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Extending the macsum aggregation to
interval-valued inputs

Yassine Hmidy1, Agnès Rico2, and Olivier Strauss1

1 LIRMM, Université de Montpellier, CNRS, France
2 LIRIS, Université Claude Bernard Lyon 1, CNRS, France

Abstract. Due to a lack of information or access to the data, or simply
due to the imprecise nature of the data, there are cases where a function
that maps interval-valued inputs is more appropriate to model a system.
With the concern to keep the advantageous properties of the Choquet
integral, we propose here a model that maps interval-valued inputs onto
interval-valued outputs whose upper and lower bounds are Choquet inte-
grals with respect to a parametric set function. This model is an extension
to interval-valued inputs of the macsum aggregation proposed in [16]. In
this article, we show that this extension can be easily computed thanks
to some properties of the macsum parametric set function.

Keywords: Interval system · Choquet integral · Macsum aggregation.

1 Introduction

As mentioned by Grabisch in [7], the linear model is the main tool for modeling
dependencies among data. The Choquet integral can be viewed as a general-
ization of this modeling. It is widely used as a flexible aggregation function in
many fields, such as multiple criteria decision making [6], classification [3], re-
gression [10] or data fusion [1]. Its main advantage is that it allows to quantify
the importance of each variable and the interaction between groups of variables.
Therefore it is an aggregation function that offers interpretability on the top of
flexibility.

In a recent paper, Strauss et al. [16] were interested in the use of the Choquet
integral to model incoherent systems. An incoherent system is a system which,
for the same inputs, can have different outputs. This kind of behavior can be
due, for example, to unmeasured inputs, to a partially random behavior of the
modeled system or to partial lack of knowledge on the system.

There are many works interested in this type of modeling [11, 15, 17, 16]. The
originality of the approach proposed by Strauss et al. is that it aims at providing
the convex envelope of all the values that should have been outputted by the
considered incoherent system for the same inputs. The modeling they propose,
under the name of macsum, is an aggregation function that maps a vector of
precise inputs onto an interval-valued output. The upper and lower bounds of
this interval is computed respectively by the Choquet integral w.r.t. a partic-
ular submodular set function, called the macsum operator, and its conjugate.
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As stated in [16], this modeling can be thought of as an imprecise linear model,
thus representing a lack of knowledge about the input-output relationship of the
modeled system. It has the major advantage over most of the other Choquet in-
tegral based approaches in that it depends only on a small number of parameters
leading to very simple computation.

However, the inaccuracy may not be due solely to scant knowledge of the
system. It can also be due to an imprecise measurement of the inputs [13, 4, 14].
One can therefore be interested in modeling a system that is imprecisely known
and whose inputs are imprecise too. For example, in [12], Lacerda and Crespo
propose to extend their interval predictor model to the case where inputs are
interval-valued.

In this article, we are interested, as Lacerda and Crespo, in extending the
macsum model to the case where the inputs are interval-valued. One of the diffi-
culties of this kind of extension is that it can lead to very complex computations,
thus losing the advantage of the simplicity of the macsum model. We show in
this paper that extending the macsum model to interval-valued inputs leads to
computation whose complexity is equivalent to that of the macsum model with
precise inputs. As mentioned by Dubois and Prade [2], a minimal requirement for
those extensions should be to be monotonically increasing in the wide sense with
respect to each argument. We propose here two extensions. The first extension
is disjunctive. It aims at dealing with the case where some sets to be aggregated
cannot be considered as reliable. It presents the advantage of containing all the
information but can lead to too broad intervals. The second extension is con-
junctive. It aims at dealing with consonant sets of information. It would lead
to more narrow intervals, giving the minimal set of common information in the
considered sets.

This article is organized as follows. Section 2 gives the background needed
to understand the following. Section 3 is a reminder of the macsum aggregation.
Section 4 introduces the disjunctive extension and Section 5 the conjunctive
extension of the macsum aggregation to interval-valued inputs we propose. In
section 6, an example is given to illustrate the low complexity calculation of the
bounds of these extensions. We then conclude in Section 7.

2 Background

– Ω = {1, . . . , N} ⊂ N.
– A vector is a function x : Ω → R defined by an element of RN denoted
x = (x1, · · · , xN ) ∈ RN .

– Let x ∈ RN, we define x+,x− ∈ RN such that ∀i ∈ Ω, x+i = max(0, xi) and
x−i = min(0, xi).

– x = [x, x] is a real interval whose lower bound is x and upper bound is x.
– IR is the set of real intervals.
– A vector of real intervals is an element of IRN denoted x = (x1, x2, .., xN ).
– We say that x ∈ x if ∀i ∈ Ω, xi ∈ xi.
– An aggregation function f : RN → R maps several input values onto a single

real value.
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– An interval aggregation function f : IRN → IR maps several interval-valued
inputs onto a single interval-valued output.

– A set function is a function µ : 2Ω → R that maps any subset of Ω onto a
real value. To a set function µ is associated a complementary set function
µc: ∀A ⊆ Ω, µc(A) = µ(Ω)− µ(Ac), with µ(∅) = 0.

– A set function µ is said to be submodular if ∀A,B ⊆ Ω, µ(A∪B)+µ(A∩B) ≤
µ(A) + µ(B).

– A set function µ is said to be supermodular if ∀A,B ⊆ Ω, µ(A∪B) +µ(A∩
B) ≥ µ(A) + µ(B).

– The asymmetric Choquet integral of x ∈ RN w.r.t. a set function µ, denoted
Čµ [9], can be defined by:

Čµ(x) =

N∑
k=1

x(k).(µ(A(k))− µ(A(k+1))) =

N∑
k=1

(x(k) − x(k−1)).µ(A(k)),

where (.) is the permutation that sorts the element of x in increasing order:
x(1) ≤ x(2) ≤ · · · ≤ x(N) with x(0) = 0 and A(i) (i ∈ Ω) being the coalition
of Ω such that A(i) = {(i), . . . , (N)} with A(N+1) = ∅.

– ∀x, y ∈ IR, the natural union between x and y and the natural intersection
between x and y are respectively defined as: x∪ y = {z ∈ R| z ∈ x or z ∈ y}
and x ∩ y = {z ∈ R| z ∈ x and z ∈ y}.

– ∀x, y ∈ IR, the extensive union between x and y and the extensive intersec-
tion between x and y are respectively defined as: x∪̃y = [min(x, y),max(x, y)]
and x∩̃y = [max(x, y),min(x, y)].

Remark 1. The natural and extensive unions of two intervals x and y are
equal if x∩y 6= ∅.

Remark 2. x∪̃y is the convex envelope of x ∪ y.

Remark 3. If x∩y 6= ∅, then x∩y = x∩̃y.

3 The macsum aggregation

A set function is said to be parametric when its computing involves values of a
predefined set of parameters. The macsum operator is a parametric set function
denoted νϕ where ϕ stands for the vector of parameters. This set function was
introduced in [16], and is defined as ∀ϕ ∈ RN , ∀A ⊆ Ω:

νϕ(A) = max
i∈A

ϕ+
i + min

i∈Ω
ϕ−i − min

i∈Ac
ϕ−i ,

νcϕ(A) = min
i∈A

ϕ−i + max
i∈Ω

ϕ+
i −max

i∈Ac
ϕ+
i .

Let ϕ ∈ RN , the macsum aggregation is defined by using the macsum oper-
ator νϕ as:

Aνϕ(x) = [Čνc
ϕ

(x), Čνϕ(x)]. (1)
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Let ψ ∈ RN , ∀A ⊆ Ω, we denote λψ the linear parametric set function
defined by:

λψ(A) =
∑
i∈A

ψi.

Let ψ ∈ RN , the linear aggregation is defined by using the linear operator
λψ as:

Aλψ (x) = Čλψ (x) =
∑
i∈Ω

ψi.xi.

Contrarily to the macsum aggregation, the linear aggregation is precise-valued.
It can easily be extended to interval valued inputs by ∀x ∈ IR:

Aλψ (x) = {Čλψ (x) / x ∈ x} =
[

inf
x∈x
Aλψ (x), sup

x∈x
Aλψ (x)

]
,

this set being convex due to the fact that x is convex and Aλψ is linear.
The macsum core of a vector ϕ of RN is a convex subset of RN defined as:

M(ϕ) =
{
ψ ∈ RN / ∀A ⊆ Ω, νcϕ(A) ≤ λψ(A) ≤ νϕ(A)

}
.

Since the macsum operator is submodular, as proven in [16], the macsum core
of a vector of RN is never empty. Moreover, Equation (1) can be interpreted as:

Aνϕ(x) =
{
Aλψ (x) / ψ ∈M(ϕ)

}
,

this set being convex [16]: ∀ψ ∈ M(ϕ), ∃y ∈ Aνϕ(x) such that y = Aλψ (x)
and ∀y ∈ Aνϕ(x), ∃ψ ∈M(ϕ) such that y = Aλψ (x).

4 Disjunctive extension to interval-valued inputs

Extending the macsum aggregation to interval valued inputs consists in consid-
ering aggregating the set of all Aνϕ(x) with x ∈ x. In this section, we con-
sider a very conservative aggregation consisting in keeping all the aggregated
interval-valued outputs of the macsum aggregations for each x of x. This can be
defined,∀x ∈ IRN , by:

Dνϕ(x) =
⋃
x∈x
Aνϕ(x) =

⋃
x∈x

[
Čνc

ϕ
(x), Čνϕ(x)

]
=
{
Aλψ (x) / x ∈ x, ψ ∈M(ϕ)

}
.

(2)

Remark 4. Given the Choquet integral w.r.t. the macsum operator is continuous
as proven in [8] (Propostion 5.39) and x is a compact subspace of RN , we have
that

⋃
x∈x[Čνc

ϕ
(x), Čνϕ(x)] =

⋃̃
x∈x[Čνc

ϕ
(x), Čνϕ(x)].

Thus Equation (2) can be rewritten, ∀x ∈ IRN :

Dνϕ(x) =
⋃̃
x∈x

[
Čνc

ϕ
(x), Čνϕ(x)

]
=

[
inf
x∈x

Čνc
ϕ

(x), sup
x∈x

Čνϕ(x)

]
. (3)
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Due to the definition of the disjunctive extension given in Equation (2), and the
fact that the Aνϕ(x) are convex sets of R, the bounds of Dνϕ(x) are reached,
i.e. ∃y ∈ x and ∃ψ ∈ M(ϕ) such that supx∈x Čνϕ(x) = Aλψ (y) and ∃y′ ∈ x
and ∃ψ′ ∈M(ϕ) such that infx∈x Čνc

ϕ
(x) = Aλψ′ (y

′).

The two following propositions are needed to compute the disjunctive exten-
sion.

Proposition 1. (Proposition 5.1 in [16]). Let ϕ ∈ RN , let ψ ∈M(ϕ), ∀i ∈ Ω,
ϕi > 0⇒ ψi ≥ 0 and ϕi < 0⇒ ψi ≤ 0.

Proposition 2. Let ϕ ∈ RN , let ψ ∈M(ϕ), ∀i ∈ Ω, ϕi = 0⇒ ψi = 0.

Proof. Let j ∈ Ω such that ϕj = 0. We have νϕ({j}) = 0 + mini∈Ω ϕ
−
i −

mini∈Ω\j ϕ
−
i .

As ϕj = 0, either mini∈Ω ϕ
−
i < 0 and then mini∈Ω ϕ

−
i = mini∈Ω\j ϕ

−
i which

gives νϕ({j}) = 0, or mini∈Ω ϕ
−
i = ϕj = mini∈Ω\j ϕ

−
i = 0, which also gives

νϕ({j}) = 0.
Furthermore, we have νcϕ({j}) = 0 + maxi∈Ω ϕ

+
i − maxi∈Ω\j ϕ

+
i . Proving that

maxi∈Ω ϕ
+
i = maxi∈Ω\j ϕ

+
i and consequently νcϕ({j}) = 0 can be done in the

same manner.
As ψ ∈ M(ϕ), we have ∀A ⊆ Ω, νcϕ(A) ≤ λψ(A) ≤ νϕ(A), therefore νcϕ({j}) ≤
λψ({j}) ≤ νϕ({j}), thus 0 ≤ ψj ≤ 0 i.e. ψj = 0.

Therefore the non-negativity (resp. non-positivity) of an element of a pa-
rameter entails the non-negativity (resp. non-positivity) of the corresponding
element of any parameter of its macsum core.

Proposition 3. (Proposition 2.2 in [16]) Let ϕ ∈ RN , let ψ ∈M(ϕ), ∀x ∈ RN
we have
Aλψ (x) = Čλψ (x) ∈ Aνϕ(x) =

[
Čνc

ϕ
(x), Čνϕ(x)

]
.

Considering that ∀x ∈ IR, Čνc
ϕ

(x) = infψ∈M(ϕ) Čψ(x) and Čνϕ(x) =

supψ∈M(ϕ) Čψ(x) Equation (3) can be rewritten:

Dνϕ(x) =
[

inf
x∈x

inf
ψ∈M(ϕ)

Čλψ (x), sup
x∈x

sup
ψ∈M(ϕ)

Čλψ (x)
]

(4)

=
[

inf
ψ∈M(ϕ)

inf
x∈x

Čλψ (x), sup
ψ∈M(ϕ)

sup
x∈x

Čλψ (x)
]
. (5)

Now, let x ∈ IRN be a vector of real intervals and let ϕ ∈ RN . Let us define
x∗ ∈ RN the vector such that ∀i ∈ Ω, x∗i = xi if ϕi ≥ 0 and x∗i = xi if ϕi < 0.
Let us also define x∗ ∈ RN the vector such that ∀i ∈ Ω, x∗i = xi if ϕi ≥ 0 and
x∗i = xi if ϕi < 0.

Proposition 4. ∀x ∈ IRN , ∀ϕ ∈ RN , ∀ψ ∈M(ϕ),
supx∈x Čλψ (x) = Čλψ (x∗) and infx∈x Čλψ (x) = Čλψ (x∗).
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Proof. Given Propositions 1 and 2, we know that ∀i ∈ Ω, if ϕi ≥ 0 then ψi ≥ 0
and if ϕi < 0 then ψi ≤ 0. Furthermore, by construction Čλψ (x) =

∑
i∈Ω ψ

+
i .xi+∑

i∈Ω ψ
−
i .xi. Thus ∀x ∈ x we have: Čλψ (x) =

∑
i∈Ω ψi.xi ≤

∑
i∈Ω ψ

+
i .xi +∑

i∈Ω ψ
−
i .xi = Čλψ (x∗). Consequently supx∈x Čλψ (x) = Čλψ (x∗). Proving that

infx∈x Čλψ (x) = Čλψ (x∗) can be done by the same way. �

Proposition 5. ∀x ∈ IRN , ∀ϕ ∈ RN , Dνϕ(x) = [Čνc
ϕ

(x∗), Čνϕ(x∗)].

Proof. We know from [16] that ∀x ∈ RN , ∀ϕ ∈ RN , Čνϕ(x) = supψ∈M(ϕ) Čλψ (x),
and from Proposition 4 that supx∈x supψ∈M(ϕ) Čλψ (x) = supψ∈M(ϕ) Čλψ (x∗).
Thus, supx∈x Čνϕ(x) = Čνϕ(x∗). We can prove that infx∈x Čνc

ϕ
(x) = Čνc

ϕ
(x∗)

in the same way. �

Thus the relation between the parameter of the macsum operator and the
vectors of its core allows to compute the macsum aggregation on interval-valued
inputs with a linear complexity.

5 Conjunctive extension to interval-valued inputs

In this section, we consider the conjunctive aggregation that can be viewed as
the antonymous version of the previously defined disjunctive aggregation. Where
disjunctive aggregation is conservative and tries not to reject any information,
conjunctive aggregation tries to reduce the set of values to those for which each
set being aggregated agrees.

There are two possible ways to create this conjunctive aggregation: either by
making the conjunction on the input vectors x belonging to the interval-valued
input vector x, thus taking the conjunctive counterpart of Equation (4), or by
making the conjunction on the vectors ψ belonging to the macsum core of the
macsum parameter ϕ, thus taking the conjunctive counterpart of Equation (5).

The first approach leads to:

CCνϕ(x) =
⋂
x∈x

Aνϕ(x) =
⋂
x∈x

{Aλψ (x) / ψ ∈M(ϕ)}, (6)

while the second approach leads to:

CBνϕ(x) =
⋂

ψ∈M(ϕ)

Aλψ (x) =
⋂

ψ∈M(ϕ)

{Aλψ (x) / x ∈ x}. (7)

Let us consider the computation of Equation (6). If CCνϕ(x) 6= ∅, then:

CCνϕ(x) =
⋂̃
x∈x
Aνϕ(x) =

⋂̃
x∈x

[
Čνc

ϕ
(x), Čνϕ(x)

]
(8)

=
[

sup
x∈x

Čνc
ϕ

(x), inf
x∈x

Čνϕ(x)
]

=
[

sup
x∈x

inf
ψ∈M(ϕ)

Čλψ (x), inf
x∈x

sup
ψ∈M(ϕ)

Čλψ (x)
]
.
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In the same way, computation of Equation (7), if CBνϕ(x) 6= ∅, leads to:

CBνϕ(x) =
⋂̃
ψ∈M(ϕ)

Aλψ (x) =
[

sup
ψ∈M(ϕ)

inf
x∈x

Čλψ (x), inf
ψ∈M(ϕ)

sup
x∈x

Čλψ (x)
]
. (9)

Proposition 6. ∀x ∈ IRN , ∀ϕ ∈ RN , the upper bound of CBνϕ(x) equals the
lower bound of CCνϕ(x) and vice versa.

Proof. Lets remind that ∀ϕ ∈ RN , ∀ψ ∈M(ϕ), we have that supx∈x Čλψ (x) =

Čλψ (x∗) and that ∀x ∈ RN , infψ∈M(ϕ) Čλψ (x) = Čνc
ϕ

(x).
Therefore, infψ∈M(ϕ) supx∈x Čλψ (x) = infψ∈M(ϕ) Čλψ (x∗) = Čνc

ϕ
(x∗).

Moreover, supx∈x infψ∈M(ϕ) Čλψ (x) = supx∈x Čνc
ϕ

(x) = Čνc
ϕ

(x∗).
Thus, infψ∈M(ϕ) supx∈x Čλψ (x) = supx∈x infψ∈M(ϕ) Čλψ (x), i.e. the upper
bound of CBνϕ(x) equals the lower bound of CCνϕ(x). By the same reasoning we
obtain that the lower bound of CBνϕ(x) equals the upper bound of CCνϕ(x). �

If we refer to the theory of generalized intervals [5], we can say that if CBνϕ(x)

is proper then CCνϕ(x) is improper and conversely. In other words, CCνϕ(x) = ∅⇒
CBνϕ(x) 6= ∅ and CBνϕ(x) = ∅⇒ CCνϕ(x) 6= ∅. In that sense those two approaches
can be considered as dual. We thus have:

CCνϕ(x) =
[
Čνc

ϕ
(x∗), Čνϕ(x∗)

]
, if Čνc

ϕ
(x∗) ≤ Čνϕ(x∗), and

CBνϕ(x) =
[
Čνϕ(x∗), Čνc

ϕ
(x∗)

]
, if Čνc

ϕ
(x∗) ≥ Čνϕ(x∗).

We thus propose to consider, for the conjunctive extension of the macsum
aggregation to interval-valued inputs, the following expression:

Cνϕ(x) =
[

min
(
Čνc

ϕ
(x∗), Čνϕ(x∗)

)
,max

(
Čνc

ϕ
(x∗), Čνϕ(x∗)

)]
.

This formula gathers in the same expression the two conjunctive counterparts
(i.e. Equations (8) and (9)) of the disjunctive extension. As in the disjunctive
case, this extension only needs computation of two Choquet integrals.

6 Example

In this section, we give a simple example illustrating the simplicity of the compu-
tation of the macsum aggregation of interval-valued inputs. Let x = ([−2, 3], [0, 1], [−5, 8]) ∈
IR3 and let ϕ = (−2, 3,−1) ∈ R3. Let us compute Dνϕ(x) and Cνϕ(x). We have
x∗ = (−2, 1,−5) and x∗ = (3, 0, 8).
Now lets sort x∗ in increasing order: x∗(.) = (x∗3, x

∗
1, x
∗
2) = (−5,−2, 1).

Therefore ϕ(.) = (ϕ3, ϕ1, ϕ2) = (−1,−2, 3).
Remember that νϕ(A(k)) = maxi∈A(k)

ϕ+
i − mini∈Ac

(k)
ϕ−i + mini∈Ω ϕ

−
i , with

A(k) = {(k), . . . , (N)}, thus νϕ(A(k)) = maxNi=k ϕ
+
(i) −mink−1i=1 ϕ

−
(i) + mini∈Ω ϕ

−
i
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(by convention min0
i=1 ϕ

−
(i) = 0).

Thus:

Čνϕ(x∗) =

3∑
k=1

(x∗(k) − x
∗
(k−1)).νϕ(A(k)),

=

3∑
k=1

(x∗(k) − x
∗
(k−1)).

(
3

max
i=k

ϕ+
(i) −

k−1
min
i=1

ϕ−(i) + min
i∈Ω

ϕ−i

)
,

= (x∗(1) − x
∗
(0)).

(
3

max
i=1

ϕ+
(i) −

0
min
i=1

ϕ−(i) + min
i∈Ω

ϕ−i

)
+ (x∗(2) − x

∗
(1)).

(
3

max
i=2

ϕ+
(i) −

1
min
i=1

ϕ−(i) + min
i∈Ω

ϕ−i

)
+ (x∗(3) − x

∗
(2)).

(
3

max
i=3

ϕ+
(i) −

2
min
i=1

ϕ−(i) + min
i∈Ω

ϕ−i

)
,

= −5. (3− 2) + (−2 + 5). (3 + 1− 2) + (1 + 2). (3 + 2− 2) ,

= −5 + 6 + 9 = 10.

Lets now sort x∗ in increasing order: x∗(.) = (x∗2, x∗1, x∗3) = (0, 3, 8).
Therefore ϕ(.) = (ϕ2, ϕ1, ϕ3) = (3,−2,−1).
Remember that Ac(k) = {(1), . . . (k − 1)}, we have νcϕ(A(k)) = minNi=k ϕ

−
(i) −

maxk−1i=1 ϕ
+
(i) + maxi∈Ω ϕ

+
i

(by convention min0
i=1 ϕ

−
(i) = 0).

Then:

Čνc
ϕ

(x∗) =

3∑
k=1

(x∗(k) − x∗(k−1)).νcϕ(A(k)),

=

3∑
k=1

(x∗(k) − x∗(k−1)).
(

3
min
i=k

ϕ−(i) −
k−1
max
i=1

ϕ+
(i) + max

i∈Ω
ϕ+
i

)
,

= (x∗(1) − x∗(0)).
(

3
min
i=1

ϕ−(i) −
0

max
i=1

ϕ+
(i) + max

i∈Ω
ϕ+
i

)
+ (x∗(2) − x∗(1)).

(
3

min
i=2

ϕ−(i) −
1

max
i=1

ϕ+
(i) + max

i∈Ω
ϕ+
i

)
+ (x∗(3) − x∗(2)).

(
3

min
i=3

ϕ−(i) −
2

max
i=1

ϕ+
(i) + max

i∈Ω
ϕ+
i

)
,

= 0. (−2 + 3) + (3− 0). (−2− 3 + 3) + (8− 3). (−1− 3 + 3) ,

= 0− 6− 5 = −11.

Finally, Dνϕ (([−2, 3], [0, 1], [−5, 8])) = [−11, 10].
By the same way we show that Cνϕ (([−2, 3], [0, 1], [−5, 8])) = [−6, 7].
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7 Discussion

The macsum aggregation, as introduced in [16], allows to model incoherent sys-
tems. Aggregating precise inputs within the macsum approach leads to interval-
valued outputs. In contrast to a simple linear model, it gives a convex set of
linear models which makes it more flexible, while preserving the simplicity of
use of linear model, as it depends only on N parameters, N being the number of
inputs. A promising path would be to use this extension of the macsum aggrega-
tion as a simple and flexible learning model. This gives rise to other theoretical
issues on its ability to approximate any functions that maps interval-valued in-
puts onto interval-valued outputs. Moreover, as the macsum operator needs the
separation of the positive and negative elements of its parameter, further work
could go towards the definition of a simpler submodular parametric set function
in order to facilitate the computations during a learning process.
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