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Introduction

The simulation of vortical flows with Eulerian CFD methods is a difficult task. Numerical schemes discretizing the convective part of the flow equations require to be dissipative "enough" for stability. In the numerical computation of shock waves, characteristics lead to the propagation of information towards the shock wave itself, thus partially balancing numerical dissipation. In contrast, no similar mechanism is present in contact discontinuities, so that wake sheets and vortices at their edges are dissipated at an unphysically high rate. In order to overcome these limitations, the Vorticity Confinement schemes proposed by Steinhoff explicitly add non-linear negative dissipation by means of an especially designed source term added to the original system of Euler or Navier-Stokes equations [START_REF] Steinhoff | Treatment of vortical flow using vorticity confinement[END_REF][START_REF] Steinhoff | Turbulent flow simulations using vorticity confinement[END_REF][START_REF] Steinhoff | Large eddy simulation using vorticity confinement[END_REF]. Two formulations have been proposed by Steinhoff, called VC1 and VC2. The VC2 scheme is investigated here, as it has better numerical properties than VC1, more especially its conservative character at the continuous level. For the linear advection equation of a scalar pulse, the initial pulse relaxes towards an asymptotic shape which can be propagated without any diffusion over indefinite times. Although Steinhoff bases his VC2 developments on solitary wave concepts, this capability also corresponds to the cancellation of the leading numerical dissipation term of the underlying numerical scheme for this particular asymptotic solution. The application of the method to the fluid dynamics equations is not straightforward as CFD methods usually consider conservative variables, whereas vorticity is a derived flow variable. Nevertheless, by introducing a source term based on vorticity in the momentum equation, the approach behaves similarly to the scalar case. Basically, vortices asymptotically converge towards a vortex profile governed by the balance between the dissipation of the underlying numerical scheme and the antidissipation introduced by the source term. Following the same ideas, Steinhoff and Chitta also extended the methodology to the wave equation [START_REF] Steinhoff | Solution of the scalar wave equation over very long distances using nonlinear solitary waves: Relation to finite difference methods[END_REF], allowing to indefinitely propagate short wave phenomena. Yet, one limitation of the approach proposed by Steinhoff is that the VC term is first-order accurate only, which may raise concerns when considering complex turbulent eddies.

Other powerful strategies have also been developed to improve the discretization of vortical flows. In particular, since the development of the original VC method, numerous families of numerical techniques have emerged. These range from completely different discretization approaches, such as discontinuous Galerkin [START_REF] Chapelier | Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows[END_REF][START_REF] Zhang | On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations[END_REF], residual-based compact [START_REF] Corre | High-order residual-based compact schemes for compressible inviscid flows[END_REF][START_REF] Lerat | An efficient high-order compact scheme for the unsteady compressible Euler and Navier-Stokes equations[END_REF] and residual distribution [START_REF] Abgrall | Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes[END_REF], flux reconstruction [START_REF] Huynh | High-order methods for computational fluid dynamics: A brief review of compact differential formulations on unstructured grids[END_REF], as well as kineticenergy-preserving methods [START_REF] Edoh | A new kinetic-energy-preserving method based on the convective rotational form[END_REF]. Nevertheless, finite-volume approaches remain the main and most robust methodologies for complex geometries in the applied research and industrial fields. In this framework, higherorder discretizations are a common means of improving accuracy, and numerical dissipation in particular. Despite the improved resolution of such finite-volume methods, numerical errors within vortices often remain a limiting factor for accurate physical analyses. This is particularly the case for the simulation of vortical flows such as wakes and turbulence.

In order to further improve the dissipative properties of higher-order finite-volume methods, higher-order extensions of the original VC2 method have recently been developed. For the linear advection equation, this naturally arises through higher derivatives of the original VC term as the order of the Taylor expansions is increased [START_REF] Costes | Analysis and higher-order extension of the VC2 confinement scheme[END_REF][START_REF] Costes | Stability analysis of the VC2 confinement scheme for the linear transport equation[END_REF]. For an isolated pulse, it was found that VC schemes at all orders converge towards the same asymptotic solution. However, the higher the order, the longer the time required to reach this asymptotic state, so that the accuracy of the solution is maintained for longer times as the order of the scheme and of the confinement term are increased. The method was also extended to the fluid dynamics equations following similar ideas [START_REF] Costes | Development of a third-order accurate vorticity confinement scheme[END_REF][START_REF] Petropoulos | Development and analysis of high-order vorticity confinement schemes[END_REF][START_REF] Petropoulos | Study of high-order vorticity confinement schemes[END_REF], thus combining the advantages of reduced dissipation of wakes and increased accuracy of higher-order discretizations. In particular, third-and fifth-order VC2 schemes were developed and applied to a variety of problems including turbulent flows, allowing for a better prediction of turbulent eddies [START_REF] Petropoulos | Vortical flow calculations using a high-order vorticity confinement method[END_REF][START_REF] Costes | Application of high-order vorticity confinement schemes to turbulent flows[END_REF].

Despite the fact that the VC2 formulation is conservative in the continuous framework, its discretization in the form of a source term is not strictly conservative. Indeed, VC is applied to vortical parts of the flow field, which are selected by an ad hoc criterion, and the source term is set to zero elsewhere. This selection is necessary despite the fact that, by definition, VC is a term of low magnitude outside vortices. The practical reason for this necessity is that, albeit having a small contribution outside vortices at a given instant, these small VC term contributions may accumulate and introduce numerical noise over longer times. The selection criterion is a practical and effective way of correcting this issue. Still, conservativity errors are obtained at the boundary between confined (i.e. where VC is applied) and non-confined areas of the flow, but this has generally no negative effect as VC is cut off in areas where the computed vorticity is very low. This is no longer the case for wall-bounded flows because VC is cut off in the boundary layer where vorticity is quite large.

A fully conservative version of VC2 was thus developed, by transforming the original source-term formulation into a flux-correction one. The objective of this paper is to present a detailed comparison of these two confinement schemes, more especially as far as wall-bounded turbulent flow applications are concerned. The various formulations of vorticity confinement and their implementation are presented first. Then the methods are compared in the simple case of the long-time advection of an inviscid and isentropic vortex. A shock-vortex interaction case is also presented to investigate whether the methodology alters the shock-capturing properties of the baseline scheme. The source-term and flux-correction methods are then applied to a ZDES mode 3 simulation (hybrid RANS/LES method acting as a Wall Modelled LES) of a zero-pressure-gradient flat plate turbulent boundary layer.

Methodology

Original source term formulation of VC2

Originally, vorticity confinement appears as a source term added to the momentum equation to compensate for the spurious dissipation of vorticity introduced by the numerical discretization of the Navier-Stokes equations:

∂ρ⃗ u ∂t + ⃗ ∇ • ρ⃗ u ⊗ ⃗ u + pI -τ = ⃗ f (1)
The VC2 term is expressed by:

⃗ f = -⃗ ∇ × (µ⃗ ω -ε⃗ w) (2) 
It depends on two user-defined empirical parameters, µ and ε, which are taken constant in space and time.

The first term on the right hand side of ( 2) is vorticity ⃗ ω = ⃗ ∇×⃗ u. The second one in the parenthesis is aligned with vorticity and its magnitude equals the harmonic mean of the vorticity modulus of the surrounding cell centers (in a cell-centered solver):

⃗ w = ⃗ ω ω N l=1 ω -1 l N -1 (3) 
with ω = ∥⃗ ω∥. N is the number of cells over which the harmonic mean is computed, and is equal to N=3 in 1D, N=9 in 2D and N=27 in 3D as structured meshes are considered in the present work. The effect of VC2 clearly appears from the vorticity transport equation, obtained by applying the curl operator to the momentum equation ( 1), and simplifying for the case of a 2D isolated vortex in inviscid and incompressible flow, giving:

∂ω ∂t + ⃗ u • ⃗ ∇ω -⃗ ∇ 2 (µω -εh(ω)) = 0 ( 4 
)
where h(ω) represents the harmonic mean of the vorticity modulus coming from [START_REF] Steinhoff | Large eddy simulation using vorticity confinement[END_REF]. The first term -µ ⃗ ∇×⃗ ω of (2) is a dissipation term which can be used to stabilize the simulation, mainly when the dissipation of the numerical scheme is not known. The second term ε ⃗ ∇ × ⃗ w introduces a nonlinear negative dissipation and is the actual confinement term. Both confinement terms are computed as undivided differences so that the resulting scheme is consistent with the Navier-Stokes equations. It can be verified that the original VC2 term is thus only first-order accurate in space.

The extension of the method to higher order has been presented in previous works [START_REF] Costes | Development of a third-order accurate vorticity confinement scheme[END_REF][START_REF] Petropoulos | Development and analysis of high-order vorticity confinement schemes[END_REF][START_REF] Petropoulos | Study of high-order vorticity confinement schemes[END_REF]. This is achieved by applying the curl operator iteratively to the confinement term (2) in order to increase the order of the differentiation of this term. Introducing ⃗ α = -(µ⃗ ω -ε⃗ w) and applying twice the curl operator to the quantity ⃗ f , the third-order extension of VC2 is obtained:

⃗ f = ⃗ ∇ × ⃗ α ⃗ ∇ × ⃗ f = ⃗ ∇ × ⃗ ∇ × ⃗ α = ⃗ ∇ ⃗ ∇ • ⃗ α -⃗ ∇ 2 ⃗ α ⃗ f 3 = ⃗ ∇ × ⃗ ∇ × ⃗ f = -⃗ ∇ × ⃗ ∇ 2 ⃗ α = ⃗ ∇ × ⃗ ∇ 2 (µ⃗ ω -ε⃗ w) (5) 
The third-order VC2 term thus appears as minus the Laplacian of the original VC2 term. Such an approach can be continued once again to provide the fifth-order accurate VC2 term:

⃗ ∇ × ⃗ f 3 = -⃗ ∇ × ⃗ ∇ × ⃗ ∇ 2 ⃗ α = -⃗ ∇ ⃗ ∇ • ⃗ ∇ 2 ⃗ α -⃗ ∇ 2 ⃗ ∇ 2 ⃗ α ⃗ f 5 = ⃗ ∇ × ⃗ ∇ × ⃗ f 3 = ⃗ ∇ × ⃗ ∇ 2 ⃗ ∇ 2 ⃗ α = -⃗ ∇ × ⃗ ∇ 2 ⃗ ∇ 2 (µ⃗ ω -ε⃗ w) (6) 
The 5th-order VC2 term is therefore obtained by taking the bi-Laplacian of the original VC2 term. As expected, because we are dealing with numerical dissipation, only odd orders of discretization are obtained with this approach (built upon even-order differences of flow variables). At all orders, the alternating sign of the higher-order derivatives is naturally introduced by the successive application of the curl operator. Finally, using undivided differences in the computation of the Laplacian or the bi-Laplacian also increases the order of the confinement to third order or fifth order respectively. These undivided differences are directly integrated in the recursive Green-Gauss gradient computation [START_REF] Petropoulos | Study of high-order vorticity confinement schemes[END_REF]. This approach is similar to the construction of high-order accurate dissipation terms based on higher-order derivatives.

A spectral analysis of the original and higher-order confinement schemes has been carried out for the linear advection equation [START_REF] Petropoulos | Development and analysis of high-order vorticity confinement schemes[END_REF][START_REF] Petropoulos | Study of high-order vorticity confinement schemes[END_REF]. This analysis showed the improved spectral properties of schemes with confinement correction compared to their linear counterparts, with reduced dissipation and dispersion errors at all orders of accuracy. The higher-order extensions of the method were also shown to be better-adapted to the reduced dissipation of the higher-order baseline scheme. This was further confirmed by grid convergence studies, showing that higher-order vorticity confinement schemes preserve the order of accuracy of the underlying scheme [START_REF] Petropoulos | Study of high-order vorticity confinement schemes[END_REF][START_REF] Costes | Development of a third-order accurate vorticity confinement scheme[END_REF]. Provided that the discretization is fine enough, higher-order VC schemes showed a reduced sensitivity to the confinement parameters as the anti-dissipative correction magnitude is significantly smaller. In addition, their application to turbulent flows such as the viscous Taylor-Green vortex and the decay of compressible homogeneous isotropic turbulence confirmed the improved properties of these high-order confinement schemes with respect to their baseline counterparts [START_REF] Petropoulos | Study of high-order vorticity confinement schemes[END_REF][START_REF] Petropoulos | Vortical flow calculations using a high-order vorticity confinement method[END_REF][START_REF] Costes | Application of high-order vorticity confinement schemes to turbulent flows[END_REF].

Vortex detection criterion

Since the numerical evaluation of vorticity may yield non-zero values in the irrotational parts of the flow, it is necessary to select the areas where confinement is applied. This is done by a vortex selection criterion, which is usually the non-dimensional Q-criterion defined below. Considering the symmetric and antisymmetric parts of the velocity gradient tensor:

S = [s ij ] = 1 2 (u i,j + u j,i ) Ω = [ω ij ] = 1 2 (u i,j -u j,i ) (7) 
where the simplified notation u i,j is used for ∂ui ∂xj , the Q-criterion is defined by [START_REF] Hunt | Eddies, streams, and convergence zones in turbulent flows[END_REF][START_REF] Jeong | On the identification of a vortex[END_REF]:

Q = 1 2 (trS) 2 + trΩΩ T -trSS T (8) 
which has the simple algebraic expression given below, as many simplifications occur:

Q = (u 1,1 u 2,2 -u 2,1 u 1,2 ) + (u 1,1 u 3,3 -u 3,1 u 1,3 ) + (u 2,2 u 3,3 -u 3,2 u 2,3 ) (9) 
A drawback of the Q-criterion is that it depends on the reference quantities used in the computations. Following Kamkar et al. [START_REF] Kamkar | Feature-driven cartesian adaptive mesh refinement for vortexdominated flows[END_REF], the symmetric part of the velocity gradient tensor can be used to define a non-dimensional Q-criterion, giving:

Q = Q trSS T = 1 2 (trS) 2 + trΩΩ T trSS T -1 (10) 
The denominator is defined by:

trSS T = (u 2 1,1 + u 2 2,2 + u 2 3,3 ) + 1 2 (u 1,2 + u 2,1 ) 2 + (u 1,3 + u 3,1 ) 2 + (u 2,3 + u 3,2 ) 2 (11) 
In order to avoid division by zero for the parts of the flow where the velocity gradient tensor has a small magnitude, a regularization is applied to the denominator trSS T . In the following computations, the threshold value applied to the non-dimensional Q-criterion is equal to 0.1. This value is not critical and could be varied between 0.01 and 1.0 without any significant influence on the results, as found from previous experience [START_REF] Costes | Application of high-order vorticity confinement schemes to turbulent flows[END_REF].

Finally, as the harmonic mean function is not defined for numbers of opposite sign, VC is also cut-off as soon as the dot product of vorticity between two neighbouring cells involved in the definition of the VC term is negative.

Boundary layer protection

Numerical experience shows that the vortex detection criteria defined above efficiently exclude the first cells immediately above the surface of wall bounded flows. Nevertheless, most of the boundary layer region is not excluded from confinement, which may be problematic as one should not artificially modify the large velocity gradients occurring in this area. The idea of boundary layer protection is to avoid interacting with the boundary layer model in this part of the flow where vorticity is generated and where the grid resolution is expected to be particularly refined. A wall-distance based cut-off is thus introduced to protect boundary layers, which takes a different form depending on the type of simulation performed. The first one, used in RANS computations, is simply based on a prescribed constant wall-distance value. The second cut-off is valid for ZDES mode 3 hybrid computations only. In that case, only the near-wall part of the boundary layer which is located below the RANS/LES interface of the ZDES mode 3 is protected from confinement. This is consistent with a WMLES approach where the near-wall is modelled and the rest of the boundary layer is simulated.

Flux formulation of VC2

The original source-term formulation is not conservative at the boundaries of the domains where VC is applied if vorticity is not equal to zero. This becomes an issue within boundary layers where the application of VC is cut off to protect the near-wall region. This part of the boundary layer is generally the location where the largest levels of vorticity are obtained, making conservation losses significant at the interface between the protected boundary layer region and the outer region.

It is nevertheless possible to express the VC2 terms in flux correction form [START_REF] Petropoulos | Study of high-order vorticity confinement schemes[END_REF]. Such a formulation is necessarily fully conservative in a finite-volume numerical implementation. An approach similar to the present one was adopted by Sidilkover to implement his own version of Vorticity Confinement based on the adaptation of shock-capturing schemes [START_REF] Sidilkover | Towards unification of the vorticity confinement and shock capturing (TVD and ENO/WENO) methods[END_REF]. To derive the flux formulation, let us first apply the Green-Ostrogradsky theorem over a control cell, of volume Ω and boundary Σ = ∂Ω, to the cross product of two vectors ⃗ α and ⃗ β, the second one being constant:

Ω ⃗ ∇ • ⃗ α × ⃗ β dV = Σ ⃗ α × ⃗ β • ⃗ n dS = ⃗ β • Σ (⃗ n × ⃗ α) dS (12) 
Rearranging the integrand on the left:

Ω ⃗ ∇ • ⃗ α × ⃗ β dV = Ω ⃗ β • ⃗ ∇ × ⃗ α dV = ⃗ β • Ω ⃗ ∇ × ⃗ α dV (13) 
so that, as this is true for any constant vector ⃗ β:

Ω ⃗ ∇ × ⃗ α dV = Σ ⃗ n × ⃗ α dS (14) 
Applying this identity to the VC2 source term of any order yields an equivalent flux correction at the cell boundaries, where ⃗ n is the unit normal vector to the cell face Σ. As the flux correction is applied to the left-hand side of the momentum equation (in contrast to the source term which is traditionally expressed on the right-hand side), a change of sign of the modified source term must also be done. Thus, the 1st-order flux-correction form of VC2 can be written, at the left-hand side of the momentum equation:

Σ ⃗ n × (µ⃗ ω -ε⃗ w) dS (15) 
at 3rd-order:

Σ -⃗ n × ⃗ ∇ 2 (µ⃗ ω -ε⃗ w) dS (16) 
and at 5th-order:

Σ ⃗ n × ⃗ ∇ 2 ⃗ ∇ 2 (µ⃗ ω -ε⃗ w) dS (17) 
As mentioned before, all derivatives in the above expressions are computed based on undivided differences so that the method is consistent with the Navier-Stokes equations. Indeed, these flux corrections correspond to non-linear anti-dissipative terms of order 1, 3 and 5 respectively. In terms of CPU cost, the source-term and flux correction versions of the method are equivalent. The flux correction method may be slightly more efficient since the integral of e.g. equation ( 17) can be included in the numerical flux balance of each cell, rather than computed separately as is often the case for source terms. This aspect is however related to each particular code implementation. An important outcome of Sidilkover's work is that the shock-capturing and vorticity confinement properties of numerical schemes are treated separately, as they apply to different characteristic fields. However, the confinement term proposed by Sidilkover is integrated into the shock-capturing mechanism of a specific TVD or WENO-type underlying scheme, by introducing cross-derivatives to the characteristic variables representing the transport of vorticity. It thus relies on the same nonlinear mechanism as the baseline shock-capturing scheme. On the other hand, the confinement term and the convective flux discretization scheme of the present approach are decoupled. Vorticity confinement aims at balancing the high-order part of the dissipation introduced in vortical regions, whereas shock-capturing terms introduce lower order dissipation at discontinuities. This separation between the baseline scheme and the vorticity confinement correction gives more flexibility on the choice of flux discretization and the amount of antidissipation which can be introduced via the confinement parameter ε. Furthermore, the present high-order vorticity confinement corrections are compatible with hybrid low-/high-order shock-capturing schemes. Specific strategies could be implemented to ensure that this term is reduced or set to zero in the vicinity of a shockwave (e.g. coupling the confinement cut-off to a shock sensor or the WENO smoothness indicators), but this was not found to be necessary because shock-capturing schemes often employ a locally lower-order dissipation term which dominates the overall dissipation in the shock region. This was investigated in previous studies of a homogeneous isotropic turbulence decay involving strong compressibility effects [START_REF] Petropoulos | Study of high-order vorticity confinement schemes[END_REF][START_REF] Costes | Application of high-order vorticity confinement schemes to turbulent flows[END_REF]. It is also explicitly studied in the shock-vortex interaction case presented in section 4.

Numerical method

The VC method has been implemented in the elsA finite-volume solver [START_REF] Cambier | The Onera elsA CFD software: input from research and feedback from industry[END_REF]. The space-discretization used in this work is based either on the Roe or on a modified AUSM+(P) scheme [START_REF] Mary | Large eddy simulation of flow around an airfoil near stall[END_REF]. This last scheme is generally prefered for its low dissipation in boundary layers. For both cases, higher-order interpolation of the primitive variables is applied, following the approach of Lerat and Corre [START_REF] Lerat | High-order residual-based compact schemes on structured grids[END_REF]. Introducing overbar variables as cell-averaged quantities, the interpolation schemes are written:

U R j-1/2 = U j - 1 2 δµU j + 1 12 δ 2 U j + 1 12 δ 3 µU j - 1 120 δ 4 U j U L j+1/2 = U j + 1 2 δµU j + 1 12 δ 2 U j - 1 12 δ 3 µU j - 1 120 δ 4 U j ( 18 
)
where the stencil defined by the first-line terms yields 3rd-order accuracy while the complete expressions provide 5th-order accuracy. They correspond to interpolation polynomials of degree 2 and 4 respectively. Actually, the symmetry of the left and right stencils even provides 4th-and 6th-order accuracy on equally sized grids. Nevertheless, the non-linearity of the flux term may decrease the order of accuracy. In addition, third-order or fifth-order dissipation is added for stability, in the form

-1 ∆x δ |A| 2 (U R -U L ) j with
A representing a discrete form of the Jacobian matrix ∂f ∂U given by the numerical scheme considered, so that the complete scheme is at most third-or fifth-order accurate on regular grids. The results presented in this paper and previous numerical experience show that the corresponding schemes have a significantly reduced numerical dissipation with respect to the standard second-order ones without degrading robustness. Such schemes also require very low additional CPU cost. In the following, they are applied together with confinement terms of the same order as the variable interpolation.

Determination of the VC parameters

As mentioned above, the VC term depends on two empirical parameters, µ and ε, which have to be determined by the user. For schemes with explicitly known numerical dissipation, this determination is straightforward by choosing the confinement parameters in proportion to the artificial dissipation coefficient [START_REF] Petropoulos | Study of high-order vorticity confinement schemes[END_REF][START_REF] Petropoulos | Vortical flow calculations using a high-order vorticity confinement method[END_REF]. When this is not possible, the parameters are determined for a simple case where the exact solution is known, such as the inviscid vortex advection described below, and they are kept identical for all other applications of the method with the same baseline scheme. This determination is presented in the Appendix A. The selected VC parameters are equal to ε = 0.015, µ ε = 0.1 at 3rd-order and ε = 0.002, µ ε = 0.1 at 5th-order.

Long distance advection of an inviscid isentropic vortex

Description of the test case

The first test case considered corresponds to the advection of an isentropic vortex under an inviscid flow assumption. This test case is classically used to assess the numerical properties of discretization schemes. Indeed, any dispersion and dissipation errors lead to a deviation of the vortex core from the exact solution, which can easily be quantified. A vortex of circulation β = 1.9 and core radius R = 1 is used as initial condition. The flow field induced by the vortex follows the one defined by Yee et al. [START_REF] Yee | Low-dissipative high-order shock-capturing methods using characteristic-based filters[END_REF]. The perturbation velocity is given by δV θ = β 2π re (1-r 2 )/2 with a maximum of β 2π at r = 1R. The vortex circulation is equal to Γ(r) = βr 2 e (1-r 2 )/2 with a maximum of 2βe -1/2 at r = √ 2R and it vanishes at infinity, so that out-of-plane vorticity of opposite sign is obtained inside and outside the vortex core. Such a vortex is an exact solution of the steady Euler equations. The perturbation field is superimposed to a uniform flow at freestream Mach number M ∞ = 0.2 using the Cassiopée pre-processing tools [START_REF] Benoit | Cassiopee: a CFD pre-and post-processing tool[END_REF]. The vortex is inserted at x = 5R into a grid box of length equal to 110R and a height of 10R (figure 1). The domain is discretized by a grid composed of 881 × 81 points, corresponding to a regular Cartesian mesh with 8 points per vortex radius (∆x = ∆y = R 8 ). Periodicity conditions are applied along all boundaries, in order to allow a long-distance advection of the vortex. This also implies that the vortex is not isolated but infinitely reproduced above and below the grid box as well as upstream and downstream. The space discretization is based on the AUSM+(P) scheme with high-order interpolation of the primitive variables at the cell faces. The time resolution uses a 4-stage classical explicit Runge-Kutta scheme, with a timestep chosen such that a distance of 100R is travelled at the freestream velocity in 25,000 time steps. The corresponding CFL number based on freestream quantities is equal to (u+c) ∞ ∆t ∆x = 0.192. Eleven crossings of the vortex along the box are considered, corresponding to a travelled distance of 1200R and 300,000 time steps. Under the assumption of an inviscid flow, the vortex should be transported without dissipation along the grid whatever the physical time of the computation.

Comparison of source-term and flux-correction VC2 solutions

The solutions at the end of the computation are compared for the various simulations: without VC, with the source-term and with the flux formulation of VC. The initial vortex profile is also plotted as reference since it represents the theoretical solution. For this case, both the source-term and flux formulations should be equivalent as conservation errors at the edge of the vortex are expected to be negligible. 

Third-order confinement

The results obtained with 3rd-order confinement are first discussed. The effect of VC, either in sourceterm or in flux formulation, is presented in figure 2. The profiles of out-of-plane vorticity, longitudinal velocity, density and energy are plotted for the initial condition, which is also the reference solution, and the final results with and without VC. They are extracted along the mesh line parallel to the y-axis where the vorticity magnitude is maximum. This is a reasonable approximation of the vortex center location, but there is a remaining uncertainty in the following comparisons due to this simplification. The increased accuracy of the results with all VC formulations compared to the baseline scheme is manifest. This is in line with previous works and demonstrates the significant added value of the method. When comparing the various VC formulations (figure 2), small differences can be noted between the results with the source and the flux terms, but they remain limited considering the long distance travelled by the vortex. For both cases with VC, the z-vorticity contours and the induced velocity vector, plotted in figure 3, show a slight distorsion of the vortex. The observed vortex distorsion is larger with the source-term formulation than with the flux one. As the out-of-plane vorticity changes sign outside of the vortex core, confinement is cut off at the boundary between the negative and positive areas and conservation errors may occur at this location, thus potentially explaining the larger degradation of the solution brought by the source-term formulation. The distorsion is also noticeable for the baseline vortex without VC, but it is less pronounced as the final vortex is significantly weaker. This point will be discussed more extensively in the following. The evolution of the minimum (negative vorticity of large magnitude in the vortex core) and maximum vorticity (positive vorticity of smaller magnitude in the ring surrounding the vortex core) during the whole computation are plotted in figure 4. All computations with VC lead to a similar evolution of minimum vorticity, which stabilizes towards a larger peak value than the original vortex, with quite a small difference between the source-term and flux formulations. On the contrary, the minimum vorticity magnitude regularly decreases without confinement because of the dissipation of the numerical scheme. As far as maximum vorticity is concerned, it has a much smaller magnitude and it globally shows a decreasing trend, with a kind of positive jump around 30,000 time steps. The rate of decrease is larger with the flux formulation of VC than with the source-term one, with also a smaller jump. The solution without VC shows a fairly constant value between 40,000 and 180,000 time steps before falling down much faster than when VC is activated, which is another illustration of the dissipation of the underlying numerical scheme. The behavior of this quantity can be explained by a spatial concentration of the out-of-plane positive vorticity. It will be discussed later in this paper. 

Fifth-order confinement

Globally, the 5th-order results of figure 5 match the exact solution better than at 3rd-order. However, larger differences are found between the source-term and flux formulations of VC. The final solution obtained with the source-term formulation deviates further from the exact solution than the others, even without confinement. Aside from the better quality of the baseline solution with 5th-order interpolation of the primitive variables than with 3rd-order, this is also due to a combination of numerical difficulties.

In order to discuss this point, the evolution of the minimum and maximum vorticity during the whole computation are plotted in figure 6. The largest differences between the various computations are obtained for the minimum vorticity. At the beginning of the simulation, the source-term formulation has the strongest effect with an increased vorticity magnitude at the vortex center, contrary to the non-confined solution where the vorticity magnitude decreases. In between, the flux formulation of VC yields a fairly constant peak vorticity, although the magnitude slightly increases. After a while (roughly 50,000 time steps or a travelled distance of 200R), the magnitude of minimum vorticity begins to decrease for all computations, with oscillations of increasing amplitude beginning to appear after more than 100,000 time steps. These oscillations are also noticeable for the maximum vorticity. Counter-intuitively, the maximum vorticity also increases with time, which is due to a breaking of the cylindrical symmetry in the spatial distribution of vorticity. Indeed, the out-of-plane positive vorticity component in the ring surrounding the vortex core is concentrated over time into two vortex structures which rotate around the vortex core. This explains the increase of positive vorticity noticeable in figure 6. It is hardly obtained at lower order (figure 4) because of a higher numerical dissipation which diffuses this relatively low level of vorticity. Meanwhile, the vortex core is distorted into an elliptical shape. As expected, the two counter-rotating vortex structures are centered around the minor axis of the elliptical core at equal distance from the vortex center. This is shown in figure 7 for all cases, with and without VC.

Basically, this behavior is similar to what was already found with 3rd-order confinement, but it is magnified at 5th-order. This is due to the reduced dissipation arising from the use of a 5th-order interpolation. This multiple-vortex structure probably leads to instabilities explaining the growing oscillations found on the minimum and maximum of vorticity in figure 4. The source-term formulation of VC amplifies the magnitude of oscillations. On the other hand, this effect is slightly reduced by the flux formulation with respect to the baseline. As a result, the reduction of negative vorticity peak magnitude at the end of the computation is larger for the source-term formulation of VC, followed by the baseline computation without VC and finally the VC flux formulation (figure 6). This loss of cylindrical symmetry introduces an additional difficulty at the boundary between the vortex core and both counter-rotating vortices when confinement is applied. At this location, the out-of-plane vorticity changes sign and the harmonic mean is ill-defined [START_REF] Petropoulos | Study of high-order vorticity confinement schemes[END_REF]. Large magnitudes of the VC term are thus obtained, which may amplify the vortex deformation and the associated instability, especially with the source-term formulation of VC. In practice, this problem scarcely affects the solution as the higher-order VC correction is small. In the present case, this spurious local increase of the VC term magnitude in the vortex border only happens after a large number of computed time steps. It is expected to be of little effect in real applications, but the methodology may need to be improved to extend the applicability of higher-order VC.

The above discussion shows that the origin of the loss of symmetry of the vortex is the same at 3rdand 5th-order. Several numerical tests, not presented here, were performed in order to try to identify it. The present results first show that vorticity confinement is not responsible for this discrepancy, as 5th-order results without and with confinement are very similar. The vicinity of the upper and lower boundaries of the mesh where periodicity conditions are applied could also be suspected to modify the vortex by deforming it. A parametric study, with upper and lower boundaries extending up to 50 vortex radii, clearly showed that this is not the case: the same vortex distorsion is observed even for such a large mesh extension. It was finally found that the problem does not occur for a vortex at rest, thus suggesting that it is introduced by the advective part of the scheme.

Globally, although the flux formulation of VC tends to improve the solutions for the long time advection of an inviscid vortex, only little differences were obtained between the source-term and flux formulations, since the two are identical within the vortex core itself. The differences observed between both formulations of VC are expected to come from conservation errors at the periphery of the vortex where the out-of-plane vorticity changes sign. This is the area where the largest differences are found.

Shock-vortex interaction case

In order to investigate whether the present high-order confinement approach degrades the shock capturing capabilities of the baseline scheme, the method was applied to the shock-vortex interaction problem presented in [START_REF] Jiang | Efficient implementation of weighted ENO schemes[END_REF][START_REF] Lerat | An efficient high-order compact scheme for the unsteady compressible Euler and Navier-Stokes equations[END_REF]. The initial condition corresponds to an isentropic vortex of radius r c = 0.05 embedded in a supersonic flow of M ∞ = 1.1 Mach number at the position (x c , y c ) = (0.25, 0.5), with a normal shock located at x c = 0.5. The perturbations introduced by the vortex to the primitive variables correspond to those of [START_REF] Lerat | An efficient high-order compact scheme for the unsteady compressible Euler and Navier-Stokes equations[END_REF], namely δu = βY exp(α

(1 -R 2 )), δv = -βXexp(α(1 -R 2 )), δT = -(γ-1)β 2 4αγ exp(2α(1 -R 2 )), with X = x-xc rc , Y = y-yc rc and R = √ X 2 + Y 2 , β = 0.
3 and α = 0.204. The Euler equations are solved over a cartesian mesh of the square domain [0, 1] × [0, 1] with a mesh resolution of ∆x = ∆y = 0.002 and a time step corresponding to U ∞ ∆t = 10 -3 . Nonreflecting conditions are applied at the mesh boundaries. The results at time t=0.346 are presented in figure 8. The baseline solution was computed with the Roe scheme and the van Albada limiter. For consistency with the baseline scheme, low-order vorticity confinement was applied with ε = 0.004, µ ε = 0.1, both in the flux and source-term formulations. The pressure contours on the left show the vortex just downstream of the shock wave, which is distorted by the vortex crossing. An acoustic wave is generated at the maximal shock curvature. On the right, a longitudinal pressure cut at y = 0.5 for the initial state and at time t=0.346 are presented. In this case, although the vortex still strongly interacts with the shock wave, the pressure profile remains free of oscillations even when vorticity confinement is activated. The VC formulation does not appear to alter the shock-capturing properties of the baseline scheme, as the results with and without VC are identical at the scale of both the left and the right plots.

Similarly, the pressure distributions at y = 0.5 obtained with a 3rd-and a 5th-order interpolation as well as confinement terms of similar orders are presented in figure 9. The confinement parameters are those determined in Appendix A. These cases are run with the AUSM+(P) scheme and do not include the application of a limiter, meaning that the numerical solution at the shock is oscillatory. However, the solutions with and without vorticity confinement are identical.

Similar cases were also computed on coarsened meshes, for higher upstream Mach numbers and with a flow oriented at 45 • with respect to the grid (results not shown here for brevity), leading to the same conclusions. This study thus confirms the compatibility of the present vorticity confinement schemes with the shock-capturing properties of the baseline scheme. for the shock-vortex interaction problem. Left: AUSM+(P) scheme with 3rd-order interpolation, without and with vorticity confinement. Right: AUSM+(P) scheme with 5th-order interpolation, without and with vorticity confinement 5. Zero-pressure-gradient turbulent flat plate boundary layer

Description of the test case

In the frame of scale-resolving simulations, it is crucial to minimize the numerical dissipation in areas where the resolution of the most energetic eddies is required. Several sensors have been proposed in the literature to reduce the dissipative part of numerical schemes in vorticity-dominated areas. The problem arises particularly for compressible flow equations because lower-order dissipation is required in the vicinity of shock waves [START_REF] Tenaud | Evaluation of some high-order shock capturing schemes for direct numerical simulation of unsteady two-dimensional free flows[END_REF][START_REF] Garnier | A class of explicit ENO filters with application to unsteady flows[END_REF]. Most sensors aim at protecting the LES part of the flow from this excessive dissipation, either by recentering the discretization [START_REF] Travin | Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows[END_REF][START_REF] Spalart | Sensitivity of landing-gear noise predictions by large-eddy simulation to numerics and resolution[END_REF][START_REF] Pont | Multiple-correction hybrid k-exact schemes for high-order compressible RANS-LES simulations on fully unstructured grids[END_REF] or by reducing the lower-order dissipation needed across shock waves [START_REF] Ducros | Large-eddy simulation of the shock/turbulence interaction[END_REF]. The one applied in [START_REF] Mary | Large eddy simulation of flow around an airfoil near stall[END_REF] aims at discriminating between nonphysical odd-even numerical oscillations and turbulent flow fluctuations. For most methods, the sensor definition is closely linked to the numerical scheme and/or turbulence simulation method. Yet, numerical dissipation is not the only source of error for scale resolving simulations, as subgrid-scale modelling, aliasing errors as well as time discretization errors also affect the solution [START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF][START_REF] Kravchenko | On the effect of numerical errors in large eddy simulations of turbulent flows[END_REF][START_REF] Chow | A further study of numerical errors in large-eddy simulations[END_REF][START_REF] Rizzetta | A time-implicit high-order compact differencing and filtering scheme for largeeddy simulation[END_REF][START_REF] Cinnella | High-order implicit residual smoothing time scheme for direct and large eddy simulations of compressible flows[END_REF]. Finally, for wall-bounded flows, an accurate prediction of skin friction is also quite demanding. In the context of WMLES, this quantity is particularly sensitive to the treatment of the interface between the LES and the wall regions, either when using wall models [START_REF] Kawai | Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy[END_REF] or with hybrid RANS/LES formulations [START_REF] Deck | Zonal detached eddy simulation of a spatially developing flat plate turbulent boundary layer[END_REF]. VC is an interesting technique to address the issue of excessive vortex dissipation in such flows. However, a first important step in that direction must be the analysis of its behavior in the treatment of turbulent boundary layers, a subject which has not yet been adequately investigated.

The effect of both source-term and flux VC corrections with such a hybrid RANS/LES method is investigated in this part of the article. All other numerical and modelling aspects are identical between the simulations presented in the following. The test case corresponds to a zero-pressure-gradient turbulent boundary layer over a flat plate (ZPGFPBL), with the following freestream conditions: velocity of 70 m/s, static pressure and temperature of 99,120 Pa and 287 K respectively. It was initially proposed in the frame of the EU Go4Hybrid project [START_REF] Deck | The spatially developing flat plate turbulent boundary layer[END_REF], and was also considered in [START_REF] Deck | A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers[END_REF]. The Reynolds number equals Re=4.72 10 6 per meter. Initial conditions enforce a boundary layer thickness of δ 0 = 5.8 mm, with a boundary layer profile prescribed following [START_REF] Deck | The spatially developing flat plate turbulent boundary layer[END_REF]. The three-dimensional structured mesh is also the one used by Deck et al. in [START_REF] Deck | A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers[END_REF]. It extends over L x = 113 δ 0 streamwise, L z = 5 δ 0 spanwise and L y = 52 δ 0 along the wall-normal direction. Downstream of the x/δ 0 = 77 position, mesh coarsening along the streamwise direction is progressively applied to avoid reflections at the outlet (see figure 10). The number of grid points is equal to 7.8 million.

A wall-modelled LES of the turbulent boundary layer is performed with the mode 3 of ZDES (as investigated in [START_REF] Deck | Recent improvements in the zonal detached eddy simulation (ZDES) formulation[END_REF], [START_REF] Deck | Zonal detached eddy simulation (ZDES) of a spatially developing flat plate turbulent boundary layer over the Reynolds number range 3 150 ≤ Re θ ≤ 14 000[END_REF]). This method combines a LES resolution of the external part of the boundary layer down to the logarithmic region with a RANS Spalart-Allmaras (SA) model near the wall through the mode 0 (i.e. RANS mode) of the ZDES. The RANS/LES interface is prescribed by a data file given as input to the elsA solver. Following the recommendations of [START_REF] Deck | The spatially developing flat plate turbulent boundary layer[END_REF], the interface was set at 0.125 δ 99 where δ 99 is the boundary layer thickness obtained by a preliminary RANS calculation of the test case (figure 10). The SA model thus plays the role of a wall model in the hybrid resolution of the boundary layer.

The inlet turbulent field inside the boundary layer was generated with the Synthetic Eddy Method ( [START_REF] Jarrin | A synthetic-eddy-method for generating inflow conditions for large-eddy simulations[END_REF], [START_REF] Pamiès | Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows[END_REF], [START_REF] Deck | Zonal detached eddy simulation of a spatially developing flat plate turbulent boundary layer[END_REF]). Velocity fluctuations modelled by synthetic eddies are superimposed to the mean flow quantities of the boundary layer and the resulting unsteady turbulent field is applied at the inlet. The formulation is based on the prescription of a target Reynolds stress tensor and of SEM modes (shape functions and intensities of groups of eddies that mimic those found in a boundary layer) that populate the boundary layer at the inlet. The setup of the SEM parameters follows the guidelines given by Laraufie and Deck [START_REF] Laraufie | Assessment of Reynolds stresses tensor reconstruction methods for synthetic turbulent inflow conditions. Application to hybrid RANS/LES methods[END_REF]. The SEM is implemented in an ONERA in-house python module. It is coupled with elsA using the external coupling process for boundary conditions. Preliminary tests and verifications of the implementation of the SEM in this module and application to jet flows can be found in [START_REF] Gand | Zonal detached eddy simulation (ZDES) using turbulent inflow and high order schemes: Application to jet flows[END_REF][START_REF] Gand | Investigation of turbulence development in incompressible jets with zonal detached eddy simulation (ZDES) and synthetic turbulent inflow[END_REF].

The computations were performed with the AUSM+(P) scheme with sensor [START_REF] Mary | Large eddy simulation of flow around an airfoil near stall[END_REF], allowing to minimize the numerical dissipation of turbulent structures, for both 3rd-and 5th-order interpolation of the primitive variables. Vorticity confinement of order 3 and 5 were used in the same order as the interpolation in order to perform a comparison against the baseline results without confinement, both in source-term and flux formulation. Unless explicitly mentioned, all VC computations were performed with the near-wall protection coming from the mode 3 of ZDES. All computations were started from the same converged RANS results, obtained with the 5th-order interpolation of primitive variables and without VC. Time resolution uses the 3-level backward Gear scheme, Newton sub-iterations and approximate linearization with LUSSOR matrix inversion of the implicit system. The time step is equal to ∆t = 3.2 10 -7 s and 4 Newton iterations are sufficient to reduce the unsteady residual by more than 1 order of magnitude at each time step. Typically, 100,000 time steps are first run to remove transient effects, corresponding to a convective time of approximately 3.5 flat plate lengths. Then, about 150,000 more time steps are run to collect unsteady data and compute flow statistics. This corresponds to more than 5 convective times of data acquisition.

Such a case was already considered with the source-term formulation of VC in [START_REF] Costes | Application of high-order vorticity confinement schemes to turbulent flows[END_REF]. Although the capture of turbulent eddies in the boundary layer was significantly improved by VC, a degradation of the skin friction could also be noted. More precisely, the von Kármán integral equation was not satisfied when VC2 schemes were applied, thus showing a discrepancy between the skin friction coefficient and the momentum thickness evolution along the flat plate length. It was conjectured that this unphysical behavior was due to the lack of conservativity of the source-term formulation of VC. The present comparisons between the flux and source-term formulations will allow us to evaluate the effect of conservation errors on the prediction of skin-friction.

Effect of wall protection

At first, the effect of wall protection by the RANS/LES interface of the mode 3 of ZDES is investigated. Both the source-term and flux formulations of 3rd-order VC were applied with and without the wall protection based on the interface between the RANS and LES parts of the boundary layer, shown in figure 10. With this protection, VC is cut off in the whole wall region solved in RANS mode. This prevents VC from interacting with the turbulence model and from artificially modifying the velocity gradient in the near-wall region where VC is not needed, since it is assumed that the grid is sufficiently refined to comply with RANS model requirements. The evolution of skin friction is quite conclusive on the need to protect the RANS zone of the ZDES (figure 11) regardless of whether the source-term or flux formulation of VC is used. Without wall protection, the skin friction value is too high. The results with the source-term formulation are at the upper limit of the 5% confidence interval around the Coles-Fernholz correlation [START_REF] Nagib | Approach to an asymptotic state for zero pressure gradient turbulent boundary layers[END_REF], and they are worse in flux formulation. Conversely, the wall protection brings back the skin friction towards values much closer to the Coles-Fernholz correlation and to published results, coming either from the experiments of De Graaf and Eaton [START_REF] De Graaff | Reynolds-number scaling of the flat-plate turbulent boundary layer[END_REF] and Österlund et al. [START_REF] Österlund | A note on the overlap region in turbulent boundary layers[END_REF], or from the DNS of Schlatter and Örlü [START_REF] Schlatter | Assessment of direct numerical simulation data of turbulent boundary layers[END_REF] and from Sillero et al. [START_REF] Sillero | One-point statistics for turbulent wall-bounded flows at reynolds numbers up to δ+≈ 2000[END_REF]. As expected, this comes from an intensification of the velocity gradient at the wall (figure 12) introduced by vorticity confinement when the wall-protection is removed, although it should be stressed that the non-dimensional Q-criterion naturally excludes the nearest mesh cells from the wall. As a result, the protection of the RANS part of the hybrid resolution is required in order to avoid artificial alteration of the wall friction. This is consistent with the overall behavior of the hybrid RANS/LES approach since the baseline scheme is used in RANS areas and only LES areas are affected by the improved numerics using VC.

At this stage, it is interesting to verify the effect of the wall protection on the relation between momentum thickness and skin friction for both the source-term and flux VC formulations. These two quantities are related by the von Kármán equation which, for a ZPGFPBL, is written:

dθ dx = C f 2 (19) 
A quantification of the inconsistency between momentum thickness and skin friction can be defined by the relative error:

ε θ = 1 θ (x) x 0 C f 2 dx -(θ (x) -θ (0)) (20) 
It represents the cumulated error in the von Kármán equation starting from the inlet, normalized by momentum thickness. The evolution of momentum thickness and relative error with flat plate length are plotted in figure 13 for both the source-term and flux formulations of VC. The momentum thickness predicted by Deck et al. in the simulations presented in [START_REF] Deck | A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers[END_REF] is also plotted as reference. The benefits of wall protection are clearly noticeable, as they provide momentum thicknesses much closer to the reference, whatever the source-term or flux formulation. Without wall protection, the source-term formulation underestimates the momentum thickness, which is overestimated in the flux formulation. The larger skin friction of the flux formulation also results in a larger streamwise gradient of momentum thickness. In that case, the skin friction coefficient and the momentum thickness are consistent, with a relative error on momentum thickness (equation ( 20)) of the same order of magnitude as the one with wall protection. This is due to the conservative character of the flux formulation. Indeed, without wall protection, the source-term formulation induces large inconsistencies between skin friction and momentum thickness, because vorticity confinement is cut off in the very near-wall region where the largest vorticity magnitudes are found and therefore the largest conservation errors are obtained. With wall protection, these conservation errors are smaller because they occur in a part of the boundary layer where the vorticity is significantly smaller so that the relative error defined by equation ( 20) is largely reduced at a level similar to that of the conservative flux formulation. At 5th-order, VC computations without wall protection fail, whatever the source-term or flux formulation. A numerical instability develops in the simulation, which prevents the computation from running more than 25,000 time steps. The present results show that instabilities develop in the RANS part of the boundary layer. This is a good illustration of the issues which may arise from the interaction between the VC scheme and the turbulence model in the near-wall region. It confirms that the wall protection is needed for robustness and consistency with the model used.

Third-order confinement

A comparison of the source-term and flux formulations of VC (with wall protection) with the results without confinement is presented from figure 14 to figure 23. Figure 14 is a qualitative comparison of the turbulent boundary layer at a prescribed time of the simulation, showing the iso-surfaces of the Q-criterion coloured by the Mach number. When vorticity confinement is applied, a larger amount of turbulent eddies is noticeable within the boundary layer, and no significant difference between the source-term and flux formulations can be noted. However, the effect of this richer turbulent content on the mean velocity profile, plotted in wall units, appears to be negligible (figure 15). For both presented stations, small differences can only be noted in the outer part of the boundary layer, due to differences in wall-friction prediction. The effect is slightly larger for the RMS velocity profiles. The reference results from [START_REF] Deck | A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers[END_REF], plotted for comparison, use a different implementation of the SEM and a different CFD code, which might explain some differences with the elsA predictions. As far as longitudinal velocity fluctuations are concerned (figure 16), their magnitude is generally smaller using the flux formulation of VC than the source-term one. The predictions without confinement are between those with VC in flux and source-term formulations, so that the effect of VC is not obvious. However, a small jump in the RMS profile is also noticeable with the source-term formulation of VC at the interface between the LES and RANS domains, indicated by a horizontal dash-dotted line. As this is the location where confinement is cut off by the wall-protection of the ZDES, one can surmise that this jump is related to conservation errors which tend to decouple the outer and the inner solutions of the boundary layer, obtained in LES and RANS modes respectively. It is therefore likely that the actual effect of the reduced dissipation of turbulent structures is to slightly decrease the RMS value of the longitudinal velocity fluctuations in the boundary layer. As a compensation, the opposite effect is obtained for the other components of velocity fluctuations (wall-normal, figure 17 and transverse, figure 18). The application of confinement in flux formulation tends to increase the RMS of these components with respect to the baseline computation without confinement, while they are slightly smaller using the source-term formulation. For these velocity components, the connection between the LES and the RANS part of the simulation is smoother and no slope discontinuity can be noted, even with the source-term formulation of VC. Concerning the resolved part of the Reynolds shear stress (figure 19), the flux formulation of VC generally yields a larger magnitude of the shear stress than the source-term formulation, but it is slightly smaller than the one predicted with the baseline scheme. Globally, the difference between the source-term and flux formulations of VC as well as the difference with the baseline results are quite modest when considering the various components of the resolved Reynolds stress tensor. As a result, only small differences are obtained for the turbulent viscosity profiles (figure 20). In the RANS part of the boundary layer, the source-term formulation of VC yields a larger peak value of turbulent viscosity. This is due to conservativity errors, as the results of the flux formulation in this area are roughly equivalent to those of the baseline computation.

In the LES region, the subgrid viscosity is higher with VC, with larger values being obtained with the source-term than with the flux formulation. This is probably due to larger velocity gradients obtained in the LES part of the flow when VC is active.

The effect of confinement on the skin friction evolution along the flat plate is presented in figure 21. In spite of the small differences noted above on the flow statistics, the effect of VC on skin friction is significant. A large improvement of the prediction of skin friction is obtained by the flux formulation of VC with respect to the source-term one. The skin friction is much closer to the Coles-Fernholz correlation, although predicted results without confinement appear to be even better in that aspect. Indeed, the skin friction predicted with VC is slightly above the Coles-Fernholz correlation, while non-confined results intersect the empirical correlation. Nevertheless, the canonical characteristics of a turbulent boundary layer are obtained earlier in the VC-flux results, showing that small scales are developped more quickly with VC thanks to a lower numerical dissipation, which in turn reduces the adaptation distance downstream of the SEM inlet. Furthermore, the growth rate of the boundary layer along the flat plate length is also quite well predicted, contrary to the one obtained without confinement which is somewhat higher than the correlation curve.

On the other hand, results of VC in a source-term formulation underestimate the skin friction magnitude. Additionally, the convergence towards fully turbulent conditions is delayed. The benefits of the VC flux predictions are probably due to the lower numerical dissipation of turbulent structures with confinement. A comparison of the contours of instantaneous spanwise vorticity fluctuations at the wall, presented in figure 22, tends to confirm this assumption as this quantity is directly related to the skin friction. This figure shows the footprint of the turbulent structures captured by the hybrid simulations due to the permeability of the RANS/LES interface. The vorticity is normalized by the ratio of the freestream velocity and the boundary layer thickness at the inlet. The mean value has been subtracted in order to facilitate the visualisation of the fluctuations with respect to this value. This mean value is consistent with the ranking of the predicted skin-friction, giving -19.04230 for the baseline, -19.27881 for the VC flux and -18.64351 for the VC sourceterm computations. Furthermore, the VC-flux computation shows a richer content of smaller scale vortices reaching the wall, especially in the second half-length of the flat plate, while the effect is not so obvious for the source-term results. Therefore the new conservative formulation of VC significantly improves the skin friction prediction. This is confirmed by considering the evolution of momentum thickness and of relative error [START_REF] Jeong | On the identification of a vortex[END_REF] in the integral equation for the longitudinal component of momentum (figure 23). The evolution of momentum thickness along the flat plate predicted by the flux formulation of VC is closer to the reference results of [START_REF] Deck | A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers[END_REF] than those obtained without confinement and with the source-term formulation of VC, the source-term results being above the baseline prediction which in turn is above the VC flux one. With respect to the baseline results without confinement, this is consistent with the lower growth rate of the boundary layer mentioned above. On the other hand, when compared to the source-term formulation of VC, this can be attributed to the effect of conservation errors in the source-term formulation. However, conservation errors remain small with the wall protection of the boundary layer, so that the relative error on the von Kármán equation [START_REF] Hunt | Eddies, streams, and convergence zones in turbulent flows[END_REF] remains in the same order of magnitude for the three computations: without and with VC in flux and source-term formulation.

Fifth-order confinement

A similar comparison at 5th order is presented from figure 24 to figure 33. Figure 24 shows the contours of the Q-criterion coloured by the Mach number at a given time of the simulation for the baseline computation, the source-term and the flux formulations of confinement. Again, the richer content of turbulent structures with VC activated can be noted, for both VC cases. However, the difference with respect to non-confined results is smaller than at 3rd-order. This is certainly due to the lower numerical dissipation of the 5th-order interpolation of the primitive variables. As a result, the effect of confinement on the mean velocity profiles, plotted in wall units, is inconspicuous (figure 25). The velocity profiles are almost identical for all selected positions along the flat plate. Only very minor differences are found for the external part of the boundary layer due to different skin friction predictions. The results are also very close to those of [START_REF] Deck | A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers[END_REF]. Similarly to what was observed with the 3rd-order VC2, differences are more significant when considering the profiles of velocity fluctuations. Again, the flux formulation of VC predicts slightly lower RMS values than the baseline for the longitudinal velocity fluctuations (figure 26). On the contrary, those obtained with the source-term formulation of VC are higher. Furthermore, a small discontinuity at the interface between the LES and RANS areas (again indicated by a horizontal dash-dotted line) is also observed with the 5th-order source-term formulation of VC, as it was the case at 3rd-order. Similarly, the other components of velocity fluctuations show an inverted trend with respect to the longitudinal component, but differences between the various predictions are smaller. The RMS of the wall-normal (figure 27) and transverse (figure 28) velocity components computed with the flux formulation of VC are slightly larger than the baseline, while those predicted with the source-term formulation of VC become progressively larger than those obtained with the flux formulation from upstream to downstream. In contrast with what was obtained at 3rd-order, the resolved part of the shear stress (figure 29) presents similarities with the RMS of the transverse and wall normal components, with larger values obtained with confinement whatever the formulation of VC. Globally, the effect of confinement on velocity fluctuations is fairly small. As a result, almost no effect can be noted on the evolution of the turbulent viscosity (figure 30), corresponding to the subgrid viscosity in the LES part of the boundary layer. The source-term formulation of VC generally predicts slightly larger values of the turbulent viscosity, both in the LES and the RANS part of the simulation. VC flux and baseline results are however almost superimposed, the VC results just being hardly larger. In conclusion, 5th-order VC has a moderate effect on flow statistics in the boundary layer, as was already found to be the case at 3rd-order.

Nevertheless, the effect on skin friction remains significant (figure 31). Although the baseline computation without confinement predicts too low values, the flux formulation of VC shows an evolution of the skin friction in almost perfect agreement with the Coles-Fernholz correlation. As at 3rd-order, the VC flux formulation also enables fully turbulent boundary layer conditions to be met earlier, but the difference with respect to the baseline computation is smaller than at 3rd-order. The interest of the conservative flux formulation of VC is also clearly noticeable as the skin friction predicted by the source-term formulation is below the predictions without confinement and therefore even further from the empirical Coles-Fernholz correlation. The benefit of the VC-flux formulation is confirmed by the contours of instantaneous spanwise vorticity fluctuations at the wall presented in figure 32. Again, the mean value has been subtracted for better readability of the fluctuations. The normalized mean values, equal to -18.91303 for the baseline, to -19.36536 for the VC-flux and to -18.64283 for the VC-source computations, are again consistent with the ranking of the predicted skin-friction values. Again, smaller-scale fluctuations can be noticed with the VC-flux formulation than with the baseline and the source-term one. Nevertheless, the effect of VC on the predicted fluctuations at the wall is quite smaller than at 3rd-order, which is consistent with the lower dissipation of the 5th-order baseline scheme. The superiority of the flux formulation of VC is also obvious when examining the evolution of momentum thickness and of the relative error [START_REF] Jeong | On the identification of a vortex[END_REF] in momentum thickness along the flat plate plotted in figure 33. In spite of a systematic under-prediction of skin friction, the non-conservative source-term formulation predicts a faster growth of the momentum thickness along the flat plate length compared to all the other simulations. It results in a much larger relative error on this quantity than for the baseline and the VC flux simulations. Indeed, these two computations predict very close values of momentum thickness as a function of flat plate length, the VC flux results yielding a slightly larger momentum thickness consistent with a larger skin friction magnitude. Therefore, although minor effects are found on local flow statistics, the fully conservative formulation of VC provided by the flux formulation is found to be mandatory for a correct prediction of skin friction. 

Conclusions

A thorough comparison between the original source-term formulation and a flux-correction version of higher-order VC2 vorticity confinement has been presented. In theory, these are fully equivalent, except when vorticity confinement is cut-off inside vortical regions of the flow such as in boundary layers. In that case, only the flux formulation is truly conservative at the interface between regions where VC is applied and regions where VC is cut-off.

The methods were first tested on the long-distance advection of an inviscid isentropic vortex, which is an exact solution of the Euler equations. The confinement parameters were determined by a simple parametric study aiming at a good preservation of the vortex over time. This was done with the flux version of confinement and the parameters were kept the same for the source-term formulation of VC. The results obtained generally show the superiority of the flux formulation to the original one, although the differences to be expected are moderate in such a case. With the flux formulation, the vortex characteristics after a long-distance advection are in better agreement with the exact solution, which is identical to the initial condition. Differences between the source-term and flux formulation of confinement are mainly obtained at the outer boundary of the vortex where the out-of-plane vorticity changes sign and confinement is cut off. The application of the methods to a vortex-shock wave interaction problem has also allowed us to confirm that the vorticity confinement terms do not alter the shock-capturing properties of the numerical schemes, both flux and source-term confinement yielding identical results to the baseline scheme at the shock location.

The methods were then applied to reduce the numerical dissipation in scale-resolved areas of hybrid RANS/LES simulations of a zero-pressure-gradient turbulent boundary layer over a flat plate. ZDES mode 3 simulations of the problem were carried out using 3rd-and 5th-order vorticity confinement. The confinement parameters were those determined in the previous inviscid vortex advection. The present computations correspond to Wall-Modelled LES simulations of the boundary layer, with the near-wall part up to 0.125 δ computed in RANS and the rest in LES mode. A SEM module coupled with elsA was used to generate turbulent fluctuations at the inlet plane of the boundary layer. A wall protection of VC was applied in order to exclude the whole RANS part of the boundary layer from confinement, which makes the application of the VC2 term consistent with the turbulence modelling. This proved to be necessary for robustness purposes and to predict the skin friction accurately, the values obtained without this wall protection being overly increased with respect to reference values provided by the Coles-Fernholz correlation. The effect of the conservative formulation of VC on the accuracy of the solution was also significant. In spite of minor differences in terms of flow statistics (mean velocity, Reynolds stresses), the flux formulation allows for a much better prediction of skin friction than the original non-conservative form. Indeed, the inconsistency between the evolution of skin friction and momentum thickness along the flat plate length obtained with the source-term formulation is completely removed by the flux correction method. Furthermore, the skin friction is also significantly improved with respect to the baseline results without confinement. The results at 3rd-order are presented in figure A.34. The objective is to get a final vortex as close as possible to the initial data, and although the matching is far from perfect, the value ε = 0.015 is a reasonable compromise. The selected VC parameters normalized by a ∞ ρ ∞ are thus equal to ε = 0.015, µ ε = 0.1. These values are used for all 3rd-order computations of the present paper.

Similarly, the results of the parametric study at 5th-order are presented in figure A. [START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF]. At 5th-order, the values of the VC parameters are required to be lower than at 3rd-order. Also, the solutions obtained are in better agreement with the exact solution, consistently with the reduced dissipation of the 5th-order scheme. The selected values, again normalized by a ∞ ρ ∞ , are equal to ε = 0.002, µ ε = 0.1. They are applied to all 5th-order computations throughout the main part of this paper. 
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 1 Figure 1: Schematic illustration of the long distance vortex advection case and the initial density field
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 234 Figure 2: Comparison of profiles of aerodynamic quantities across vortex after a travelled distance of 1200R (AUSM+(P) scheme with 3rd-order interpolation of primitive variables, without/with 3rd-order Vorticity Confinement)
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 5678 Figure 5: Comparison of profiles of aerodynamic quantities across vortex after a travelled distance of 1200R (AUSM+(P) scheme with 5th-order interpolation of primitive variables, without/with 5th-order Vorticity Confinement)

Figure 9 :

 9 Figure 9: Pressure distribution along line y=0.5 for initial condition (without symbols) and at time t=0.346 (with symbols)for the shock-vortex interaction problem. Left: AUSM+(P) scheme with 3rd-order interpolation, without and with vorticity confinement. Right: AUSM+(P) scheme with 5th-order interpolation, without and with vorticity confinement
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 10 Figure 10: 2D view of the mesh (1 every 3 points plotted) and definition of the RANS/LES interface of the mode 3 of the ZDES (desdist = 0, 125 δ 99 )
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 11 Figure 11: Effect of wall protection by the interface of the mode 3 of ZDES on skin friction -AUSM+(P) scheme with 3rd-order interpolation of primitive variables and 3rd-order vorticity confinement, left: source-term, right: flux formulation
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 1213 Figure 12: Effect of wall protection by the interface of the mode 3 of ZDES on velocity profile -AUSM+(P) scheme with 3rd-order interpolation of primitive variables and 3rd-order vorticity confinement, left: source-term, right: flux formulation
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 1415 Figure 14: Comparison of iso-surfaces of Q = 1/4 (U∞/δ 0 ) criterion coloured by Mach number (AUSM+(P) scheme with 3rdorder interpolation of primitive variables and 3rd-order Vorticity Confinement -baseline: top left, flux: top right, source-term: bottom)
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 1617 Figure 16: Effect of source-term and flux formulation of 3rd-order VC on RMS of longitudinal velocity profiles -AUSM+(P) scheme with 3rd-order interpolation of primitive variables
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 1819 Figure 18: Effect of source-term and flux formulation of 3rd-order VC on RMS of transverse velocity profiles -AUSM+(P) scheme with 3rd-order interpolation of primitive variables
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 2021 Figure 20: Effect of source-term and flux formulation of 3rd-order VC on turbulent viscosity profiles -AUSM+(P) scheme with 3rd-order interpolation of primitive variables
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 2223 Figure 22: Instantaneous contours of spanwise vorticity fluctuations at the wall -AUSM+(P) scheme with 3rd-order interpolation of primitive variables -baseline: top , flux: middle, source-term: bottom)
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 2425 Figure 24: Comparison of iso-surfaces of Q = 1/4 (U∞/δ 0 ) criterion coloured by Mach number (AUSM+(P) scheme with 5thorder interpolation of primitive variables and 5th-order Vorticity Confinement -baseline: top left, flux: top right, source-term: bottom)
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 2627 Figure 26: Effect of source-term and flux formulation of 5th-order VC on RMS of longitudinal velocity profiles -AUSM+(P) scheme with 5th-order interpolation of primitive variables
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 28 Figure 28: Effect of source-term and flux formulation of 5th-order VC on RMS of transverse velocity profiles -AUSM+(P) scheme with 5th-order interpolation of primitive variables
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 29 Figure 29: Effect of source-term and flux formulation of 5th-order VC on Reynolds shear-stress profiles -AUSM+(P) scheme with 5th-order interpolation of primitive variables
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 30 Figure 30: Effect of source-term and flux formulation of 5th-order VC on turbulent viscosity profiles -AUSM+(P) scheme with 5th-order interpolation of primitive variables
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 31 Figure 31: Effect of source-term and flux formulation of 5th-order VC on skin friction -AUSM+(P) scheme with 5th-order interpolation of primitive variables
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 3233 Figure 32: Instantaneous contours of spanwise vorticity fluctuations at the wall -AUSM+(P) scheme with 5th-order interpolation of primitive variables -baseline: top , flux: middle, source-term: bottom)

Figure A. 34 :

 34 Figure A.34: Effect of VC parameter on aerodynamic quantities across the vortex after a travelled distance of 1200R (AUSM+(P) scheme with 3rd-order interpolation of primitive variables and 3rd-order Vorticity Confinement in flux formulation)

Figure A. 35 :

 35 Figure A.35: Effect of VC parameter on aerodynamic quantities across the vortex after a travelled distance of 1200R (AUSM+(P) scheme with 5th-order interpolation of primitive variables and 5th-order Vorticity Confinement in flux formulation)
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Appendix A. Calibration of the VC parameters

The VC parameters are calibrated with the long-distance vortex advection case described in the present paper. At first, it can be noted that these parameters are dimensional, with the dimensions of momentum. Consequently they are normalized by a reference velocity and density, taken as the freestream speed of sound and density in the present case. For all cases, we prescribe the ratio µ ε = 0.1, as the linear dissipation coefficient should be low to avoid introducing an important amount of additional dissipation. The ε parameter is determined by a parametric study performed with the flux formulation of VC.