Vianney Monnier 
  
Pierre Vidal 
  
Vincent Rodriguez 
  
Ratiba Zitoun 
  
From graph theory and geometric probabilities to a representative width for three-dimensional detonation cells

We present a model for predicting a representative width for the three-dimensional cells observed on detonation fronts in reactive gases. The physical premise is that the 3D unsteady cellular process for irregular cells is stochastic and produces the same burned mass per unit of time as the average planar steady ZND process. Graph theory defines an ideal cell whose grouping is equivalent to that of the real 3D cell front. Geometric probabilities determine the mean burned fraction that parameterizes the model. The ZND model closes the problem with the relation time-position of a fluid element in the ZND steady reaction zone. Comparison of measured and calculated widths shows agreement better than or within the accepted experimental uncertainties, depending on the reactive mixture. The quality of this estimate depends solely on that of the chemical kinetic scheme used for the ZND calculations, the modeling assumptions aside. The model is readily implementable as a post-process of ZND profiles and provides instantaneous estimates of the cell width, length, and reaction time, as well as the ZND reaction length and time.

Introduction

First identified experimentally in the late 1950s [START_REF] Denisov | Pulsating and spinning detonation of gaseous mixtures in tubes[END_REF], the cellular structure of the detonation reaction zone in gases is viewed today as an example of non-linear instability of combustion waves in compressible reactive fluids, e.g. [START_REF] Short | Pulsating instability of detonations with a two-step chain-branching reaction model: theory and numerics[END_REF][START_REF] Radulescu | A universal parameter quantifying explosion hazards, detonability and hot spot formation: χ number[END_REF][START_REF] Clavin | Combustion Waves and Fronts in Flows: Flames, Shocks, Detonations, Ablation Fronts and Explosion of Stars[END_REF]. It is now recognized that physical representations of this unsteady structure can only be three-dimensional. Experimental and numerical analyses of front views of detonation waves, e.g. [START_REF] Monnier | An analysis of three-dimensional patterns of experimental detonation cells[END_REF][START_REF] Crane | Three-dimensional detonation structure and its response to confinement[END_REF], evidence that the cellular structure is made up of irregular patterns if the number of cells on the front surface is sufficiently large. That is typically observed in the case of detonation propagation in tubes with cross sections sufficiently large because the usual cell descriptor, namely its mean width λ, decreases when increasing the initial pressure p 0 of the gas. The accepted modelling framework then involves hydrodynamics and chemical kinetics solely and no significant participation of viscosity, for example, from boundary layers and turbulence. A topic of debate is whether a unique characteristic length is relevant to characterizing a 3D cell. The model below assumes that such is the mean width λ and, therefore, elaborates on the analysis outlined from our recordings of three-dimensional detonation cells [START_REF] Monnier | An analysis of three-dimensional patterns of experimental detonation cells[END_REF] and presented to the 28 th ICDERS (Naples 2022, paper #57).

The three ingredients are graph theory, geometric probabilities and the Zel'dovich-Von Neuman-Döring (ZND) model of planar detonation. First (Sect.2), we express the physical premise that the 3D unsteady cellular process for irregular cells is stochastic and should produce the same burnt mass as the average planar steady ZND process per unit of time. Then (Sect.3), we use graph theory to define an ideal cell whose grouping is equivalent to the real 3D cellular front [START_REF] Monnier | An analysis of three-dimensional patterns of experimental detonation cells[END_REF] and geometric probabilities to determine the mean burnt fraction that parameterizes the model. Finally (Sect.4), we implement the ZND model with detailed schemes of chemical kinetics to calculate the relation time-position of a fluid element in the ZND steady reaction zone, respective to its leading shock, which closes the problem of determining λ. The comparison of measured and calculated λ shows agreement to better than or within the accepted experimental uncertainties, depending on the reactive mixture, its initial pressure p 0 and equivalence ratio. Thus, the quality of this estimate is dependent solely on that of the chemical kinetics scheme, the modelling assumptions aside. The model is readily implementable as a post-process of ZND profiles and provides instantaneous estimates of the cell width, length and reaction time, as well as the ZND reaction length and time.
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Model

The basic assumption is that the cellular and ZND processes burn the fresh mixture at the same mass rate for sufficiently large periods and the same projected front area. Let t and z denote the time and the position in the ZND reaction zone, respective to its leading shock, and ∆t C the period during which the ZND front travels the distance L C representing the length of the ideal cell. For the self-sustained detonation propagating at the Chapman-Jouguet (CJ) velocity D CJ ,

L C = D CJ ∆t C . (1) 
A reaction time below refers to the period necessary to completely burn all fluid elements captured by a front at the initial instant t = 0 and through the same reference surface area. Thus, in the ZND process, denoting by t Z its reaction time, the fluid elements entered in the reaction zone during the period 0 < t t Z can only be partially burnt at t Z . That results in the mean ZND burnt fraction ȳZ and reaction rate ȳZ /t Z . In the cellular process, the front is a grouping of forward-convex waves whose forefront velocities for irregular cells randomly vary about the ZND mean velocity, such as D CJ . Their boundaries are the intersections with transverse waves that sweep the surfaces of the forward waves with lower velocities. High-speed recordings, e.g. [START_REF] Pintgen | Simultaneous soot foil and plif imaging of propagating detonations[END_REF][START_REF] Pintgen | Direct observations of reaction zone structure in propagating detonations[END_REF][START_REF] Austin | Reaction zones in highly unstable detonations[END_REF] indicate that combustion is ensured at an instantaneous rate much rapid in the domains behind the transverse waves and the forward waves with higher velocities, that is, much faster than the mean cellular rate. A symmetry argument then suggests that the reaction time, as defined above, of the ideal cell should be half the cell time ∆t C /2. Indeed, the period [0, ∆t C /2] is that necessary, on average, for the transverse waves to sweep a projected front area equivalent to the maximum area of the ideal cell, which, by symmetry, occurs every cell half length L C /2. Thus, during this period, they cover the surface of the ideal cell, and they can capture and burn all the fluid elements that have crossed the lower-velocity front surfaces since t = 0. That results in the mean cell burnt fraction ȳC and reaction rate 2/∆t C -and not ȳC × 2/∆t C . These means of the mass fractions y Z and y C are relative to periods elapsed since t = 0. They write

ȳZ = 1 t Z tZ 0 y Z (t )dt , ȳC = 2 ∆t C ∆tC/2 0 y C (t )dt , (2) 
where the subscripts Z and C denote the ZND and the cellular processes. The first definition above also applies to any variable, for example, the material speed U Z (t) = dz (t) /dt at the time t, or the position z (t) of a fluid element, in the ZND reaction zone. This defines the ZND reaction length Z by

Z = tZ 0 U Z (t )dt = ŪZ × t Z , ŪZ = Z t Z , (3) 
where ŪZ denotes the mean of U Z (t). With v denoting the specific volume, and v 0 its initial value, the relation of mass conservation written as v Z (t)D CJ = v 0 U Z (t) at the position z (t) can also be averaged, so

Z = vZ v 0 D CJ × t Z , (3) rewrites 
(ȳ Z ) = (1 -ȳZ ) v H + ȳZ v CJ . (4) vZ 
Relation ( 5) results from the averaging of the volume additivity constraint v = y i v i , where v i and y i denote the specific volume and the mass fraction of the chemical species i, and v H and v CJ the specific volumes at the ZND shock and reaction end positions.

The equality of the mean reaction rates of the cellular and ZND processes implies that of their mean reaction progress variables ȳC and ȳZ respective to their reaction times ∆t C /2 and t Z , so

2 ∆t C = ȳ t Z , (6) 
where ȳ denotes ȳC = ȳZ . The combination of ( 1) with [START_REF] Crane | Three-dimensional detonation structure and its response to confinement[END_REF] gives the relation [START_REF] Pintgen | Simultaneous soot foil and plif imaging of propagating detonations[END_REF] between the cell length L C and the ZND reaction time t Z , which, with (4) and ( 5), gives the relation [START_REF] Pintgen | Direct observations of reaction zone structure in propagating detonations[END_REF] between L C and the ZND

Institut Pprime UPR3346 CNRS reaction length Z , that is, L C1 (ȳ, t Z ) = k 1 × t Z , k 1 (ȳ) = 2 ȳ D CJ , (7) 
L C2 (ȳ, Z ) = k 2 × Z , k 2 (ȳ) = 2 ȳ v 0 vZ (ȳ) . (8) 
In the next section, graph theory is used to define a cellular pattern statistically equivalent to those on an irregular 3D cellular front, hence the ideal cell to which geometric probabilities are applied to obtain ȳ. The cell length L C is defined by the intersection of the curves L C1 (t) = k 1 × t and L C2 (t) = k 2 × z (t), with the relation time-position z (t) of a fluid element preliminary determined through classical ZND numerical calculations with a detailed scheme of chemical kinetics. The ZND reaction time t Z and length Z are then obtained from ( 7) and ( 8), and, finally, the cell width λ is geometrically related to L C .

Graph theory and geometric probabilities

In our preliminary analysis [START_REF] Monnier | An analysis of three-dimensional patterns of experimental detonation cells[END_REF], we considered the front-view distribution of the same pattern, for example, rectangle, pentagon, hexagon, etc., to be statistically independent of the front position if the cell number F , that is the initial pressure p 0 , is sufficiently large. Indeed, several experiments carried out in the same conditions should return the same distribution. We used elements from planar graph theory to show that these irregular front views are equivalent to tessellations of hexagons. This was obtained by combining the physical condition that only three transverse waves can intersect with the mathematical limit at large F of the Descartes-Euler-Poincaré relation F -E + V = 2 that connects the numbers of faces F (the cells), edges E (the transverse waves) and vertices V (the edge intersections) in a tessellation. For three-edge vertices, 2E = 3V , so the limit at large F of the edge number per face 2E/F is 6. One consequence is that a cell counting on an experimental recording gives an estimate of the cell mean width through λ = 3 ln 3 π

√ 3 2 d x , d x = 8 3 √ 3 A C , A C = A T F , (9) 
where d x and A C are the outer diameter and the area of the hexagon, and A T the cross-section area of the tube. Another consequence, detailed below, is that a combination of properties of this representative tessellation and geometric probabilities predicts the mean reaction progress variable ȳ and hence the cell mean width λ (Sect.2). The premise is that the motion of the transverse waves for irregular cells is stochastic. First, we define a control volume with the surface area A C and the half length L C /2 of the ideal cell. We denote by M C the mass contained in this volume, M (t) the mass having crossed the area A C since t = 0 at the intermediate instant 0 < t ∆t C /2 (or the front position 0 < x (t) L C /2 in the laboratory frame), and M B (t) the mass burnt at this instant t. They write

M C = ρ 0 A C × L C 2 , M (t) = ρ 0 A C × x (t) , M B (t) = ρ 0 A B (t) × x (t) , (10) 
where ρ 0 denotes the initial specific mass and A B (t) the surface area swept by the transverse waves at the instant t since t = 0. Thus, the burnt mass fraction y C at the instant t is

y C (t) = M B (t) M (t) = A B (t) A C , (11) 
so its mean ȳC (2) is the mean combustion area respective to the cell area A C . Next, we express the stochasticity of the transverse-wave motion. The successive positions of the transverse waves in a same experiment, projected onto the surface of the ideal cell, should be statistically equivalent to those obtained from one experiment to another at the same front position, that is, to those of line segments randomly dropped onto the surface. This ensures that combustion efficiency is, on average, independent of experiment. Thus, ȳC is the probability that the segments are completely contained in the cell surface, that is, the non-intersect probability, for the propagation period ∆t C /2. The calculation is a Institut Pprime UPR3346 CNRS classical problem of geometric probabilities, namely the Buffon's needle problem extended to a surface with a hexagonal tiling and needle lengths varying between 0 and the hexagon outer diameter d x . In the many accounts of such problems, the non-intersection probabilities are expressed as a ratio µ C /µ, where µ is the measure of the space of the independent variables representing all the random orientations and positions of a segment, and µ C the measure of the subspace in which these variables should vary so the segments do not intersect the boundaries of the typical tessellation element. For the hexagon, we extend below to a variable-length segment the solution by Vassallo [START_REF] Vassallo | Buffon's coin and needle problems for the snub hexagonal tiling[END_REF] for a constant-length segment. We do not reproduce his calculations for conciseness and because of the clarity of his account. The independent variables are the segment length s varying in [0, d x ], its angle θ varying in [0, 2π], and the coordinates of its center varying in the cell surface of area A C . The non-intersection constraint demands this center to be contained into a smaller surface than that of the cell, and whose shape and area depend on the segment orientation and length. Nondimensionalizing the lengths by the side length d x /2 of the typical hexagon, and denoting by r = 2s/d x the non-dimensional segment lengths, we have

µ = 6π √ 3, µ C = m 1 + m 2 + m 3 , m i = ri2 ri1 µ i (r) dr, (12) 
r ∈ [r 11 = 0,

r 12 = 1] , µ 1 (r) = 3π √ 3 -12r + r 2 3 -π/ √ 3 , (13) 
r ∈ r 21 = 1, r 22 = √ 3 , µ 2 (r) = π √ 3 r 2 + 5 -9 4r 2 -3 ... (14) 
...

-2 √ 3 3 + 2r 2 arcsin √ 3/2r , (15) r 
∈ r 31 = √ 3, r 32 = 2 , µ 3 (r) = 2 √ 3 r 2 + 12 arcsin √ 3/r ... (16) 
...

+ 30 r 2 -3 -8π √ 3 + 18 -r 2 3 + 2π/ √ 3 , (17) 
m 1 = 10.720, m 2 = 1. 837 4, m 3 = 1.154 7 × 10 -2 , (18) 
where the µ i s are Vassallo's non-intersection measures for constant segment lengths [START_REF] Vassallo | Buffon's coin and needle problems for the snub hexagonal tiling[END_REF] and the m i s ours for segment lengths varying in the intervals [0, d x /2], d x /2, √ 3d x /2 and √ 3d x /2, d x . This gives the non-intersection probability, that is, the mean burnt fraction ȳC (≡ ȳ, Sect.2), by

µ = 32.648, µ C = 12.569, ȳ = µ C µ ≈ 0.38498, (19) so, from (6) 
, the cellular process takes, on average, ∆t C /t Z ≈ 5.2 times longer than the ZND process to achieve combustion. Finally, we obtain the aspect ratio λ/L C by combining stochasticity and, inspired by [START_REF] Takai | Study of detonation wave structure[END_REF], geometry. Since the transverse waves have a stochastic motion, their positions can be considered to be the same every period ∆t C , so the longitudinal overdriven front waves of the model cellular front should superimpose on each other every distance L C . Equivalently, these waves can be viewed as the upper surface elements of spheres arranged in the hexagonal closest packing, that is, with alternate layers in the ABAB ... sequence. The sphere diameter is also the distance between the centers of adjacent spheres and the inner diameter of a hexagon, d i , so the ratio L C /d i comes out as twice the height of the tetrahedral pyramid whose base is the triangle with vertices the centers of the three closest spheres in the same layer. Simple geometry then gives L C /d i = 8/3 and d i /d x = √ 3/2. With the first relation [START_REF] Austin | Reaction zones in highly unstable detonations[END_REF], that yields the mean cell aspect ratio λ

L C = 3 ln 3 π 3 8 ≈ 0.64244 (20) 
and opening angle 65.4 o well representing the measurements on longitudinal recordings and, with ( 6), ( 19) and the basic relation between mass and volume fractions, the ratio of lengths L C / Z and λ/ Z which take the accepted large values of ≈ 20 -40, depending on v H and v CJ .
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Results and discussion

For conciseness, we do not detail the classical system of 1 st order ordinary differential equations that governs the ZND model. The quality of the chemical kinetics schemes implemented in the ZND calculations determines that of the cell mean width estimates by the model above, its assumptions aside. We selected mixtures with H 2 , C 3 H 8 or CH 4 as the fuel and O 2 or Air as the oxidizer because of their practical importance and the attention they have received from kineticists, and we thus used the Konnov [START_REF] Coppens | The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of ch4 + h2 + o2 + n2[END_REF] and the FFCM-1 [START_REF] Smith | Foundational fuel chemistry model version 1.0[END_REF] detailed schemes. Figure 1 compares the calculation results (full and open symbols , , ) to measurements in tubes (crosses) as presented in the detonation database [START_REF] Kaneshige | Detonation database, California Institute of Technology; Online available[END_REF]. Denoting by d the transverse dimensions of the tubes, the black (+) and grey (×) crosses denote values of the ratio λ/d smaller and larger, respectively, than the arbitrary magnitude O [START_REF] Vassallo | Buffon's coin and needle problems for the snub hexagonal tiling[END_REF]. That gives O(100) cells on the front surface, which we considered to be a number sufficiently large to meet the model's basic assumption. We collected the tube dimensions from the original references.

The comparison shows a very good agreement by the trends and the magnitudes and, in most cases, to better than the ≈ 50 -100% typical standard deviation for the mean width of irregular cells. Overall, the smaller the cell mean width compared to the tube dimension, i.e., the black crosses +, the better the agreement, consistent with the assumption of many cells on the front surface. The agreement is also better with mixture compositions close to the stoichiometric balance, perhaps because this is the usual calibration range of kinetic schemes.

The cell mean width is still considered to be a useful characteristic length in detonation dynamics, although the complex 3D patterns observed on detonation front views question the sufficiency of its representativeness and are the likely reason for the large standard deviations. In view of this intrinsic limitation, we felt that simple global modelling could yield a representative cell width sufficiently accurate for practical purposes without detailing the complex wave interactions that form the cellular structure.

Our approach does not pretend to explain how the detonation reaction zones are unstable and only assumes a global equivalence of the ZND and cellular processes expressed by basic conservation and action principles. Since its implementation is an easy post-process of ZND profiles, a complementary application is its use as an inverse method to assess the representative capacity of kinetic schemes from cell measurements obtained in conditions that eliminate the confinement effects. Current work includes a better representation of the cellular front using a Voronoi tessellation with a statistical distribution of several patterns, other mixtures and schemes-we obtained the same good agreement with the San-Diego mechanism, where applicable-and a comparative discussion with regular cells.
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  Figure 1: Comparison of calculated and measured cell mean widths λ. Full and open symbols: calculations using the Konnov [12] ( and ) and the FFCM-1 [13] ( ) schemes of chemical kinetics. Crosses: measurements [14] with small ( O(10), black +) and large ( O(10), grey ×) ratios λ/d, with d the transverse dimensions of the tubes.