacy distributed ap-
plications and one for their reconfiguration using state di-
agrams. TUNe was applied for the administration of J2EE
applications. Like most of the available model-driven con-
figuration management approaches, TUNe allows changes
only at design-time. This means that the deployment process
may be repeated several times, which is costly and time-
consuming.

Regarding runtime support, a strong analogy can be made
between our approach and DeployWare [21], while the for-
mer is applied on cloud APIs and the latter on grid infras-
tructures. In fact, DeployWare provides a modeling language
to deploy applications on Grid’500018 and a graphical inter-
face to manage them at runtime. CloudML [22] is a cloud
modeling language that helps to provision cloud infrastruc-
ture and platform resources by a semi-automatic matching

17http://juju.ubuntu.com/
18https://www.grid5000.fr/

between the defined application requirements and the cloud
offerings. CloudML is exploited both at design-time to de-
scribe the application provisioning of cloud resources after
performing the necessary orchestration, and at runtime to
manage the deployed applications. Furthermore, its corre-
sponding management framework CloudMF [23] presents
follows a model driven approach to maintain multi-cloud
applications. Another language to model cloud application
is Cloud Application Modelling and Execution Language
(CAMEL) [24] also utilizing the benefits of a models at
runtime approach. In the CAMEL approach the Cloudia-
tor toolkit [25] is used which provides a deployment engine
building upon self-contained components described via ex-
ecutable artifacts and life-cycle actions.

Unlike our work, CloudML and CAMEL are not based
on standards and requires the user to learn a new DSL. In
addition, the different extensions of CloudML DSL are re-
quired to address different needs (monitoring, QoS, etc.) [26].
However, in OCCI, and thus OCCIware, this aspect is sim-
plified by providing a single, simple and concise core DSL
to capture the different concepts that could emerge to repre-
sent everything-as-a-service.

2) Cloud standards: Our work is also a standard-based
approach since it adopts the OCCI standard metamodel. Be-
sides OCCI, several cloud computing standards for manag-
ing cloud applications exist. The Organization for the Ad-
vancement of Structured Information Standards (OASIS)’s
Cloud Application Management for Platforms (CAMP)19

standard targets the deployment of cloud applications on top
of PaaS resources. The OASIS’s TOSCA standard defines
a language to describe and package cloud application ar-
tifacts and deploy them on IaaS and PaaS resources. The
Eclipse Winery20 project provides an open source Eclipse-
based graphical modeling tool for TOSCA when the Open-
TOSCA project provides an open source container for de-
ploying TOSCA-based applications [27]. Cloudify21 is an
open source orchestration and management framework for
cloud applications lifecycle. It is also based on TOSCA and
provides a commercial Web Interface that enables the devel-
oper to create deployments and execute workflows.

. For the deployment aspects, OpenTOSCA chose to use
management plans implemented as BPEL and/or BPMN work-
flows to deploy applications and adaptation plans to update
a deployment based on the given situation at runtime. In the
OCCI based adaptation process utilized in our use cases sim-
ilar plans are generated with MoDMaCAO providing the ca-
pability to plug our models into the management configura-
tion tools such as Ansible. The declarative aspect of the lat-
ter and its idempotency allows it to only affect the runtime
part concerned by the update in the modeling level. In ad-

19https://www.oasis-open.org/committees/camp/
20https://www.eclipse.org/proposals/soa.winery/
21http://cloudify.co/
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dition, CAMP and TOSCA can use OCCI-based IaaS/PaaS
resources, so these standards are complementary. This stan-
dards “marriage” will be a main pillar of our future work, as
discussed in Section 8.

8 CONCLUSION

This article presents our approach, named MoDMaCAO, for
model-driven configuration management of cloud applica-
tions at runtime by using an enhanced version of OCCI stan-
dard. MoDMaCAO has the following features: i) a model-
ing framework to design cloud applications based on OCCI
standard, ii) the visualization facilities to seamlessly create
cloud applications, iii) a verification mechanism to ensure
the correctness of the designed applications, and finally iv) a
generative approach to automatically produce configuration
management artifacts. We used the OCCIware tool chain to
model the proposed enhancements and used its capabilities
to generate prototypical implementations for different con-
figuration management tools. Furthermore, we showed how
the proposed framework can be used to model, deploy and
manage two different distributed cloud applications, a Mon-
goDB cluster and a LAMP stack.

As future work, we will investigate how the proposed
framework can be extended to support multiple configura-
tion management tools to be used side-by-side for manag-
ing a single cloud application. We also want to incorpo-
rate concepts that support the reuse of defined Component
mixins in other applications. Second, we plan to reduce the
manual written parts of scripts. For that, we need to define
the semantics of a configuration management tool in order
to finely capture the behavior of each operation. Then, we
can extend the Deployment artifacts generator to generate
scripts based on the chosen configuration management tool.
In addition, we intend to explore in depth the behavior def-
inition of OCCIware resources. One possible improvement
consists to incorporate an assertion based on the dependency
mixin in the finite state machine of the related kind. Our
long-term goal is to extend the provided approach and tool-
ing with the support of additional cloud standards, includ-
ing TOSCA and CAMP. We already defined a preliminary
mapping between TOSCA and OCCI [28]. We will further
refine this mapping as a basis for providing an integrated
solution for model-driven cloud orchestration utilizing both
standards.
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