
HAL Id: hal-03927289
https://hal.science/hal-03927289

Submitted on 6 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Skill-based design of dependable robotic architectures
Alexandre Albore, David Doose, Christophe Grand, Jérémie Guiochet,

Charles Lesire, Augustin Manecy

To cite this version:
Alexandre Albore, David Doose, Christophe Grand, Jérémie Guiochet, Charles Lesire, et al.. Skill-
based design of dependable robotic architectures. Robotics and Autonomous Systems, 2022, 160,
pp.104318. �10.1016/j.robot.2022.104318�. �hal-03927289�

https://hal.science/hal-03927289
https://hal.archives-ouvertes.fr

Skill-based design of dependable robotic architectures

Alexandre Albore · David Doose ·
Christophe Grand · Jérémie Guiochet ·
Charles Lesire∗ · Augustin Manecy

the date of receipt and acceptance should be inserted later

Abstract Software architectures for autonomous systems are generally structured
with 3 layers: a decisional layer managing autonomous reasoning, a functional layer
managing reactive tasks and processing, and an executive layer bridging the gap be-
tween both. The executive layer plays a central role, as it links high-level tasks with low-
level processing, and is generally responsible for the robustness or the fault-tolerance of
the overall system. In this paper, we propose a development process for such an execu-
tive layer that emphasizes on the dependability of this layer. To do so, we structure the
executive layer using skills, that are formally defined using a specific language, and we
then provide some tools to verify these models, generate some code, and a methodology
to assess the fault-tolerance of the resulting architecture.

Keywords Skill-based architecture · Dependability · Development Process ·
Model-Checking · Fault-Tree Analysis

1 Introduction

One main challenge in developing autonomous systems is to define software architec-
tures integrating low-level functions (e.g., control) and decisional-level features (e.g.,
task planner). A popular approach is to deploy layered architectures [31], and more
precisely 3-layers (functional, executive, and decisional layers) as shown in Fig. 1.

The executive layer is an abstraction layer, usually in charge of splitting the high
level tasks, commanded by the decisional layer, into atomic actions that should be
realized by the functional layer. This intermediate layer checks if a commanded task
can be realized (according to the current system’s state), and chooses the appropriate
termination mode when its execution is finished, in order to let the decisional layer

A. Albore · D. Doose · C. Grand · C. Lesire · A. Manecy
ONERA/DTIS, University of Toulouse, France
E-mail: firstname.lastname@onera.fr

J. Guiochet
LAAS-CNRS, University of Toulouse, France
E-mail: jeremie.guiochet@laas.fr
∗ corresponding author

2 Alexandre Albore et al.

Physical Environment

Autonomous System

Decisional layer

Executive layer

Reactive/Functional layer

Hardware

Objectives

Fig. 1 A three layer architecture for autonomy

determine the following actions according to the mission objectives. This kind of archi-
tecture is particularly suitable to manage mission reconfiguration at decisional level,
as done for example in [1] where back-up plans are selected by the decisional layer in
response to some hazardous event or failure.

In critical applications in which autonomous systems are used, decisional capabil-
ities must settle on a robust and safe executive (and consequently functional) layer.
When developing such a layer, the designer must provide evidences that the executive
layer has been correctly designed, and that possible hazards are correctly dealt with,
either at the functional or at the executive level.

A recent and interesting step in that direction comes from the adoption of a skill-
based architecture, where the modularity of robotic capacities allows a more robust
control of robotic functions, and increased safety. In fact, as in other domains, fault
prevention in the software of autonomous system is mainly carried out through the
modularity of software components and the tools adapted to the heterogeneity of the
used models [53,28,40].

In this paper, we propose a process to develop dependable software architectures
based on such skill concepts to populate the executive layer. To do so, we provide (1) a
formal modelling of the executive layer through a Domain Specific Language, (2) tools
to support the development of this layer in relation to the other layers, (3) tools to
assess the dependability of the skill-layer in relation with the functional layer. The
paper is structured as follows. Section 2 presents the state-of-the-art related to skill
concepts in robotics, their formalization and verification. Then, a general overview of
the development process we propose is presented in Section 3, along with an illustrative
application. This process is further detailed in the upcoming sections: Section 4 presents
the domain specific language, Section 5 the associated model-checking tools, Section 6
the code generation toolchain, and Section 7 the fault tolerance analysis. We conclude
this paper by presenting a concrete application in Section 8 and discussing future works
in Section 9.

Skill-based design of dependable robotic architectures 3

2 Related Works

This section presents main works on skill definition, formalization, implementation in
a decisional architecture, and verification.

2.1 Skill-based architectures in robotics

The conceptual model of robotic skills is born to enhance the modularity of robotic
capacities, integrating both sensing and acting within a small set of “robot skills” [53].
Skills are implemented such that a robot can easily be reconfigured or repurposed.
The aim is to allow users that are not expert in control or robotic field to easily use
advanced robot systems, through a minimal parametrization of the skills which are
in charge of implementing basic functionalities. Ideally, a skill can be easily composed
with other skills because it already integrates all information, resources access rules, be-
havioral logic, recovery strategies, low level controls, etc., which are needed to execute
a certain task. In robotic literature, the concepts of task, primitive action, and robot
skill are commonly used, and sometimes they overlap. The confusion arises because
task-level programming (a well-known direction taken by the robotics community) [11]
makes use of low level entities, usually named “robot skills”, that instantiate primitive
actions, usually centered on motion [3,26,43,39,8,9]1 Brooks writes about “task achiev-
ing behaviors” [11], which is a break from the purely functional architectures previously
developed and focuses the robotic architecture on layers of behaviors that integrate sen-
sors and actuators. Such layered architecture has been widely used since [12,71,33,69,
68]. In this sense, primitive actions are basic functionalities or atomic motions of a
robot. Their combination can produce tasks, which are aimed at achieving complex
goals [9].

The skills, as they are intended in this paper, are components of a modular robotic
architecture which differs from macros or tasks in their generality, composability, and
reconfigurability [53]. They are basic functionalities that participate to design the com-
plete task. Thus, their combinations are called tasks, which are the mission-level imple-
mentation of a robotic system [53,63,60]. This approach mainly leads to multi-layers
architectures. The skills-based approaches to robot programming vary in different fields
of robotic research, not all adopting the 3-layered approach described in this paper.
For instance, in [60], the authors perform task-level programming using manually re-
programmable skills in a pyramidal architecture based on three layers of abstraction:
tasks, skills, and device primitives. These three layers are decoupled from the hardware,
implementing the functionalities of the robot at three levels of abstraction. In SkiROS
(Skills-ROS) [57,56], the architecture is organized into four layers of abstraction: skills
are separated from the executive layer, which provides an interface to embed and coor-
dinate motion primitives, and services. The decision layer can be either a user-interface
or a automated task planner. A set of standardized device interfaces allows an easy
link between layers, and extend the portability of all code.

1 However, the expression robot skills refers, in more recent years, to skills chaining and
skills learning in Deep Reinforcement Learning [38,21,48,42].

4 Alexandre Albore et al.

2.2 Skills and decision layer

It is expected that Robotics 4.0 evolves towards “more advanced features in terms
of motion, computing, perception, and cognition” [24]. The improved autonomy of
robotics systems depends on the advances of Artificial Intelligence (AI) algorithms.

The decisional layer encodes the mission description using a variety of approaches
and languages. The underlying formalism of mission description languages may vary
from logical languages such as Linear-Temporal Logic (LTL) or Computation Tree
Logic (CTL) [22,46,29], to discrete event dynamic system specification as Petri Nets
[74,20] or finite state machines [10,66], and Behavior Trees [27,14,25].

Automated Planning has been used for instance to combine high level tasks in or-
der to solve a problem [52,53,30,19,18], based on the current state of the robot, and
the desired goal/final situation. The concatenation of tasks provided by an automated
planner brings the robot to its goal. Automated Planning spouses well the skill for-
malism as it defines transition in terms of pre- and post-conditions using STRIPS [23]
or a STRIPS derived modeling language [57]. In particular, a temporal description of
planning actions, which correspond in the model to the robot skills, has been developed
to ensure concurrency at the task planning level [51].

A declarative way to chain skills in a modular manner, in a fully or partially mod-
eled mission, is done through Behavior Trees (BTs). This formalism allows describing
to a higher level of abstraction than most of the skills-related programmings, and to
model more complex skills chaining and coordination, including skills executions condi-
tioned on system or environment variables. Behavior Trees have gained attention among
roboticists for this reason [14,58,25]. Several robotic skill applications delegate BTs for
the control flow of the mission. Generally, BTs are specified by the programmers [37,
15,14,73,6,1], but they can also be generated by Reinforcement Learning (RL) [35,36,
5,44] or Evolutionary Algorithms [59] to adapt to a specific task. Automated Planing
is also a technology of choice to generate robotics mission scenarios, and several works
go towards this direction to produce BTs in the shape of a plan [62,13,72,51].

2.3 Skill formalism

Skill characterization and parametrization are generally performed via an ad hoc spec-
ification language. A relational model representing the interaction between skills (or
elementary behaviors) and resources and data (provided by the robot or external) has
been proposed in [54]. This model however neither represents the behavior of resources,
nor possible terminal modes of the skill executions. In [67] skills are represented with
preconditions and device resources requirements in an OWL ontology, along with mech-
anisms to define synchronization of skill execution. This extension of ROSETTA, a set
of ontologies of robot skills aimed at supporting the reconfiguration and adaptation
of robot-based manufacturing cells [64,65], deals with a rather poor skill model, e.g.,
with no information about failure modes or rates.

A graph-based skill formalism to describe robot manipulation skills and bridge the
gap between high-level specification and low-level adaptive interaction control is intro-
duced in [34]. The transitions between manipulation primitives during a skill execution
are based on pre, post, and fault conditions. However, even if the system is interfaced
with an adaptive controller, the transition system, and skills concatenation remain
relatively simple.

Skill-based design of dependable robotic architectures 5

LightRocks [66] is a domain specific language (DSL) for robot programming. It
defines a transition system between elemental actions, which result in a FSM. Contrary
to the usual skill-based architecture, which fundamentals will be described in the years
following this publication, skills are supposed to be coded by robot experts as net of the
Primitive actions; higher level tasks can be implemented by combining skills, and do
not require expert knowledge. The different layers of the architecture implemented with
LightRocks can then be compiled in a code using a single Generic Action Component,
which interfaces eventually with the API of the robot.

2.4 Implementing skills

Designing skills is supposed to be accessible to any user. A common drawback is,
however, the need for laborious and complex parametrization, resulting in a manual
tuning phase that is deemed necessary to find satisfactory parameters for a specific
skill [61,60]. Such task can be made easier by a representation language [43]. Automated
approaches have been used, like Reinforcement Learning (RL), for acquiring new motor
skills from demonstration [8]. RL is employed to learn motor primitives that represent
a skill [7,2]. In [49], supervised learning by demonstration is used in combination with
dynamic movement primitives to learn bipedal walking in simulation.

In the field of Industry 4.0, the need for adaptation of robotic platforms for a wider
product variation has raised the attention on skill-based architecture [2]. To facilitate
different products manufacturing and consequently providing decreasing production
costs, “flexibility” is searched in robotic applications, ideally embedding decisional ca-
pacities, and the ability to adapt to different tasks. Fully autonomous robots are then
supposed to make their own decisions to perform tasks in constantly changeable envi-
ronments without operator’s interaction [7,72,51].

The Human-Robot Interaction (HRI) is central in many skills related works [53,
63], because of the need to overcome the requirement of an expert supervision to
reprogram robots to accomplish certain tasks interacting with humans [70]. Functional
User Interfaces allow skills to be easily concatenated, through the use of simple task-
level programming methods, to program a variety of tasks that can then be deployed
and executed by the autonomous robot.

2.5 Skill verification

One challenge when deploying skill-based architectures is to guarantee properties re-
garding the execution of the skills. Two main approaches may be cited: static verifica-
tion, focusing on verifying properties on the model of the skill, and dynamic verification
to check properties when the system is running. Static verification and testing have
been widely studied, but there are few works on run-time verification, i.e. mechanisms
able to detect properties violation and engage recovery mechanisms to keep the system
in an acceptable state. This is part of the overall concept of fault tolerance coming
from the dependability community [4]. Many works are focusing on the functional level
of architectures, to implement fault detection and recovery, but few are focusing on the
skill level. Some previous examples, like the work in [55], was actually running run-time
verification at the skill level, but without any formalization of the skill concept.

6 Alexandre Albore et al.

On the contrary, authors of [40] focused on safety of the skill-based architec-
ture adding a monitoring model, such that the safe execution of each task is guaran-
teed by adding a new safety skill to each task. The role of such skill is to monitor, and
eventually stop the task execution if a faulty behavior is detected in any of the skills
composing the task. Each skill has then the capacity of triggering an alarm to a mon-
itoring process that runs continuously in parallel with the execution of the functional
primitives of the skill. Pre and post conditions skill checks were also introduced by [53]
to identify faults at execution-time.

2.6 Conclusion

As discussed, several skills-based formalism and architectures exist in robotics, as the
approach is not entirely novel and is gaining momentum in robotic applications. How-
ever, a complete development framework that allows to describe complex interactions
between skills and resources, data, and the environment, is rare to find. In this work,
we propose a development process for skills-based robotic architecture using a novel
skill-specification language, from which it is possible to generate the code for platform-
specific implementation. This allows users that are not expert programmers to adapt
their implementation by modifying the generated code from a high level description of
the skills and their relational model. In that way, specific low-level functions can be
composed in a more complex framework using skills. The verification-oriented approach
we tackle also ensures that some basic execution properties of the skills are guaranteed:
skills execution can then be verified, in order to detect that no undesired states would
be visited at run-time. Dynamic verification is performed on the transition function of
the skills, as it is expressed by the robot language described in this paper.

3 Skills-Based Development Process Overview

3.1 Contribution

This paper presents a development process for dependable robotic architectures that is
settled on the concepts of skills. These skills, grouped into skillsets, are on one side an
abstraction of the functional architecture of robotic systems, and therefore give to the
decision layer a high-level description of nominal executions and failure modes of the
system, necessary to define higher level behaviors. On the other side, skills can act as
controllers of the functional layer, by orchestrating the use of sensors/processing/ac-
tuators while satisfying properties. In the development process proposed, the central
element is the skillset. The objective of this development process is to define the skill-
layer of an autonomous robot, to help the development by generating components that
manage the skills execution, and to propose verification and analysis tools that make
the resulting architecture trustworthy in its management of failure conditions.

The development process is presented in Fig. 2. The first step of the process consists
in defining the skillsets of our robotic system. Skillsets are mainly composed of resources
and skills, both formally specified. A Domain Specific Language (DSL) then allows

Skill-based design of dependable robotic architectures 7

Ready Precondition Validate Start Running Interrupting

preconditioni

failure
validate
failure

start
failure

invarianti
failure

interruptedsuccessi failurei

request validate()=true start_hook()

validate()=falseguardi

failure
start effect
failure

guardi

failure

interrupt

success_i() failure_i() interrupted()

invarianti_hook()

interrupt_hook()successi_hook() failurei_hook()

: skillset extern transition

: skill functional transition

: skillset internal transition

: skill hook transition

skillset model

SMT
Model-Checking

Ready Precondition Validate Start Running Interrupting

preconditioni

failure
validate
failure

start
failure

invarianti
failure

interruptedsuccessi failurei

request validate()=true start_hook()

validate()=falseguardi

failure
start effect
failure

guardi

failure

interrupt

success_i() failure_i() interrupted()

invarianti_hook()

interrupt_hook()successi_hook() failurei_hook()

: skillset extern transition

: skill functional transition

: skillset internal transition

: skill hook transition

skillset
impl.

skillset manager
functional layer

decision layer

skill fault model

embedded architecture

4

5

7

6

Fig. 2 Overview of the proposed development process. Legend: double links: model or code
generation; dashed links: manual modelling or updates; plain links: layer interactions.

to specialize these resources and skills for a specific system. The skillsets elements,
formalization, and the DSL, are presented in Section 4.

The next step of the process is to verify the correctness of the skillset models
specified by the developer. The model written using the DSL and the semantics of
skillsets are translated into a Satisfaction Modulo Theory (SMT) problem, on which
the solver Z3 [47] is applied to check for inconsistencies. In case some inconsistencies are
raised, the general process calls for improving the skillset model to avoid inconsistent
behaviors. This verification step is presented in Section 5.

Once a correct model of a skillset is designed, the next step of the development
process is to generate an execution managing component. This component, called the
skillset manager, implements the execution semantics of the skills. It also provides a
standardized interface to trigger skill execution from a decision layer. Finally, the link
with the functional layer must be implemented by the user as a specific C++ class,
that extends the general skillset semantics. The part of the skillset manager that cor-
responds to a system specific code is called the skillset implementation. The resulting
skillset manager takes the form of a ROS2 node, managing the execution of the skillset
according to its semantics, making the link with the functional layer, and providing an
API to be controllable from the decision layer. The description of the skillset manager
is presented in Section 6.

Finally, as the skillset verification is only based on skillset models, we need an ex-
tra step to analyze the complete behavior of both the skillset and functional layers,
in order to check that the potential failure conditions expressed in the skillset model
actually cover (possibly unambiguously) the potential failures of the functional layer
or the robotic system itself. To do so, the next step of the development process follows
a Fault-Tree Analysis (FTA) methodology, in which the failure of each skill is analyzed

8 Alexandre Albore et al.

as an independent event. The top part of each fault tree directly comes from the skillset
models, by applying a specific pattern. The fault-tree is then manually extended by an-
alyzing the skillset implementation, the functional layer, and the robotic system. This
FTA can result in recommendations for updating either an existing skillset model or
skillset implementation to better manage possible failures. It can also be used during
the skillset conception process itself, to help to identify the different success/failure
termination modes and the corresponding termination conditions. This FTA step is
further described in Section 7.

The work presented here has been partly published in the following papers:

– in [41], we proposed a first version of the skillset definition language;
– in [1], we mainly described how to use skillset models to implement a robust decision

layer using Behavior Trees (BTs) for a UAV application;
– in [45], we presented the fault tree analysis of skill-based architectures.

The present paper improves these contributions to the following points:

– a new version of the skillset description language is presented, and the execution
semantics of skillsets is detailed;

– the verification of skillset models is a new contribution;
– all the steps are presented in a unified manner as a complete development process

for autonomous and dependable robotic systems.

3.2 BVLOS Infrastructure Inspection

In order to illustrate the development process, we use, in the next sections, a BVLOS
Infrastructure Inspection example. This use case describes the inspection of a building
with a UAV. The inspection is executed by turning all around the building in a BVLOS
scenario (UAV Beyond the Visual Line of Sight of the safety telepilot). Even if the
flight plan is executed automatically, the aerial regulation requires that the safety
telepilot can take back manual control at any moment, which assumes permanent video
feedback. This feature is provided by a stream skill which adjusts the video compression
rate to guarantee a minimum frame rate and a minimum image quality criteria. During
the inspection, we assume that the UAV travels through different communication zones
featuring more or less degraded bandwidth, until entering a critical bandwidth zone
(i.e., for which the frame rate criteria cannot be respected anymore). The implemented
architecture must then be able to cope with such a situation. Also, to fulfill aerial
regulations, some evidences on the dependability of the UAV architecture must be
provided. The application of the several steps of the development process proposed in
this paper is presented in Section 8.

4 Skills Modeling

The modeling relies on a language that we want to be unambiguous and that allows
describing the capabilities of different robots. It is called robot-language. This language
supports the modeling, the various analyses, and the generation of the code that is
then embedded and deployed on different robots. It is important to notice that the
runtime semantics of a skillset relies on three distinct elements: its model defined using

Skill-based design of dependable robotic architectures 9

robot-language; its functional definition (the skillset implementation) implemented by
C++ code placed in specific locations (called hook), and its use by the decision layer
which produces (so-called external) requests on the skillset.

4.1 Skillset

A skillset, as the name suggests, represents the different capabilities of a robot and the
accessible data and resources it uses. A skillset has a name and contains a set of data
(denoted by D), a set of resources (denoted by R), a set of events (denoted by V), and
a set of skills (denoted by S). Listing 3 shows the definition pattern of a skillset and
its different elements.

sk i l l s e t uav {
data { ... } // s k i l l s e t data d e f i n i t i o n
resource { ... } // s k i l l s e t r e s ou r c e s d e f i n i t i o n
event { ... } // s k i l l s e t events d e f i n i t i o n
s k i l l { ... } // s k i l l s e t s k i l l s d e f i n i t i o n

}

Fig. 3 Skillset robot-language elements.
A skillset definition can contain: data, resources, events and skills.

In the remainder of this section, we will use the model of the UAV performing the
mission described in Section 3.2 to illustrate these different elements of a skillset.

4.2 Skillset Data

Each skillset has data that represents the data it owns and makes available to other
elements of the architecture. This data is characterized by a name and a type, and may
have a period. The data can be retrieved by three different means: (i) when one of the
data is modified within the skillset, it is then automatically published; (ii) by queries;
(iii) periodically if the period is specified in the robot-language model; in that case, the
period is specified in seconds. In the example of Listing 4, all the data are published
at each modification and on request.

data {
batte ry : Battery
po s i t i o n : GeoPoint period 1.0
home : GeoPoint

}

Fig. 4 Skillset robot-language data definition example.
The UAV skillset has three pieces of data that it makes available to its users: its current position
(position), its home position (homepoint), and its battery level (battery). In this model, only
the current position is published periodically, every second.

10 Alexandre Albore et al.

4.3 Skillset Resource

As the name suggests, resource are intended to represent resources, whether they
are hardware (e.g. sensors) or software/conceptual (e.g. authority). Using the robot-
language specification, a resource is a state-machine defined by a name, an initial state,
and a set of transitions between states. Listing 5 shows the definition of the UAV
resources. The resource is an important concept of the execution model of the skillset
architecture because it allows specifying the conditions of operation, and the impact of
the robots’ actions on the system. Consequently, and we will detail it later, resources
are used in the preconditions, invariant, and different effects of the robots’ skills. The
state of the different resources is both automatically published at each modification of
the internal state of the skillset and also on request.

resource {
author i ty {

state { Free P i l o t Software }
i n i t i a l P i l o t
transition {

Free -> Software
Free -> P i l o t
Software -> Free
Software -> P i l o t
P i l o t -> Free

}
}
f l i g h t_s t a t u s {

state { NotReady OnGround InAir }
i n i t i a l NotReady
transition a l l

}
motion {

state { Ava i l ab l e Used }
i n i t i a l Ava i l ab l e
transition a l l

}
bat te ry {

state { Good Low C r i t i c a l }
i n i t i a l Good
transition {

Good -> Low
Good -> C r i t i c a l
Low -> C r i t i c a l

}
}
...

Fig. 5 Skillset robot-language resource definition example.
The UAV has different resources. The authority resource indicates which entity can interact
with the UAV. The pilot can regain control of the UAV at any time. However, the UAV can
only regain control if the authority is Free. Resource flight_status indicates the status of the
UAV.

Each resource r ∈ R is composed of a list of n states Sr =
{
Sr
0 . . . Sr

n−1

}
(with

Sr
0 the initial state) and a list of transitions T r ⊂ (Sr × Sr). By convenience, we also

Skill-based design of dependable robotic architectures 11

use the following functional notations: states(r) = Sr, transitions(r) = T r and for
each transition t ∈ T r, src(t) represents the source state of the transition and dst(t)
its destination.

4.3.1 Resource Guard

A resource guard G is a logic formula on the state of the resources. The guard is used
in the events, the preconditions, and the invariants of the skills, and is defined in the
following equation:

G := true | false | r == Sr
i | r != Sr

i | not G | G and G | G or G (1)

eval() is the evaluation function of the guard formula on the current state of the
system, and is defined as follows:

eval(true) ≡ ⊤
eval(false) ≡ ⊥
eval(r == s) ≡ iff state(r) = s

eval(r != s) ≡ iff state(r) ̸= s

eval(not x) ≡ iff eval(x) = ⊥
eval(x and y) ≡ iff eval(x) ∧ eval(y)

eval(x or y) ≡ iff eval(x) ∨ eval(y) (2)

where state(r) represents the current state of resource r.

4.3.2 Resource Arcs and Effects

A resource effect aims to change the state of a specific resource. It is defined by the
name of the resource and its next state, and is called an arc:

A := r → Sr
i (3)

Note that the current state of the resource is not specified.
An effect is a set of arcs: E = {a ∈ A}. The effects are used in the events and the

skills (if a precondition fails, at start, if an invariant fails, and to terminate). In order
to ease the reading, we defined for each arc a ∈ A the functional notations: resource(a)
the corresponding resource and next(a) the next state of the arc. An effect is valid if
and only if it contains at most one arc for each resource, i.e.:

∀a1,a2∈A (resource(a1) = resource(a2)) =⇒ (a1 = a2) (4)

In the robot-language specification, our tool ensures that all effects are valid. It is
important to notice that even if an effect is validated, it is not guaranteed to be
applied. Indeed, if there is no transition from the current state of the resource to the
next state, then the effect is impossible. The function check(e) checks if an effect e ∈ E
is possible, and is defined as follows:

check(e) ≡ ∀a∈e∃t∈T r | (src(t) = state(r)) ∧ (dst(t) = next(a))

with r = resource(a) (5)

12 Alexandre Albore et al.

4.4 Skillset Event

The purpose of events is to enable state changes on one or more resources, from outside
the skillset manager. An event is defined by its name, a guard (optional), the effects

(optional), and a hook. The guard and the effect are defined in the robot-language
specification. The event hook is a piece of code defined by the developer of the skillset.
The result of an event can be success, guard_failure if the guard is not satisfied when
the event is called, or effets_failure if the effects cannot be applied. Listing 6 shows
the model of event take_authority.

event {
take_author ity {

guard author i ty != P i l o t
ef fect author i ty -> P i l o t

}
...

Fig. 6 Skillset robot-language event definition example.
This effect aims to give the authority of the drone to the pilot if the pilot does not have it
already.

Algorithm 1 describes event processing. At first, the skillset is “locked” to ensure
the consistency of the inner elements of the skillset (data, resources, status, . . .). Then
the guard is evaluated, if the guard is satisfied then we check if the effects can be
applied. If they can all be applied, then the event hook is executed, and then the
effects are applied. It is important to notice that the event hook is applied only if the
guard is satisfied and all the effects are allowed. If at least one part of the effects is not
possible, none are applied to maintain consistency of the system and the correctness
of the specification with the real execution. The invariant_loop() function aims to
propagate the effects into the running skills in a deterministic way and will be detailed
later in Section 4.5.

4.5 Skillset Skill

The robot-language allows skills to be defined using the following elements:

– inputs are used in the functional algorithm of the skill. Each input is defined as a
data and thus has a name and a type.

– outputs are data produced at the end of the execution of the skill.
– preconditions are used to check if the skill can start its execution properly. Each

skill can have zero, one, or more preconditions.
– start is used to define some effects on the resources of the skillset before starting.
– invariant is used to specify mandatory properties to the execution of the skill. If

at least one invariant is violated, then the skill is stopped.
– progress is used to monitor the execution of the skill. It produces monitoring data

periodically during the execution of the skill.
– interrupt is used to specify the effects applied after the skill is interrupted. Any

skill can be interrupted.

Skill-based design of dependable robotic architectures 13

Algorithm 1: Event algorithm
Input: guard, effects, hook
Output: result
begin

lock_skillset()
if eval(guard) then

if check(effects) then
hook()
apply(effects)
invariants_loop()
result ← success

else
result ← effects_failure

end
else

result ← guard_failure
end
unlock_skillset()
return result

end

– success is used to specify the different execution success states of the skill and
their corresponding effects on the resources after its completion.

– failure is used to specify the different execution failure states of the skill and their
corresponding effects on the resources after its completion.

– postconditions are used to specify the states of the resources at the end of the
execution of the skill. Contrary to the effects, postconditions is a resource formula
and the real effect is done by the functional layer. Invariants, success, and failure
states can have postconditions.

The internal behavior of a skill follows the state-machine depicted in Fig. 7. When
a skill is called then the first step is to check each precondition, if one fails then the skill
stops and returns an error, if all the preconditions are satisfied then the skill continues
its internal state-machine to the validation step. The validation step consists in run-
ning the validation hook. If the validation hook fails, then the request is terminated,
otherwise, the skill continues its internal state-machine and the effects specified in the
start block proceed by checking if all its effects are possible. If at least one effect is
not possible, then the skill returns a "start error". If all are possible, then they are
applied. Once the start is executed without error, the skill is running and then the
invariant loop function is called to check all the invariants of the skillset. The invariant
loop can lead other skills to terminate with an invariant failure, and the effects of those
invariant failures can also imply other invariant failures, and so on. The invariant loop
terminates because a stopped skill cannot re-enter in the running state. While running,
the skill can finish its execution with an invariant failure or terminate its execution:
by being interrupted or can succeed or fail. The interrupt is an external request as the
start of the skill is. The success or the failure of a skill is an internal call from the
functional part of the skillset that also specifies the success (resp. failure) state.

Moreover, each skill also has several hooks. Each hook is linked to a specific element
of the complete behavior of the skill execution:

14 Alexandre Albore et al.

Ready Precondition Validate Start Running Interrupting

preconditioni

failure
validate
failure

start
failure

invarianti
failure

interruptedsuccessi failurei

request validate()=true start_hook()

validate()=falseguardi

failure
start effect
failure

guardi

failure

interrupt

success_i() failure_i() interrupted()

invarianti_hook()

interrupt_hook()successi_hook() failurei_hook()

: skillset extern transition

: skill functional transition

: skillset internal transition

: skill hook transition

Fig. 7 Skill state-machine.
In this figure, the gray rounded rectangles represent the internal states of the skill state
machine (precondition, validate, start). The white rounded rectangles represent the observable
internal states of the skill. The rectangles represent the output states (red for failures, and
green for success).
The orange arrows represent requests from outside the skill: start or interrupt the skill. The
blue arrows represent the different hook calls. The purple arrows represent the functional calls
that interact with the skill. Note that to terminates a skill, the functional part must explicitly
call the C++ function corresponding to the desired output state.

– validate hook is used to define whether a skill request can start. This hook is only
related to the functional elements of the skill and the inputs of the request (i.e. not
the resources).

– start hook is executed when the skill is started.
– invariant hooks are executed if an invariant is violated. Each invariant has its own

hook.
– progress hook is executed when the skill is running at the period of the progress.

This hook also aims to produce the outputs specified in the progress block (if any).
– interrupt hook is executed when the skill is interrupted.
– success hook is executed at the end of the execution of the skill if it terminates

with a success. Each success state has its own hook.
– failure hook is executed at the end of the execution of the skill if it terminates

with a failure. Each failure state has its own hook.

The execution of a skill is described in Algorithm 2. It follows the state machine
presented earlier. First, when a skill is called, it checks if it is already running. If it is,
it instantly returns an error. If the skill is available, then it starts the evaluation of its
state-machine step by step: evaluation of preconditions, start, invariant. If those steps
succeed, then the skill is running. It is important to notice that the effects are either
all applied or none is applied. Moreover, the corresponding hooks are executed only if
all the effects have been applied.

The invariant_loop() function consists in checking the invariants of all skills in
the skillset. If at least one invariant failed, the corresponding skill is stopped and the

Skill-based design of dependable robotic architectures 15

Algorithm 2: Skill main algorithm
Input: inputs, validate_hook, preconditions, start
Output: result
begin

lock_skillset()
if is_running then

result ← already_running
unlock_skillset()
return result

end
foreach precond ∈ preconditions do

if not eval(precond.guard) then
result ← precondition_failure
unlock_skillset()
return result

end
end
if not validate_hook(inputs) then

result ← validate_failure
unlock_skillset()
return result

end
if not check(start.effects) then

result ← start_failure
unlock_skillset()
return result

end
start.hook()
apply(start.effects)
is_running ← true
invariants_loop()
unlock_skillset()

end

corresponding effects are applied and its hook is executed. Because the invariant failure
of a skill can have effects, it can invalidate the invariants of another running skill, and
so on. It is important to notice that the invariant loop function is executed inside
the skillset lock. Indeed, having the invariant loop outside the lock could lead to a
configuration in which a skill can be seen as running with an invariant not satisfied.

4.5.1 Inputs and outputs

The skill inputs and outputs are defined with a name and a type, like the data are.
Their types must have been defined. Figure 8 shows the inputs and the outputs of the
takeoff skill.

4.5.2 Preconditions and start

A skill can have several preconditions and only one start block. Each precondition is
defined by its name, a guard, and can have effects. The start block simply has effects.
Figure 9 shows the preconditions and the start of the takeoff skill.

16 Alexandre Albore et al.

s k i l l t a k e o f f {
input {

he ight : Float // [m] v a l i d a t e can f a i l i f h>h_geo_fence
speed : Float // [m/ s] maximum ascending v e l o c i t y

}
output {

he ight : Float // [m] v a l i d a t e can f a i l i f h>h_geo_fence
}

Fig. 8 Robot-language Skill inputs and outputs definitions.
The takeoff skill has two inputs: the altitude to be reached and the maximum ascent speed.
It also has an output: the altitude reached at the end of the take off.

precondition {
has_authority : author i ty == Software
on_ground : f l i g h t_s t a t u s == OnGround
motion_avail : motion == Ava i l ab l e
battery_good : bat te ry == Good

}
start motion -> Used

Fig. 9 Robot-language skill preconditions and start definition for the skill takeoff.
To take off, the drone must (preconditions): have authority, be on the ground, and no other
skill control the drone (motion is Available). When the take-off begins (start effect), the skill
takes control of the drone.

4.5.3 Invariant

Each skill invariant is defined by a name, a guard and its effects applied when the
invariant is violated. Figure 10 shows the invariant definition of the takeoff skill.

invariant {
in_contro l {

guard motion == Used
}
has_authority {

guard author i ty == Software
ef fect motion -> Ava i l ab l e

}
batte ry {

guard batte ry != C r i t i c a l
ef fect motion -> Ava i l ab l e

}
}

Fig. 10 Robot-language skill invariant definition for the skill takeoff.
During the entire take off phase, the drone must maintain authority and motion control. If
either the authority or the motion control is loss, then motion control is set to Available.

Skill-based design of dependable robotic architectures 17

4.5.4 Running

While running, it may be useful to get information about the completion of the skill.
This is achieved with the progress block, which has a period in seconds and outputs.
During the execution, the skill will produce the specified outputs with the rate accord-
ing to the period. Figure 11 show the progress and update definitions of the takeoff
skill.

progress {
period 1.0
output he ight : Float

}

Fig. 11 Robot-language skill progress definition for the skill takeoff.
During its execution, the takeoff skill periodically, every second, publishes its current altitude.

4.5.5 Terminate

While running, a skill can finish its execution with an invariant failure or can terminate
its execution by being interrupted, or can succeed or can fail. A skill can succeed (resp.
fail) in different states, and each state has a specific hook and effects. Figure 12 shows
the interrupt definition, the unique success definition, and the different failures of the
takeoff skill. Sometimes a skill cannot be interrupted instantaneously. The purpose of
the parameter interrupting is to specify the fact that the interrupt is instantaneous
(set to false) or can take time (set to true). In this case, while receiving the interrupt,
the skill switches to the "interrupting’ state and waits that the functional layer indi-
cates the interrupt completion (interrupted). The postconditions are properties that
represent the normal behavior of the skill. A postcondition can also be seen as part
of the specification for the functional layer. The evaluation of the postconditions is
returned at the end of the skill execution. Thus, if one fails, then the functional layer
can react properly.

4.6 Conclusion

In this section, we introduced the specification language robot-language. This language
allows the definition of skillsets that contain, among others, the available data, the
resources, the events, and the skills. This language is the cornerstone of both the
different verifications and the C++ code generation.

5 Skillset model Verification

In this section, we present the skillset model verification. The main objective is to
independently check the different elements of the skillset. We seek to show by this
verification that the different elements of the model are correctly defined. The notion
of resource is a cornerstone of the semantics of skills. Indeed, it constrains the guards,

18 Alexandre Albore et al.

interrupt {
interrupting true
ef fect motion -> Ava i l ab l e

}
success at_a l t i tude {

ef fect motion -> Ava i l ab l e
postcondition f l i g h t_s t a t u s == InAir

}
fa i lure {

grounded {
ef fect motion -> Ava i l ab l e
postcondition f l i g h t_s t a t u s == OnGround

}
emergency {

ef fect motion -> Ava i l ab l e
postcondition f l i g h t_s t a t u s == InAir

}
}

Fig. 12 Robot-language skill terminate definitions for the skill takeoff.
When the skill is interrupted, the motion control is released. The skill has a success state
(at_altitute) which, if reached, makes motion control available and indicates that the drone
is in the air. The takeoff skill has two failure states: one in which the drone is on the ground
and one in which it has begun its take off, but has failed to reach the requested altitude. The
different postconditions indicate the states of the resources, once the skill terminates.

the effects present in the events, and the skills and consequently impacts the whole
behavior of the skillset. Thus, the skillset model verification consists in checking that
the guards make sense, and checking that the effects are possible. It is important to note
that, even if these checks fail, the system will run without crashing and the execution
has a predictable and correctly defined behavior. But it is likely that this behavior is
not the desired one and can be associated with an “erroneous” specification.

5.1 Guard Verification

The first check is on the guards. We formally check that the guards make sense. That
is, they can be true or false. More precisely, since the guards relate to the state of the
resources, we seek to verify that there is at least one configuration of the resources in
which the logical formula of the guard is evaluated as true and at least one configuration
in which it is evaluated as false. The guards are present in the events, preconditions
and invariants of the skills.

To solve this problem, we use the Sat Modulo Theory formalism, as it allows us to
represent problems involving logical formulas and some structured data useful for our
modeling. Each resource is represented with a Sort DataType (Enum) which contains
all the states of the resource. The transitions of the state machine are represented
by a function that indicates whether there is a transition between two states. The
current state of each resource is translated by a corresponding spell constant. The
guard formulas are simply translated following the semantics given in Eq. (2). To check
if the guard holds, its corresponding constraint is added to the solver. Then we can
ask the solver if the system has a solution. If a solution exists, we can ask for the state

Skill-based design of dependable robotic architectures 19

of the variables and thus find the state of the resources that lead to the satisfaction of
the model.

5.1.1 Event

The method presented above is applied to the guard of each event, in order to deter-
mine whether it can be evaluated as true. Listing 13 highlights the SMT model of the
take_authority event previously defined in Listing 6.

(declare -datatypes () ((authority Free Software Pilot)))
(declare -const authority_current authority)
(assert (not (= authority_current Pilot)))

(check-sat)
; returns sat
(get-model)
; (define -fun authority_current () authority Free)
(eval authority_current)
; Free

Fig. 13 SMT-lib-2 model for take_authority event guard verification.
The first line is used to declare the resource ’authority’ and its states. The second line declares
the current state of the resource. The third one represents the guard constraint. Finally, the
last lines are used to call the solver and get the results. The comments (in green) show the
result of the evaluation.

5.1.2 Skill precondition and invariant

In the skills, the guards are present in the preconditions and invariants. However,
unlike those present in events, they are linked together. Indeed, the preconditions (resp.
invariants) are evaluated in the order of their declaration in the model. Consequently,
to test the usefulness of a precondition (resp. invariant), all the previous preconditions
(resp. invariant) must be satisfied. Thus, a guard of a precondition is useful if it can
be both true and false:

can-be-truei = (∀j∈1..i−1 guardj) ∧ guardi (6)

can-be-falsei = (∀j∈1..i−1 guardj) ∧ ¬guardi (7)

5.2 Effects Verification

The second check is on the effects. We have shown in the previous section that the
execution semantics of the specification language is well-defined, whether the effects
can be realized or not. However, in the general case, when effects are specified, it is
important that they are realized. Therefore, it is essential to determine whether effects
will always be realized or whether there are configurations in which they may fail.

To analyze the effects, we use the same method as for the guard study. We create
an SMT model of the resources, the guards, the effects, and using the solver, we look
for a counter-example that shows a configuration in which the analyzed effect can fail.

20 Alexandre Albore et al.

5.2.1 Event

The effect of an event can fail if there is a solution to the SMT problem in which the
guard is satisfied, and there is at least one arc of an effect that is not feasible.

event-effect-can-faili = guardi

∧ ∃r∈resources(Ei)¬ transition(current(r), next(r)) (8)

To illustrate effect failure detection, let’s consider the take_authority event we
defined earlier. We will voluntarily introduce an error in the effects by slightly modifying
the state machine of the “authority” resource by no longer allowing the pilot to take
control when the drone has the commands. Listing 14 shows the new state machine of
the resource.

resource {
author i ty {

state { P i l o t Free Software }
i n i t i a l P i l o t
transition {

Free -> Software
Free -> P i l o t
Software -> Free
P i l o t -> Free

}
}

Fig. 14 Robot-language skillset resource definition (incomplete).

Listing 15 shows the SMT model of the event effect failure check.
The function authority_transition represents the state-machine of resource author-

ity. In this example, the verification highlights an effect error. Indeed, if the resource
authority is Software, the effect cannot be applied because there is no transition from
the state Software to the state Pilot.

5.2.2 Skill

Precondition
In order to study the failure of an effect of a precondition, we assume that all the
previous ones hold and that the current one doesn’t. We then check the precondition
effect by applying the same method used above for the events. The same principle is
applied to the invariants.

precondition-effect-can-faili = (∀j∈1..i−1 guardj) ∧ ¬ guardi

∧ ∃r∈resources(Ei)¬ transition(current(r), next(r)) (9)

Start
A start effect can fail only if all the preconditions are stratified and the effect fails.

start-effect-can-faili =
(
∀p∈preconditions guardp

)
∧ ∃r∈resources(Ei)¬ transition(current(r), next(r)) (10)

Skill-based design of dependable robotic architectures 21

; Resource res definition
(declare -datatypes () ((authority Free Software Pilot)))
(define -fun authority_transition ((x authority) (y authority)) Bool

(or (= x y)
(and (= x Free) (or (= y Software) (= y Pilot)))
(and (= x Software) (= y Free))
(and (= x Pilot) (= y Free))

)
)
(declare -const authority_current authority)
(declare -const authority_next authority)
; guard: authority != Pilot
(assert (not (= authority_current Pilot)))
; effect result: authority -> Pilot
(assert (= authority_next Pilot))
; no transition
(assert (not (authority_transition authority_current

authority_next)))

(check-sat)
; returns sat
(get-model)
; (define -fun authority_current () authority Software)
; (define -fun authority_next () authority Pilot)
(eval authority_current)
; Software

Fig. 15 SMT-lib-2 model for take_authority event effects verification.

Invariant
The error analysis of invariant effects is similar to that of preconditions. The effects of
an invariant can fail if and only if all invariants preceding it are satisfied and its guard
is false.

invariant-effect-can-faili = (∀j∈1..i−1 guardj) ∧ ¬ guardi

∧ ∃r∈resources(Ei)¬ transition(current(r), next(r)) (11)

Terminate
The error analysis of terminate effects follows the same principle as above. An effect
can fail if all invariants are satisfied and the effect fails.

terminate-effect-can-faili = (∀inv∈invariant guardinv) ∧ ¬ guardi

∧ ∃r∈resources(Ei)¬ transition(current(r), next(r)) (12)

5.3 Conclusion

In this section, we presented the skillset verification process. It allows checking if the
model defined with robot-language is well-defined. To achieve this goal, the tool checks
if the different guards of the event, the precondition, and the invariants are useful
(they can be either evaluated to be true or false). Moreover, the tool allows verifying
if the effects can always be applied (never fail). Those two formal verification steps are

22 Alexandre Albore et al.

important because if satisfied they highlight the fact that the model is correct and also
that the execution of the skillset will always satisfy its specification.

6 ROS2 Code Generation and Skill Implementation

The development process we propose comes with a code generation toolchain. This
toolchain translates a robot-language skillset model into a set of ROS2 packages. To
do this, it is necessary to make the abstract types defined in the model concrete; this
is done using a separate configuration file. We have chosen to distinguish the model
from the concrete types in order to be able to generate, for the same skillset, code for
possible different targets, in which the concrete types would be different. For instance,
the Battery data type of Listing 4 can be mapped to a unique floating point value
representing the remaining battery percentage, or to the full sensor_msgs/Battery
standard ROS2 state, without changing the semantics of the skillset model.

The code generator systematically produces two ROS2 packages for each skillset:
one for the interface messages and one for the main node of the skillset. These two
packages must not be modified by the user. Then, the user can also generate a spe-
cific package to implement the hooks of the skillset manager specifying the links with
the robot functional layer. A typical directory structure of the generated elements is
presented in Fig. 16. Each directory/package is presented below.

6.1 Interfaces

The communication between the decision layer and the skillset managers is imple-
mented through ROS2 topics, so the “interfaces” package contains only messages. Using
bare ROS2 topics (instead of the service or action layers) allows us to better configure
the quality of service regarding the desired execution semantics.

The messages in the package interfaces include both messages corresponding to the
data used by the skillset and the skills (data, input, output, progress, . . .), but also
all messages corresponding to the requests and responses of the data, the events and the
skills of the skillset. In Fig. 16, this package corresponds to the uav_skillset_interfaces
package.

6.2 Skillset package

The skillset package (uav_skillset in Fig. 16) contains an abstract ROS2 node pro-
vided as a C++ library. This node contains the various data specified in the robot-
language skillset model, as well as the resources. It declares all topics allowing the
dialogue with the skillset manager (from the decision layer) but also its introspection
(internal status of resources, data and skills). The generated code of the node imple-
ments the logic of the different elements present in the model (resource logic, skills
state machine, effects on resources, guard management, . . .) that have been described
in Section 4.

This node provides an “empty” and abstract (i.e., virtual in C++) implementation
of the different hooks of the model. These hooks will have to be completed later by the
developer to add the functional part useful for the execution of the final skillset.

Skill-based design of dependable robotic architectures 23

src

uav_skillset_interfaces

msg

DataBattery.msg

...

CMakeLists.txt

package.xml

uav_skillset

include

uav_skillset

Node.hpp

Resource.hpp

src

Node.cpp

...

CMakeLists.txt

package.xml

m600_skillset

include

m600_skillset

Node.hpp

src

Node.cpp

CMakeLists.txt

package.xml

Fig. 16 Typical ROS2 directory structure of the m600 specialization of the uav skillset.

In addition, this node has various methods that allow the functional part (inheriting
node) to interact with the skillset internally, i.e. without going through the topics.
These methods are declared "protected" to restrict their use to the realization of the
final node. These methods allow, for example, a skill to be completed successfully or
unsuccessfully.

6.3 Project package

The code generation toolchain also allows generating a ROS2 "project" package for the
final implementation of the skillset (the m600_skillset in Fig. 16). In this case, a ROS2
node that inherits from the abstract node of the skillset is generated. It is of course

24 Alexandre Albore et al.

possible to generate different project packages for the same skillset. The developer
must then add the C++ code corresponding to the functional part in the different hooks
defined as abstract in the parent skillset node.

7 Analysis of the Skill Layer Fault Tolerance

As presented in Fig. 7, the skill model (including the state-machine) is built around a
set of detection mechanisms (validation of inputs, preconditions, invariants, etc.), that
may lead to failed states (interrupted, failure, etc.). However, to be able to specify
and design these detection mechanisms and failure states for each skill, we propose in
this section a process based on a skill fault model. First a generic skill fault model is
proposed using fault trees, then an analysis process using this fault model is proposed.
As an illustration, this process will be applied to skill takeoff in Section 8.5.

7.1 Skill Fault Model

In this subsection, we propose a generic skill fault model. This model will help the
designers to identify errors leading to the skill failure, error detection means, and
recovery actions (actions to keep the system in an acceptable state regarding high level
objectives, e.g. safety or mission).

This skill fault model is based on fault tree analysis (FTA) [17]. FTA is a well-known
risk analysis technique, used for years in many domains, from nuclear power plants to
aeronautics. It is a top-down approach with a graphical representation as in Fig. 17,
starting on the top with an undesirable event called the top event, and then determining
how this top event may be caused by individual or combined lower level failures. In
FTA, errors from different domains may be combined (e.g., software and hardware
errors). Logical relations between them are represented by logic symbols (AND and
OR gates). In a fault tree, the top event is a hazard that must have been foreseen
and thus identified previously. The leaves of the fault tree are called basic events, and
all events between the top event and the leaves are called intermediate events. Each
intermediate or basic event can be interpreted as an error from the overall system
viewpoint. We apply this representation by considering skill failures as the top events
of our FTA.

Based on the concepts of skill model and skill implementation described in the
previous sections, we propose to decompose the top event corresponding to the skill
failure as depicted in Fig. 17.

This generic tree considers that a skill may fail if:

– it cannot be started (node P002) due to validation failure (invalid inputs, unre-
sponsive functional layer, etc.) (node P010) or resource precondition issues (node
P008);

– it is started, but no effect is observed (node P007); this error must then be detailed
by the designer based on the relation between each skill and the functional layer;

– the skill execution is interrupted (node P004), either due to the violation of resource
invariants (node P012) or to external conditions (node P020), for which we propose
standard errors, linked to elements of the functional layer (nodes E024, E025 and
E026);

Skill-based design of dependable robotic architectures 25

Fig. 17 Skill Fault Model: Pxxx represent fault tree nodes linked to skill layer, Exxx represent
fault tree nodes linked to functional layer. DMi and FSi are respectively Detection Mechanisms
and Failure States. Normal font DM/FS are supposed to be managed in the skill state-machine
(e.g., FS1 corresponds to validate failure state of the skill state machine). Bold DM/FS are
supposed to be managed either in the skill implementation (e.g., DM2 has to be implemented
in the validate hook) or in the skill model (e.g., FS4 has to be described as result mode in the
skill model).

– the skill achieves with an error (node P005), which can be caused by external
conditions (node P018), that again must be detailed by the designer, or by resource
constraints (node P014).

This fault tree pattern, also called our skill fault model, is aimed at being instan-
tiated according to the skill under investigation. Some branches can then be irrelevant
for a specific skill and removed from the resulting tree. The skill fault model instanti-
ated and specialized for a specific skill is called the skill fault tree. We can notice that
all the events in this pattern are combined with OR gates, which implies that if one of
the basic events happens, the whole skill execution will fail. Such an event is usually
called a minimal cut set of order one, and is an identified weakness of the system. Once
such a fault tree is determined, it may be then used for quantitative analysis (probabil-
ities calculation of the top event), but in our case we focus on the qualitative analysis,
i.e., reducing the minimal cut sets of order one. For that, Detection Mechanisms (DM)
and Failure States (FS) are assigned to some nodes (from DM1 to DM7 and FS1 to FS7).
Figure 17 exhibits for each DM/FS if it is supposed to be covered by the skill model
and by which mechanism (invariant, pre, etc.), or if it is supposed to be handled in
the skill implementation. For instance, FS1 is equivalent to state validate failure
of Fig. 7 and DM3 corresponds to the guard failure transition. This DM and FS are

26 Alexandre Albore et al.

to be considered as guidelines: depending on the actual skills or the actual considered
failures, they can be changed or placed elsewhere in the model.

7.2 Analysis Process

Based on the skill fault model presented in the previous section, we have defined an
analysis process that we systematically apply to all the skills contained in a skillset.
This analysis process is composed of several steps:

1. Listing of all the events that may impact correct skill execution,
2. Design of each skill fault tree based on the skill fault model pattern (Fig. 17),

using the following steps:
(a) Connection of each event listed in step 1 with each skill fault tree,
(b) Determination of all relative failure states (FSi) and potential detection mech-

anisms (DMi) for each branch of the fault tree;
3. Verification, for each skill, that the skill fault tree is consistent with the skill

model and skill implementation:
(a) Checking that each DMi and FSi is covered by the skill model or the skill

implementation
(b) Modification of the skill model or implementation to add or correct a missing

or incomplete DMi or FSi.

Step 3 of the proposed process is an iterative procedure which aims at modifying
the skill model and the skill implementation until all DMi and FSi identified by
FTA are covered. Classically a missing DMi can be fixed by 1) adding a resource and/or
a resource condition (e.g., in invariant or precondition) to the skill model, or 2)
adding in the skill implementation a call to a terminate function in reaction of some
events or data coming from the functional layer. A missing FSi will generally lead to
the addition of a new terminal state (and its appropriate management in the model
and in the implementation) or to the modification of resource conditions.

8 Application

This section describes how the skill approach has been implemented in a decisional
architecture of a drone. The verification activity (presented in section 5) and the fault
tolerance analysis (presented in section 7) are partially applied to this case study.

8.1 M600 Architecture and Field Experiments

The complete architecture including the drone functional layer, the skillset layer based
on the uav skillset model, and the decision layer based on Behavior Trees (BTs) has
been implemented on a DJI-M600 platform to perform the BVLOS inspection scenario.

In the experimental setup (Fig. 18), the drone follows a path around a metallic
farm composed nominally of three waypoints and should stop the mission if the video
stream to the telepilot is lost. A first reduction of the communication bandwidth is
artificially simulated when the drone enters the first area in orange. Then a drastic
diminution of the bandwidth is simulated when the drone enters the second area in

Skill-based design of dependable robotic architectures 27

Fig. 18 Illustration of the BVLOS experimental setup. The drone takes off from the home
point and has to inspect the building going to waypoints 1, 2, then 3. The communication
bandwidth with the safety pilot (located north of the building) decreases along the drone
trajectory.

red, implying to immediately stop the mission, start to descent at 3 m ground-height,
and then automatically land at the current position.

The skill-layer has been developed according to the process presented in this paper:
defining the uav skillset, generating the manager node and implementing the necessary
hooks, and analysing the fault tolerance of the skill- and functional- layers.

The decisional layer uses the BT’s modularity to describe both the nominal mission
and the degraded plan in case the primary mission objectives cannot be achieved. The
degraded plan is described as a subtree (a branch of the BT) that triggers an alternative
mission execution; in our case, a fallback subtree executing an emergency landing on
a safe zone.

In this architecture, we defined two skillsets: the uav skillset containing skills and
resources related to the motion of a UAV, and a communication skillset containing the
stream skill that monitors the quality of the communication link. The uav skillset, that
has been used to illustrate the process all along this paper, contains three data, six
resources, nine events, and five skills.

The realized experiment can be seen on the video available at: https://youtu.be/
mZxyl6v-tDw and whose a screenshot is presented in Fig. 19.

8.2 UAV Skillset Model

The UAV Skillset model has been designed considering the capabilities available on
the UAV used for this experimentation.

The provided data are:

– battery: figures the level of battery charge
– position: the current position of the UAV in WSG84 coordinate system
– home: the internal origin of the UAV in WSG84 coordinate system

https://youtu.be/mZxyl6v-tDw
https://youtu.be/mZxyl6v-tDw

28 Alexandre Albore et al.

Fig. 19 Screenshot of the experiment video. Top right: external view of the drone inspecting
the building. Top left: drone camera view. Middle left: map of the scenario with the drone
position. Bottom: timeline showing the active skills and their terminal states.

Each resource with its possible states is summarized here (enumeration of transitions
are not given for readability reasons):

– authority {Free, Pilot, Software}: represents the owner of the UAV control
authority

– home_status {Invalid, Valid}: indicates if the home point has been acquired
since the UAV startup

– flight_status {NotReady, OnGround, InAir}: the flight status
– motion {Available, Used}: states if the translation motion of the UAV is used by

a skill
– heading {Available, Used}: states if the heading motion of the UAV is used by

a skill
– battery {Good, Low, Critical}: provides qualitative state of the battery with

respect to its charge level and the UAV specifications

The events associated to the UAV resources are defined in the Listing 20. Last, the
skills of the UAV are partially presented by giving only the name of each skill and its
inputs if any:

– ask_authority: this skill attempts to acquire control authority over the UAV for
the other skills

– capture_home: set the current UAV position as its home point
– takeoff {input: (height, speed)}: requests UAV to take off at a given ground

altitude (height) with maximum velocity (speed)
– goto {input: (target, speed)}: requests UAV to reach a position (target) with

maximum velocity (speed)
– land: asks the UAV to land on site

Skill-based design of dependable robotic architectures 29

event {
author i ty_to_pi lot {

ef fect author i ty -> P i l o t
}
author ity_to_software {

ef fect author i ty -> Software
}

home_status_to_valid {
ef fect home_status -> Valid

}
home_status_to_invalid {

ef fect home_status -> I nva l i d
}

f l ight_status_to_not_ready {
ef fect f l i g h t_s t a t u s -> NotReady

}
fl ight_status_to_on_ground {

ef fect f l i g h t_s t a t u s -> OnGround
}
f l ight_status_to_in_air {

ef fect f l i g h t_s t a t u s -> InAir
}

battery_to_low {
guard batte ry == Good
ef fect batte ry -> Low

}
bat t e ry_to_cr i t i c a l {

ef fect batte ry -> C r i t i c a l
}

}

Fig. 20 Part of the UAV skillset model describing events.

8.3 A BVLOS application using Behavior Trees as decisional layer

The definition of high level behaviors, i.e. mission level specification, are implemented
in the decisional layer of our architecture.

The skillset implementation is agnostic with respect to the underlying formalism
of mission description languages. We propose in the following to use BTs to implement
the control architecture for high-level mission programming, i.e. the decision layer.
One of the central advantages of BTs is their modularity, which favors their reusability
between different missions. In that way, as subtrees of BTs are still BTs, it is easy to
adapt missions or to simply compose already implemented behaviors guaranteeing the
same degree of robustness of the implemented task to the new one [15]. Moreover, this
very same modularity allows us to describe mission elements while maintaining the
flexibility we are aiming at for mission reconfiguration in case of failure.

A BT structure is a directed tree where inner nodes can encode different types of
execution models (sequential, parallel, etc.), while leaf nodes can be conditions, calcu-
lations, or actions. The BT breaks down the complex task of coding a robotic mission
into smaller, independent behaviors, from the root node. While a subtree implements
and abstracts several actions and calculations, on a finer scale, the single behaviors

30 Alexandre Albore et al.

can represent single applications or calls to a function, like a single skill execution, a
condition, a logical connective, etc. The leaf nodes execute some computation (calling
a skill or performing some calculation), and return their status (Running when the
execution is ongoing, Success or Failure). At each control loop (every periodic tick of
the BT), the tree structure is traversed from left to right, visiting in order each branch
of the tree, launching behaviors when needed, or just processing the return status of
every behavior. The return status is then progressed back towards the root node of
the tree, and modified according to the type of each node. BTs can represent chains
of elementary behaviors, where the state transitions are implicitly encoded in the tree
structure, instead of explicitly stated in transition tables as for FSM [50,16]. The skills,
on which our architecture is based, are encoded as single behaviors in the BT.

An action behavior is launched when its node is first visited, and its successive
execution monitored at every tick via its return status. The return status of an action
behavior depends on the result of the related skill. As the execution of the skills can
be made synchronous or asynchronous, it is when the skill results and the relative
behavior statuses are collected at the ticking of the BT that interruptions can occur.
Then, some branch execution can be inhibited by a guard, and other ones consequently
activated, possibly triggering a mission reconfiguration.

This transition model, implicitly encoded in the BT structure, ensures that BTs are
seen as highly reactive, meaning that more important behaviors interrupt less impor-
tant ones. This represents, together with their modularity, one of the main advantages
of BT-based implementations [32]. We take advantage of these properties to create
a full mission specification, where both nominal and fallback subtrees can coexist, in
order to perform failure management at execution time. The BT specification of the
inspection mission relying on a non-degraded communication of the UAV (in the nom-
inal case) or in an emergency landing when FPS criteria are not respected anymore is
illustrated in Fig. 21. After checking that the drone is not in air already, the takeoff
skill is called (leftmost subtree). The rightmost subtree executes stream and goto skills
in parallel, the latter following tick after tick the waypoints defined in the experimental
setup (Fig. 18). If a malfunction occurs when the stream skill is running (or during
the execution of goto), then the fallback rightmost subtree is executed, and runs the
land behavior instead of streaming, thus terminating the mission.

→

?

in_air →

ask authority takeoff

?

//

goto stream

land

Fig. 21 A (simplified) BT representing the inspection UAV mission.

Skill-based design of dependable robotic architectures 31

8.4 Analysing the skillset consistency

Once we designed the uav and communication skillset, we applied the model-checking
step on these models, as described in Section 5. This verification step can return in-
consistencies in the model, that lead to change or improve the design of the skillsets.

For instance, let’s consider the goto model presented in Listing 22. On this example,
the verification tool first checks if the preconditions can be satisfied or not. Then, it
checks whether the start effect can fail while the preconditions are satisfied. Those
checks return true.

s k i l l goto {
precondition {

has_authority : author i ty != P i l o t
in_air : f l i g h t_s t a t u s == InAir
moving_avail : motion == Ava i l ab l e
battery_good : bat te ry != C r i t i c a l

}
start motion -> Used
invariant {

in_contro l {
guard motion == Used

}
has_authority {

guard author i ty == Software
ef fect motion -> Ava i l ab l e

}
in_air {

guard f l i g h t_s t a t u s == InAir
}
batte ry {

guard batte ry != C r i t i c a l
ef fect motion -> Ava i l ab l e

}
}
interrupt {

interrupting true
ef fect motion -> Ava i l ab l e

}
success a r r i v ed {

ef fect motion -> Ava i l ab l e
}
fa i lure emergency {

ef fect motion -> Ava i l ab l e
}

}

Fig. 22 Model verification example.
The UAV skill goto uses the resource definition previously introduced in this paper. This skill
can be launched if the pilot doesn’t own the authority, the drone is not on the ground, and
the battery is charged enough, as it is specified in the preconditions. Once the skill starts, the
drone begins to move (cf. definition of start). The skill can keep running if and only if it owns
the authority and the drone is not stopped (cf. invariant). Once the goto skill terminates, the
motion authority is set to Available.

32 Alexandre Albore et al.

Then the tool checks if the skill can return an invariant failure just after being
started (i.e. without any external modification of the resources). More precisely, the
solver try to find an initial configuration of the system in which all the preconditions
are satisfied, start succeeds, and at least one invariant is not satisfied. In this case, the
solver has found a counter-example in which the initial configuration of the resources is:
authority==Free, flight_status==InAir, motion==Available, and battery==Good.
Indeed, in this configuration the preconditions are satisfied, the start effect can be
applied, but the invariant has_authority is false, leading to a systematic interruption
of the skill once started.

Based on this inconsistency result, we investigated two solutions to fix our model
of goto: the first one would be to change the precondition if we consider that the drone
must have the authority before moving (see Listing 23); the second would be that the
drone must take the authority (if not handled by the pilot) when starting to move (see
Listing 24). We decided to implement the first solution in our final model.

precondition {
has_authority : author i ty == Software
in_air : f l i g h t_s t a t u s == InAir
moving_avail : motion == Ava i l ab l e
battery_good : bat te ry != C r i t i c a l

Fig. 23 The drone must have the authority to start the goto skill.

start {
motion -> Used
author i ty -> Software

}

Fig. 24 The drone takes the authority when starting the goto skill.

8.5 FTA of skill takeoff

In this subsection, we illustrate how the fault management analysis (introduced in
Section 7) has been applied to the takeoff skill. We obtained the takeoff fault tree
given by Fig. 25 by adding all the considered hazardous event to the generic skill fault
model (Fig. 17).

To build this tree, we first applied Step (2a) of the analysis process: for each node of
the skill fault model, we analyzed which errors could lead to this failure and selected
some of them: battery failure (i.e., battery level too low), software errors, engine failure,
excessive payload, etc. Some errors can be linked to several nodes, and then appear
multiple times in the fault tree. For instance, when the UAV is on ground, a battery
failure leads to the impossibility to take off because thrust is insufficient (E010), while
during the flight, a battery failure yields to an alarm (on telepilot’s radio-command),
and the telepilot should take control back (E087).

Skill-based design of dependable robotic architectures 33

Once all errors were considered and added at relevant places in the fault tree, we
inspected the existing skill model and implementation and positioned the corresponding
DMi and FSi on the fault tree (Step (2b) of the analysis process). During this analysis,
we identified some inconsistencies of the skill or unmanaged events in the fault tree of
Fig. 25 (Step (3a)) and then we modified the skill model and/or skill implementation
to fix these inconsistencies (Step (3b)).

A first observation was that some considered errors can propagate up to the top of
the fault tree, i.e. lead to a skill failure, without being handled by a DM/FS mechanism.
From this observation, we identified missing detection mechanisms and failure states,
which are represented in yellow in Fig. 25. For most of them (the ones attached to
E088), we simply created an additional emergency failure state to give back authority
to telepilot as UAV’s dynamics are abnormal. But this also implied to implement the
corresponding DM. For example, drifting conditions (E089) are detected by tracking
the performance of the control law (in the functional layer), by a function of the skill
implementation (drifted) which checks that UAV’s position rests in a 2-meter radius
of the takeoff point and triggers FS7 (terminal state emergency) if needed.

Another observation was that some errors of different nature could lead to the same
failure state of the skill, but with different detection mechanisms. As an example, DM6
and DM7 initially yielded both to a same failure state: blocked. This situation may
make the failure mode ambiguous, and therefore make unclear the kind of reactions
the decisional layer should implement. Indeed, the behaviour to adopt should not be
the same if we are OnGround or not. These situations have been tackled by separating
these situations into two failures modes: grounded and emergency. The drone blocked
in the air during takeoff is considered an emergency situation that probably requires
the safety pilot to regain control. On the opposite, the grounded FS presents no risks
for the system, and the decision layer can decide how to react to this situation. These
modifications have resulted in the model presented in Listing 12.

Based on these modifications, the Takeoff fault tree has been updated iteratively,
and the same analysis (identify inconsistencies, making recommendations, modifying
the skill) has been performed again until we have a satisfying fault tree model.

9 Conclusion and Future Works

In this paper, we have presented a development process that guides the developer in
the design of an executive layer based on skill models, and in the assessment of the
dependability of these skills in relation with the functional layer of the robot.

The proposed development process is based on the following steps and tools:

1. we have proposed a DSL to specify skillsets, i.e. abstractions of the capabilities
achieved by the functional layer of the system; this DSL comes with a formal
execution semantics;

2. the skillset model can be verified by analysing its correctness using a model-checking
engine; this step ensures that the model is valid;

3. a generation toolchain allows generating ROS2 packages in which the developer
can implement specific hooks to link the skillset manager with the robot functional
layer;

4. finally, we have proposed a process based on fault trees, to assess whether fault
tolerance at the skills level is correctly implemented in relation with the functional
layer.

34 Alexandre Albore et al.

Fig. 25 Takeoff fault tree

Skill-based design of dependable robotic architectures 35

We have illustrated this process on an application involving an autonomous UAV per-
forming an inspection mission in BVLOS conditions. The language and the associated
tools for model-checking and code generation are available at:

https://onera-robot-skills.gitlab.io

Future works are two-fold. First, in order to improve the proposed process and the
assessment of the dependability of the architecture, we plan to integrate a testing step
in the process. To do so, we are currently investigating how we can take benefit of the
skillset model and the Fault-Tree Analysis of each skill to generate test cases that are
relevant to cover the fault tree.

Secondly, we aim at extending the analysis towards the decisional layer of the
architecture. In the present paper, we have shown a Behavior Tree implementation
of the decisional layer of our skill-based architecture. But the development process
illustrated in this paper is somehow agnostic of the underlying formalism used to
describe the mission of the robots. Given that, the verification process of the skill-
based architecture should be extended to the formal mission specification to guarantee
its correct execution, given the chaining of the skills, the resources allocated, and the
exogenous events.

References

1. Albore, A., Doose, D., Grand, C., Lesire, C., Manecy, A.: Skill-based architecture devel-
opment for online mission reconfiguration and failure management. In: 2021 IEEE/ACM
3rd International Workshop on Robotics Software Engineering (RoSE), pp. 47–54. IEEE
(2021)

2. Alcácer, V., Cruz-Machado, V.: Scanning the industry 4.0: A literature review on tech-
nologies for manufacturing systems. Engineering science and technology, an international
journal 22(3), 899–919 (2019)

3. Archibald, C., Petriu, E.: Skills-oriented robot programming. In: Proceedings of the In-
ternational Conference on Intelligent Autonomous Systems IAS-3, pp. 104–15 (1993)

4. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.E.: Basic Concepts and Taxonomy
of Dependable and Secure Computing. IEEE Transactions on Dependable and Secure
Computing 1(1), 11–33 (2004). DOI 10.1109/TDSC.2004.2

5. Banerjee, B.: Autonomous acquisition of behavior trees for robot control. In: 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3460–
3467. IEEE (2018)

6. Barbosa, A.S., Plentz, P.D., De Pieri, E.R.: A behavior tree designing tool for online eval-
uation. In: IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics
Society, pp. 537–542. IEEE (2020)

7. Ben-Ari, M., Mondada, F.: Robots and their applications. In: Elements of robotics, pp.
1–20. Springer (2018)

8. Björkelund, A., Edström, L., Haage, M., Malec, J., Nilsson, K., Nugues, P., Robertz, S.G.,
Störkle, D., Blomdell, A., Johansson, R., et al.: On the integration of skilled robot motions
for productivity in manufacturing. In: 2011 IEEE International Symposium on Assembly
and Manufacturing (ISAM), pp. 1–9. IEEE (2011)

9. Bøgh, S., Nielsen, O.S., Pedersen, M.R., Krüger, V., Madsen, O.: Does your robot have
skills? In: Proceedings of the 43rd international symposium on robotics. VDE Verlag
GMBH (2012)

10. Bohren, J., Cousins, S.: The SMACH high-level executive [ROS news]. IEEE Robotics &
Automation Magazine 17(4), 18–20 (2010)

11. Brooks, R.: A robust layered control system for a mobile robot. IEEE journal on robotics
and automation 2(1), 14–23 (1986)

12. Brooks, R.A.: Intelligence without representation. Artificial intelligence 47(1-3), 139–159
(1991)

https://onera-robot-skills.gitlab.io

36 Alexandre Albore et al.

13. Colledanchise, M., Almeida, D., Ögren, P.: Towards blended reactive planning and acting
using behavior trees. In: 2019 International Conference on Robotics and Automation
(ICRA), pp. 8839–8845. IEEE (2019)

14. Colledanchise, M., Marzinotto, A., Dimarogonas, D.V., Oegren, P.: The advantages of
using behavior trees in mult-robot systems. In: ISR. Munich, Germany (2016)

15. Colledanchise, M., Ögren, P.: How behavior trees modularize robustness and safety in
hybrid systems. In: IROS. Chicago, USA (2014)

16. Colledanchise, M., Ögren, P.: How behavior trees modularize hybrid control systems and
generalize sequential behavior compositions, the subsumption architecture, and decision
trees. IEEE Transactions on Robotics 33(2), 372–389 (2016)

17. Commission, I.E., et al.: Fault Tree Analysis (FTA). IEC 61025 (2006)
18. Crosby, M., Petrick, R.P., Rovida, F., Krueger, V.: Integrating mission and task planning

in an industrial robotics framework. In: Twenty-Seventh International Conference on
Automated Planning and Scheduling (2017)

19. Crosby, M., Rovida, F., Pedersen, M.R., Petrick, R.P., Krüger, V.: Planning for robots
with skills. In: 4th ICAPS Workshop on Planning and Robotics 2016, pp. 49–57. ICAPS
(2016)

20. Del Duchetto, F., Baxter, P., Hanheide, M.: Lindsey the tour guide robot-usage patterns in
a museum long-term deployment. In: 2019 28th IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN), pp. 1–8. IEEE (2019)

21. Deng, Z., Guan, H., Huang, R., Liang, H., Zhang, L., Zhang, J.: Combining model-based
q-learning with structural knowledge transfer for robot skill learning. IEEE Transactions
on Cognitive and Developmental Systems 11(1), 26–35 (2017)

22. Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and execution
monitoring framework for unmanned aircraft systems. Autonomous Agents and Multi-
Agent Systems 19(3), 332–377 (2009)

23. Fikes, R.E., Nilsson, N.J.: Strips: A new approach to the application of theorem proving
to problem solving. Artificial intelligence 2(3-4), 189–208 (1971)

24. Gao, Z., Wanyama, T., Singh, I., Gadhrri, A., Schmidt, R.: From Industry 4.0 to Robotics
4.0 - a conceptual framework for collaborative and intelligent robotic systems. Procedia
manufacturing 46, 591–599 (2020)

25. Ghzouli, R., Berger, T., Johnsen, E.B., Dragule, S., Wąsowski, A.: Behavior trees in action:
a study of robotics applications. In: Proceedings of the 13th ACM SIGPLAN International
Conference on Software Language Engineering, pp. 196–209 (2020)

26. Grudic, G.Z., Lawrence, P.D.: Human-to-robot skill transfer using the spore approxima-
tion. In: Proceedings of IEEE International Conference on Robotics and Automation,
vol. 4, pp. 2962–2967. IEEE (1996)

27. Guerin, K.R., Lea, C., Paxton, C., Hager, G.D.: A framework for end-user instruction of
a robot assistant for manufacturing. In: 2015 IEEE international conference on robotics
and automation (ICRA), pp. 6167–6174. IEEE (2015)

28. Guiochet, J., Machin, M., Waeselynck, H.: Safety-critical advanced robots: A survey.
Robotics and Autonomous Systems 94, 43–52 (2017)

29. Guo, M., Johansson, K.H., Dimarogonas, D.V.: Revising motion planning under linear
temporal logic specifications in partially known workspaces. In: 2013 IEEE International
Conference on Robotics and Automation, pp. 5025–5032. IEEE (2013)

30. Heinze, F., Klöckner, M., Wantia, N., Rossmann, J., Kuhlenkötter, B., Deuse, J.: Combin-
ing planning and simulation to create human robot cooperative processes with industrial
service robots. In: Applied Mechanics and Materials, vol. 840, pp. 91–98. Trans Tech Publ
(2016)

31. Ingrand, F., Ghallab, M.: Deliberation for autonomous robots: A survey. Artificial Intel-
ligence 247, 10–44 (2017). DOI https://doi.org/10.1016/j.artint.2014.11.003

32. Iovino, M., Scukins, E., Styrud, J., Ögren, P., Smith, C.: A survey of Behavior Trees in
Robotics and AI. preprint arXiv:2005.05842 (2020)

33. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and development.
Autonomous agents and multi-agent systems 1(1), 7–38 (1998)

34. Johannsmeier, L., Gerchow, M., Haddadin, S.: A framework for robot manipulation: Skill
formalism, meta learning and adaptive control. In: International Conference on Robotics
and Automation (ICRA), pp. 5844–5850. IEEE (2019)

35. Jones, S., Studley, M., Hauert, S., Winfield, A.: Evolving behaviour trees for swarm
robotics. In: Distributed Autonomous Robotic Systems, pp. 487–501. Springer (2018)

Skill-based design of dependable robotic architectures 37

36. Jones, S., Studley, M., Hauert, S., Winfield, A.F.T.: A two teraflop swarm. Frontiers in
Robotics and AI 5, 11 (2018)

37. Klöckner, A.: Interfacing behavior trees with the world using description logic. In: AIAA
Guidance, Navigation, and Control (GNC) Conference, p. 4636 (2013)

38. Konidaris, G.D.: Autonomous robot skill acquisition. University of Massachusetts Amherst
(2011)

39. Kruger, N., Piater, J., Worgotter, F., Geib, C., Petrick, R., Steedman, M., Asfour, T.,
Kraft, D., Hommel, B., Agostini, A., et al.: A formal definition of object-action complexes
and examples at different levels of the processing hierarchy. Computer and Information
Science pp. 1–39 (2009)

40. Leite, A., Pinto, A., Matos, A.: A safety monitoring model for a faulty mobile robot.
Robotics 7(3), 32 (2018)

41. Lesire, C., Doose, D., Grand, C.: Formalization of robot skills with descriptive and oper-
ational models. In: IROS. Las Vegas, NV, USA (virtual) (2020)

42. Li, J., Wang, J., Wang, S., Yang, C.: Human–robot skill transmission for mobile robot via
learning by demonstration. Neural Computing and Applications pp. 1–11 (2021)

43. Lopes, M., Santos-Victor, J.: A developmental roadmap for learning by imitation in robots.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 37(2), 308–
321 (2007)

44. Mayr, M., Chatzilygeroudis, K., Ahmad, F., Nardi, L., Krueger, V.: Learning of parameters
in behavior trees for movement skills. In: 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 7572–7579. IEEE (2021)

45. Medina, G.C., Guiochet, J., Lesire, C., Manecy, A.: A skill fault model for autonomous sys-
tems. In: IEEE/ACM International Workshop on Robotics Software Engineering (RoSE).
Pittsburgh, PA, USA (2022)

46. Menghi, C., Garcia, S., Pelliccione, P., Tumova, J.: Multi-robot LTL planning under un-
certainty. In: International Symposium on Formal Methods, pp. 399–417. Springer (2018)

47. Moura, L.d., Bjørner, N.: Z3: An efficient SMT solver. In: International conference on
Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer
(2008)

48. Nematollahi, I., Rosete-Beas, E., Röfer, A., Welschehold, T., Valada, A., Burgard, W.:
Robot skill adaptation via soft actor-critic gaussian mixture models. ICRA (2022)

49. Nikolakis, N., Maratos, V., Makris, S.: A cyber physical system (cps) approach for safe
human-robot collaboration in a shared workplace. Robotics and Computer-Integrated
Manufacturing 56, 233–243 (2019)

50. Ögren, P.: Increasing modularity of UAV control systems using computer game behavior
trees. In: AIAA GNC Conference. Minneapolis, MN, USA (2012)

51. Pane, Y., Mokhtari, V., Aertbeliën, E., De Schutter, J., Decré, W.: Autonomous runtime
composition of sensor-based skills using concurrent task planning. IEEE Robotics and
Automation Letters 6(4), 6481–6488 (2021)

52. Pedersen, M.R., Krüger, V.: Automated Planning of Industrial Logistics on a Skill-
equipped Robot. In: IROS Workshop on Task Planning for Intelligent Robots in Service
and Manufacturing. Hamburg, Germany (2015)

53. Pedersen, M.R., Nalpantidis, L., Andersen, R.S., Schou, C., Bogh, S., Krüger, V., Madsen,
O.: Robot skills for manufacturing: From concept to industrial deployment. Robotics and
Computer-Integrated Manufacturing 37, 282 – 291 (2016). DOI 10.1016/j.rcim.2015.04.
002

54. Pitonakova, L., Crowder, R., Bullock, S.: Behaviour-data relations modelling language
for multi-robot control algorithms. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 727–732. IEEE (2017)

55. Py, F., Ingrand, F.: Dependable execution control for autonomous robots. In: International
Conference on Intelligent Robots and Systems (IROS). Sendai, Japan (2004). DOI 10.
1109/IROS.2004.1389549

56. Rovida, F., Crosby, M., Holz, D., Polydoros, A.S., Großmann, B., Petrick, R., Krüger, V.:
Skiros—a skill-based robot control platform on top of ros. In: Robot operating system
(ROS), pp. 121–160. Springer (2017)

57. Rovida, F., Krüger, V.: Design and development of a software architecture for autonomous
mobile manipulators in industrial environments. In: IEEE International Conference on
Industrial Technology (ICIT), pp. 3288–3295. IEEE (2015)

58. Safronov, E., Colledanchise, M., Natale, L.: Task planning with belief behavior trees. In:
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
6870–6877. IEEE (2020)

38 Alexandre Albore et al.

59. Scheper, K.Y., Tijmons, S., de Visser, C.C., de Croon, G.C.: Behavior trees for evolutionary
robotics. Artificial life 22(1), 23–48 (2016)

60. Schou, C., Andersen, R.S., Chrysostomou, D., Bøgh, S., Madsen, O.: Skill-based instruc-
tion of collaborative robots in industrial settings. Robotics and Computer-Integrated
Manufacturing 53, 72–80 (2018). DOI 10.1016/j.rcim.2018.03.008

61. Schou, C., Damgaard, J.S., Bøgh, S., Madsen, O.: Human-robot interface for instructing
industrial tasks using kinesthetic teaching. In: IEEE ISR 2013, pp. 1–6. IEEE (2013)

62. Segura-Muros, J.Á., Fernández-Olivares, J.: Integration of an automated hierarchical task
planner in ros using behaviour trees. In: 2017 6th International Conference on Space
Mission Challenges for Information Technology (SMC-IT), pp. 20–25. IEEE (2017)

63. Steinmetz, F., Weitschat, R.: Skill parametrization approaches and skill architecture for
human-robot interaction. IEEE International Conference on Automation Science and
Engineering (CASE) (2016). DOI 10.1109/COASE.2016.7743419

64. Stenmark, M., Malec, J.: Knowledge-based industrial robotics. In: Twelfth Scandinavian
Conference on Artificial Intelligence, pp. 265–274. IOS Press (2013)

65. Stenmark, M., Malec, J.: Knowledge-based instruction of manipulation tasks for industrial
robotics. Robotics and Computer-Integrated Manufacturing 33, 56–67 (2015)

66. Thomas, U., Hirzinger, G., Rumpe, B., Schulze, C., Wortmann, A.: A new skill based robot
programming language using UML/P statecharts. In: IEEE International Conference on
Robotics and Automation, pp. 461–466. IEEE (2013)

67. Topp, E.A., Stenmark, M., Ganslandt, A., Svensson, A., Haage, M., Malec, J.: Ontology-
based knowledge representation for increased skill reusability in industrial robots. In:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
5672–5678. IEEE (2018)

68. Tuci, E., Alkilabi, M.H., Akanyeti, O.: Cooperative object transport in multi-robot sys-
tems: A review of the state-of-the-art. Frontiers in Robotics and AI 5, 59 (2018)

69. Tzafestas, S.G.: Mobile robot control and navigation: A global overview. Journal of Intel-
ligent & Robotic Systems 91(1), 35–58 (2018)

70. Villani, V., Pini, F., Leali, F., Secchi, C.: Survey on human–robot collaboration in in-
dustrial settings: Safety, intuitive interfaces and applications. Mechatronics 55, 248–266
(2018)

71. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The knowledge
engineering review 10(2), 115–152 (1995)

72. Zhou, H., Min, H., Lin, Y.: An autonomous task algorithm based on behavior trees for
robot. In: 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence
(CCHI), pp. 64–70. IEEE (2019)

73. Zhu, X.: Behavior tree design of intelligent behavior of Non-Player Character (NPC) based
on UNITY3D. Journal of Intelligent & Fuzzy Systems 37(5), 6071–6079 (2019)

74. Ziparo, V.A., Iocchi, L., Nardi, D., Palamara, P.F., Costelha, H.: Petri net plans: a formal
model for representation and execution of multi-robot plans. In: Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems-Volume 1,
pp. 79–86 (2008)

	Introduction
	Related Works
	Skills-Based Development Process Overview
	Skills Modeling
	Skillset model Verification
	ROS2 Code Generation and Skill Implementation
	Analysis of the Skill Layer Fault Tolerance
	Application
	Conclusion and Future Works

