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Abstract—Blackbox optimization refers to the situation where
no analytical knowledge about the problem is available be-
forehand, which is the case in a number of application fields,
e.g., multi-disciplinary design, simulation optimization. In this
context, the so-called Simultaneous Optimistic Optimization
(SOO) algorithm is a deterministic tree-based global optimizer
exposing theoretically provable performance guarantees under
mild conditions. In this paper, we consider the efficient shared-
memory parallelization of SOO on a high-end HPC architecture
with dozens of CPU cores. We thereby propose different strategies
based on eliciting the possible levels of parallelism underlying the
SOO algorithm. We show that the naive approach, performing
multiple evaluations of the blackbox function in parallel, does
not scale with the number of cores. By contrast, we show
that a parallel design based on the SOO-tree traversal is able
to provide substantial improvements in terms of scalability
and performance. We validate our strategies with a detailed
performance analysis on a compute server with two 64-core
processors, using a number of diverse benchmark functions with
both increasing dimensions and number of cores.

Index Terms—Parallel Optimization, Blackbox Optimization,
Global Optimization, Multi-Threading, Many-Core CPU

I. INTRODUCTION

Optimization problems are ubiquitous to countless modern
engineering and scientific applications and imply increasingly
sophisticated and compute intensive dedicated algorithms.
They can be classified into different categories depending on
different criteria such as their domain, their computational
complexity, the amount of information that can be made avail-
able for a given solver, etc. Generally speaking, in this work,
we are interested in tackling blackbox continuous optimization
problems while taking benefits from the increasingly available
parallel and HPC compute facilities.

More precisely, we assume given a function of n real-
valued variables, f : Rn Ñ R, modeling the optimization
problem. The goal is to compute a solution x P Rn, such
that fpxq is minimized (or maximized). The function f is
assumed to be blackbox, that is, nothing about the function f
can be assumed before hand, such as, its derivatives, or any
mathematical or structural information that might be used a
priori by a search process, such as, smoothness, convexity, etc.
In such a setting, a blackbox optimization algorithm can only
probe the function f for some input x, receives a response
fpxq which is the fitness value of solution x, and advances
the search accordingly. Blackbox optimization problems have
been extensively studied since they are of special interest in

a number of application fields, where no clear information
about the problem can be available. This is indeed the case in
engineering problems that undergo some complex models, or
some numerical simulation. For example, in aeronautic where
a simulation of the air flow around a vehicle to optimize aero-
dynamics is mandatory, in nuclear physics with the diffusion of
heat or particles in a vat to find optimal dimensions, in public
transportation where the traffic in a simulated city depends on
the behavior of stoplights, etc. For such problems, traditional
numerical gradient-based optimization is not applicable, and
different classes of blackbox optimization algorithms, also
referred to as derivative-free algorithms, were developed [1],
[2].

In this paper, we are specifically interested in the so-called
Simultaneous Optimistic Optimization (SOO) algorithm [3].
Our interest in the SOO algorithm stems from two facts.
Firstly, SOO is a global optimizer having well-established
theoretical background from the machine learning community,
and exposing the unique property of providing strong quality
guarantees under very mild conditions. Secondly, it is a
relatively simple algorithm which, like any ’exact’ search
algorithm, can benefit from the increasingly available HPC
compute resources. However, to the best of our knowledge,
there are no investigations on the effective parallelization of
SOO on high-end HPC servers, which is precisely the purpose
of this paper. Before going into further considerations, let us
first briefly discuss the working principles of SOO and the
benefits of leveraging it with high-performance computing.

The theoretical background of SOO was introduced in [3],
[4], and its practical relevancy studied in a number of works,
e.g., [5], [6]. SOO is a deterministic tree-based global opti-
mizer. In contrast to a local optimizer, which may be trapped in
locally optimum solutions, a global optimizer is able to search
for global (exact) optima. In particular, the SOO algorithm
provides the guarantee that the global minimum (or maximum)
can be deterministically approached to an arbitrarily small
constant. SOO is based on partitioning the problem domain (or
the search space) into sub-domains of smaller size, called cells.
As it will be detailed later, the different cells are maintained
using a tree, so that at each iteration, the algorithm consists
in traversing the tree and deciding which cells to divide. The
tree maintained by SOO has a global nature in the sense that
it progressively refines the knowledge about the whole search
space, and gradually explore all interesting regions (cells).



The design of SOO is inspired by the Bandit theory from
reinforcement learning, since the main question is to efficiently
decide which cells to expand in order to approach a high-
quality solution efficiently, and at the same time, to avoid being
trapped into locally optimum cells. This is actually known as
the exploration / exploitation dilemma. Due to its global search
ability, SOO has an arguably analytically proven performance
if the function is smooth around its global optimum. Having
a proven convergence rate under such weak assumptions is
unique, which is why SOO was leveraged in a number of
applications and problems, e.g. [7]–[12].

Interestingly, the global nature of SOO makes it partic-
ularly appealing to be deployed and studied in a parallel
compute environment. In fact, maintaining the SOO tree
may benefit from the availability of high-end HPC servers,
and the underlying search could be substantially accelerated.
However, designing efficient parallel strategies for dealing
with the computational flow of SOO has not been addressed
in the past. It is worth-noticing that a lot of techniques
have been derived to parallelize tree-based search algorithms
coming from different fields. For instance, Branch-&-Bound
tree search for combinatorial problems have been extensively
parallelized on different computing systems [13]. Besides,
in tree-based machine learning related techniques, such as
Gradient Boosting (GBM) [14], there are a number of efforts
for a better parallel scalability [15], [16]. However, such
techniques cannot be transferred to the case of blackbox
numerical optimization. For instance, GBM trees are decision
trees and not partitions of a search space. Similarly, B&B has
different specific tree traversal policies. As such, paralleliza-
tion methods cannot be replicated from GBM or B&B to SOO.
Moreover, it is not fully clear how to derive an efficient parallel
variant of SOO due to the interdependence between the tree
traversal and the cell partition policy. This can hence raise
difficult challenges especially when considering high-end HPC
servers with increasing number of CPU cores. Indeed, since
the mid-2000s, the number of cores per processor has kept
increasing. Nowadays, high-end CPUs can have several dozens
of cores. As examples, the ARM A64FX processor, which
equips Fugaku (among the most powerful supercomputers in
the latest TOP500 list [17]) has 48 cores (plus 4 assistant
cores), the Intel Xeon Platinum 9282 processor has 56 cores,
and the AMD Rome and Milan EPYC 77XX processors,
as well as the ARM Graviton3 processor, offer 64 cores.
The new Ampere Altra Max M128-30 even has 128 cores.
Using multiple sockets, a high-end HPC server can thus offer
more than one hundred CPU cores. It is however much more
challenging for a parallel algorithm to scale on a hundred CPU
cores than on a few ones. Thus, the main objective of this paper
is to design a parallel SOO algorithm that scales on dozens of
CPU cores, using shared-memory parallelism within one HPC
server. As such, we describe the following contributions.

‚ We first introduce a naive parallel strategy for SOO,
where multiple evaluations of the blackbox function are
performed in parallel among the threads (PE – Parallel

Evaluations). This strategy is also finely improved and
optimized with respect to other issues, dealing with
parallel memory allocations and parallel heap operations.

‚ We then leverage a second, less obvious, parallelism level
to fully parallelize the computational flow of SOO based
on its tree traversal (PT – Parallel Traversals). This
strategy is further improved by allowing the swap of
traversals, eventually reducing the threads waiting times.

‚ Finally, we present the results of a detailed experimental
study in order to fairly compare the relative performance
of the different designed parallel SOO variants. Using
the BBOB (Black-Box Optimization Benchmarking) [18]
benchmark and varying the dimensions, as well as the
number of threads, we analyze the parallel speedups
delivered by each parallel SOO variant (using C program-
ming with OpenMP) on top of a 128-core architecture.
In particular, we show that the PT versions outperform
the PE ones, and are able to scale up to 128 CPU cores.

The rest of this paper is organized as follows. In Section II,
we give some background on SOO. In Section III, we describe
the proposed parallel strategies. In Section IV, we report our
experimental analysis. In Section V, we conclude the paper.

II. SOO IN A NUTSHELL

The SOO (Simultaneous Optimistic Optimization) algo-
rithm was introduced in [3]. SOO is a global blackbox
optimizer. Global optimizers are to be contrasted with local
optimizers. Roughly speaking, local optimizers iteratively im-
prove on a solution by choosing among a set of neighboring
ones. A global optimizer keeps a more global information
about the whole search space and progressively refines it. In
this context, SOO enjoys an analytically proven performance
for functions that are locally smooth around their global
optimum. That is, functions that do not vary too much around
at least one of their global optima. More precisely, after a
budget of N calls to the function evaluation f , the difference
fpx˚q ´ f˚ between the value of the (unknown) global
optimum f˚ “ minxPX fpxq and the value of the best solution
x˚ returned by SOO, is decreasing in OpN´1{dq, where d
is the so-called near-optimality dimension of f , or even in
an exponential rate e´OpNq for d “ 0 (see [3] for details).
Besides, the knowledge of d is not required. It is only used
for the purpose of the theoretical complexity analysis. Such
a provable complexity bound, under such a weak assumption
on the blackbox function f , is a unique feature of SOO.

Let us now describe the working principles of SOO as
summarized in the high-level pseudo-code of Algorithm 1.
First, SOO is to be viewed as a divide-and-conquer algorithm
that handles the search space as a tree. Each node of the tree
corresponds to some region of the search space, which is called
a cell. A leaf cell can be split (or expanded) into smaller
cells covering the same original space. These new cells are
then added to the tree as the children of the split node, hence
expanding the tree with new leaves. The split node becomes
an internal node of the tree, and is not processed anymore in
subsequent iterations. Hence, the tree is organized in different



Algorithm 1: Pseudocode of SOO
1 H0 Ð t root cell representing the whole domain u

2 value(root) Ð fpcenter of rootq
3 while budget not exhausted do
4 S Ð H

5 vmin Ð `8

6 for i P t0, . . . , tree heightu do
7 ℓ‹

Ð bestpHiq

8 if valuepℓ‹
q ď vmin then

9 vmin Ð valuepℓ‹
q

10 S Ð S Y tiu

11 for i P S in decreasing order do
12 ℓ Ð extract bestpHiq

13 split ℓ into ℓ1, ℓ2, ℓ3
14 valuepℓ1q Ð fpcenter of ℓ1q

15 valuepℓ2q Ð valueplq
16 valuepℓ3q Ð fpcenter of ℓ3q

17 insert ℓ1, ℓ2, ℓ3 in heap Hi`1

levels; where each level may contain either internal nodes or
leaf nodes. Given that the root of the tree is the whole search
space, the leaves of the tree represent a partition of the space.
An example of such a partition of the search space, and the
associated tree, is shown in Figure 1.

In more details, SOO extends the underlying tree in suc-
cessive iterations by probing the blackbox function f . The
center of a new cell is evaluated using the f function, and
this evaluation is stored within the cell. Implementation-wise,
a cell is split into three equal-sized sub-cells (see leaves ℓ1,
ℓ2 and ℓ3 at line 13 of Algorithm 1) by slicing along one
dimension of the search space. This is actually a common
choice in practice [5], [10], with the advantage of avoiding to
re-evaluate the center of the sub-cell being in the middle of
the original cell. The dimension a cell is cut along depends on
its level in the tree. Given an arbitrary ordering of the space
dimensions, SOO iterates cyclically over the dimensions to
split along a new dimension at each new level. Having this in
mind, a main design component underlying the computational
flow of SOO is the choice of the leaf cells to split in each
iteration. This is a critical aspect allowing to decide on how
much effort should be devoted to the different regions of the
search space, given an overall budget. Here, the budget is a
given number of times the (blackbox) objective function f is
called over all SOO execution. On the one hand, splitting all
leaf cells in each iteration is obviously not an effective choice;
since some regions might not contain any interesting solutions.
On the other hand, focusing only on high-quality cells can be
misleading, since some regions could hide promising solutions
that were not yet discovered. Consequently, SOO adopts a
specific strategy allowing a good balance between these two
extreme situations. This is discussed in the following.

At each iteration, SOO traverses the tree starting from the
root. For each level of the tree, it considers the leaf (if any)
having the best center f -value. This best leaf is selected if and
only if it has a better f -value than the leaves that have been

Fig. 1: Example of the partitioning into leaves of a search
space (left) and the associated tree (right):

leaf, position of its center in the space,

chosen leaf in a given traversal.

chosen previously (i.e. in the levels being closer to the root).
In other words, SOO selects the leaves with a better f -value
than all leaves previously encountered in the traversal (which
is encoded in Algorithm 1 using variable vmin ). Once the tree
is traversed, each cell corresponding to a chosen leaf is split
into new sub-cells (namely, three), and the tree is updated. A
new iteration is then performed using the newly obtained tree,
and so on. When the budget is exhausted, SOO returns the
center of the cell with the best f -value.

From the previous description, it should be clear that
SOO aims at providing a balance between exploration and
exploitation. Choosing a large cell (relatively near the root)
in the hope of finding interesting regions can be viewed
as an exploration component; while choosing a cell with a
good central point (deeper in the tree) can be viewed as an
exploitation component. The fact that SOO does not select the
cells having worst center values than other cells closer to the
root, enforces the balance between these two components. In
Figure 1, we show an illustrative example of SOO selection
mechanism. At each level, at most one leaf is chosen: the
one with the best value among all leaves at this level, which
also has better f -values than all the leaves in previous levels.
Hence, the chosen leaves, in a decreasing order of f -values,
are the ones selected at levels 2, 3 and 5, respectively. Notice
that no leaf is selected at level 4, which means that none of
the two leaves there-in had a better f -value than the best leaf
in the previous two levels.

Since the leaves are the only cells required by SOO, we do
not keep track of internal nodes in our tree implementation,
as shown in Algorithm 1. Moreover, the only required infor-
mation needed about the position of cells is their levels in the
tree. The tree is hence represented as a list of levels. Each
level i is encoded as a heap of leaves (Hi), since this allows
us to retrieve the best leaf in constant time, and to remove
or to insert leaves in logarithmic time (in the level size). The
function best (line 7 of Algorithm 1) returns the leaf with
best value from a heap. The set S (lines 4 and 10), represents



the levels (or the depths) of chosen leaves in each iteration. It
is implemented as an array whose size is doubled whenever
full. The selected levels are thus inserted in the order they are
selected, namely, in increasing order. One then has to browse
this array in reverse order, processing the chosen leaves in the
order of their decreasing depth, in order not to insert in a heap
before extracting from it. Indeed, in the case an inserted leaf
had a better value than the one to be extracted, the former
would otherwise take the first place of the latter in the heap.

Although being relatively simple, it is not clear how to
parallelize the SOO algorithm efficiently. In fact, SOO exposes
two important dependencies. First, the tree traversal has to be
performed in an inherently sequential manner starting from
the root. Second, the tree is updated at each iteration, leading
to a strong dependency between iterations as well. In the
remaining of this paper, we provide a sound treatment to these
dependencies leading to an efficient parallelization of SOO.

III. THE PARALLEL STRATEGIES

In this section, we describe the proposed parallel strategies
for SOO, focusing first on the function evaluation step.

A. Parallel evaluations

1) A first naive strategy: Let us call division the process
of splitting a leaf followed by the evaluation of the children
centers using the function f . The selected leaves (variable S
in Algorithm 1) are divided after the traversal of the tree (in
lines 13 to 16). Notice that there is no dependency between the
different evaluations, since this only requires the knowledge
of a cell center. There is no dependency neither between the
splitting of leaves, since we only need to know the center
of a parent and its level, to determine the corresponding
children. Hence, all divisions can be processed independently
in parallel. Consequently, a simple way to start deploying SOO
on multiple threads is to execute a parallel loop allowing
to divide and to evaluate the selected leaves. After a tree
traversal, the divisions are then spread among K threads,
each one dealing with one slice of S according to a 1D
bloc distribution with a static load balancing (since each
evaluation of f is assumed to be deterministic and requires
the same computation load). In more details, each i index in
a slice of S is used to retrieve the best leave of the ith level
and to divide it. In order to avoid any conflict on the heap
structures (see Figure 2), the extraction of the leaves (line 12)
and the insertion of the new leaves (line 17) are performed
after the parallel evaluations, in one extra sequential loop. For
our multi-thread implementation, we use OpenMP [19]. Since
divisions and removals/insertions are separated in two distinct
loops, we just need to add one OpenMP directive which makes
the parallel implementation straightforward. We call this first
version “Parallel Evaluations” (PE).

Notice that we also considered to use OpenMP tasks to
improve this first multi-threaded version. Having each division
being performed in an independent task, we could start execut-
ing tasks in parallel during the tree traversal, and not after as
in the PE multi-threaded version. However, such an approach

did not lead to any performance gain, since the computation
grain of one call to the f evaluation can be too fine to offset
the task creation and management costs, and since the tree
traversal cost is much lower than the cost of all evaluations.

2) Parallel memory allocations: Each new leaf requires to
handle a memory space, which is accessed for storing the
center coordinates and the f -value. In the sequential SOO
implementation, the numerous calls to the dynamic memory
allocator are efficiently processed. However, synchronizations
are required within the system memory allocator to support
concurrent memory allocation requests issued by multiple
threads; which can have a negative impact. We thus manage to
improve the PE version by rewriting the memory allocations.

The new obtained version, called PE-alloc, allocates mem-
ory by blocks for the new leaves. Each thread keeps track of
its own blocks in a linked list. While its current block is not
full, a thread can use the space within this block for its next
leaf. When the current block is full, the thread allocates a
new one. The size of each new block doubles in order to
obtain a logarithmic complexity. All the variants presented in
the remainder will include this memory allocation scheme.

3) Parallel heap operations: Each divided cell must ulti-
mately be extracted from its level, and its children inserted
in the next one. Extraction and insertion in levels are heap
operations. In the previous versions, PE and PE-alloc, heap
operations are performed sequentially. This could lead to a
performance bottleneck due to Amdahl’s law. Indeed, despite
a logarithmic complexity, heap operations can have a non-
negligible cost for levels with numerous leaves. We thus
consider their parallel executions, along with the parallel
function evaluations, in a new version called PE-heap.

Extracting and inserting leaves concurrently in parallel may
however lead to inconsistencies in the heap structures if not
handled properly. In fact, there is a risk of invalidating a heap if
two threads modify it at the same time. Besides, we can remark
that the order of heap operations matters. Let us consider two
consecutive tree levels represented by heaps Hi and Hi`1

both containing a leaf chosen during the traversal. The leaves
selected in Hi and Hi`1 are thus respectively bestpHiq and
bestpHi`1q. The required heap operations on Hi`1 are the
extraction of bestpHi`1q and the insertion of the new sub-cells
created with respect to bestpHiq. Hence, the new sub-cells
should not be added in Hi`1 before bestpHi`1q is removed;
since otherwise, the content of Hi`1 would change before
extracting the originally selected leaf. As such, when one
needs to extract and insert some leaves at a same level/heap,
the extraction has to be completed first. This is illustrated in
Figure 2.

To manage these issues in our PE-heap version, we pro-
ceed as follows. Using K threads, the array S (containing the
indexes of levels whose leaves must be split) is divided into
K slices, as in the PE and PE-alloc versions. Each thread
Tk, assigned one slice Sk, has to: divide the selected leaves
bestpSk

nqnPN, remove them from the corresponding heaps, and
insert their newly created children in their respective heaps.
Hence, a thread browses its slice in increasing index order.



Ir
best

...(a)

Ir`1

best
Ir

best
...(c)

Ir`1

best(b)

Fig. 2: Illustration of the side-effect of inserting new leaves
in a heap at a given level before extracting the best leaf at
the same level. (a): the best leaf of the heap (in iteration Ir)
has to be extracted. (b): new leaves (from the previous level),
produced in iteration Ir, have to be inserted before moving to
iteration Ir`1. (c): inserting the new leaves before extracting
the best leaf of iteration Ir would lead to a different (wrong)
best leaf being extracted.

... ... ... ...

Fig. 3: PE-heap strategy using 4 threads, with a leaf divided
at each level, and denoting: : extraction; : insertion; :
lock; : new empty level.

Two situations have to be managed to ensure that extractions
are performed before insertions. When the slice Sk contains
both Si and Si`1, the same thread Tk dividing bestpHSiq will
have to divide bestpHSi`1q as well. If Si ` 1 “ Si`1, then
Tk simply extracts bestpHSi`1q before inserting the children
of bestpHSi

q in HSi`1. In the other case where Si`1 belongs
to Sk`1, insertion in HSi`1

must not occur before Tk`1 has
extracted bestpHSi`1q. For this purpose, we rely on a lock
on HSi`1 . Since this happens between two adjacent slices, we
use one lock on the first heap of each slice, i.e. on heaps HSk

0

for 0 ă k ă K, excluding HS0
0

since there is no leaf to divide
above the corresponding level. This is illustrated in Figure 3.

At the beginning of each parallel region (i.e. after each
traversal), the lock on level HSk

0
is acquired by the thread

Tk. Tk starts by extracting bestpHSk
0

q and release the lock
right after. When the thread Tk´1 has to insert the sub-cells
of its last division in HSk

0
, it will first acquire the lock on

level HSk
0

. Hence, we ensure that Tk´1 will insert in HSk
0

only after bestpHSk
0

q has been extracted. Moreover, it is very
unlikely that threads will waste time waiting on locks. Indeed,

the threads originally holding a lock will release it at the start
of the parallel region, while those who have to acquire it for
insertions, will only do so after completing the divisions of
their slice. In practice, we implement locks with lightweight
OpenMP atomic operations on specific flags, using active
waiting when the lock is already acquired by another thread.
This active waiting is relevant because, as described above,
there will probably be no waiting.

To summarize, after a traversal is performed, the PE-
heap version processes in parallel both the leaf divisions
and the heap operations. This PE-heap version is thus more
complex to set up compared to the PE one, but it manages
all operations in parallel apart from the tree traversal.

B. Parallel traversals

1) Motivation and Rational: All previous strategies are
designed to handle an obvious level of parallelism in SOO,
namely, processing the evaluations in parallel. Consequently,
the underlying parallelism is limited by the number of eval-
uations at each traversal, which may be about several hun-
dred in practice. Considering modern high-end CPUs with
several dozens of cores, this may be too few to balance
the computation load among all threads. Moreover, the tree
traversal is performed in sequential in the PE-based strategies.
Although the traversal cost is much lower than the cost of
function evaluations, when considering a large number of
CPU cores, this sequential tree traversal may limit the best
achievable parallel speedup due to Amdahl’s law. Therefore,
we propose to leverage another, less obvious, parallelism level
which includes the tree traversals.

A single tree traversal cannot be executed in parallel since
one needs to update the vmin value from the Hi heap at level i,
before continuing the traversal with heap Hi`1 at level i ` 1.
Besides, each iteration updates the tree. This means that the
traversal at iteration Ir cannot be completed before iteration
Ir´1 is over. Nevertheless, the traversal at iteration Ir starts
from the root of the tree downward. To process a level i in
iteration Ir, one only needs the knowledge of the values in
the upper heaps Hx, 0 ď x ď i, as updated by the previous
iteration Ir´1. Thus, provided that the values in the heaps
Hx, 0 ď x ď i, are up to date, a thread could start a new
traversal to process the tree from the root down to level Hi

independently of the other threads. Such a thread would not be
able to progress after a level Hi until the tree is updated for the
remaining levels j ą i. Hence, we would like these updates
to be performed as soon as possible (by an other thread).

In the sequential SOO algorithm, the tree levels are updated
at each iteration by first performing a full traversal, and only
then dividing the selected leaves and updating the heaps. In
order to update the tree levels in as soon as possible, we
handle a traversal in a slightly different manner. We determine
as usual whether the leaf bestpHjq at level Hj should be
removed and divided. But then, we update Hj immediately,
by extracting a selected leaf and/or by dividing the leaf from
level j´1 and inserting its sub-cells in Hj , and without waiting
for the current traversal to be fully completed. In other words,



Algorithm 2: PT strategy pseudocode with K threads
1 H0 Ð t root cell representing the whole domain u

2 value(root) Ð fpcenter of rootq
3 Parallel region for each thread Tk, 0 ď k ď K ´ 1
4 r Ð k
5 while budget not exhausted do
6 vmin Ð `8

7 ℓnext Ð no leaf
8 for i P t0, . . . , tree heightu at iteration r do
9 wait (if required) until Tk´1 mod K updates Hi

10 ℓcurrent Ð ℓnext

11 ℓ‹
Ð bestpHiq

12 if valuepℓ‹
q ď vmin then

13 vmin Ð valuepℓ‹
q

14 ℓnext Ð ℓ‹

15 extract bestpHiq

16 else
17 ℓnext Ð no leaf

18 if a leaf is stored in ℓcurrent then
19 split ℓcurrent into ℓ1, ℓ2, ℓ3
20 valuepℓ1q Ð fpcenter of ℓ1q

21 valuepℓ2q Ð valuepℓcurrentq

22 valuepℓ3q Ð fpcenter of ℓ3q

23 insert ℓ1, ℓ2, ℓ3 in Hi

24 r Ð r ` K

levels in
the tree

root

iterations
Fig. 4: PT strategy using 4 threads, denoting : a thread; :
a heap updated to the corresponding iteration; : a heap yet
to be processed.

we embed the division of leaves (along with their side effects
on the heaps) within a traversal, so that divisions are processed
as soon as they are determined. Note that such an embedded
traversal does not change the operations performed by SOO.
It simply considers them in a different, but consistent, order.
This shall then allow us to perform not just a single traversal,
but multiple traversals, consistently in parallel.

2) The PT version: Based on the previous considerations,
we propose a new parallel strategy, called “Parallel Traversal”
(PT ), which enables multiple parallel traversals of the tree.
Its pseudocode is provided in Algorithm 2. The main idea is
to distribute all SOO iterations among threads using a round-

robin load balancing. Using K threads, the thread Tk will
process iterations Ik`nˆK for n P N; each one correspond-
ing to an embedded traversal. The thread Tk processing an
assigned iteration Ir updates the heap Hi while maintaining a
local variable vmin. This variable is only used locally by the
thread for the current iteration it is processing. To ensure heap
consistency, before processing Hi, the thread Tk has to check
that the (previous) iteration Ir´1 has been processed up to Hi

(by a previous thread), so as to ensure that Hi is ready for
the current iteration. If this is not the case, Tk simply waits
until Hi is ready. When Tk terminates processing Ir, it starts
processing the next unprocessed iteration, which is Ir`K , if
enough budget is available. An example of the distribution of
iterations among the threads, and of their parallel processing
according to the PT strategy is shown in Fig. 4.

Contrary to the PE-based strategies where a new OpenMP
parallel region is created at each iteration, the PT strategy
uses only one OpenMP parallel region. Within this parallel
region, only two thread synchronizations are required: (i) a
first one to ensure for each thread Tk that its ”previous” thread
Tpk´1q mod K has already processed the current heap, and (ii)
a second one to ensure that the budget will not be exceeded
in parallel when continuing a traversal. Apart from these two
synchronizations, the threads are always busy.

a) Heap synchronization: Regarding the OpenMP im-
plementation of the first synchronization, we rely on atomic
operations to ensure that thread Tk does not process a given
heap Hi before its previous thread (Tk´1 mod K) has updated
it. Each thread maintains the tree level index and the iteration
index it is currently processing. Atomic writes are used by
each thread to update these indexes when moving to the
next level or to the next iteration. Atomic reads enable each
thread to safely access the indexes of its previous thread. The
seq cst memory-order clause is used with all these atomic
operations for memory coherency. When changing an iteration
index, which requires changing the level index too because
the thread is going back at the root, the level index is always
modified before the iteration index. When reading, the iteration
index is always accessed before the level index. Such ordering
of read/write operations is mandatory to avoid that a thread
overestimate the progress made by another one. Threads that
cannot progress more in an iteration simply wait actively. To
avoid using atomic read operations at each level, each thread
retrieves the level and iterations indexes pi, rq of its previous
thread, and continues (without any atomic read operation) until
it reaches level i. Once this level is reached, atomic reads will
again be used to check the new level and iteration indexes
of the previous thread. To avoid the false sharing of cache
lines among the coherent caches of the CPU cores [20], the
level and iteration indexes of distinct threads are not stored
contiguously in memory, but rather on distinct cache lines.

b) Budget synchronization: Regarding the second re-
quired synchronization, it guarantees that the different threads
will consume the exact same budget as in sequential SOO, and
that the exact same tree will be produced. Hence, each thread
has to know if there is enough budget left for a full traversal,



or if it should process a partial traversal. We thus make the
first thread T0 estimate, for each group of Ir iterations (with
nK ď r ă pn ` 1qK,n P N), whether there is enough budget
left to completely process K iterations in the most budget-
consuming scenario, i.e. when at each iteration one leaf is
selected in each heap. Such an estimation can be obtained
by a routine computation using the current tree height. If the
budget is sufficient, then each of the K threads performs a full
new iteration Ir. Otherwise, Tk starts iteration Ir by retrieving
the number icmpl of completed iterations and the number
of evaluations consumed by completed iterations. Then, Tk
computes the maximum number of evaluations that could
still be required by all threads processing a previous iteration
Iicmplăsăr. This allows Tk to determine the number of leaves
that it can divide without exceeding the budget. If Tk cannot
ensure that its next divisions would also have been performed
by the sequential SOO algorithm (i.e. without exceeding the
budget), Tk waits for its previous threads to progress. If the
budget is fully exhausted, then all the threads terminate. This
synchronization scheme requires atomic operations on several
variables: the height of the tree, the number of completed
iterations, the number of already performed evaluations, and
a flag indicating whether T0 determined that the iterations of
the current group of iterations can be fully processed.

3) Traversal swapping (PT -swap): In the PT strategy,
all the basic steps of SOO are executed in parallel (i.e., the
evaluations, heap operations, and the traversals). However, a
possible limiting factor lies in the required synchronizations.
The possible underlying waiting time for two consecutive
threads can only occurs when a thread Tk starts processing
the heap level Hi (at iteration Ir`1) and its previous thread
(Tk´1 mod K) has not finished processing Hi (at iteration Ir).
Besides the fact the threads do not run synchronously on
the MIMD architecture of multicore processors, this could
typically arise because the number of leaf divisions varies from
one iteration to another, and/or the cost of heap operations
depends on the heap content. To minimize waiting times, we
notice that the progress of a traversal in Algorithm 2, at a given
iteration Ir for levels j ą i, depends only on the computation
of vmin at level i, and on the value of the leaf bestpHiq (if
this leaf is chosen at level i). The complete update of heap Hi

at level i (i.e. the leaf extraction, the two evaluations and the
new leaf insertions) is only required for the next traversal at
iteration Ir`1. There is thus no need to wait for the complete
update of heap Hi to start processing the other heaps Hjąi.

Consequently, we propose a new version, PT -swap, where
threads can swap their traversals as illustrated on Figure 5.
PT -swap extends the PT strategy as follows. Whenever a
thread Tq (in red in Figure 5) starts some ”heavy” computa-
tions (extracting a leaf, or dividing a leaf and inserting the
sub-cells) at a level i for the Ir traversal, Tq first computes
and makes available vmin, and possibly a chosen leaf from Hi,
to a ”next” thread (i.e. a thread closer to the root that may be
blocked by Tq). If a thread Tk (in green in Figure 5) arrives at
level i before Tq has finished processing Hi, thread Tk does
not wait anymore. Instead, it steals the traversal Ir from Tq

levels in
the tree

root

iterations
Fig. 5: PT -swap strategy using 4 threads, denoting : a
thread; : a heap updated to the corresponding iteration; :
heap currently processed by a blocking thread; : a heap yet
to be processed.

and processes it. When Tq terminates processing heap Hi, Tq
proceeds as usual with its Ir traversal for levels j ą i, if
no other thread had stolen its current traversal. Otherwise, Tq
proceeds with the traversal Ir`1, originally held by Tk, and
continues it for the levels j ě i. We allow such a swapping
only once for a given thread Tq at a given heap Hi for a given
iteration Ir: If a third thread arrives at level i after Tk has
stolen the traversal of Tq , it waits until Tq updates Hi for Ir.

Setting up the swap mechanism needs some locks, which
we implement with OpenMP atomic operations. Each thread
Tq has its own lock which it releases to indicate that it starts
the heavier computations for the Ir iteration, and that Ir can
be swapped. A thread Tk, processing an iteration Ir`1, and
waiting for Tq , can then acquire the lock, exchange variables
related to the two traversals, and release the lock back to let
Tq proceed with Ir`1. Moreover, swapping of two traversals
implies to carefully exchange a number of variables between
the two underlying threads. In addition to vmin and the chosen
leaf, all variables required to perform a traversal must be
swapped, as well as the variables used for the budget. The
thread ordering is also impacted by a swap. More precisely,
we use a specific data structure to indicate the ”previous”
thread Tq of each thread Tk (i.e. Tq ”precedes” Tk and Tk must
possibly wait for Tq). This data structure also provides access
to the current level index of Tq , as well as to the iteration
index, and to the swap lock among other variables. When Tk
and Tq swap, their ordering is also updated with respect to the
tree and to the other threads in this data structure. In Figure 5,
if Tk (depicted in green) precedes Tc (depicted in blue) before
the swap, then, after a swap with Tq , Tk precedes Tq (in red)
and Tq precedes Tc. If a swapped thread had the specific role
of T0 regarding the budget consumption (see Section III-B1),
this responsibility must be swapped as well.

To summarize, PT -swap is intended to reduce the waiting
times among consecutive threads, and comes with a careful
implementation of thread synchronization to enable swapping.



TABLE I: Parallel features within each SOO parallel version

Feature PE PE-alloc PE-heap PT PT-swap
Evaluations in parallel yes yes yes yes yes
Allocation by blocks no yes yes yes yes
Parallel heap operations no no yes yes yes
Traversals in parallel no no no yes yes
Swapping traversals no no no no yes

IV. EXPERIMENTAL RESULTS

In this section, we discuss the performance of the different
proposed parallel SOO variants. Our experiments are con-
ducted on a high-end 128-core compute node using a number
of benchmark functions as detailed in the following.

A. Experimental setup

All algorithms are written in C, compiled with version
10.2.1 of GCC. We used OpenMP’s parallel loops and atomic
operations for our multi-thread implementations. The five
competing parallel SOO variants are: PE, PE-alloc, PE-
heap, PT , and PT -swap. Notice that each variant builds
upon the previous one by adding a new parallel feature, as
summarized in Table I, so as to allow us to fairly evaluate the
designed variants in an incremental manner.

For benchmarking purposes, we use the COmparing Contin-
uous Optimizers (COCO) [21] implementation of the Black-
Box Optimization Benchmarking (BBOB)1 functions [18].
BBOB is a state-of-the-art test suite, used in particular in a
reference workshop held yearly in the well-established Genetic
and Evolutionary Computation Conference (GECCO). More
than 200 algorithms were already benchmarked within this
framework. BBOB provides a set of 24 continuous functions
exposing different properties, and believed to represent a broad
range of optimization problems that one may encounter in
practice. These functions are organized into five groups of
increasing difficulty, and are available in multiple dimensions.

Regarding the hardware, we used Grid’5000, a HPC plat-
form (https://www.grid5000.fr) providing access to various
clusters of compute nodes. We ran our experiments on one
node of the Sirius cluster, based in Lyon. This node has 128
physical CPU cores spread among two 64-core AMD EPYC
7742 CPUs. The cores are grouped into 8 Non-Uniform Mem-
ory Access (NUMA) domains of 16 cores each. We depict
this architecture in Figure 6, using the lstopo command
from the Hardware Locality (hwloc) package [22]. Each
physical CPU core offers 2-way SMT (Simultaneous multi-
threading). For the thread placement, we used the OpenMP op-
tions OMP_PLACES=cores and OMP_PROC_BIND=close
at execution. These options prevent the threads from moving
from one core to another, and more importantly from one
NUMA domain to another. They also favor data locality
within the memory hierarchy between threads with consecutive
numbers, which can be beneficial for the PE-heap, PT and
PT -swap strategies. The parallel speedups presented in the
following are all based on the execution times of the reference
sequential algorithm presented in Section II. The turbo mode,

1See also: https://numbbo.github.io/data-archive/bbob/
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Fig. 6: Architecture of the Sirius node of Grid’5000 composed
of two 64-core AMD EPYC 7742 CPUs. Each denotes one
of the 128 physical CPU cores. L3 caches sizes are 16MB,
NUMA nodes ones are 126GB.

which favors executions with few cores, is deactivated in order
to have non-biased parallel speedups.

A note on SIMD computing: We rely on the compiler to
(possibly) vectorize the COCO code of each f function, and
benefit from the AVX2 SIMD units of the AMD EPYC 7742
CPUs. We also considered the vectorization of multiple calls
to the same f function (using one call per SIMD lane): this
failed due to several features (assertions, memory allocations,
use of multiple function pointers) within the COCO code.

B. Results and discussion

1) Speedups: We start our analysis by reporting in Table II
the speedups obtained when running the different parallel
variants using 128 threads (on 128 physical cores) and a budget
of 40 ˆ 107 calls to the function evaluation, for each of the
24 BBOB functions in dimension 40.

Overall, one can clearly see that the mean speedup improves
significantly over the different designed versions. More pre-
cisely, the PE version, which focuses on merely parallelizing
the function evaluations, leads to a very low average speedup
of 3.6. By avoiding multiple individual memory allocations in
parallel, the PE-alloc version is able to increase the average
speedup to 10.1. The PE-heap version extends PE-alloc by
processing the heap operations in parallel; which increases the
average speedup to 22.6. This is however still not efficient for
128 cores, and shows that the PE-based strategies fail to offer
significant speedups on a large number of cores.

On the contrary, the gain in parallel speedup is much more
important when moving to the PT version, which allows us
to obtain an average speedup of 84.1. In fact, this version
handles both the evaluations and the iterations performed by
the SOO algorithm entirely in parallel. In particular, processing
iterations entirely on their dedicated threads removes the cost
of performing the underlying tree traversals sequentially, as
well as the need of starting and stopping the threads and



TABLE II: Speedups for the parallel versions with 128 threads
on functions of dimension 40 with 40 ˆ 107 evaluations
(the best value of each row is in bold type)

function PE PE-alloc PE-heap PT PT-swap
1 0.4 1.8 4.8 33.8 26.5
2 2.3 10.8 25.3 97.2 98.1
3 3.0 12.9 31.0 104.0 104.2
4 2.3 10.5 26.1 91.8 97.7
5 0.4 3.3 9.0 50.9 46.1
6 1.9 6.6 17.1 78.2 73.8
7 3.7 9.2 14.8 84.4 89.5
8 0.6 2.2 6.4 40.0 34.9
9 1.8 5.3 13.2 70.9 69.4

10 5.9 13.2 27.9 98.5 102.5
11 4.1 12.1 26.5 92.9 98.8
12 2.7 10.1 26.6 97.4 99.1
13 2.0 5.5 14.3 71.7 71.1
14 3.0 7.9 19.6 87.7 86.8
15 6.5 16.7 36.8 106.4 111.1
16 7.7 17.4 35.7 103.1 110.0
17 5.2 12.1 26.4 95.7 100.1
18 5.1 12.0 24.8 92.2 99.0
19 2.3 5.9 14.4 74.9 72.8
20 2.5 8.5 21.4 89.7 91.8
21 4.9 16.4 36.0 91.2 110.9
22 1.2 6.0 16.4 75.9 77.3
23 13.5 27.0 47.0 106.2 117.1
24 2.8 8.5 19.9 83.0 87.8

mean 3.6 10.1 22.6 84.1 86.5
median 2.7 9.6 23.1 90.5 94.8

max 13.5 27.0 47.0 106.4 117.1

distributing the required divisions among them. Looking at the
PT -swap version, we found that it can improve over the PT
version for a fairly large number of experimented functions,
though with some exceptions. In fact, this version can reduce
the cost of thread synchronization by enabling two consecutive
threads to swap their traversals. This can offer performance
gains up to 22% with respect to the PT version, and parallel
speedups up to 117.1 for 128 threads, e.g., see function 23 in
Table II. We also notice that PT -swap systematically leads to
a performance gain for all functions where the PT speedup
is at least 90. For some functions with an already low PT
speedup, such as 1, 5, and 8, PT -swap can however lead to
lower performance results. This is clearly because swapping
thread traversals is not for free. However, the median speedup
is still in favor of PT -swap, which indicates that this version
is of special interest.

From Table II, we can also see that for each version, the
obtained speedups can vary significantly depending on the
experimented function. We found that this is tightly related
to the computation grain size, that is, to the time required
to call one f function. In Figure 7, we show a scatter plot
rendering the correlation between the parallel speedup and
the sequential execution time for the 24 test functions using
various dimensions D, ranging from very low, to relatively
large. We clearly see that the higher the sequential execution
time, the higher its computation grain size, and the better the
parallel speedup. This can also explain the discrepancies of
the effect of PT -swap on the speedups. In fact, for functions
with relatively large computation grains, the evaluation lasts
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Fig. 7: PT -swap speedups with 128 threads versus sequen-
tial execution times for the 24 test functions, using various
dimensions D P t2, 3, 5, 10, 20, 40u, and a budget of D ˆ 107

function evaluations.
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Fig. 8: Averaged speedups versus dimension with 128 threads
over functions, with dimension ˆ 107 evaluations.

long enough for the swap to be shorter than waiting for a
thread to complete the evaluation. Hence, for such functions,
PT -swap performs better and provides a non-negligible gain
compared to the PT version.

To go deeper in the impact of the computation grain on
performance, we show in Figure 8 the obtained speedups as
a function of problem dimension D for the different versions.
We can clearly see that the speedups increase with the dimen-
sion, independently of the considered parallel version. This is
clearly to be attributed to the fact that the computation grain
increases as well. Interestingly, the results in Figure 8 allows
us to better appreciate the performance gap between the PE



versions and the PT ones, as a function of problem dimension.
On the one hand, the PT versions are able to scale relatively
well with the problem dimension, whereas the PE versions
have more difficulties. On the other hand, the PT versions
achieve significantly better speedups independently of problem
dimension. In fact, the gain of the average speedup of PT -
swap compared to the average speedup of PE-heap (the best
PE version) reaches respectively 3.8ˆ, 5.5ˆ, 6.7ˆ, 9.8ˆ,
13.4ˆ, and 15.1ˆ for dimensions 40, 20, 10, 5, 3, and 2.

2) Scalability: We conclude our analysis by studying
the average speedups obtained for an increasing number of
threads, including some settings where the SMT feature (i.e.,
simultaneous multithreading) is used. This is shown in Figures
9 and 10 respectively for dimensions 40 and 100.

When the SMT is not considered, i.e. we rely on 1 thread
per physical CPU core, the versions based on parallel traver-
sals (PT and PT -swap) scale clearly much better with the
number of threads compared to the versions based on parallel
evaluations (PE, PE-alloc and PE-heap). Besides, the more
threads, the larger the performance gap between the PT -based
versions and the PE-based ones.

When considering SMT usage, i.e. when using 2 threads per
physical CPU core, the speedup decreases systematically for
the PE-based versions for both considered dimensions. The
situation is seemingly different for the PT -based versions.
In fact, the speedup decreases only for dimension 40 when
using the two CPUs (256 threads on 128 cores). Actually, this
performance drop for the PT -based versions is likely not due
to the SMT feature itself, but rather to a too fine computation
grain. This is first indicated by the SMT performance gain
within one CPU (128 threads on 64 cores: see Figure 9) for
dimension 40. This is then confirmed by the SMT performance
gain on two CPUs for dimension 100 (see Figure 10) for
the PT -based versions, the SMT feature still leading to
a performance drop for the PE-based versions. Notice in
particular the superiority of the PT -swap version at the largest
scales with SMT. For example, the average speedup of PT -
swap using 256 threads is 132.4 in dimension 100, which also
shows the SMT benefit on 128 cores. The maximum speedup
of PT -swap, obtained for function 12, even reaches 174.8.
Therefore, we can conclude that the parallel design of the
PT -based versions is extremely accurate to achieve parallel
efficiency and scalability provided that the computation grain
is large enough.

V. CONCLUSION

In this paper, we investigated different parallel versions2 of
the SOO (Simultaneous Optimistic Optimization) algorithm
for blackbox optimization. We first considered a naive version
focusing on the parallel processing of the independent function
evaluations. Even with some improvements regarding parallel
memory allocations and parallel heap operations, this version
leads to low speedups on a shared-memory architecture with
dozens of CPU cores, and fails to scale with the number

2Our source code is freely available on demand.
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Fig. 9: Averaged speedups versus number of threads over
functions of dimension 40, with 40 ˆ 107 evaluations.
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Fig. 10: Averaged speedups versus number of threads over
functions of dimension 100, with 100 ˆ 106 evaluations.

of threads or with the dimension. We have then leveraged a
second, less obvious, parallelism level to fully parallelize SOO
based on its tree traversals, and allowed the threads to swap
their traversals in parallel at the aim of increasing parallel effi-
ciency. The so-obtained traversal-based strategies can offer (in
average over the experimented functions) a 3.2ˆ performance
gain over the evaluation-based strategies. The traversal-based
strategies can also benefit from the SMT feature of the CPU
cores, providing parallel speedups up to 174.8 on 128 cores.
Besides, it is worth-noticing that all investigated strategies
eventually perform the exact same operations as the sequential
SOO algorithm. Hence, our parallel versions output exactly
the same solution, and therefore provide the same theoretical
quality guarantees as sequential SOO.



As research perspectives, this work opens a number of
interesting questions. For example, we could compare our
parallel implementations of SOO to other parallel global
optimizers, such as a version of MCS [23] or GLOBAL [24]
that distributes the search space across threads.

Furthermore, it would be interesting to leverage our tech-
niques in a distributed-memory environment, where the chal-
lenge would lie in the efficient handling of the inter-node
communications. Besides, instead of following the exact same
search space exploration scheme than SOO, one may wonder
whether relaxing such a requirement would not lead to im-
proved parallel versions. One challenging idea would be to
take inspiration from SOO in order to design alternative fully
asynchronous strategies, eventually leading to a parallel SOO-
like algorithm scaling on a large number of nodes with dozens
of CPU cores each.
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