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Abstract

The Lip-field approach is a new regularization method for softening mate-

rial models. It was presented first in [Moës, Chevaugeon 2021], providing one-

dimensional simulations for damage and plasticity. The present paper focuses

on a two-dimensional implementation for elasto-damage models (quasi-brittle

fracture). The incremental potential used in the Lip-field approach is the non-

regularized one. The regularization comes from the addition of a Lipschitz

constraint on the damage field. In other words, the free energy does not depend

on the damage gradient. The search of the displacement and damage fields from

one time-step to the next is based on an iterative staggered scheme. The dis-

placement field is sought for a given damage field. Then, a Lipschitz continuous

damage field is sought for a given displacement field. Both problems are convex.

The solution to the latter benefits from bounds proven in [Moës, Chevaugeon

2021] and used in the present paper. The implementation of the Lipschitz reg-

ularity constraint on a finite element mesh and details of the overall solution

scheme are presented. Four numerical examples demonstrate the capability of
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the new approach.

Keywords: damage, fracture, regularization, Lipschitz, Lip-field

1. Introduction

Fracture mechanics started with the work of A.A. Griffith [1]. The Griffith’s

crack model considers that a crack evolves as a point in 2D media or a curve

in 3D media leaving behind crack faces across which displacements jumps are

allowed. An energy is required for crack advance (toughness). The Griffith5

model is not able to predict crack initiation (an infinite load is predicted for a

crack size going to zero) and is not able to predict branching cracks (one tip

becoming two). The Griffith model was later improved/generalized in at least

two major ways: cohesive zone models and diffuse damage models. Both models

introduce a length scale in the fracture model which is absent in the Griffith10

model.

The cohesive zone model (CZM)[2, 3] recognizes that there exists a process

zone ahead of the crack tip whose size may not always be neglected. For in-

stance, it can reach up to 10 cm for concrete. The process zone introduces a

length scale and size effect. The CZM is a quite popular model in computa-15

tional mechanics. Cracks are allowed to initiate and propagate at finite element

boundaries based on a traction-separation model. A major drawback of the

CZM is that crack patterns are highly sensitive to mesh orientation, unless ex-

tensive adaptive remeshing is used [4, 5]. The main reason why the CZM fails

to produce mesh-independent results is that it is based on a traction-separation20

model that needs a priori knowledge of the potential crack surfaces. Even in-

serting a potential crack on each element interface is not enough to avoid mesh

orientation dependencies (see for instance [6]). Another drawback of the CZM

is that the number of degrees of freedom evolves in time because nodes are dou-

bled at separation (each element keeps a copy of the initially common node).25

This drawback disappears if all possible cohesive zones are pre-activated but

this comes at the expense of a huge number of degrees of freedom. Finally, note
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that the CZM approach is however very efficient when the crack path is known

in advance as shown in [7].

A second major improvement of the Griffith model is the concept of diffuse30

or regularized damage modeling. The strength of diffuse damage models is to

handle complex crack patterns with possible nucleation, branching and coales-

cence while providing results rather independent on mesh orientation. Diffuse

damage models consist in a local stress-strain relation affected by a damage vari-

able. The local model is then regularized with a length-scale to avoid spurious35

localization. For the past thirty years, several types of regularization have been

proposed in the literature as the non-local integral damage model [8, 9]; higher

order, kinematically based gradient models [10, 11] or higher order, damage

based, gradient models [12, 13, 14]. Fracture was also recast in a regularized en-

ergy minimization problem [15, 16] giving the so-called variational approach to40

fracture [17]. At about the same time, the phase-field approach was emanating

from the physics community [18] and then developed for mechanics applications

[19, 20, 21, 22]. Finally, we can add the peri-dynamics approach [23, 24] and

the Thick Level Set approach [25].

This paper is about yet another diffuse approach to fracture based on a45

Lipschitz regularization of the variable responsible for softening in the material

model. It was introduced in [26] and presents also similarities with the recent

work in [27]. For an elastic softening material, it requires the damage variable

field to be Lipschitz continuous. It means roughly that the slope of the damage

between any two points in the domain is bounded. The Lip-field model is differ-50

ent from gradient-damage or phase-field models because the expression of the

free energy of the material does not depend on the damage-gradient. It depends

only on the strain and the damage (the classical local energy expression is basi-

cally kept). The Lip-field model is however close in its conception to variational

fracture or phase-field because it may be formulated as a minimization of an55

incremental potential to go from one time instant to the next. The potential is

identical to the one of the non-regularized (local) model. The idea of Lip-field

is simply to enforce some specific regularity on the damage field.
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Given the displacement and damage fields at some instant, a staggered

scheme is used to find the fields at the next instant. The displacement up-60

date is a classical mechanical problem with an imposed damage field. Under

small strain and displacement assumptions, the problem can be linear or non-

linear depending on the stress-strain relation. We consider in this paper both

symmetric and asymmetric tension-compression evolution for the damage. The

former leads to a linear problem and the latter to a non-linear one.65

As already described in [26], the damage update in the Lip-field approach is

rather different than the one used in phase-field or damage gradient approaches.

We still have to find the damage field as the minimizer of a convex function,

but this time under Lipschitz constraints. Once discretized, this leads to a

standard convex minimization problem under convex constraints that can be70

solved using standard packages. The computational efforts to solve this prob-

lem can be drastically reduced by taking advantage of some properties of the

constraints. In particular, upper and lower bound to the damage field can be

computed at very low cost, starting from a purely local (without the Lipschitz

constraints) minimization. From these bounds, the size of the zone on which75

the non-local update needs to be computed (enforcing the Lipschitz constraints)

is dramatically reduced.

An original aspect of the Lip-field implementation is that damage irreversibly

is automatically taken into account at no extra cost. Enforcing damage irre-

versibility is not straightforward for other type of diffuse approach as the phase-80

field for which it resorts to some approximation in the model. In [28], the

variational inequality on damage growth is replaced by a variational equality

in which the source term is replaced by the maximum value of the source at

previous times. The work [29] is a rare work on phase-field in which the varia-

tional inequality is solved. Another original possibility offered by the Lip-field85

approach is to leave the damage variable at the integration points of the element

with the other internal variables. Thus, only displacement values are stored at

the nodes.

The paper is organized as follows. The next section describes the classical
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damage mechanical formulation (non-regularized form) in the time-discrete set-90

ting. The Lipschitz regularization and its discretization is introduced in Section

3, followed by a discussion on an efficient strategy to construct the bounds men-

tioned above in Section 4. Four examples of simulations are then detailed in

Section 5, demonstrating the capability of the approach. A discussion of the

results and possible extensions to this work are discussed in the last section.95

2. The mechanical model: non-regularized formulation

We consider the deformation of a body, initially occupying a domain Ω,

through a displacement field u. We assume small, quasi-static deformations.

The Cauchy stress is denoted σ and the strain ε is given by the symmetric

displacement gradient

ε(u) =
1

2
(∇u+ (∇u)T) (1)

where ∇ indicates the gradient operator. The displacement is imposed on a part

of the boundary denoted Γu assumed fixed in time. On the rest of boundary, zero

traction forces are assumed (without loss of generality). The set of kinematically

admissible displacement fields at time t, is denoted U(t):

U(t) = {u ∈ H1(Ω) : u = ud(t) on Γu} (2)

where ud(t) denotes the imposed displacement. In the absence of body forces,

the equilibrium condition reads

∫

Ω

σ : ε(u∗) dΩ = 0, ∀u∗ ∈ U∗, U∗ = {u ∈ H1(Ω) : u = 0 on Γu} (3)

Kinematics and equilibrium equations (2-3) must be complemented with the

constitutive model. The formalism of generalized standard material introduced

in [30, 31] is used. The sole internal variable is the damage denoted d. The model

is characterized by a free energy potential ϕ(ε, d) and a dissipation potential100

ψ(ḋ, d).

We introduce an implicit time-discretization and use the energetic variational

approach. Given the displacement and internal variables (un, dn) known at some
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instant tn, finding the pair (un+1, dn+1) at some later instant tn+1 = tn + ∆t

amounts to a minimization problem

(un+1, dn+1) = arg min
u′∈Un
d′∈An

F (u′, d′;un, dn,∆t) (4)

where Un is a short-hand notation for U(tn+1) and An enforces irreversibility

and damage boundedness:

An = {d ∈ L∞(Ω) : dn ≤ d ≤ 1} (5)

For simplicity, we shall consider time-independent material models. In this

case, the F expression does not depend explicitly on un, dn and ∆t. The exten-

sion to time-dependent models does not introduce difficulties. Also, to simplify

the notations, we drop the n+ 1 indices. The non-regularized problem is then

(u, d) = arg min
u′∈Un
d′∈An

F (u′, d′) (6)

The objective function is given as the integral over the domain of some local

material objective function (and an extra term linear in u for non-zero body

forces of surface tractions):

F (u, d) =

∫

Ω

f(ε(u), d) dΩ (7)

The optimization problem it thus separable in d, meaning that knowing u, find-

ing d is a local process at every point (this explains the qualification ”internal”

given to the d variable). The material local objective function is composed of a

strain energy term and a dissipation term:

f(ε(u), d) = ϕ(ε(u), d) + Ych(d) (8)

where Yc is the critical energy release rate and h(d) is chosen as h(d) = 2d+3d2.

The dissipation part is linked to the time integration of a dissipation potential

given by ψ(d, ḋ) = Ych
′(d)ḋ where h′ is the derivative of h with respect to

d. Regarding the free energy, we consider an assymetric tension-compression105
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expression

ϕ(ε, d) = µ

3∑

i=1

g(αid)ε2i +
λ

2
g(αd)Tr(ε)2 (9)

where constants µ and λ are the Lamé coefficients, εi, i = 1, 2, 3, the eigenvalues

of the strain tensor, g(d) a convex function of d describing the softening such

as g(0) = 1 and g(1) = 0 and





αi = β if εi < 0

1 if εi ≥ 0

α = β if Tr(ε) < 0

1 if Tr(ε) ≥ 0

(10)

where 0 ≤ β ≤ 1 is a user-defined parameter. If β = 1, the behavior of the

material is symmetrical in tension and compression. If β = 0, the material

recovers its stiffness in compression and damage can only grow in tension. In

the plane strain case (ε3 = 0) and for β = 1, we can rewrite the energy as

ϕ(ε, d) = φ0(ε) + g(d)φ1(ε) + Ych(d) (11)

with

φ0(ε) =





0 if ε1 ≥ 0, ε2 ≥ 0

µ(ε21 + ε22) if ε1 < 0, ε2 < 0

µε21 if ε1 < 0, ε2 ≥ 0

(12)

φ1(ε) =
λ

2
(ε1 + ε2)2 +





µ(ε21 + ε22) if ε1 ≥ 0, ε2 ≥ 0

0 if ε1 < 0, ε2 < 0

µε22 if ε1 < 0, ε2 ≥ 0

(13)

where ε1 and ε2 are such that ε1 < ε2. A common choice for the softening

function g(d) is to take g(d) = (1 − d)2. In this work, we used a generalized

version:

g(d) = (1− d)2 + η(1− d)d3 (14)
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The parameter η must be chosen in [0, 1/3] to ensure convexity of g for

d ∈ [0, 1]. The parameter η allows to reach a damage of 1 for a finite strain as

indicated in figure 1. Damage starts to grow for a strain
√

2Y c
λ+2µ independent of
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Figure 1: Influence of the η parameter on the stress/strain curve (left curves) and on the

damage evolution with respect to strain (right curves).

η whereas damage reaches 1 for a strain of 4
√

Yc

(λ+2µ)/η . One can easily check110

that f (and thus F ) is convex separately in u and d, but not in both, giving

the well known damage softening effect.

3. Lipschitz regularization and discrete setting

The main idea of the Lip-field approach is to impose a Lipschitz regularity

condition on the damage field. The regularity set is defined by

L = {d ∈ L∞(Ω) : |d(x)− d(y)| ≤ 1

l
dist(x,y), ∀x,y ∈ Ω} (15)

where l is the regularizing length and dist(x,y) is the minimal length of the path

inside Ω joining x and y (the distance is considered infinite if the two points

cannot be connected inside Ω). The Lipschitz regularized problem is obtained

by adding the Lipschitz constraint to the non-regularized problem (6)

(u, d) = arg min
u′∈Un
d′∈An∩L

F (u′, d′) (16)
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On the contrary to (6), the above optimization is no longer separable in d

because the Lip-constraint ties spatially the damage values. It is however still115

convex in u and d separately (since the set L is convex).

3.1. Spatial discretization

The domain Ω is discretized into a geometrical mesh denoted Ωh. An exam-

ple is depicted in blue for a plate with a hole in Figure 2.

Figure 2: The finite element mesh

(blue) and the Lip-mesh (red) built

from the centroids of the blue mesh

elements.

We then consider a classical finite element120

discrete space on Ωh. The displacement is

linear over each element and continuous over

the mesh. The strain is thus piecewise con-

stant. The damage is stored at the centroid

of each element which is the classical finite125

element approach for internal variables. This

contrasts with the choice of many diffuse dam-

age approaches [17, 20, 27] where the discrete

damage field is defined by nodal values. To

express the Lip constraint, we build an addi-130

tional triangular mesh, called Lip-mesh and

denoted ∆h, linking the centroids of the elements (red mesh in Figure 2). This

mesh is built once and for all. The set of vertices, edges and elements of ∆h are

denoted V , E and T , respectively. The Lip-mesh is embedded inside the dis-

placement mesh (∆h ⊂ Ωh). The domains covered by ∆h and Ωh have the same135

topology. The Lip-mesh does not add new holes and complies with the hole of

the displacement mesh. The damage field is discretized in a piecewise linear

continuous fashion over the Lip-mesh. The discrete damage space is denoted

Dh(∆h). The damage gradient is thus piecewise constant on the Lip-mesh.

The continuum Lipschitz set (15) involves an infinite number of constraints

since all pairs of points must be considered. We need to find a way to discretize

this set. A first option is to bound the damage gradient on every element of the

Lip-mesh (17). A second option is to enforce the Lipschitz constraint in between
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vertices (18-19) . The metric disth(x,y) is the shortest path between x and y

lying inside ∆h, whereas the discrete metric disth+(x,y) forces the path to go

along edges (and thus disth(x,y) ≤ disth+(x,y)). Finally, another option is to

enforce the Lipschitz constraint on each edges (20).

Lh = {d ∈ Dh(∆h) : ‖∇d‖ |t≤
1

l
, ∀t ∈ T} (17)

Lh1 = {d ∈ Dh(∆h) : |d(x)− d(y)| ≤ 1

l
disth(x,y), ∀x,y ∈ V } (18)

Lh2 = {d ∈ Dh(∆h) : |d(x)− d(y)| ≤ 1

l
disth+(x,y), ∀x,y ∈ V } (19)

Lh+ = {d ∈ Dh(∆h) : |d(x)− d(y)| ≤ 1

l
‖x− y‖, ∀(x,y) ∈ E} (20)

The four options satisfy the following inclusions proven in Appendix A:

Lh ⊂ Lh1 ⊂ Lh2 = Lh+ (21)

We choose the first option because it involves the least number of discrete

constraints since the number of element in a mesh is much smaller than the

number of edges (or pairs of vertices). Also, compared to Lh+, it is less prone

to mesh orientation effect because we are checking the Lipschitz constraint on

all orientations and not only along edges (see Appendix B). The space-time

discrete problem is thus to find at time tn+1, the pair (u, d) satisfying

(u, d) = arg min
u′∈Uh

n

d′∈Ah
n∩L

h

F (u′, d′) (22)

where Uh indicates the displacement finite element space and Ahn is given by

Ahn = {d ∈ Dh(∆h) : dn(x) ≤ d(x) ≤ 1,∀x ∈ V } (23)

3.2. Staggered scheme140

The optimization problem (22) is not convex with respect to the pair (u, d)

but is convex with respect to each variable taken separately. As for the phase-

field approach [28], a staggered scheme is used: solve for the displacement with

given damage, then solve for damage with given displacement and iterate until
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convergence. The first minimization is rather standard. The second one is not.

It reads

d = arg min
d′∈Ah

n∩L
h
F (u, d′) (24)

where u is known (current iterate). It is a convex minimization problem with

cone and second order cone inequality. To solve it, we use the cvxopt [32]

package, in particular the cp function that can find the minimizer of a general

convex function with first and second order cone constraints. An example of

Lipschitz projection is given in appendix Appendix B for a constructed damage145

field.

4. The use of bounds for the damage update

The previous section did detail the space discretization as well as the stag-

gered scheme. The damage iterate consists in a convex optimization. It has

been observed in the first Lip-field paper [26] that this optimization could be150

greatly simplified using so-called bounds on the solution. Below, we recall the

bound concept and detail how it is implemented in the discrete setting.

4.1. Bounds in the continuum setting

Bounds on the damage solution d have been proposed in the paper [26].

Consider the damage optimization problem

d = arg min
d′∈An∩L

F (u, d′) (25)

The idea is to first disregard the Lipschitz constraint and compute a local dam-

age update denoted dloc:

dloc = arg min
d′∈An

F (u, d′)⇒ dloc(x) = arg min
dn(x)≤d′≤1

f(ε(u) |x, d′), ∀x ∈ Ω

(26)

In the above, we have used the separability property of the non-regularized

optimization with respect to the d variable. The local damage at point x only
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depends on the strain at that point. Upper and lower bounds are defined as

d(x) = min
y∈Ω

(dloc(y) +
1

l
dist(x,y)) (27)

d(x) = max
y∈Ω

(dloc(y)− 1

l
dist(x,y)) (28)

They satisfy

dn ≤ d ≤ dloc ≤ d ≤ 1, d ≤ d ≤ d (29)

The proof may be found in [26]. The optimization for d in (25) may thus be

replaced by

d = arg min
d′∈An∩L

F (u, d′) (30)

where

An = {d ∈ L∞(Ω) : d ≤ d ≤ d} ⊂ An (31)

It is clear that at any point for which the bounds are equal, the local damage

update is optimal:

d(x) = d(x)⇒ d(x) = dloc(x) (32)

The bounds computation may thus potentially drastically reduce the effort

for the damage optimization by locating the subdomain over which the local155

update needs to be further corrected. The subdomain is an upper-bound for

the zone over which the Lipschitz constraint will be active.

4.2. Bounds in the discrete setting

First, a local update may be computed at each vertex

dloc(x) = arg min
dn(x)≤d′≤1

f(ε(u) |x, d′), ∀x ∈ V (33)

Then, we propose to compute the following bounds

d(x) = min
y∈V

(dloc(y) +
1

l
disth+(x,y)), ∀x ∈ V (34)

d(x) = max
y∈V

(dloc(y)− 1

l
disth+(x,y)), ∀x ∈ V (35)

The definition above seems to indicate that O(n2) operations are required, where

n is the number of vertices in V . Fortunately, an algorithm inspired from
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Dijkstra’s algorithm [33] reduces the effort to O(n log n) operations. It is de-

tailed in the appendix Appendix C. At any vertex, the bounds satisfy similar

inequalities to the bounds in the continuum setting (see proof in the appendix

Appendix D):

dn(x) ≤ d(x) ≤ dloc(x) ≤ d(x) ≤ 1, d(x) ≤ d+(x) ≤ d(x), ∀x ∈ V (36)

where

d+ = arg min
d′∈Ah

n∩L
h+
F (u, d′) (37)

Unfortunately, the bounds do not bracket the solution d we are after (24),

but another solution defined by (37). The reason for this discrepancy is that160

we have chosen the metric disth instead of dist to compute the bounds because

the former gives an extremely simple algorithm. To take the discrepancy into

account, we use the following scheme.

• Step 1: Compute the bounds (34)-(35) using the algorithm given in the

appendix Appendix C.165

• Step 2: Initialize V l to the set of vertices for which d(x) = d(x) and define

T l as the set of elements connected to nodes only in V l.

• Step 3: Solve

d = arg min
d′∈Ah

n∩L
h
F (u, d′) (38)

where

Ahn = {d ∈ Dh(∆h) : d(x) = dloc(x),∀x ∈ V l and dn(x) ≤ d(x) ≤ 1,∀x ∈ V \ V l}

(39)

Lh = {d ∈ Dh(∆h) : ‖∇d‖ |t≤
1

l
, ∀t ∈ T \ T l} (40)

• Step 4: If d ∈ Lh end, else remove the element for which ‖∇d‖ > 1/l from

T l and remove its node from V l, go to Step 3.

If the bounds were associated to the true solution, step 4 would end directly.170

In the numerical experiments we have noticed that few iteration of the previous
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Algorithm (between 1 and 5) were necessary, showing that the discrepancy is

not too detrimental, and still constitutes a huge speed-up comparing to the

alternative (solving directly for (24)).

5. Simulation results175

All examples are computed using plane strain assumption. The meshes and

the python scripts used for all the examples are open-source and may be down-

loaded from https://gitlab.com/c4506/lipfield. All examples are treated with

the symmetrical model (β = 0) except for the shear test which is treated with

both the symmetrical (β = 0) and asymmetrical (β = 1) models.180

For all examples, the mesh is built using the open-source gmsh software [34].

Regarding the Lip-mesh, it is constructed using the open-source Triangle soft-

ware [35] available at https://www.cs.cmu.edu/~quake/triangle.research.

html along with a python interface available at https://github.com/pletzer/

pytriangle.185

5.1. Plate with a hole

As a first example, we pull the sides of a square domain with imposed dis-

placement. The square is pierced at its center by a circular hole. The geometric

and material parameters used are reported on table 1, where L is the square

length and R is the hole radius. The material parameters are chosen generically190

for this first example since we are just trying here to assess the method quali-

tatively. The mesh is unstructured and parametrized by the size h of the edges

units L R

mm 2 0.2

E ν l Yc η

1 MPa 0.2 0.2 mm 1 MPa 0.1

Table 1: Hole in a plate: geometrical parameters (left), material parameters (right).

on the boundaries of the domain. Results are reported on figure 3. On the

top left, we have the load/displacement curve. We have first an elastic loading,

14
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until the stored energy is sufficient to trigger damage. We then have a short195

softening phase, where the damage starts to grow gently at two symmetric loca-

tions at the top and bottom of the hole, followed by an abrupt release of strain

energy during which the damage zones develop in two cracks propagating up to

the boundary of the plate. This setting clearly shows a strong instability, and

the equilibrium path is discontinuous under displacement loading. To improve200

on that, we could consider another control mechanism in order to follow the

snap-back behavior.
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Figure 3: Load displacement curve and damage field for mesh 1.

Figure 4 reports on a convergence analysis. All the parameters are kept

identical except for the mesh density which is increased as shown on table 2.

The damage field is plotted on the top row, with the finer mesh on the right.205

The two damage zones take the shape of a vertical band, of thickness close to 2l

where the damage reaches 1 at the center of the band. The elements for which

d reaches 1 have of course no stiffness and could be identified as cracks. On

the coarsest mesh, the band is not perfectly straight due to the unstructured

nature of the mesh. As the mesh is refined, while keeping l constant, more and210
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mesh L/h vertices faces

mesh 1 32 1524 2896

lip-mesh 1 2896 5476

mesh 2 64 5640 10980

lip-mesh 2 10980 21308

mesh 3 128 19333 38070

lip-mesh 3 38070 74947

Table 2: Mesh parameters for the convergence analysis.

more elements fit into the thickness of the band which appears straighter and

straighter while the damage field is described with more and more precision. On

the middle row of the figure, we report the damage field, for each mesh, along

the white line represented on the top row. The white line is perpendicular to

the crack, and the damage field clearly reaches 1 on the crack, and reduces at215

a slope fixed by the Lipschitz constraint away from the crack. The thickness

of the damaged zone clearly converges quickly toward the value of 2l. For each

mesh, we plot the damage field as seen by the mechanical problem (constant

per mesh element) and the damage field as seen by the Lip-field problem (linear

on each element of the Lip-Mesh). Note that both fit very well to the expected220

wedge shape imposed by the Lip-field constraint. This means that in absence

of the constraint, the damage would be zero everywhere away from a strip of

1 element thickness, reproducing the classical mesh dependency of the result

for a local damage model. The last row of the figure reports, along the same

line, the displacement and the strain field. Notice how the displacement clearly225

displays a sharp jump over the thickness of a single element, reproducing the

result that would have been obtained if we would have inserted a sharp crack

in the mesh. The deformation component εxx is also plotted and the expected

Dirac-like function shape is captured.
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Figure 4: Convergence analysis: top damage field, below ux, εxx extracted from the white

line for different meshes, at the end of the simulation.

5.2. Comparison with a Griffith analysis230

The geometry described in figure 5 is used to study crack propagation. This

geometry is inspired from the classic TDCB (Tapered Double Cantilever Beam)

shape that insures a stable crack growth relative to an increasing displacement

loading.

The dimensions defining the geometry are given in table 3. The TDCB235

specimen is loaded by a linearized rigid body motion on the boundary of the

two holes. The bottom hole has its center fixed, while it is free to rotate around

the z axis. The top hole is free to rotate around the z axis, its center is fixed

on the x axis, while its motion on the y axis is imposed and is the loading
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Figure 5: TDCB geometry definition.

units L1 L2 L3 L4 H1 H2 H3 H4 R

mm 100 12 20 24 70 90 24 5 4

Table 3: TDCB geometrical parameters.

parameter u. We make the classical plane-strain and small-strain assumption.240

The material is described with the coefficients given in table 4, where E, ν

and KIc denote respectively, the Young Modulus, Poisson ratio and the critical

mode-I stress intensity factor. Upon loading, a crack is expected to develop at

the notch tip and propagate along the middle axis of the TDCB specimen, which

will be called the crack path. For a first validation of the Lip-field approach245

for brittle damage, we will compare our results with a linear elastic fracture

mechanics analysis, using a Griffith criteria.

Griffith Analysis. According to the Griffith criterion, the crack should propa-

gate if the elastic energy release rate per unit of crack length G is equal to Gc,

where Gc is a material parameter: the critical energy release rate. Under plane

strain assumption, for isotropic-elastic material, we have

Gc =
1− ν2

E
KIc

2 (41)
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E ν KIc η

3500 MPa 0.32 1.4 MPa
√

m 0.1

Table 4: TDCB material parameters.

In order to compute the load-displacement (F (u)) and the crack-length (a(u))

under Griffith assumption, we applied the following approach. The mesh is

constructed in two symmetrical-part along the crack-path, so that the nodes

on the crack-line are regularly spaced and we denote by h the spacing between

two nodes. The mesh of the upper part and the mesh of the lower part are

disconnected, but the nodes of each part are at the same geometrical positions

on the crack-path. The nodes are connected using a Lagrange multiplier to

enforce the same displacement on both part at each of these nodes, on the

section of the crack-path to the right of the actual crack. With this setting, we

can easily compute the equilibrium displacement field u and the strain energy e

in the TDCB specimen using the standard finite element method, for different

crack-length and a unit displacement u. For each crack length a, corresponding

to a number of unconnected nodes on the crack path, we can compute the

energy release-rate G1(u) for the unit displacement, by using a first order Taylor

expansion:

G1(a) =
e1(a+ h)− e1(a− h)

2h
(42)

where e1(a) is the strain energy at equilibrium for the crack of length a and an

imposed displacement u = 1. Since G is clearly a quadratic function of u, we

can compute for each value of a the value of uc and then fc for which G = Gc,250

and plot the F (u) and a(u) curves for the case of Griffith analysis.

Lip-field Analysis. In order to compare Griffith analysis and Lip-field, we need

to set up the parameter of the damage model in order to be energetically equiv-

alent to Griffith. Assuming that when the damage localizes into a shape of a

crack, and that d saturates the Lipschitz constraint and reaches 1 on the crack255

path, the d(y) function on a line perpendicular to the crack path can be approx-
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imated with a triangular profile of slope 1/l: d(y) = max(l−|y|,0)
l , where y is the

distance to the crack path. We can then evaluate the energy dissipated per unit

of crack advance by Gc = Yc

∫ l
−l h(d(y))dy = 4Ycl. In the simulations, we set l

so that we have enough elements in the band to represent the crack (typically260

l = 5h), and then set Yc = Gc/(4l).

The comparison between Griffith and Lip-field is given on figure 6 where we

report the reaction on the anchoring circle and the crack length as a function

of the imposed displacement, for both Griffith and Lip-field analyses.
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Figure 6: Griffith/Lip-field comparison.

In both cases, after reaching a critical displacement, the reaction drops in a265

controlled way, while the crack advances at a pace proportional to the imposed

displacement pace, until the crack length covers roughly three quarters of its

maximum length. After that, the pace of crack progressively slows down, until

it reaches the right boundary of the sample. The results compare well: we

observe the same critical displacement, and the same speed between Griffith270

and Lip-field, even if we have a slight difference in dissipated energy and crack

tip position. A more extensive study is beyond the scope of this paper, but we
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have already a good confirmation of the ability of Lip-field to reproduce Griffith

physics.

5.3. Shear test275

In the next example, we perform a shear test on the geometry given in

figure 7. A square sample of length 2L = 1mm is initially cut by a line, from

the left boundary to the center. This is meant to represent an initial crack.

The bottom of the square is fixed, while the top has its displacement fixed to 0

in the y direction and imposed in the x direction. This benchmark is popular280

in the phase-field literature [36]. The material properties are given in table 5,

and Yc is computed to obtain energetic equivalence as discussed in previous

subsection (Yc = Gc/(4l)). The parameter η is set to 0.1. The two parameters

h0 and h1 are the target edge sizes for the meshing tool in the coarse and fine

zones, respectively, as indicated in figure 7. The extent of the fine zone has been285

determined thanks to an initial run on a coarse mesh in order to identify the

zone in which the damage localizes into a crack. The parameters for the two

meshes used for this example are given in table 6.

E ν l Gc η

210000 MPa 0.2 0.015mm 2.7 MPa/mm 0.1

Table 5: Shear test material parameters.

mesh h0 h1 vertices faces

symmetric 1/8 mm 1/128 mm 26656 53311

asymmetric 1/8 mm 1/128 mm 11343 22685

Table 6: Mesh parameters for the shear test.

We report on figure 8, the load/displacement curve, as well as the damage

field, at different stages of the loading represented by dots on the curve. After an290

elastic phase, damage starts to develop at the initial crack tip when Y reaches
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Figure 7: From left to right : shear test geometry and boundary conditions definition, mesh

parameter for the symmetric case and the asymmetric case

Yc. The reaction force on the top edge of the square then rapidly drops as

two cracks develop in a symmetric pattern starting from the crack tip until the

reaction reaches zero when the two cracks reach the right boundary. Notice

how cracks gradually turn while advancing until they reach the right boundary.295

This result could not have been obtained with Griffith theory alone: one should

have had some model to predict the crack advance direction. As in the phase

field or in the TLS approach, no additional assumption is needed to account

for crack direction change. It is the minimization of the energy that naturally

drives the crack. This example also shows that the Lip-field approach is able300

to represent branching cracks. The crack pattern and the load/displacement

curve is consistent with published results [36], [37]. These results are however

unrealistic considering that the top crack develops in compression, so that when

d reaches 1, we have overlapping of the lips of the crack. This issue is not new.

In order to avoid this behavior, we need an asymmetric traction/compression305

model, where the damage function g(d) only affects the traction part of the

strain energy as discussed in part 2. The simulations have been re-run using

this change in and on a mesh adapted for the expected crack path. The results

are reported on figure 9.

Up to the point where the damage starts to localize at the initial crack tip,310
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Figure 8: Shear test: symmetric traction/compression. Top left: load displacement curve.

From left to right and top to bottom, damage field at the corresponding dot on the curve.

the results are similar to the symmetric case. Then, when the reaction force

starts to decrease, the damage zone localizes in only one crack, on the bottom

side of the square, propagating first along a straight line until it gets close to

the bottom fixed boundary and the reaction force reaches a local minimum.

Then it starts to turn while the reaction starts growing again, in contrast to the315

previous case. Notice how the gradient of the damage in the normal direction to

the boundary (∇d ·n) is not zero when the crack reaches the boundary. This is

in sharp contrast to results obtained in the framework of the phase field theory

where the strong form imposes ∇d · n = 0.

5.4. Two edge cracks320

For the last example, we reproduce another popular test case, two edge

cracks, presented and solved for example in [38]. Starting from a square sample,

two horizontal initial cracks are cut out of the sample, one on each side but at

different heights (see figure 10).

23



0.00 0.01 0.02 0.03
Imposed displacement in x direction [mm]

0

100

200

300

400

500
Re

ac
tio

n 
Fo

rc
e 

in
 x

 d
ire

ct
io

n 
[N

/m
m

]

0.0 0.5 1.0
d

Figure 9: Shear test: Asymmetric traction/compression. Top left: load displacement curve.

From left to right, top to bottom damage field at the corresponding dot on the curve.

Table 7 reports the geometrical, material and mesh parameters used for the325

simulation. The damage model is here symmetric with regards to traction and

compression. As in the previous case, we use two parameters h0 and h1 to

control the mesh density. We have a finer mesh in the zone where the damage

is expected to propagate (light gray on figure 10).

The square is fixed at the bottom while the top edge is pulled in displacement330

control in the y direction. Results are reported on figure 11.

We first have a quasi elastic phase where the damage is confined to the two

initial crack tips until we reach a critical load. Beyond the critical load, the two

damaged zones start to grow, localizing into two cracks that start to propagate,

forming a pattern that maintains a central symmetry with regard to the center335

of the square, while the reaction force on the top boundary quickly drops. The

left crack propagates to the right with a slight angle toward the bottom while

the right crack propagates to the left with a slight angle toward the top, until

both reach the vertical axis of symmetry of the square. After that, the path of
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Figure 10: Two edge cracks, geometric description, boundary condition and meshing param-

eters.

Geometrical parameters: Mesh parameters:

L C a

mm 1 0.95 0.2

h0 h1 vertices faces

0.025mm 0.003125mm 26338 52675

Material parameters:

E ν l Yc η

1 MPa 0.2 0.01 mm 1 MPa 0.1

Table 7: Two edge cracks geometrical, mesh and material parameters.

both cracks starts to curve toward the horizontal axis of symmetry of the square340

until both crack tips finally merge. Note that the damage at a distance larger

than l from the place where d reaches its maximum is exactly zero. There is no

damage away from the localization zone. The crack pattern obtained is similar

to what is observed in previous work.

6. Conclusions and future work345

The paper described a first two-dimensional finite element implementation

of the Lip-field approach for brittle fracture with symmetric and asymmetric
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Figure 11: Two edge cracks, top left: load displacement curve. From left to right, damage

field at the corresponding dot on the curve.

damage models in tension/compression. This follows introduction of the Lip-

field approach and its one-dimensional implementation reported in [26].

A variety of examples have been treated, demonstrating the independence of350

the crack path from the mesh, and good convergence properties. A comparison

with the Griffith model has also been provided and shows good correlation.

The main originality of the Lip-field approach is to be found in the way the

local equations are regularized. Instead of adding a damage gradient contribu-

tion to the incremental potential, as in the phase-field approach, the damage355

is constrained to be Lipschitz continuous under a given length. This approach

has some advantages compared to phase-field. The main one is that we can use

a local minimization as a starting point; then, using the bounding technique,

construct patches where the Lipschitz constraint needs to be enforced. This

strongly reduces the number of elements where the minimization of the poten-360

tial with respect to the damage field under non local constraints is necessary.

This naturally leads to an algorithm where the cost of the minimization on d
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can be much lower than the computation of the equilibrium at fixed d.

Encouraged by these results, we plan to extend the method in the following

directions in the future:365

• Softening plasticity. This would open a large array of potential appli-

cations. We previously demonstrated in the 1D case that the approach

was sound and gave interesting results. Extending this approach to two-

dimensions should not be difficult and should be a low hanging fruit for

the method.370

• Mesh refinement. It is clear from the examples, that as well as phase

field, quite fine meshes are necessary to capture the shape of the damaged

zone. A logical step toward better results would be to allow automatic

mesh refinement to capture the localized damage zone at low cost during

a simulation. Strategies to transfer the d field from one mesh to another,375

while fulfilling the Lipschitz constraints need to be developed.

• Improving the resolution step for the d field. Even if the non-local part of

the constrained minimization can be done on relatively small patches of the

mesh, the resolution algorithm that we used so far might not be optimal.

We indeed rely on interior point method which has the disadvantage of380

preventing easy use of good starting point for the minimization, because

of the centering step typical of such family of methods. Considering that

we could obtain good starting points, iterative projection methods might

be a better choice for our specific problem. Taking more advantage of the

fact that the objective function is separable in d should also help finding385

a faster algorithm.

• Dynamics. It would be interesting to apply the method in a dynamical

setting. That would be the occasion to study cases where the crack paths

become much more complicated. A 1D-fragmentation Lip-field study is

already proposed in [39] where the computational advantage of having390

independent zones for the damage update is made very clear.
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• Finally, we could of course move to three-dimensional problem. The

only difficulties are technical: the problems to solve will become big very

quickly, and parallel implementation will be needed. A 3 dimensional im-

plementation would need to take advantage of all the improvements cited395

previously in order to give results in a reasonable computational time.

Appendices

Appendix A. Proof of (21) recalled below

Lh ⊂ Lh1 ⊂ Lh2 = Lh+ (A.1)

To prove the first inclusion, consider the shortest path inside ∆h linking two

vertices. This path is given by a continuous curve z(s), s ∈ [0, 1]. Suppose now

d ∈ Lh, we thus have

−1

l
‖ dz

ds
‖ ≤ ∇d · dz

ds
≤ 1

l
‖ dz

ds
‖ (A.2)

Integrating the above with respect to s ∈ [0, 1] gives the result. The second

inclusion in (21) is a direct consequence of the fact that

disth(x,y) ≤ disth+(x,y), ∀x,y ∈ V (A.3)

Finally, regarding the equality in (21), we first note that Lh2 ⊂ Lh+ since Lh2

checks all pairs of vertices whereas Lh+ only checks pairs of vertices forming an400

edge. And for two vertices x, y forming an edge, we have disth+(x,y) = ‖x−y‖.

Then, we prove Lh+ ⊂ Lh2 using similar arguments as the one used to prove

the first inclusion.

Appendix B. An example of Lipschitz projection

As an example, we consider a damage field d that does not satisfy the405

Lipschitz constraint of length scale l, and we wish to project onto L while min-

imizing the L2(Ω) distance to d. We define the distance between two field as
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the usual distance in L2(Ω) as w(d1, d2) = (
∫

Ω
(d1− d2)2dΩ)1/2. The projection

of d onto L is defined by πL(d) = arg mind′∈L w(d, d′).

Let Ω be a square of length L, centered at point at the origin of the 2D

plane. We define a field d ∈ L2(Ω) which is not in L as:

d(x, y) = max
(
1− r(x, y)/l̄, 0

)
(B.1)

where r is the distance to the origin and l̄ < l is a constant actually correspond-

ing to the Lipschitz constant of the field d. In this case, we can easily compute

the projection on L as:

πL(d) = max


 3

√(
l̄

l

)2

− r(x, y)/l, 0


 (B.2)

Now we want to check the precision of the discretized projection on different410

mesh, using either the Lh or Lh+ constraint. For the computation, we use l = 1

and l̄ = 1/4 and a series of structured meshes parameterized by L/h, where h

is the length of the edges along the x axis.

Results are reported on figure B.12. On the top row, the map of πL(d),

πLh+(d) and πLh(d) are plotted for h/L = 1/32. On the bottom row, starting415

from the left, we plotted first the L2(Ω) relative error norm for πLh+(d) and

πLh(d) as a function of h/L, followed by extractions of the values of d along

lines passing trough the origin at different angle θ.

The map of πLh(d) is very close to the map of πL(d), This is confirmed by

the cut plot, and the convergence analysis where the error scales linearly with420

h. On the contrary, refining the mesh for πLh+(d) does not improve the results

significantly. Indeed, if we get a correct estimate of the maximum value, the

slope of the projection slightly changes depending on the direction, in a manner

which is strongly dependent with the alignment of the direction with the existing

edges in the mesh.425
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Appendix C. Dijkstra based algorithm to compute the bounds (34)

and (35)

The set V of vertices in the ∆h mesh is partitioned into a set of trial and final

vertices, denoted Vtrial and Vfinal, respectively. At any step in the algorithm, we

have Vtrial ∪ Vfinal = V and Vtrial ∩ Vfinal = ∅. The algorithm starts with Vfinal430

empty and ends when Vtrial is empty. The bounds are initialized to dloc given

by (33). The upper bound d is obtained by

• Step 0: Vtrial = V , Vfinal = ∅, ∀v ∈ V : d(v)← dloc(v)

• Step 1: v∗ = arg maxv∈Vtrial
d(v), Vtrial ← Vtrial\{v∗}, Vfinal ← Vfinal∪{v∗}

• Step 2: ∀v ∈ Vtrial such that (v, v∗) ∈ E : d(v) ← max(d(v), d(v) − ‖v −435

v∗‖/l)

• Step 3: If Vtrial = ∅ end, else go to Step 1.

Similarly, one may build the lower bound d from the following:
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• Step 0: Vtrial = V , Vfinal = ∅, ∀v ∈ V : d(v) = dloc(v),

• Step 1: v∗ = arg minv∈Vtrial
d(v), Vtrial ← Vtrial\{v∗}, Vfinal ← Vfinal∪{v∗}440

• Step 2: ∀v ∈ Vtrial such that (v, v∗) ∈ E : d(v) ← min(d(v), d(v) + ‖v −

v∗‖/l)

• Step 3: If Vtrial = ∅ end, else go to Step 1.

To ensure O(nlog(n)) efficiency, where n is the size of V , the set Vtrial is main-

tained as a descending sorted list according to the value of d(v) (resp. d). Step445

1 is reduced to take the first (resp. the last) of the list, and at step 2, all the v

for which d(v) (resp. d(v)) have been updated must be relocated in the list so

that the ordering is maintained.

Appendix D. Proof of the bounds in the discrete setting

eq:disbound We prove (36) recalled below

dn(x) ≤ d(x) ≤ dloc(x) ≤ d(x) ≤ 1, d(x) ≤ d+(x) ≤ d(x), ∀x ∈ V (D.1)

The first relation is a direct consequence of the initialization of d and d at dloc450

and the use of Step 2 of the algorithm (detailed in the previous appendix). The

second relation in (D.1) amounts to prove that the optimal solution cannot be

outside the bounds. The same argument as in the continuum setting [26] may be

used. The objective function is a sum of convex functions in d at every vertex

of the ∆h mesh whose minimum is dloc. If the optimal solution lies outside455

the bound, we can build a better solution by projecting it on the bounds (the

minimum or maximum of Lipschitz functions stays Lipschitz). This proves the

second part of (D.1).
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