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Abstract

Fluid lipid bilayers are the building blocks of biological membranes. Although there is a
large amount of experimental data using incoherent quasi-elastic neutron scattering (QENS)
techniques to study membranes, very little theoretical works have been developed to study
the local dynamics of membranes. The main objective of this work is to build a theoretical
framework to study and describe the local dynamics of lipids and derive analytical expres-
sions of intermediate scattering functions (ISF) for QENS. As results, we developed the
dynamical Matryoshka model which describes the local dynamics of lipid molecules in mem-
brane layers as a nested hierarchical convolution of three motional processes: (i) individual
motions described by the vibrational motions of H-atoms; (ii) internal motions including
movements of the lipid backbone, head groups and tails, and (iii) molecule movements of
the lipid molecule as a whole. The analytical expressions of the ISF associated with these
movements are all derived. For use in analyzing the QENS experimental data, we also de-
rived an analytical expression for the aggregate ISF of the Matryoshka model which involves
an elastic term plus three inelastic terms of well-separated time scales and whose amplitudes
and rates are functions of the lipid motions. And as an illustrative application, we used the
aggregated ISF to analyze the experimental QENS data on a lipid sample of multilamellar
bilayers of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine). It is clear from this anal-
ysis that the dynamical Matryoshka model describes very well the experimental data and
allow extracting the dynamical parameters of the studied system.

Keywords: lipids, bilayers, local dynamics, quasi-elastic neutron scattering, modeling

1. Introduction

Biological membranes are complex lipid-rich systems that constitute fundamental inter-
faces and selectively permeable barriers for the compartmentalization that defines cells and
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organisms. Biological membranes are composed of lipids, which self-assemble into bilayers,
proteins and carbohydrates [1]. In addition to separating the interior from the exterior of
cells, for example, membranes are very dynamic systems that host and ensure many essential
processes vital for cellular functions, such as the transport of proteins or ions [1, 2]. This
dynamics is made up of both the activity at the surface and the movements of the bilay-
ers which give the membrane an important fluid character to ensure its functions. Since
lipids are the most abundant constituents of membranes, studies on the dynamics of lipids
in membranes are and remain very crucial. Due to their complex structure and dynamics,
lipid bilayers are characterized by a hierarchy and heterogeneity of motions over a wide
range of time and space. These dynamics include, for example, local movements like lipid
rotational, in-and-out of the plane diffusion at very short spatial scales and time scales of
pico to nanoseconds, but also collective lipid movements like density fluctuations of short
wavelength in pico to nanosecond range and long-wavelength flip-flop (transmembrane lipid
translocation), undulation and bending modes of the bilayer in the nano to microsecond
range [2, 3, 4]. In this work, we will only deal with short-range movements carried over
short time scales (pico to nanoseconds).

Over the years, incoherent quasi-elastic neutron scattering (QENS) has proven to be
a key technique for investigations of lipid motions at the pico - to nanosecond time scale
and there is a great amount of experimental data that have been accumulated using QENS
techniques [5, 6, 7, 8, 9]. However, since the seminal work by Pfeiffer et al. [5], there are
very few theoretical works that have been developed to analyze and describe local dynamics
of membranes [5, 10, 11]. Along these lines, a study on phospholipid membranes has been
proposed to separate the motions over three distinct time scales [12, 13]. Using such models
with QENS data allow to retrieve parameters like mean size of the solvent lipid cages,
diffusion coefficients lipid rotations or in-plane Brownian motions. More recently, Gupta et
al. [14, 15] proposed a new model for short and long-time dynamics as probed by QENS
(t < 5 ns) and neutron spin-echo spectroscopy (NSE) (t > 100 ns) on liposomes. The
intermediate scattering functions are well described by this model as well as mean square
displacements at the longer time scales. Motivated by these experimental investigations and
findings, our main objective in this paper is to provide a theoretical framework of a model
of membrane layers and to derive analytical expressions of incoherent structure functions
(ISF) describing the local dynamics. To this end, we have developed a model that describes
a membrane layer as a system of dynamically equivalent lipid molecules, each of which
consisting of two connected (via a backbone) bodies (head and tail) undergoing kinds of
internal and body motions.

The remaining of the paper is organized as follows. Section 2 consists of three parts: (i)
formulation of the dynamical Matryoshka model which describes the hierarchical convolution
of movements in the dynamics of a lipid molecule, (ii) detailed description of motions that
are included in the model and derivations of analytical expressions of the associated ISFs,
and (iii) derivation of an aggregate expression of the global ISF to be used to analyze and fit
the experimental data. Technical details of all derivations are described in the Appendices A
- C. Section 3 illustrates how the developed theory can be used to analyze the experimental
QENS data of a bilayer membrane and extract the parameters of interest. Finally, the main
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results of the paper are summarized in the Section 4.

2. Model formulation and analytical expressions

The membrane layer is considered as a system made of structurally and dynamically
equivalent lipid molecules interacting with each other. Among the whole hierarchy of mo-
tions characterizing the membrane dynamics, we are interested in the local motions of lipid
molecules as can be studied using techniques like incoherent quasi-elastic neutron scattering
[5, 6, 7, 8, 9, 10, 11, 12, 13]. Figure 1A provides an illustration of the types of phospholipid
molecules we will be dealing with. To describe the motional processes of an individual lipid
molecule, occurring in the potential of mean force generated by the sea of lipid molecules in
the membrane layer, we develop the Matryoshka model described below (see Fig. 1B).

2.1. Dynamical Matryoshka model

As illustrated in Fig. 1B, the dynamical Matryoshka model describes the dynamics of
a lipid molecule as resulting from the hierarchical convolution of three motional processes
(from fastest to slowest motions): (i) individual motions of H-atoms forming the cloud of
structured H-atoms bound to backbone atoms, (ii) internal motions of the lipid backbone or
skeleton made up of non-H atoms and H-atoms bound to them, the head and tail subunits,
and (iii) molecule motions or rigid body motions of the lipid molecule as a whole represented
by the movements of the center of inertia all dynamic H-atoms with respect to the lipid main
axis. The metaphor of dynamical Matryoshka (nesting dolls) originates from what these
motional processes occur in a superimposed and nested way over various (and overlapping)
timescales and, therefore, are resolved by zooming in or out over the associated characteristic
timescales.

2.2. Dynamical Matryoshka model: Intermediate Scattering Function (ISF)

The quantity of interest in incoherent neutron scattering is the intermediate scattering
function (ISF) defined as the space Fourier transform of the van Hove the self-correlation
function,

I(Q, t) = 〈eiQ.r(t) e−iQ.r(0)〉 (1)

where Q is the neutron scattering wave vector, r(t) and r(0) the hydrogen atom positions
at t = 0 and time t, respectively, and the sign 〈· · · 〉 represents an ensemble average over all
positions r(t) and r(0) in the potential of mean force, V (r) (see Appendix A). Within the
framework of this model and the hypothesis of dynamic independence for different motions,
the ISF for the local motions of a lipid molecule can be written as,

I(Q, t) = Iind(Q, t)× Iint(Q, t)× Imol(Q, t) , (2)

where Iind(Q, t), Iint(Q, t) and Imol(Q, t) are the ISFs associated to individual, internal and
molecular motions, respectively. In the following, we detail the motional processes of lipids

3



A: Lipid molecule B: Dynamical Matryoshka model

Figure 1: A: Illustration of a phospholipid molecule 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)
consisting of a hydrophilic head (in red) and hydrophobic fatty acid tails (in blue) with the distribution
of H-atoms. Courtesy from Steph Monfront (ILL). B: Dynamical Matryoshka model for the dynamics
of the lipid molecule represented as a funnel of three - level convoluted dynamic processes. Lipid tails are
represented by an effective single tail for the dynamics. Red and blue colored elements relate to head and
tail groups, respectively. H-atoms with C-H bounds (top) are structured along the lipid backbone (middle),
with head and tail subunits, mirroring the lipid molecule representation (bottom of the figure). At the
bottom of the funnel, the lipid molecule as a whole (rigid body) comes down to a point particle (green
sphere) representing the center of inertia (barycenter) of all dynamic H-atoms with respect to the lipid main
axis (dashed lipid backbone).

included in the dynamical Matryoshka model with, whenever possible, the associated po-
tentials of mean force, V (r). The elastic incoherent structure factor (EISF) for each motion
can be calculated as (see, Table 4),

EISF(Q) =

∣∣∣∣∫ eiQ.re−βV (r) dr∫
e−βV (r) dr

∣∣∣∣2 ; β−1 = kBT , thermal energy . (3)

The relationships between all the dynamical processes are summarized in Table 1 with the
details of derivations of IFSs provided in Appendix A and the analytical expressions of the
ISFs reported in Table A.7.
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Figure 2: Scheme of a lipid molecule showing the characteristic parameters of motions. The polar head
group is represented by the black ellipse (tilted by an angle α) of short and long diameters 2bH and dH,
respectively, and the hydrophobic tails are represented by a dynamically effective tail (vertical zigzag black
line) of apparent length M . Grey plane separates the head group (with a fraction z of H-atoms) from the
tail (with a fraction 1− z of H-atoms). The membrane normal (lipid axis) and head axis (tilted by an angle

α) are indicated by ~n and ~l, respectively. Dashed circle of radius R|| in the grey plane represents the effective
cage for the in-plane diffusion and the dashed parabola of stiffness k, perpendicular to the membrane plane,
indicates in-out of the plane motions of the lipid molecule. Dashed circles of increasing radii, R1, · · · , RM ,
around the effective tail represent areas for the diffusion motions of Hs along the tails and RH is the distance
between the lipid axis ~n and the center of inertia of all H-atoms with respect to ~n.

2.2.1. Individual motions

Individual motions relate to the vibrational motions of the cloud of H-atoms bound to
the lipid backbone atoms. Such motions are described by a harmonic potential of mean
force, V (r) = r2/2〈u2〉, where 〈u2〉 is the ensemble mean-square displacements of H-atoms
about their equilibrium positions. These individual movements being relatively fast (∼ 100
meV, [16]) for the timescales that concern us, the associated ISF is reduced to the EISF (i.e.,
time independent) and, in fact, is factored out in Eq.(2). The ISF for individual motions
is therefore given by the Debye-Waller factor as, Iind(Q, t) = IDW(Q) = ADW(Q) (see Table
A.7).

2.2.2. Internal motions

Internal motions result from the combination of three motional processes from the lipid
backbone, head and tail subunits. The headgroup and tails are considered as independent
subunits each with z and 1 − z fraction of H-atoms, respectively, and the lipid backbone
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Table 1: Dynamical processes

Dynamics Subunit Motions Process

Individual H-atoms vibrational Debye-Waller Very Fast

Internal
C-H groups
(backbone) ~

Tail jump
dynamics ~

diffusion in circles Fast
Head rotational diffusion ~ head-flip-flop

Intermediate~

Molecule Lipid Molecule
rotational diffusion

in-out of the plane diffusion
Slow~

2d-diffusion in a cage

common to both subunits includes all H-atoms (see Fig. 2). More generally, the participation
fraction, zs, of atom species s to the head motions is given by,

zs =

i∈ head∑
i=1

σs,i

all species∑
s=1

i∈molecule∑
i=1

σs,i

, σs,i = incoherent scattering cross section . (4)

In the case of a hydrogeneous molecule within QENS framework, zs (with s = 1) reduces to
the fraction of H-atoms.

The ISF for internal motions writes as,

Iint(Q, t) = Ibkb(Q, t) [zIhead(Q, t) + (1− z)Itail(Q, t)] , (5)

where Ibkb(Q, t), Ihead(Q, t) and Itail(Q, t) are the ISFs for motions in the lipid backbone,
head and tail.

• ISF for the Backbone motions, Ibkb(Q, t): Backbone motions relate to the motions
of C-H groups in the lipid molecule. Several models can be used to describe the
heterogeneous dynamics of C-H groups depending on whether they are located in the
head group or in the tails. For simplicity, we considered that the movements of all the
C-H groups could be described using a jump dynamics between two non-equivalent sites
distant from d and characteristic relaxation rate Γjump [17]. Because of heterogeneity,
d and Γjump are ensemble averaged quantities over distributions of site distances and
relaxation times, respectively. The potential of mean force for these motions is defined
as [18],

e−βV (r)∫
e−βV (r) dr

=


φ ; r = r1

1− φ ; r = r1 + d
0 ; otherwise

(6)

where r1 is the position of the low energy site and φ is the probability of occupying r1

(see Table A.7) and the ISF, Ibkb(Q, t) = Ijump(Q, t), is given in Table A.7.
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• ISF for Tail motions, Itail(Q, t): Tail motions refer to the movements of the H-atoms
in all the tails. In Fig. 2, the tails, which interact with each other, are represented
by a dynamically effective tail which indicates the axis of the tails and especially the
surfaces within which the movements of the H-atoms take place. The movements of
H-atoms in the tails are modeled by classical two-dimensional diffusions, all of an
effective diffusion constant Dtail within circles of radii Rm in the plane parallel to the
membrane at m, where m designates the position of the carbon atoms C − C along
the lipid tail from the start to the tail end (with, 1 ≤ m ≤M) and M is the apparent
length of the lipid tail. As shown in Fig. 2, as a result of interactions between tails, Rm

increases with m as the explorable space increases with m. Unlike the linear increase
of Carpentier et al. [19], we use instead, Rm = R1

√
m, to somehow account for a

random walk-like (along the tail axis) positions of carbon atoms to which hydrogens
are bound. The potential of mean force for these motions at each m is,

V (r, θ) =

{
0 ; 0 ≤ r ≤ Rm , 0 ≤ θ ≤ 2π
∞ ; otherwise

(7)

and the ISF Itail(Q, t) is given in Table A.7.

• ISF for Head motions, Ihead(Q, t): Headgroup motions, involved in the roughness of
the membrane surface, include three independent motions (see Fig. 2): the uniaxial

rotational diffusion about the head axis ~l, the flip-flop or jump dynamics of ~l axis be-
tween angles −α and α about the membrane normal ~n axis and the uniaxial rotational
diffusion of the ~l axis about the membrane normal ~n axis. However, for our purpose,
by symmetry the rotational diffusion about the ~n axis averages out such that only
the rotation about ~l and the head-flip-flop about ~n are retained. Following Pfeiffer et
al. [5], the term ”flip-flop” will be used throughout this study to designate the jump
dynamics of the tilted head axis about the membrane normal. The headgroup size bH

(see Fig. 2) represents the distance between the head axis and the center of inertia of

all H-atoms of the head group with respect to the head axis ~l. Derivation of the ISF
Ihead(Q, t) is detailed in Appendix A.

2.2.3. ISF for molecule motions: Imol(Q, t)

For molecule or rigid body movements, all dynamic H-atoms together perform the same
processes regardless of their location in the lipid molecule. Formally, the dynamics of the
lipid molecule as a whole can therefore be described by that of the center of inertia of all
dynamic H-atoms with respect to the lipid main axis (Fig. 1B). Three types of independent
movements are considered: rotational motions around the axis ~n of the lipid molecule, in-out
of the membrane plane movements (parallel to ~n) and in-plane lateral diffusion of the lipid
molecule. The ISF for molecular motions writes as,

Imol(Q, t) = Irot(Q, t)× Iin−out(Q, t)× I2d(Q, t) , (8)

where Irot(Q, t), Iin−out(Q, t) and I2d(Q, t) are the ISFs for rotational, in-out of the plane
and in-plane diffusion motions.
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• ISF for rotational motions, Irot(Q, t): For the rotational motions of the lipid molecule
about its axis ~n, all H-atoms perform exactly the same rotational movement about
the lipid axis ~n. However, as not all of the H-atoms are located equidistant from
the lipid axis, the resulting ISF should be the sum of the individual ISFs. As a first
approximation, we can reduce the rotational motions of all H-atoms to that of their
center of inertia and describe the rotational motions of the lipid molecule about its
axis ~n by a rotational diffusion of diffusion coefficient Drot on a circle of radius RH,
where RH is the distance between the lipid axis and the center of inertia of all dynamic
H-atoms with respect to the lipid axis ~n. The ISF Irot(Q, t) is given in Table A.7.

• ISF for in-out of the plane motions, Iin−out(Q, t): The in-out-of-plane movements,
involved in the roughness of the membrane surface, relate on the up and down motions
(normal to the membrane plane) around the equilibrium position of the lipid molecule
within the membrane layer. Such motions can be described by the one-dimensional
(parallel to ~n) diffusion within a harmonic potential of force constant k and relaxation
time τ . The harmonic potential of mean force is given by, V (z) = kz2/2, where z is
the lipid molecule position around its equilibrium position. The ISF Iin−out(Q, t) is
given in Table A.7.

• ISF for in-plane 2d diffusion motions, I2d(Q, t): In general, in-plane lateral diffusion
of lipid molecules is composed of short range local diffusion in a solvent cage and
long range jumps between different sites allowing molecules to travel within the mem-
brane layer. As this work is dealing with spatially short range dynamics, we will
only consider short range diffusion in what follows. Thus, in-plane diffusion of lipid
molecules describes when molecules exchange places via Brownian motion within a
cage. Such motions are described by a two-dimensional diffusion of diffusion constant
D|| within a circle of radius R||, where R|| is the effective size of the cage formed by the
neighboring lipid molecules. The potential of mean force for such a confined isotropic
two-dimensional diffusion is given by,

V (r, θ) =

{
0 ; 0 ≤ r ≤ R|| , ∀ θ
∞ ; otherwise

(9)

where r is the position of lipid in the membrane plane. The ISF I2d(Q, t) is given in
Table A.7.

In summary, the dynamical Matryoshka model describes the dynamics of H-atoms in lipid
molecules as a combination of 7 nested hierarchical movements (Table 1). The Matryoshka
model’s ISF is given by,

Imat(Q, t) =

ADW(Q)Ijump(Q, t)
[
zIhead(Q, t) + (1− z)Itail(Q, t)

]
Irot(Q, t)Iin−out(Q, t)I2d(Q, t) ,(10)

where the expressions of all included IFSs are given in Table A.7. All the movements with
the associated 18 dynamical parameters are summarized in the Table 2.
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Table 2: Local motions and associated parameters of the Matryoshka model.

Dynamics Motions Parameter Parameter definition

Individual Vibrational Debye-Waller 〈u2〉 H’s mean-square displacements

Internal

Backbone: jump dynamics
d two-site distance
φ probability of jump events

Γjump jump relaxation rate

Tails: diffusion in circles

1− z fraction of H’s in the tail
M length of the effective tail
R1 radius of the first circle
Dtail diffusion coefficient of tail H’s

Head: rotational diffusion+flip-flop

α head tilt angle
bH headgroup H-radius
τff inter flip-flop mean resting time

Dhead rotational diffusion coefficient

Molecule

Rotational diffusion
RH H-radius of the lipid molecule
Drot rotational diffusion coefficient

In-out of the plane diffusion
k force constant
τ relaxation time

2d-diffusion in a cage
R|| lipid cage radius

D|| molecular diffusion coefficient

2.3. Aggregated processes: 3-dynamical process approximation

As outlined above, the ISF of local movements of lipid molecules results from the convo-
lution of several individual ISFs which, in general, are multi-exponential functions of time.
Even when each individual ISF was approximated by a single exponential relaxation, the
resulting ISF would still be multi-exponential. In practice, it would be challenging to use
such a multi-exponential function in the analyzes of experimental data to extract physical
parameters of interest listed in Table 2. The idea is therefore to develop an approximation
of the ISF allowing to reduce timescales by coupling them together while keeping the orig-
inal information (as summarized in Table 2). For that purpose, we follow Wanderlingh et
al. [12] and consider how the dynamics of the lipid molecules as described above can be
approximatively aggregated into 3-dynamical processes. Under the context of dynamical
processes taking place on widely separated time scales (one or few orders of magnitude)
as outlined above, the main value of the 3-dynamical process model is to allow fitting the
experimental data and, therefore, providing an opportunity for direct connection between
analytical models of lipid motions and experimental observations.

The 3-dynamical process model is a phenomenological model in which the position r(t)
at time t of the H-atom in lipid molecules can be split into three independent components,
r(t) = r1(t) + r2(t) + r3(t), where r1(t), r2(t) and r3(t) stand for the slow, intermediate
and fast motions, respectively, describing the overall motions of hydrogen atoms in the
equilibrium lipid molecule at very different time scales. Each of these motions accounts for
a confined dynamics with a quasi-elastic term described by a single exponential decay term.

9



Under the approximation of separate time scales, the aggregated ISF can be written as,

Iagg(Q, t) = ADW(Q)
[
B0 +B1 e−Γ1t +B2 e−Γ2t +B3 e−Γ3t

]
; Γ0 = 0 < Γ1 < · · · < Γ3 , (11)

where ADW(Q) stands for the Debye-Waller factor, B0 is the overall EISF, Bi and Γi for
i = 1, 2, 3 are the amplitudes and relaxation rates of the slow, intermediate and fast motions,
respectively, such that,

∑3
i=0Bi(Q) = 1 for all Q. Accordingly, the measurable function in

incoherent neutron scattering experiments is the structure function S(Q,ω) defined as,

S(Q,ω) = R(Q,ω) ~
{ 1

π

∫ +∞

0

dt Iagg(Q, t) cos(ωt)
}

= R(Q,ω) ~
{
ADW(Q)

3∑
i=0

Bi(Q)Li(Q,ω)
}

; Li(Γi;Q,ω) =
1

π

Γi(Q)

ω2 + Γ2
i (Q)

,(12)

where R(Q,ω) refers to the experimental resolution function, Bi(Q) and Γi(Q) are the
respective areas and half-widths at half-maximum (HWHM) of the Lorentzian functions
Ln(Q,ω). It should be stressed here that:

(i) the three time scales slow, intermediate and fast do not necessarily correspond or
coincide to and, therefore, are not to be confused with those of individual, internal
and collective motions (see Table 1);

(ii) the phenomenological model does not provide which movements are resolved at each
timescale.

The purpose of aggregating the Imat(Q, t), derived above and given in Eq.(10), into 3-
dynamical processes is to associate each term in Eq.(11) with a physical meaning and an
analytical expression. To this end, we use the mapping, Imat(Q, t) ≈ Iagg(Q, t), i.e.,

Ijump(Q, t)
[
zIhead(Q, t) + (1− z)Itail(Q, t)

]
Irot(Q, t)Iin−out(Q, t)I2d(Q, t)

≈ B0 +B1 e−Γ1t +B2 e−Γ2t +B3 e−Γ3t , (13)

to derive the expressions of B’s and Γ’s as functions of physical quantities in I(Q, t). Note
that in Eq.(13), B0 is already known and is equal to B0 = I(Q, t → ∞) = Iagg(Q, t →
∞) (i.e., the product of EISF of all local motions), whereas the Bi>0 and Γi>0 remain
to be determined. In addition, the number of terms after the approximate sign ”≈” in
Eq.(13) can be reduced when some of the amplitudes cancel out because the contributing
motions turn out to be not observable. The aggregation procedure, based on the hierarchy
of relaxation time scales of motional processes in the Matryoshka model, is detailed in
Appendix B and the results are summarized in Table 3 in which the expressions of original
EISFs and relaxation rates are given in Tables 4 and 5, respectively. Table 3 provides which
local motions contribute at each timescale of the 3-dynamical process and how they are
combined in the expressions of amplitudes and relaxation rates. Each relaxation rate is
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not exclusive of a single local motion and the same local motion can therefore contribute
to different timescales. The amplitudes result from different combinations of several local
motions whose relaxation times can be relatively different. As a result of the aggregation
procedure in Appendix B, we find that the amplitudes Bi>0 (with the Debye-Waller factoring
all) involve the following contributions:

• Slow motions: grouping together time scales of the order of (Γin−out,Γ2d), B1 involves
a combination of the amplitudes of internal (backbone, head and tails) and molecule
(rotational, in-out of the plane and in-plane 2d-diffusion) motions;

• Intermediate motions: grouping together time scales of the order of (Γhead,Γrot), B2

involves a combination of the amplitudes of internal (backbone, head and tails) and
rotational motions;

• Fast motions: grouping together time scales of the order of (Γjump,Γtail), B3 involves
a combination of the amplitudes of backbone and tail motions.

Recall that each amplitude Ai of local motions do not contribute in the same way in the
Bi’s as given in Table 3. And, as a function of Q, we have:

• Q→ 0 limit: as expected, the scattering function essentially consists of the elastic peak
(EISF) with all motions contributing and no Lorentzian functions as, B0(Q→ 0)→ 1
and Bi>0(Q→ 0)→ 0;

• Moderate Q: as all Bi 6= 0, the scattering function consists of the elastic peak plus the
three Lorentzian functions with contributions of all motions. Note that slow motions
are only observable for these Q-ranges as B1(Q)→ 0 in both Q→ 0 and largeQ limits;

• LargeQ limit: asBi≤1(largeQ)→ 0 andB2(largeQ) = 1−B3(largeQ) ≈ zAbkb(largeQ) 6=
0, the scattering function reduces to only two Lorentzian functions involving interme-
diate and fast motions and concerning motions of C-H groups of the backbone.
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Table 3: Amplitudes (areas) and relaxation rates of the 3-dynamical process approximation.

Iagg(Q, t) = ADW(Q)
[
B0 +B1 e−Γ1t +B2 e−Γ2t +B3 e−Γ3t

]
Motions

Amplitudes (areas)

theoretical(a) experimental(b)

EISF B0 = [zAhead + (1− z)Atail]AjumpArotAin−outA2d A0 = mB0 + ε0

Slow B1 = [zAhead + (1− z)Atail] (1−Ain−outA2d)AjumpArot
}
Ai = mBi +

[1−m− ε0]

3
Intermediate B2 = Ajump [z(1−AheadArot) + (1− z)Atail(1−Arot)]
Fast B3 = z(1−Ajump) + (1− z)(1−AjumpAtail)

Relaxation rates

Slow Γ1 =
(1−Ain−out)Γin−out + (1−A2d)Γ2d

1−Ain−outA2d

Intermediate Γ2 =
z(1−Ahead)Γhead + [z + (1− z)Atail] (1−Arot)Γrot

z(1−AheadArot) + (1− z)Atail(1−Arot)

Fast Γ3 =
(1−Ajump)Γjump + (1− z)(1−Atail)Γtail

z(1−Ajump) + (1− z)(1−AjumpAtail)

(a) Limiting properties for Bi: B0(Q → 0) = 1 and Bi>0(Q → 0) = 0; Bi(highQ) → 0 for both i = 0
and i = 1 while B2(largeQ) = 1− B3(largeQ) = zAjump(largeQ) where Ajump(largeQ) = Abkb(largeQ) ≈
1− 2φ(1− φ).
(b) See Appendix C for derivations. m is the fraction of dynamical or mobile H-atoms and the error function
ε0(Q) accounts for immobile H-atoms, multiple scattering effects observable at low-Q, and others. For
simplicity, we will assume that the errors are homogeneously distributed over length scales and, therefore,
ε0(Q) = ε0.
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Table 4: Elastic Incoherent Structure Factor (EISF) of dynamical processes.

Subunit EISF (a)
(
||,⊥

)
H-atom

vibrational motions: Debye-Waller factor

ADW(Q) = exp

{
−Q

2〈u2〉
3

} (
Y, Y

)
C-H groups

jump dynamics between 2 non-equivalent sites distant from d
Ajump(Q) = 1− 2φ(1− φ)[1− j0(Qd)]

(
Y, Y

)
Tail

2d-diffusion of tail H-atoms inside F (m) - distribution of circles of radius Rm

(b)Atail(Q) =
M∑
m=1

F (m)

[
2J1(QRm sin γ)

QRm sin γ

]2 (
Y,N

)
Head

rotational diffusion of the headgroup about its axis plus head-flip-flop motion

(c)Ahead(Q) =

[
+∞∑
l=−∞

J2l(QbH cos γ sinα)Jl

(
QbH sin γ cos2 α

2

)
Jl

(
QbH sin γ sin2 α

2

)]2 (
Y, Y

)

Molecule

rotational diffusion of the lipid molecule about the membrane normal axis

Arot(Q) = J2
0 (QRH sin γ)

(
Y,N

)
in-out of the plane 1d-diffusion of the lipid molecule in a harmonic potential

Ain−out(Q) = exp

{
− (Q cos γ)2

(
kBT

k

)} (
N,Y

)
in-plane 2d-diffusion of the lipid molecule inside a circle of radius R||

A2d(Q) =

[
2J1(QR|| sin γ)

QR|| sin γ

]2 (
Y,N

)
The EISFs are obtained as, EISF = lim

t→∞
ISF, where the ISFs are given in Table A.7 with the associated references.

(a) Q direction: ⊥⇔ γ = 0 and || ⇔ γ =
π

2
refer to Q directions perpendicular and parallel to the membrane plane, respectively. ”Y=Yes”

(i.e., Ai(Q) changes with Q) and ”N=No” (i.e., Ai(Q) = 1 for all Q) indicate observable and non-observable motions, respectively. Limiting
properties: as we are dealing with spatially restricted motions, Aα(Q = 0) = 1 and Aα(highQ) → 0 for all continuous motions and for the
jump process between small number of sites for (backbone) Ajump(largeQ) 6= 0 and oscillates around, 1− 2φ(1− φ).
(b) For simplicity, we use F (m) = 1/M and Rm = R1

√
m.

(c) We have: Ahead,⊥(Q) = J2
0 (QbH sinα) and Ahead,||(Q) = J2

0

(
QbH cos2 α

2

)
J2

0

(
QbH sin2 α

2

)
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3. Illustrative Example

To compare and test how the theoretical developments outlined above would work when
analyzing experimental data, we considered the following neutron scattering experiments.
The whole task consists in determining 18 parameters describing the 7 motions of H-atoms
in the Matryoshka model (Table 2) plus 2 experimental parameters (m and ε0 in Table 3).

3.1. Quasi-Elastic Neutron Scattering (QENS) experiments and analyses

We used lipid samples of multilamellar bilayers (MLBs) of DMPC (1,2-dimyristoyl-sn-
glycero-3-phosphocholine) represented in Fig. 1A. The DMPC was purchased from Lipoid
(Ludwigshafen Germany) or from Avanti Polar Lipids (Alabaster, USA) and used without
further purification. The lipid samples were prepared on 6 Si wafers, and hydrated in D2O
atmosphere within a desiccator at full hydration. They were mounted on flat Aluminum
sample holders, gold-coated to avoid sample contamination. The sealing of the cells was
done by using Indium wire, and they were weighed before and after the experiment to check
for any sample loss.

DMPC samples were scanned on the IN6 time-of-flight spectrometer from ILL (Grenoble,
France), with a wavelength of 5.1 Å, corresponding to an energy resolution of about 70 µeV
[21]. At this resolution, motions up to around 10 ps are accessible and the attainable Q-range
is of, 0.37 ≤ Q ≤ 2.02 Å−1. The sample holder was oriented at 135° from the beam to access
in-plane motions [8]. QENS scans were performed at three different temperatures, 280 K,
311 K and 340 K, to probe the dynamics below and above the main phase transition of lipid
bilayers; DMPC is known to undergo consecutive phase transitions from the gel phase to
the ripple phase around 287 K and to the fluid phase around 297 K (corresponding to the
physiological state in cells) [22].

Empty cell with and without wafers, as well as Vanadium, were measured for correction
and normalization purposes. Raw data were first corrected by the empty cell + 6 wafers
contribution, using the Large Array Manipulation Program (LAMP) [23]. The resulting
S(Q,ω) spectra were subsequently analyzed in the range of -10 meV ≤ ∆E ≤ 2 meV using
IGOR Pro software (WaveMetrics, Lake Oswego, OR, USA). Following the QENS analysis
in [12], the model used to fit the spectra is similar to that in Eq.(12) as,

S(Q,ω) = ADW(Q)
[ 3∑
i=0

Ai(Q)Li(Q,ω)
]
~R(Q,ω) + B(Q) , (14)

where A0(Q) is the experimental elastic incoherent structure factor (EISF) and the Ai(Q) for
i > 0 are the experimental areas of the Lorentzian functions Li(Q,ω) of half-widths at half-
maximum Γi(Q) as defined in Section 2.3. The experimentally determined Ai(Q) are related
to the areas Bi(Q) in Eqs.(11) and (12) by expressions derived in Appendix C and given
in Table 3. R(Q,ω) refers to the resolution function and corresponds to the Vanadium
measurements directly included in the analysis and B(Q) is a flat background, that can
include the instrument contribution, or fast vibrational motions outside the window.

First, the QENS spectra are analyzed using Eq.(14) to extract both the areas, Ai(Q)’s,
and HWHM, Γi(Q)’s. Next, all Ai(Q)’s are simultaneously fitted using expressions in Tables
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Table 5: Relaxation rates of dynamical processes.

Subunit Relaxation rates(a)

C-H groups
jump dynamics between 2 non-equivalent sites distant from d
Γjump

Tail
2d-diffusion of tail H-atoms inside F (m) - distribution of circles of radius Rm

(b) Γtail(Q) = Dtail

[ M∑
m=1

F (m) (1−Atail(Q))
[(x1

0

)2
R2
m

+Q2
]]/[ M∑

m=1

F (m) (1−Atail(Q))
]

Head
rotational diffusion of the headgroup about its axis plus head-flip-flop motion

Γhead = Dhead +
1

τff

Molecule

rotational diffusion of the lipid molecule about the membrane normal axis
Γrot = Drot

in-out of the plane 1d-diffusion of the lipid molecule in a harmonic potential

(c) Γin−out(Q) =
[

(Q cos γ)2

(
kBT

k

)
1

τ

]/[
1− exp

{
− (Q cos γ)2

(
kBT

k

)}]
in-plane 2d-diffusion of the lipid molecule inside a circle of radius R||

Γ2d =
[(x1

0

)2
R2
||

+Q2
]
D||

(a) Following Ref.[20], the relaxation rate for each dynamical process is given by,
1

Γα(Q)
=∫ ∞

0

dt

[
Iα(Q, t)−Aα(Q)

1−Aα(Q)

]
for α = jump, head, tail, rot, in− out, 2d. For the simplicity of calculations,

the Γα reported in this table are derived at short time limit as, Γα(Q) = − lim
t→0

d

dt

[
Iα(Q, t)−Aα(Q)

1−Aα(Q)

]
.

(b) where x1
0 = 1.84118. Note that Γtail(Q) =

(
x1

0

)2 Dtail

〈R2
m〉

in the Q→ 0 limit and Γtail(Q) = Q2Dtail in the

Q→∞ limit, where 〈R2
m〉 = (M + 1)R2

1/2 for F (m) = 1/M and Rm = R1
√
m.

(c) Note that Γin−out(Q) = 1/τ in the Q → 0 limit and Γin−out(Q) ≈ (Q cos γ)
2

(
kBT

k

)
1

τ
in the Q → ∞

limit.
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3 and 4 to extract all the free parameters to determine. Indeed, as described in Table 3, the
Ai(Q)’s result from the combinations of the amplitudes of the motions and, therefore, are all
functions and share all the parameters. In this way, the constraints on the free parameters
must be satisfied simultaneously on all Ai(Q)’s and we have more replicates and therefore
better statistics. This data fitting procedure was done using the package lmfit from Python
[24] with Levenberg-Marquardt and Nelder-Mead algorithms.

3.2. Results

Main results within the framework of this analysis can be summarized as follows:

• Data from QENS experiments are analyzed as illustrated in Fig. 3 where the Eq.(14)
is used to fit the data points and extract both the experimental Lorentzian amplitudes
(areas) Ai(Q)’s and HWHM Γi(Q)’s. Figure 3 shows that the 3-dynamical process
model describes very well (with residuals ∼ 0) experimental data into an elastic peak
(δ(ω), a Lorentzian with Γ0 = 0, and amplitude A0(Q)) plus three well separated
Lorentzians (with, Γ1 ∼ 0.1 meV, Γ2 ∼ 1 meV and Γ3 ∼ 10 meV, for slow, intermediate
and fast motions, respectively; there is an order of magnitude between the Γi’s). Such
an analysis is performed for all values of the pair (Q, T ) considered in the experiment.

In the rest of this illustrative example, we will only deal with the Ai(Q)’s for a single
sample in a given geometry whereas the use of this approach on several samples of lipid
systems in different geometries with the analysis including S(Q,ω), Ai(Q) and Γi(Q)
will be presented and discussed in more details elsewhere [25, 26]. More specifically,
to study the dynamics of lipids in DMPC and DMPG (1,2-dimyristoyl-sn-glycero-3-
phosphocholine-(1’-rac-glycerol)) membranes, the Matryoshka model developed above
(Eq.(13) with Bi(Q) and Γi(Q) in Table 3) is used in the detailed analysis (S(Q,ω) and
Bi(Q) in ref.[25] and S(Q,ω) and Γi(Q) in ref.[26].) of the experimental data collected
on two instruments on the two membrane samples at three different temperatures.
Therefore, in what follows the number of parameters to determine is reduced to 11
for the Matryoshka model plus the 2 experimental parameters (m and ε0). All the
parameters are listed in the Table 6 where some are fixed (as extracted from the
literature) and others are obtained from the best fit of the model to experimental
data.

• Experimental Lorentzian amplitudes (areas) Ai(Q)’s extracted as described above in
Fig. 3 are represented by data points in Fig. 4. We observe that the Ai(Q) exhibit
as a function of Q a behavior exactly as predicted by the model (see the end of the
Section 2.3): A0(Q) ∼ 1 while Ai>0(Q) ∼ 0 at low Q → 0 as expected for spatially
restricted motions, A0(Q) and A1(Q) decreases to very low value (closed to zero) in
the large Q limit like for continuous motions while A2(Q) and A3(Q) increase with Q
to a non-zero value reflecting the spatially discrete motions of the backbone.

To go further in the analysis of these data, expressions of the amplitudes as a function
of Q are needed; this is what we have done in deriving the expressions given in Tables
3 and 4. Lines through the data in Fig. 4 represent best fits (with χ2 ∼ 1.5) of
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Figure 3: Example of S(Q = 1.38 Å−1, ω) data fitting for DMPC multilamellar bilayers sample measured
on IN6 at 135° geometry (in-plane motions) and T = 280 K. Solid black line through data points (grey
circles) represents the best fit to the data using Eq.(14) with the resolution function given by the Vanadium
measurements at Q = 1.38 Å−1. The fit results from the sum of the elastic peak (green line) and of the
three Lorentzian functions for slow (magenta line), intermediate (orange line) and fast (blue line) motions.

Ai(Q)’s using expressions in Tables 3 and 4 with the physical parameters of the local
motions thus determined and reported in Table 6. This figure clearly demonstrates
the relationships between local motions and the amplitudes of the phenomenological
3-dynamical process model.
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Figure 4: Data fitting for DMPC multilamellar bilayers measured at 135° (in-plane motions). Data points
correspond to experimental amplitudes (areas) of the 3-dynamical process as a function of Q for different
temperatures, obtained from best fits of QENS data with Eq.(14) as illustrated in Figure 3. Solid lines
through the data represent best fits to the data using the expressions of amplitudes given in Tables 3 and
4. Parameters extracted from these fits are reported in Table 6.
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Table 6: Fixed and Fitted parameters for DMPC MLBs. The sample was measured on IN6 instrument at 135°(in-plane motions or || -
geometry).

Id Parameter Definition T = 280K T = 311K T = 340K Units Reference

1 〈u2〉 H’s mean-squared
0.83± 0.05 1.30± 0.06 5.06± 0.43 Å2 Fitted

displacement

2
d two-site distance 2.2± 0.1 2.2± 0.1 2.2± 0.1 Å [27, 28](a)

φ probability of jump events 0.06± 0.02 0.07± 0.01 0.26± 0.02 - Fitted

3
1− z fraction of H’s in the tail 0.75 0.75 0.75 - [29]
M length of the effective tail 14 14 14 - [29]
R1 radius of the first circle 0.43± 0.04 0.43± 0.02 0.01± 0.40 Å Fitted

4
α head tilt angle 32.3± 0.6 32.3± 0.6 32.3± 0.6 ° [30, 31]
bH headgroup H-radius 1.04± 0.04 1.16± 0.04 0.66± 0.08 Å Fitted

5 RH H-radius of the lipid 0.01± 0.42 0.46± 0.01 0.62± 0.01 Å Fitted

6 k force constant No No No N/m Fitted

7 R|| lipid cage radius 1.13± 0.08 1.38± 0.04 2.06± 0.06 Å Fitted

8
m % of dynamic H’s 67± 1 73± 2 82± 1 - Fitted
ε0 error term 0.24± 0.01 0.15± 0.01 0.01± 0.01 - Fitted

value ± 2×standard deviation. No = not observable in || - geometry where Q direction parallels the membrane plane (see Talble 4). ”Id”
stands for motions with: 1 = vibrational motions, 2 = jump dynamics of the backbone, 3 = tails: diffusion in circles, 4 = head: rotational
diffusion+filp-flop, 5 = rotational diffusion of the lipid molecule, 6 = In-out of the plane diffusion, 7 = in-plane 2d-diffusion, and 8 =
experimental parameters.
(a) Mean distance between the two sites for the jump diffusion of C-H groups. From Ref.[27]: go to Home → Geometry → Experimental →
Internal coordinates orBond angles, and look for the HCH to obtain the average angle ĤCH (https://cccbdb.nist.gov/expangle2x.asp?
descript=aHCH&all=0), the experimental length dCH of C-H (https://cccbdb.nist.gov/expbondlengths2x.asp?descript=rCH&all=0) and

calculate the distance d as, d = 2dCH sin
(
ĤCH/2

)
. See also, Ref.[28], p.88.
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• From now on, we will be able to take an interest in local motions. Figure 5 shows
the EISF’s or amplitudes (except the Debye-Waller factor) of all local motions con-
tributing to the 3-dynamical process. These EISF’s are generated by using parameters
determined from Fig. 4 into expressions in Table 4. Changes with temperature of
the variations in amplitudes as a function of Q reflect changes of parameters with
temperature (see Table 6). Here, we did not nor have developed models to predict
how these parameters might change with temperature. We can already notice that in
general all parameters exhibit an increase with temperature (see Table 6). Indeed, the
lipid system gains thermal energy as temperature increases leading to a subsequent en-
hancement of the dynamics, especially above the main phase transition around 297K.
Interestingly, the Matryoshka model already proves to be sensitive enough to allow
capturing differences between the gel and liquid phase in such lipid systems.

In terms of motion amplitudes, observable movements have amplitudes Ai(Q) deviating
from the horizontal line 1 as a function of Q. The deviation increases when Ai(Q)
decreases (i.e., the extent of motions increases) and vice versa, i.e., the area above the

amplitude (F ), Fi = (1/Qmax)

∫ Qmax

0

[
1 − Ai(Q)

]
dQ, increases with the extension or

amplitude of motions. More specifically,

. Fraction of dynamic H’s: Values of m in Table 6 (given in %) are similar to that
found in the literature [32], with m increasing with temperature.

. Individual motions: The Debye-Waller factor is a gaussian function of Q (not
shown in Fig. 5) with the mean-square displacements (very similar to that found
in literature [32]) increasing with temperature (see Table 6). As a result, FDW(Q)
increases with temperature.

. Internal motions

→ Backbone motions: Backbone motions relate to movements of C-H groups
described by the jump diffusion between two non-equivalent sites distant of d.
As d is fixed (see Table 6), the change in the amplitude of backbone motions
with temperature reflects the change in the probability φ of jump events that
increases with temperature (see Table 6); note that φ(T = 340K) ≈ 0.26
whereas φmax = 0.5. Likewise, Fig. 5 shows that the amplitude of backbone
motions increases as Fjump(Q) increases with temperature.

→ Tail motions: Figure 5 shows that the diffusional motions of tails are clearly
observables with almost same amplitudes for temperatures T = 280K and
T = 311K as reflected by values of R1 in Table 6. And at T = 340K,
the Ai(Q) of tail motions exhibit an increase and become similar to that
of backbone motions. This behavior which does not go in the direction of
the increase of parameters with temperature finds its origin in the imprecise
value of R1 with large error bars (Table 6). It indicates possible variations of
other parameters of the motion with temperature and / or relations between
R1 and others parameters. Further analysis would be needed.
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→ Head motions: Figure 5 shows that the amplitude of the head motions slightly
increases with temperature at low temperature then decreases at higher tem-
perature as reflected by changes in the head size bH (see Table 6). Such a
change of bH at higher temperatures is interesting to note, especially since
it could be indicative of an interference in the analysis between internal ro-
tational motions of the heads around their axes and the molecule rotational
movements of lipid molecules (see Rotational motions and Figure 5); both
involving the H-atoms in the head group. More analysis would be needed.
For example, analyzing amplitudes in ⊥ geometry, where Q is perpendicular
to the membrane and only the movements of the heads are observable but not
those of molecule rotation (see Table 4), could give informative indications
on how to disentangle the motions.

. Molecule motions

→ Rotational motions: It appears that the amplitude of the rotational motions
of lipid molecules about lipid axis are weak (Arot(Q) ∼ 1) at low temperature
and increases (Arot(Q) < 1) when the temperature increases thus resulting
in an increase of the H-radius RH of lipid molecules with temperature (see
Table 6).

→ In-out the plane motions: The in-out of the plane motions of lipid molecules
are not observable for the ‖ geometry where the neutron scattering vector Q
is parallel to the membrane (see Table 4). In this case, the amplitude remains
the horizontal line, Fin−out(Q) = 0, for all pairs of (Q, T ) as shown in Fig. 5.

→ In-plane 2d diffusion motions: The in-plane diffusion of lipid molecules oc-
curs within a cage of radius R|| formed by the neighboring lipid molecules.
Figure 5 shows that the deviation F2d(Q) increases as the temperature gets
higher, thus indicating that R|| increases with the temperature (see Table 6).

Finally, let us recall that the systems (lipid molecules) studied in this framework are
in stable thermodynamic equilibrium states and that there is neither structural change nor
denaturation. Therefore, the individual and internal motions of the H atoms in these systems
describe the variations of positions of the H atoms around their equilibrium positions in
the potential of mean force. And as a result, the model parameters related to these local
movements of the H atoms around their equilibrium positions are not to be compared to
the structural counterparts because they describe different things and above all, in case of
comparison, they must not exceed, on the time scales considered, the values of the structural
parameters at the risk of affecting the system integrity. For illustration, the only structural
parameters in Table 6 are the head group tilt angle, α, and the mean two-site distance
d in CH-groups. And by comparing the values of other parameters in Table 6 with that
of structural parameters from diffraction experiments for example, we have: the values
of the headgroup H-radius, bH, the smallest radius R1 for the tail motions and the lipid
molecule H-radius, RH, are all smaller than the head size (∼ 2Å) [30, 33], the tail spacings
at attachment point (∼ 2.2Å) [30, 33], and the lipid molecule span DH1 sin(α), respectively,
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Figure 5: EISF or amplitudes of local motions (contributing to the 3-dynamical process) resolved in DMPC
multilamellar bilayers at 135° (in-plane motions) as a function of Q for different temperatures. Lines corre-
spond to expressions in Table 4 using parameters from Table 6.

where DH1 (∼ 5Å [30, 33], similar but different from dH in Fig. 2) is the size of the head
group and α is given in Table 6.

4. Concluding summary

Our main motivation in developing this work has been to construct a framework for
studying and describing local dynamics of lipid molecules in membrane layers. The main
results of this work can be summarized as follows:

• We have developed the dynamical Matryoshka model which describes the local dy-
namics of lipid molecules in a membrane layer as a nested hierarchical convolution of
three motional processes (Eq.(10) and Table 1):

(i) individual motions described by vibrational movements of H-atoms;

(ii) internal motions including the motions of the lipid backbone described by a jump
dynamics between two non-equivalent sites, the head motions described by a
rotational diffusion about the head axis plus a head-flip-flop or jump dynamics of
the head tilted angle about the lipid axis, and the motions of the tail described
by two-dimensional diffusions of H-atoms within circles of increasing radii along
the tails;

(iii) molecule motions of the lipid molecule as a whole including the rotational diffusion
about the lipid axis, in-out of the plane motion and the in-plane local diffusion
of the lipid molecule within a cage.

The model includes seven motions in total (see, Table 2) with the analytical expressions
of all associated ISFs provided in Table A.7.
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• For the purpose of analyzing QENS experimental data, we have derived an analytical
expression for the aggregated ISF of the Matryoshka model which involves an elastic
term plus three inelastic terms of well-separated time scales. In doing so, we obtain
the relationships between the amplitudes and rates of the aggregated ISF and those
of the local movements of the initial model (see, Table 3).

• As a check of the model, we have shown that the theoretical aggregated ISF fit very well
the QENS experimental data on a DMPC sample and allow extracting the dynamical
parameters of the model.

Although we have shown that the development outlined above already describes very well
QENS experiments, it can be complemented with analyzes including both the amplitudes,
Ai(Q), and rates, Γi(Q), for various samples of lipid systems in different geometries. Such
works are carried out and described in detail in [25, 26]. The Matryoshka model provides a
framework within which several improvements can be carried out if necessary. For example,
for local motions, we have described the motions of the backbone by a jump dynamics
between two sites. It would be quite possible to substitute them with other movements
(e.g., jump dynamics between three sites) that the associated EISF (which contributes in
the amplitudes of intermediate and fast motions) does not cancel at large Q, as experimental
evidence indicates that the movements of the backbone should be spatially discrete.

The Matryoshka model shares some similarities and can be considered complementary
at short timescales to Gupta et al. model [14]. Indeed, unlike to the Matryoshka model,
which mainly deals with the local movements of the lipid molecules at short times, three
processes including tail motions, collective lipid motions of the membrane and translational
diffusion of the liposome are considered to contribute the ISF in the Gupta model. Although
the expressions of the EISFs are different, the two models intersect on the description and
the contribution of the tail motions in the ISF. Concerning the collective movements of
the membrane, the Matryoshka model currently considers the membrane as a set of units
of lipid molecules performing local movements in a potential of mean force as opposed to
the continuous image of the membrane as in the Gupta model. Therefore, the Matryoshka
model outlined above could be further extended to include in the same setting long range
jumps for in-plane lipid diffusion and collective movements of the membrane. In terms of
the time scales discussed here, these motions would belong to the class of slow or very slow
motions (Γ ∼ 1 µeV). Such a work is in progress. Finally, to be complete in the analysis of
QENS data, it might turn out necessary to develop models predicting how the parameters
of local motions would change with temperature and membranes characteristics.
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Appendix A. Derivations of expressions of ISF

In the hydrogenous samples (e.g., proteins, lipid membranes), the neutron scattering
intensity is mainly dominated by the incoherent scattering of hydrogen atoms which have a
very high incoherent scattering cross section (σinc) compared to that of other atoms. There-
fore, in incoherent QENS experiments, the measured intensity of the incoherent scattered
neutrons from the sample is given by [17],

d2σ

dωdΩ
∝ kf
ki
σincS(Q,ω) (A.1)

where ki and kf are the magnitude of initial and final wave vectors, respectively, the structure
function S(Q,ω) is the scattering law with Q being the neutron scattering wave vector and
ω the angular frequency related to energy transfer. S(Q,ω) is the time Fourier transform
of the ISF, I(Q, t), defined as the space Fourier transform of the van Hove self-correlation
function,

I(Q, t) = 〈eiQ.r(t) e−iQ.r(0)〉 =

∫
dr0

∫
dr eiQ.rG(r, t|r0)eiQ.r0P (r0) (A.2)

where P (r0) is the initial distribution of positions (usually taken as the equilibrium distribu-
tion from G(r, t|r0)). The van Hove self-correlation or Green’s function, G(r, t|r0), represents
the probability of finding a particle at a position r in space after a time t, given that the
particle started at r0 at t = 0. In this section we provide and derive the expressions of the
key quantity, the ISF.

In all that follows, the mathematical expressions of all the ISFs considered in this work are
gathered in Table A.7. For the ISFs whose expressions had already been derived elsewhere,
we have indicated the associated references, and for the others we derive the expressions in
this Appendix. This will be the case for head rotational movements with flipflop and the
molecular in-out-of the plane diffusion of the lipid molecule in a harmonic potential.
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Table A.7: Intermediate Scattering Functions (ISF) of dynamical processes.

Subunit ISF Mathematical expression

H-atom
(a) IDW vibrational motions: Debye-Waller factor

IDW(Q, t) = exp

{
−Q

2〈u2〉
3

}
C-H groups

(b) Ijump jump dynamics between 2 non-equivalent sites distant from d
Ijump(Q, t) = Ajump(Q) + [1−Ajump(Q)] exp {−Γjump|t|} , Ajump(Q) = 1− 2φ(1− φ)[1− j0(Qd)]

Tail

(c) Itail 2d-diffusion of tail H-atoms inside F (m) - distribution of circles of radius Rm

Itail(Q, t) =

M∑
m=1

F (m)

{
A0

0(ym) +

+∞∑
n=1

A0
n(ym) exp

{
−
(
x0
n

)2 (
Dtail/R

2
m

)
|t|
}

+ 2

+∞∑
l=1

+∞∑
n=0

Aln(ym) exp

{
−
(
xln

)2 (
Dtail/R

2
m

)
|t|
}}

A0
0(ym) =

[
2J1(ym)

ym

]2

; Aln(ym) =
4
(
xln
)2

(xln)
2 − l2

.

[
ymJl+1(ym)− lJl(ym)

y2
m − (xln)

2

]2

; ym = QRm sin γ

Head

(d) Ihead rotational diffusion of the headgroup about its axis plus head-flip-flop motion

Ihead(Q, t) =
+∞∑

n=−∞
An(Q) exp

{
−
[
n2Dhead +

1− (−1)n

2τff

]
|t|
}

An(Q) =

[
+∞∑
l=−∞

Jn−2l(QbH cos γ sinα)Jl

(
QbH sin γ cos2 α

2

)
Jl

(
QbH sin γ sin2 α

2

)]2

Molecule

(e) Irot rotational diffusion of the lipid molecule about the membrane normal axis

Irot(QRH sin γ, t) = J2
0 (QRH sin γ) + 2

+∞∑
n=1

J2
n(QRH sin γ) exp

{
−Drotn

2|t|
}

(f) Iin−out in-out of the plane 1d-diffusion of the lipid molecule in a harmonic potential

Iin−out(Q cos γ, t) = exp

{
− (Q cos γ)2

(
kBT

k

)[
1− e−|t|/τ

]}
(g) I2d in-plane 2d-diffusion of the lipid molecule inside a circle of radius R||

I2d(QR|| sin γ, t) = A0
0(y) +

+∞∑
n=1

A0
n(y) exp

{
−
(
x0
n

)2 (
D||/R

2
||

)
|t|
}

+ 2
+∞∑
l=1

+∞∑
n=0

Aln(y) exp

{
−
(
xln

)2 (
D||/R

2
||

)
|t|
}

A0
0(y) =

[
2J1(y)

y

]2

; Aln(y) =
4
(
xln
)2

(xln)
2 − l2

.

[
yJl+1(y)− lJl(y)

y2 − (xln)
2

]2

; y = QR|| sin γ
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(a) corresponds to the long time limit as the relaxation of vibrational motions is very fast and out of the time scales considered here (see
[17]). 〈u2〉 is the mean square amplitude of these very fast motions.

(b) j0(· · · ) is the spherical Bessel function of first kind and order 0, φ = τ1/(τ1 + τ2) = 1/ [1 + exp(−∆G/kBT )] and Γjump = τ−1
1 + τ−1

2

where τ1 and τ2 are the mean residence times in each site and ∆G the standard energy variation of the transition between the two sites [18]
(see also [17]).

(c) See (g) for the derivation. Dtail is the diffusion constant. The simplest distribution law is, F (m) = 1/M , where M is the apparent chain
length of the lipid tail, and the circle-radius Rm = R1

√
m. Carpentier et al. [19] rather used a two-parameters model for the circle-radius,

Rm =

(
m− 2

M − 2

)
(RM −R2) +R2.

(d) bH is the H-radius of the head group (i.e., the distance between the head axis and the center of inertia of all H-atoms of the head

group with respect to the head axis ~l), α the tilt angle between the membrane normal axis and head axis (see Fig.2), Dhead the head rotational
diffusion constant and τff the mean resting time between two successive head-flip-flops or jumps. Jn(· · · ) is the cylindrical Bessel function of
first kind and order n. See the derivation in Sec. Appendix A.1.

(e) See Eq.(13) in Ref.[34]. The size of the cross section of the lipid molecule is given by, RH (i.e., the distance between the lipid axis and
the center of inertia of all dynamic H-atoms with respect to the lipid axis), γ the angle between Q and the membrane normal axis and Drot

the rotational diffusion constant.
(f) k is the force constant, τ the relaxation time, kBT the thermal energy with kB the Boltzmann constant and T temperature. See the

derivation in Appendix A.2.
(g) See the derivation in Ref.[35]. Jl(· · · ) is the cylindrical Bessel function of first kind and order l and xln is the (n + 1)th root of,

d

dx
[Jl(x)] = 0; these roots are tabulated in [36], e.g., x0

n = 3.83170, 7.01558, 10.17346 for n = 1, 2, 3 and x1
n = 1.84118, 5.33144, 8.53632 for

n = 0, 1, 2, where x1
0 is the smallest non-zero root. D|| is the diffusion constant.
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Appendix A.1. Rotational diffusions and flip-flop of headgroup

We will consider the head group as an ellipsoid of circular cross-section of diameter 2bH

and directing vector ~l (see Fig.2), where bH is the distance between the head axis and the

center of inertia of all H-atoms of the head group with respect to the head axis ~l and ~l is
given in the orthonormal frame x̂yz of basis (~i,~j,~k) by,

~l =

 sinα cos η
sinα sin η

cosα

 . (A.3)

The angles are defined in Fig.A.6.

Figure A.6: Definition of angles for the rotations about ~n (parallell to z) and ~l directions and the head-

flip-flop motion (jump dynamics) of ~l about ~n. Adaptation from [34].

That thus makes it possible to define a local orthonormal coordinate system (~ex, ~ey, ~ez)
associated with the head group as follows,

~ex = (cosα cos η)~i+ (cosα sin η)~j − (sinα)~k

~ey = −(sin η)~i+ (cos η)~j

~ez = ~l = (sinα cos η)~i+ (sinα sin η)~j + (cosα)~k

(A.4)

from which the matrix of passage from (~ex, ~ey, ~ez) to (~i,~j,~k) can be determined as,

P = [~ex, ~ey, ~ez] =

 cosα cos η − sin η sinα cos η
cosα sin η cos η sinα sin η
− sinα 0 cosα

 (A.5)

Note that P = Rz(η)Ry(α) results from the operation of two rotations where Ry(α) describes
the rotation of an angle α about y−axis and Rz(η) the rotation of an angle η about z−axis.

The head group position vector ~b in the local head group frame (~ex, ~ey, ~ez) is given by,

~b = bH

 cosφ
sinφ

0

 = bH [(cosφ)~ex + (sinφ)~ey] (A.6)
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where φ is the angle between ~b and ~ex. Thus, the head group position vector r in the frame
(~i,~j,~k) is obtained using the passage matrix as,

r = P~b = bH

 cosα cos η − sin η sinα cos η
cosα sin η cos η sinα sin η
− sinα 0 cosα

  cosφ
sinφ

0


= bH

 cosα cos η cosφ− sin η sinφ
cosα sin η cosφ+ cos η sinφ

− sinα cosφ

 (A.7)

Note that, r ·~l = 0 as expected since r ⊥ ~l.
Let the z−axis be the normal to the membrane, the scattering wave vector Q is given

by,

Q = Q

 sin γ cosλ
sin γ sinλ

cos γ

 (A.8)

where γ is the angle between ~k and Q and λ the angle between the projection of Q onto the
x− y plan and ~i. Now, the scalar product entering in the calculation of the ISF writes as,

Q · r = QbH

 sin γ cosλ
sin γ sinλ

cos γ

 ·
 cosα cos η cosφ− sin η sinφ

cosα sin η cosφ+ cos η sinφ
− sinα cosφ


= QbH [sin γ cosφ cosα (cosλ cos η + sinλ sin η) + sin γ sinφ (sinλ cos η − cosλ sin η)

− cos γ sinα cosφ]

= QbH [sin γ cosφ cosα cos(λ− η) + sin γ sinφ sin(λ− η)− cos γ sinα cosφ]

= QbH

{
sin γ

[
cos2

(α
2

)
cos(φ− λ+ η)− sin2

(α
2

)
cos(φ+ λ− η)

]
− cos γ sinα cosφ

}
= QbHf(α, φ, λ, γ, η) (A.9)

The head group performs two independent motions:

• Uniaxial rotational diffusion of angle φ about the ~l−axis and diffusion constant Dhead

described by the Green’s function:

Grot(φ, t|φ0) =
1

2π

∞∑
n=−∞

exp {in(φ− φ0)} · exp
{
−Dheadn

2|t|
}

(A.10)

with the equilibrium distribution, Peq,rot(φ) = lim
t→∞

Grot(φ, t|φ0) = 1/(2π),

• Head-flip-flop motion or jump dynamics of the ~l−axis between angles θ = −α and
θ = α and residence time τff described by the jump diffusion with the Green’s function:

Gff(θ, t|θ0) =
δθ,α
2

[u δθ0,α + v δθ0,−α] +
δθ,−α

2
[u δθ0,−α + v δθ0,α] (A.11)
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where,

u
v

}
= 1± exp

{
−|t|
τff

}
(A.12)

with the equilibrium distribution, Peq,ff(θ) = lim
t→∞

Gff(θ, t|θ0) = 1/2.

For experimental configurations where the direction of the scattering vector Q with
respect to the membrane normal is set constant (i.e., the angle γ is set constant for all λ),
the ISF is calculated as,

I(Q, t) =
α∑

θ0=−α

Peq,ff(θ0)
α∑

θ=−α

Gff(θ, t|θ0)

∫ 2π

0

dη0

2π

∫ 2π

0

dη

2π

∫ 2π

0

dφ0 Peq,rot(φ0)

∫ 2π

0

dφGrot(φ, t|φ0) exp {iQbH [f(θ, φ, λ, γ, η)− f(θ0, φ0, λ, γ, η0)]} (A.13)

=
α∑

θ0=−α

Peq,ff(θ0)
α∑

θ=−α

Gff(θ, t|θ0)
∞∑

n=−∞

Bn(θ, γ)B∗n(θ0, γ) exp
{
−Dheadn

2|t|
}
,

where,

Bn(θ, γ) =

∫ 2π

0

dη

2π

∫ 2π

0

dφ

2π
exp {i [Qb f(θ, φ, λ, γ, η) + nφ]} =

1

2π

∫ 2π

0

dη Cn(θ, λ, γ, η)(A.14)

Using Gff(θ, t|θ0) in Eq.(A.11) back into I(Q, t), we have:

I(Q, t) =
∞∑

n=−∞

{u
4

[Bn(α, γ)B∗n(α, γ) +Bn(−α, γ)B∗n(−α, γ)]

v

4
[Bn(α, γ)B∗n(−α, γ) +Bn(−α, γ)B∗n(α, γ)]

}
exp

{
−Dheadn

2|t|
}
.(A.15)

We have,

Cn(α, λ, γ, η) =
1

2π

∫ 2π

0

dφ exp {i [QbH f(α, φ, λ, γ, η) + nφ]} (A.16)

=
1

2π

∫ 2π

0

dφ exp {inφ} exp {iz1 cosφ} exp {iz2 cos(φ− µ)} exp {iz2 cos(φ+ µ)} ,

where, 

µ = λ− η
z1 = −QbH cos γ sinα

z2 = QbH sin γ cos2
(α

2

)
z3 = QbH sin γ sin2

(α
2

)
(A.17)
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Now, using the following relations,
exp {±iz cosψ} =

∞∑
m=−∞

i±m exp {∓imψ} Jm(z) ; Jacobi-Anger expansion

∫ 2π

0

dφ exp {±ikφ} = 2π δk,0

(A.18)

back into Eq;(A.16), we obtain:

Cn(α, λ, γ, η) = in
∞∑

m=−∞

∞∑
l=−∞

Jm(z1)Jl(z2)Jn−m−l(z3) exp {i(2l +m− n)µ} , (A.19)

where Jm(· · · ) is the Bessel function of first kind and order m. It follows that,

Bn(α, γ) =

∫ 2π

0

dη

2π
Cn(α, λ, γ, η) =

∫ 2π

0

dµ

2π
Cn(α, λ, γ, η)

=
in

2π

∞∑
m=−∞

∞∑
l=−∞

Jm(z1)Jl(z2)Jn−m−l(z3)

∫ 2π

0

dµ exp {i(2l +m− n)µ}

= in
∞∑

l=−∞

Jn−2l(z1)Jl(z2)Jl(z3) . (A.20)

Using the relation for the Bessel functions, Jn(−x) = (−1)nJn(x), we obtain the relation:
Bn(α, γ) = (−1)nBn(−α, γ). Now, using this relation relation in Eq.(A.15), we finally
obtain,

I(Q, t) =
∞∑

n=−∞

[u+ (−1)nv

2

]
|Bn(−α, γ)|2 exp

{
−Dheadn

2|t|
}

(A.21)

=
∞∑

n=−∞

[
+∞∑
l=−∞

Jn−2l(−z1)Jl(z2)Jl(z3)

]2

exp

{
−
[
n2Dhead +

1− (−1)n

2τff

]
|t|
}
.(A.22)

And, taking t→∞ limit of I(Q, t), we obtain the EISF as,

Ahead(Q) = lim
t→∞

I(Q, t) =

[
+∞∑
l=−∞

J2l(−z1)Jl(z2)Jl(z3)

]2

, (A.23)

where z1, z2 and z3 are given above in Eq.(A.17).

Appendix A.2. In-out of the plane motions: 1d Diffusion in a Harmonic Potential

Let the z−axis coincides with the normal to the membrane, we consider that each lipid
molecule, of coordinate z, is undergoing as a whole a 1d diffusion parallel to z−axis in a
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harmonic potential of mean force, V (z) = kz2/2, of force constant k and relaxation time τ .
The Green’s function, G(z, t|z0), describing such motions for the lipid molecule is given by
(see Eqs.(2.7) and (2.8) in [37]),

G(z, t|z0) =

exp

{
−
(
z − z0e−t/τ

)2

2σ2
0 [1− e−2t/τ ]

}
√

2πσ2
0 [1− e−2t/τ ]

(A.24)

with the equilibrium distribution of lipid molecule positions given by,

Peq(z) = lim
t→∞

G(z, t|z0) =

exp

{
− z2

2σ2
0

}
√

2πσ2
0

, σ2
0 =

kBT

k
(A.25)

Denoting by γ the angle between the z−axis and the scattering Q, the ISF can be written
as,

I(Q, t) = 〈eiQ.r(t) e−iQ.r(0)〉 = 〈eiQ cos γz(t) e−iQ cos γz(0)〉

=

∫ +∞

−∞
dz0

∫ +∞

−∞
dz eiQ cos γzG(z, t|z0)e−iQ cos γz0Peq(z0)

=

∫ +∞

−∞
dz0B(z0)Peq(z0) (A.26)

where,  B(z0) =
∫ +∞
−∞ dz eiQ cos γzG(z, t|z0) = eiyz0e−t/τ −(ya)2/4

y = Q cos γ ; a2 = 2σ2
0

[
1− e−2t/τ

] (A.27)

Then,

I(Q, t) = e−(ya)2/4

∫ +∞

−∞
dz0e−iyz0[1−e−t/τ ]Peq(z0)

= exp

{
−(ya)2

4
−
[
yσ0

(
1− e−t/τ

)]2
2

}
(A.28)

Finally, we obtain:

I(Q, t) = exp

{
−(Q cos γ)2

(
kBT

k

) [
1− e−t/τ

]}
(A.29)

For this motion, the EISF is simply obtained as,

Ain−out(Q) = lim
t→∞

I(Q, t) = exp

{
−(Q cos γ)2

(
kBT

k

)}
(A.30)
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Appendix B. Derivation of aggregated expressions of B’s amplitudes and Γ’s
rates

Starting from a time dependent ISF, the aim of the aggregation is in general to derive
an approximate expression of ISF as an expansion of only few relaxation functions, Ek(Q, t)
such that, Ek(Q, t = 0) = 1 and Ek(Q, t → ∞) = 0. For our purpose, we deal with single
exponential relaxation function, Ek(Q, t) = exp {−Γkt}, where Γk(Q) is the relaxation rate.
The ISF to derive an aggregation is given in the right-hand-side of Eq.(13) as,

I = [zIjumpIhead + (1− z)IjumpItail] IrotIin−outI2d (B.1)

where Iα(Q, t) are the ISF’s of local motions described in the Matryoshka model and given
as [20],

Iα(Q, t) = Aα(Q) +
[
1− Aα(Q)

]
Cα(Q, t) ; α = jump, head, tail, rot, in− out, 2d (B.2)

where Aα(Q) is the amplitude and Cα(Q, t) the relaxation function such that, Cα(Q, t =
0) = 1 and Cα(Q, t → ∞) = 0. As, in general, Cα(Q, t) is a multi-exponential function of
time with decay rates functions of Q, the first step toward the aggregation is to derive a
single exponential approximation of Cα(Q, t) as [20],

Cα(Q, t) ≈ Eα(Q, t) = exp{−Γα(Q) t} with
1

Γα(Q)
=

∫ ∞
0

dtCα(Q, t) (B.3)

where Γα(Q) is the Q−dependent relaxation rate. Next, the goal is to derive the amplitudes
and relaxation rates such that Eq.(B.1) can be rewritten as,

Iagg(Q, t) =
3∑
i=0

Bi(Q)Ei(Q, t)

with: i = (0 = EISF), (1 = slow), (2 = intermediate), (3 = fast) ,

(B.4)

where Bi(Q) is the amplitude and Ei(Q, t) (such that, Ei(Q, t = 0) = 1 and Ei(Q, t→∞) =
0) the relaxation function with relaxation rates such that, Γ0 = 0 < Γslow < Γintermediate <
Γfast. To proceed, expanding Eq.(B.1) yields,

I =
[
zAjumpAhead + zAjump(1− Ahead)Ehead + z(1− Ajump)AheadEjump

+z(1− Ajump)(1− Ahead)EjumpEhead + (1− z)AjumpAtail

+(1− z)Ajump(1− Atail)Etail + (1− z)(1− Ajump)AtailEjump

+(1− z)(1− Ajump)(1− Atail)EjumpEtail

]
×
[
ArotAin−outA2d

+(1− Arot)Ain−outA2dErot + Arot(1− Ain−out)A2dEin−out

+ArotAin−out(1− A2d)E2d + (1− Arot)(1− Ain−out)A2dErotEin−out

+(1− Arot)Ain−out(1− A2d)ErotE2d + Arot(1− Ain−out)(1− A2d)Ein−outE2d

+(1− Arot)(1− Ain−out)(1− A2d)ErotEin−outE2d

]
(B.5)

Next, we use the following rules,
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• Hierarchy of relaxations: the hierarchy of relaxation time scales of motional processes
in the Matryoshka model indicates that: Γjump ∼ Γtail > Γhead ∼ Γrot > Γin−out ∼ Γ2d,
implying that, Ejump ∼ Etail < Ehead ∼ Erot < Ein−out ∼ E2d for all t. This leads
to the definition of three categories of movements on distinct time scales: slow, inter-
mediate and fast motions grouping together time scales of the order of (Γin−out,Γ2d),
(Γhead,Γrot), and (Γjump,Γtail), respectively;

• Operation rules: for timescales Γit ∼ 1, we have:

. Summation: aEi + bEj ≈
{
aEi + b , Γi > Γj
aEi , Γi < Γj

. Product: Ei × Ej ≈
{
Ei , Γi > Γj
0 , Γi < Γj

to rearrange Eq.(B.5) into 4 terms and derive the aggregated approximation in Eq.(B.4)
where,

• EISF: collects all time independent terms in Eq.(B.5).

Taking the t→∞ limit (i.e., setting all Eα(Q, t→∞) = 0) in Eq.(B.5) gives,

B0 =
[
zAhead + (1− z)Atail

]
AjumpArotAin−outA2d (B.6)

• Slow motions: collect all terms involving Ein−out and E2d in Eq.(B.5).

Bslow Eslow =
{
AjumpArot

[
zAhead + (1− z)Atail

]
+ T1

}{
T2 + Ain−out(1− A2d)E2d

+(1− Ain−out)A2dEin−out + (1− Ain−out)(1− A2d)Ein−outE2d

}
(B.7)

in which T1 groups terms involving Ejump, Etail and Ehead and T2 terms involving the
products of Erot with Ein−out and E2d (i.e., terms ≈ Erot). For timescales Γ2dt ∼
Γin−outt ∼ 1, both T1 and T2 vanish as they relax faster to zero and, therefore, will be
omitted. As the left-hand-side of Eq.(B.7) reads as, Bslow Eslow = Bslow exp {−Γslowt},
therefore, taking the t→ 0 limit in both sides of Eq.(B.7) (without T1 and T2) gives,

Bslow =
[
zAhead + (1− z)Atail

]
(1− Ain−outA2d)AjumpArot . (B.8)

Likewise, taking the t→ 0 limit in the time derivative of both sides of Eq.(B.7) gives,

Γslow =
(1− Ain−out)Γin−out + (1− A2d)Γ2d

1− Ain−outA2d

. (B.9)

The same approach will be used below to derive the amplitudes and relaxation rates
for intermediate and fast motions.
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• Intermediate motions: collect all terms involving Ehead and Erot in Eq.(B.5).

For timescales Γheadt ∼ Γrott ∼ 1, we use the rules above, Ein−out ∼ E2d ≈ 1 and
Ejump ∼ Etail ≈ 0 to first reduces Eq.(B.5) to,

BintermediateEintermediate =
[
zAjumpAhead + zAjump(1− Ahead)Ehead

+z(1− Ajump)(1− Ahead)EjumpEhead + (1− z)AjumpAtail

]
×[

Arot + (1− Arot)Ain−outA2dErot+

+(1− Arot)(1− Ain−out)A2dErotEin−out

+(1− Arot)Ain−out(1− A2d)ErotE2d

+(1− Arot)(1− Ain−out)(1− A2d)ErotEin−outE2d

]
− time independent terms

(B.10)

and next, ErotEin−out ≈ Erot, ErotE2d ≈ Erot, ErotEin−outE2d ≈ Erot and EjumpEhead ≈ 0
to,

BintermediateEintermediate =
{
z(1− Ahead)ArotEhead + z(1− Ahead)(1− Arot)EheadErot

+ [zAhead + (1− z)Atail] (1− Arot)Erot

}
Ajump (B.11)

Taking the t→ 0 limit in Eq.(B.11) gives,

Bintermediate =
{
z(1− AheadArot) + (1− z)Atail(1− Arot)

}
Ajump . (B.12)

And, taking the t→ 0 limit in the time derivative of both sides of Eq.(B.11) gives,

Γintermediate =
z(1− Ahead)Γhead + [z + (1− z)Atail] (1− Arot)Γrot

z(1− AheadArot) + (1− z)Atail(1− Arot)
. (B.13)

• Fast motions: collect all terms involving Ejump and Etail in Eq.(B.5).

For timescales Γjumpt ∼ Γtailt ∼ 1, we use the rules above, Ein−out ∼ E2d ∼ Erot ∼
Ehead ≈ 1 to reduces Eq.(B.5) to,

BfastEfast = z(1− Ajump)AheadEjump

+z(1− Ajump)(1− Ahead)EjumpEhead + (1− z)AjumpAtail

+(1− z)Ajump(1− Atail)Etail + (1− z)(1− Ajump)AtailEjump

+(1− z)(1− Ajump)(1− Atail)EjumpEtail

(B.14)

or,

BfastEfast =
[
zAhead + (1− z)Atail

]
(1− Ajump)Ejump + (1− z)Ajump(1− Atail)Etail

+
[
z(1− Ahead)Ehead + (1− z)(1− Atail)Etail

]
(1− Ajump)Ejump (B.15)
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Taking the t→ 0 limit in Eq.(B.15) gives,

Bfast = (1− Ajump) + (1− z)Ajump(1− Atail) = z(1− Ajump) + (1− z)(1− AjumpAtail) .(B.16)

And, taking the t→ 0 limit in the time derivative of both sides of Eq.(B.15) gives,

Γfast =
(1− Ajump)Γjump + (1− z)(1− Atail)Γtail

Bfast

. (B.17)

Appendix C. Relation between experimental A’s and theoretical B’s amplitudes

Given that the theoretical aggregated ISF in Eq.(B.4) writes as follows,

Iagg(Q, t) =
n∑
i=0

Bi(Q)Ei(Q, t) ;
n∑
i=0

Bi(Q) = 1 ; Bi(Q = 0) = δi,0 , (C.1)

we assume that the experimental ISF can also be written in the same way as,

Iexp(Q, t) =
n∑
i=0

Ai(Q)Ei(Q, t) ;
n∑
i=0

Ai(Q) = 1 , (C.2)

with the same Ei(Q, t) but different amplitudes Ai(Q) and such that, 0 < Ai(Q = 0) < 1 ,∀i.
The correspondence between Iagg(Q, t) and Iexp(Q, t) can be written as,

Iexp(Q, t) = mIagg(Q, t) +
n∑
i=0

εi(Q)Ei(Q, t)︸ ︷︷ ︸
error terms

, (C.3)

where m is the fraction of observable mobile H-atoms and εi(Q)’s the errors accounting for
the fraction of immobile H-atoms and other experimental errors like multiple scatterings,
etc. Collecting in Eq.(C.3) terms under the same relaxation function Ei(Q, t), we obtain the
general relationship between B(Q)’s and A(Q)’s as,

Ai(Q) = mBi(Q) + εi(Q) ; ∀i . (C.4)

From the point of view of the analysis of experimental data, the expression in Eq.(C.4)
involves n + 2 unknowns to determine: m and n + 1 functions εi(Q). Therefore, in the
absence of any information we use the closure relation (obtained by construction) satisfied
by the unknowns and assume that the errors of the quasi-elastic terms (i > 0) are all
identical, i.e.,

m+
n∑
i=0

εi(Q) = 1

εi(Q) = ε(Q) ; i > 0

=⇒ εi(Q) =
[1−m− ε0(Q)]

n
; i > 0 , (C.5)
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thus reducing the number of unknowns from n + 2 to 2. Using this back in Eq.(C.4), we
obtain, 

A0(Q) = mB0(Q) + ε0(Q)

Ai(Q) = mBi(Q) +
[1−m− ε0(Q)]

n
; i > 0

(C.6)

where the remaining unknowns are m and ε0(Q).
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